Dengue virus ensures its fusion in late endosomes using compartment-specific lipids

Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 6; no. 10; p. e1001131
Main Authors Zaitseva, Elena, Yang, Sung-Tae, Melikov, Kamran, Pourmal, Sergei, Chernomordik, Leonid V
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.
AbstractList Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Dengue virus infection is a growing public health problem with up to 100 million cases annually, and neither vaccines nor effective therapies are available. To search for the ways of preventing and treating dengue infections we need to better understand their molecular mechanisms. As with many other viruses, dengue virus enters cells by fusion between the viral membrane and the membrane of intracellular vesicles (endosomes). In this work we explored the fusion stage of dengue virus entry in different experimental systems ranging from virus fusion to artificial lipid membranes to fusion inside the cells. While earlier work on dengue virus entry has focused on viral protein that mediates fusion, we found that effective action of this protein requires specific lipid composition of the membrane the virus fuses to. In effect, this lipid dependence allows virus to control intracellular location of the fusion event and, thus, the place of its RNA release by exploiting cell-controlled differences between lipid compositions of different organelles the virus travels through. The essential role of the interactions between dengue virus and its lipid cofactors during viral entry suggests that these interactions may be targeted in drug design.
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma-and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DENbis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Dengue virus infection is a growing public health problem with up to 100 million cases annually, and neither vaccines nor effective therapies are available. To search for the ways of preventing and treating dengue infections we need to better understand their molecular mechanisms. As with many other viruses, dengue virus enters cells by fusion between the viral membrane and the membrane of intracellular vesicles (endosomes). In this work we explored the fusion stage of dengue virus entry in different experimental systems ranging from virus fusion to artificial lipid membranes to fusion inside the cells. While earlier work on dengue virus entry has focused on viral protein that mediates fusion, we found that effective action of this protein requires specific lipid composition of the membrane the virus fuses to. In effect, this lipid dependence allows virus to control intracellular location of the fusion event and, thus, the place of its RNA release by exploiting cell-controlled differences between lipid compositions of different organelles the virus travels through. The essential role of the interactions between dengue virus and its lipid cofactors during viral entry suggests that these interactions may be targeted in drug design.
  Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.
Audience Academic
Author Chernomordik, Leonid V
Melikov, Kamran
Yang, Sung-Tae
Pourmal, Sergei
Zaitseva, Elena
AuthorAffiliation Washington University School of Medicine, United States of America
Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
AuthorAffiliation_xml – name: Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
– name: Washington University School of Medicine, United States of America
Author_xml – sequence: 1
  givenname: Elena
  surname: Zaitseva
  fullname: Zaitseva, Elena
  organization: Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
– sequence: 2
  givenname: Sung-Tae
  surname: Yang
  fullname: Yang, Sung-Tae
– sequence: 3
  givenname: Kamran
  surname: Melikov
  fullname: Melikov, Kamran
– sequence: 4
  givenname: Sergei
  surname: Pourmal
  fullname: Pourmal, Sergei
– sequence: 5
  givenname: Leonid V
  surname: Chernomordik
  fullname: Chernomordik, Leonid V
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20949067$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFDEUhgep2A_9B6IDXkgvds3XJJMboVSrC0XB9j5kk5Mxy0wyJjNF_73Z7rZ0wRvJRcI5z3mTc_KeVkchBqiq1xgtMRX4wybOKeh-OY56WmKEMKb4WXWCm4YuBBXs6Mn5uDrNeYMQKwx_UR0TJJlEXJxUN58gdDPUdz7NuYaQ5wS59lOu3Zx9DLUPda8nKCkbcxxKssRDV5s4jDpNA4RpkUcw3nlT9370Nr-snjvdZ3i138-q26vPt5dfF9ffv6wuL64XhnM2LVpmnMFSsHUjgVvXOiwscVaAMEBb2xpDqUXEAdNGEgSYc45lqwmTa-PoWfV2Jzv2Mav9OLLCpJVIMIRkIVY7wka9UWPyg05_VNRe3Qdi6lRpwZseVCO41ODWIDBlFps1oS0HQjilRACwovVxf9u8HsCa0nfS_YHoYSb4n6qLd4rIBlO-fcz7vUCKv2bIkxp8NtD3OkCcs2q3vyXJPfluR3a6vMwHF4ug2dLqgjDMiSwtFmr5D6osC4M3xSvOl_hBwflBQWEm-D11es5ZrW5-_Af77ZBlO9akmHMC9zgUjNTWqg9_o7ZWVXurlrI3Twf6WPTgTfoX46_oGQ
CitedBy_id crossref_primary_10_1128_AAC_01367_16
crossref_primary_10_1021_acs_jctc_8b00438
crossref_primary_10_3390_biology11101536
crossref_primary_10_1128_mbio_02087_23
crossref_primary_10_3390_v3081332
crossref_primary_10_1016_j_cmpb_2020_105481
crossref_primary_10_1016_j_jmb_2013_09_024
crossref_primary_10_1371_journal_pone_0081450
crossref_primary_10_3390_pathogens8010001
crossref_primary_10_1016_j_virol_2016_06_021
crossref_primary_10_1093_protein_gzu040
crossref_primary_10_1016_j_ijpharm_2019_118453
crossref_primary_10_1016_j_chembiol_2020_07_015
crossref_primary_10_1016_j_virol_2019_12_010
crossref_primary_10_3390_idr13030060
crossref_primary_10_1007_s00232_013_9568_1
crossref_primary_10_1371_journal_pone_0056265
crossref_primary_10_3390_metabo10090356
crossref_primary_10_1016_j_virusres_2016_10_005
crossref_primary_10_1016_j_cub_2017_01_049
crossref_primary_10_3389_fcvm_2021_619690
crossref_primary_10_3390_membranes12121190
crossref_primary_10_1128_JVI_00634_16
crossref_primary_10_1016_j_virol_2013_04_003
crossref_primary_10_3390_vaccines9020148
crossref_primary_10_1016_j_ab_2023_115130
crossref_primary_10_1074_jbc_M117_783878
crossref_primary_10_1186_1742_4690_11_47
crossref_primary_10_1016_j_biochi_2020_10_018
crossref_primary_10_1038_srep22791
crossref_primary_10_1016_j_virol_2015_08_011
crossref_primary_10_2139_ssrn_3581354
crossref_primary_10_1016_j_coviro_2012_12_001
crossref_primary_10_1146_annurev_cellbio_101512_122422
crossref_primary_10_2217_fvl_11_85
crossref_primary_10_1016_j_jbc_2021_100813
crossref_primary_10_1126_scitranslmed_3005471
crossref_primary_10_1016_j_chom_2017_06_012
crossref_primary_10_1128_JVI_03184_15
crossref_primary_10_1016_j_virol_2019_04_008
crossref_primary_10_1128_MMBR_00024_15
crossref_primary_10_1016_j_ebiom_2016_09_003
crossref_primary_10_3389_fcimb_2023_1163569
crossref_primary_10_1128_JVI_01203_17
crossref_primary_10_3390_v14020240
crossref_primary_10_1128_mbio_02495_23
crossref_primary_10_1002_jcp_30118
crossref_primary_10_1242_jcs_216259
crossref_primary_10_1016_j_tim_2011_03_007
crossref_primary_10_1371_journal_ppat_1003585
crossref_primary_10_1371_journal_ppat_1006853
crossref_primary_10_3390_v7092852
crossref_primary_10_1371_journal_pntd_0002373
crossref_primary_10_1007_s12250_016_3902_6
crossref_primary_10_1038_srep29201
crossref_primary_10_1142_S0218127422501188
crossref_primary_10_1016_j_febslet_2011_02_015
crossref_primary_10_1371_journal_pone_0050995
crossref_primary_10_1016_j_biochi_2020_05_013
crossref_primary_10_1371_journal_ppat_1004548
crossref_primary_10_1074_jbc_M113_462028
crossref_primary_10_1016_j_bbamem_2020_183413
crossref_primary_10_1111_tra_12012
crossref_primary_10_1038_srep11753
crossref_primary_10_1016_j_semcdb_2016_06_019
crossref_primary_10_1083_jcb_201108131
crossref_primary_10_1016_j_pt_2018_04_011
crossref_primary_10_1371_journal_pntd_0006685
crossref_primary_10_1111_cmi_12340
crossref_primary_10_1242_jcs_119685
crossref_primary_10_1186_s12964_019_0349_z
crossref_primary_10_1021_jasms_0c00238
crossref_primary_10_1146_annurev_virology_092917_043300
crossref_primary_10_1371_journal_ppat_1001260
crossref_primary_10_1016_j_bbamem_2016_07_004
crossref_primary_10_1007_s11705_014_1457_3
crossref_primary_10_3109_09687688_2013_805835
crossref_primary_10_1016_j_biochi_2022_09_016
crossref_primary_10_1128_JVI_00018_16
crossref_primary_10_1093_abbs_gms122
crossref_primary_10_2139_ssrn_3155754
crossref_primary_10_1016_j_addr_2021_03_017
crossref_primary_10_1016_j_biotechadv_2023_108103
crossref_primary_10_1016_j_plipres_2016_09_005
crossref_primary_10_1371_journal_ppat_1002584
crossref_primary_10_1186_s12929_014_0080_4
crossref_primary_10_1371_journal_ppat_1011848
crossref_primary_10_1371_journal_pone_0219312
crossref_primary_10_1586_14760584_2016_1121814
crossref_primary_10_1016_j_bbamem_2018_02_012
crossref_primary_10_1016_j_virusres_2012_05_024
crossref_primary_10_1016_j_antiviral_2022_105347
crossref_primary_10_1371_journal_pone_0140824
crossref_primary_10_1016_j_virol_2015_11_006
crossref_primary_10_1371_journal_ppat_1002694
crossref_primary_10_1080_20477724_2022_2117939
crossref_primary_10_1080_07391102_2018_1508372
crossref_primary_10_1371_journal_ppat_1006257
crossref_primary_10_1016_j_bbamem_2023_184198
crossref_primary_10_1007_s00018_021_03834_6
crossref_primary_10_1016_j_virusres_2018_12_015
crossref_primary_10_1038_s42003_020_01254_z
crossref_primary_10_1073_pnas_1703807114
crossref_primary_10_1128_JVI_02411_14
crossref_primary_10_1242_jcs_261121
crossref_primary_10_1093_ve_vead016
crossref_primary_10_1073_pnas_1211714109
crossref_primary_10_3389_fphys_2021_749770
crossref_primary_10_1016_j_ymeth_2011_07_009
crossref_primary_10_1093_femsre_fuu004
crossref_primary_10_1016_j_str_2017_11_017
crossref_primary_10_1074_jbc_M117_818088
crossref_primary_10_1126_science_aal2712
crossref_primary_10_1074_jbc_M115_691113
crossref_primary_10_1016_j_bbamem_2022_184031
crossref_primary_10_1074_jbc_M115_700856
crossref_primary_10_1016_j_pneurobio_2018_11_004
crossref_primary_10_1128_mbio_03347_21
crossref_primary_10_1126_sciadv_abj6894
crossref_primary_10_1016_j_virol_2015_10_021
crossref_primary_10_1093_infdis_jis351
crossref_primary_10_1111_tra_12715
crossref_primary_10_1016_j_coviro_2014_09_020
crossref_primary_10_1128_JVI_01578_18
crossref_primary_10_1016_j_virusres_2017_05_007
crossref_primary_10_1039_C8LC00311D
crossref_primary_10_1371_journal_ppat_1010717
crossref_primary_10_3390_v13101967
crossref_primary_10_1016_j_jbc_2021_100411
crossref_primary_10_1111_jam_13038
crossref_primary_10_1021_acscentsci_8b00494
crossref_primary_10_1021_acsnano_9b10033
crossref_primary_10_1128_JVI_01950_12
crossref_primary_10_3389_fphys_2021_763195
crossref_primary_10_1016_j_celrep_2020_107584
crossref_primary_10_1021_nn405884a
crossref_primary_10_1042_BJ20110868
crossref_primary_10_1016_j_bbamem_2014_12_018
crossref_primary_10_1186_s12985_020_01329_7
crossref_primary_10_1016_j_virusres_2012_12_006
crossref_primary_10_18410_jebmh_2017_296
crossref_primary_10_1111_tra_12389
crossref_primary_10_1128_AAC_04177_14
crossref_primary_10_1021_acsinfecdis_8b00322
crossref_primary_10_1038_s42003_023_04573_z
crossref_primary_10_2217_fvl_15_35
crossref_primary_10_1146_annurev_virology_031413_085453
crossref_primary_10_1038_nm_2581
crossref_primary_10_2174_1389557521666210805105146
crossref_primary_10_15252_embr_201745302
crossref_primary_10_1128_JVI_00709_19
crossref_primary_10_3390_v5020605
crossref_primary_10_1016_j_scib_2020_11_003
crossref_primary_10_1021_acsnano_0c04489
crossref_primary_10_1016_j_tcb_2014_03_006
crossref_primary_10_1080_21505594_2021_1996059
crossref_primary_10_1128_JVI_02273_12
crossref_primary_10_1371_journal_ppat_1010814
crossref_primary_10_3390_v12121475
crossref_primary_10_3389_fcimb_2020_606743
crossref_primary_10_1038_srep28768
crossref_primary_10_1371_journal_pntd_0010890
crossref_primary_10_1371_journal_pone_0076174
crossref_primary_10_1007_s40475_013_0002_7
crossref_primary_10_1371_journal_ppat_1003835
crossref_primary_10_3390_ijms19123940
crossref_primary_10_1016_j_bpj_2019_06_022
crossref_primary_10_4103_0972_9062_313961
crossref_primary_10_1016_j_str_2018_10_009
crossref_primary_10_3390_v3020160
crossref_primary_10_1016_j_biochi_2020_07_005
crossref_primary_10_1016_j_str_2016_05_014
crossref_primary_10_1128_mBio_01552_15
crossref_primary_10_37489_0235_2990_2022_67_3_4_53_69
crossref_primary_10_1016_j_biochi_2013_05_019
crossref_primary_10_1371_journal_pone_0048853
crossref_primary_10_1021_acs_bioconjchem_8b00799
crossref_primary_10_1080_07391102_2019_1697368
crossref_primary_10_1016_j_antiviral_2018_04_005
crossref_primary_10_1146_annurev_virology_092818_015748
crossref_primary_10_1080_00032719_2024_2313708
crossref_primary_10_1016_j_jmb_2013_11_023
crossref_primary_10_3390_v14091896
crossref_primary_10_1021_acs_jpcb_2c06642
crossref_primary_10_1099_vir_0_000113
crossref_primary_10_1128_AEM_00275_16
crossref_primary_10_1021_la504970n
crossref_primary_10_1016_j_immuni_2017_02_012
crossref_primary_10_1371_journal_ppat_1009488
crossref_primary_10_1038_emboj_2011_439
crossref_primary_10_1016_j_chom_2016_07_004
crossref_primary_10_1016_j_antiviral_2015_10_013
crossref_primary_10_1016_j_bbamem_2022_183889
crossref_primary_10_1038_ncomms4877
crossref_primary_10_3390_molecules25184154
crossref_primary_10_1586_eri_12_104
crossref_primary_10_1111_febs_13274
Cites_doi 10.1038/nrmicro1067
10.1002/j.1460-2075.1994.tb06573.x
10.1016/0168-1702(89)90095-6
10.1038/ncb1269
10.1128/JVI.45.3.1090-1097.1983
10.1080/09687680701633091
10.1006/excr.1996.0334
10.1083/jcb.98.1.139
10.1016/S0014-5793(02)02823-5
10.1371/journal.ppat.1000244
10.1083/jcb.200806081
10.1111/j.1462-5822.2009.01345.x
10.1128/JVI.00975-08
10.1128/JVI.00300-07
10.1080/10409230903193307
10.1099/0022-1317-67-1-157
10.1083/jcb.108.4.1291
10.1073/pnas.77.6.3273
10.1016/0092-8674(93)90260-W
10.1007/0-306-46824-7_11
10.1083/jcb.101.1.19
10.1128/JVI.02210-06
10.1529/biophysj.106.097485
10.4269/ajtmh.1982.31.548
10.1128/JVI.01864-08
10.4161/auto.5.3.7925
10.1016/j.virol.2008.05.012
10.1083/jcb.136.5.995
10.1016/j.febslet.2007.01.093
10.1099/vir.0.82210-0
10.1099/0022-1317-71-8-1845
10.1083/jcb.200507075
10.1038/nsmb.1456
10.2174/092986609788681823
10.1128/JVI.73.10.8476-8484.1999
10.1016/0022-1759(95)00072-I
10.1006/viro.1994.1355
10.1006/viro.1997.8686
10.1111/j.1751-1097.2008.00475.x
10.1083/jcb.140.6.1369
10.1038/342555a0
10.1091/mbc.02-04-0053
10.1006/viro.1993.1252
10.1038/nrmicro1326
10.1016/S0021-9258(18)67334-X
10.1128/JVI.78.20.10920-10926.2004
10.1074/jbc.M202838200
10.1083/jcb.200412059
10.1128/JVI.01041-07
10.1128/JVI.02574-08
10.1006/viro.1999.0172
10.1128/JVI.76.24.12691-12702.2002
10.1371/journal.ppat.1000851
10.1016/j.antiviral.2009.09.011
10.1083/jcb.89.3.674
10.1146/annurev.biochem.72.121801.161504
10.1146/annurev.micro.62.081307.163005
10.1083/jcb.200903020
10.1128/JVI.72.12.9645-9655.1998
10.1128/JVI.52.1.281-283.1984
10.1128/JVI.68.11.6940-6946.1994
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zaitseva E, Yang S-T, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog 6(10): e1001131. doi:10.1371/journal.ppat.1001131
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
– notice: 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zaitseva E, Yang S-T, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog 6(10): e1001131. doi:10.1371/journal.ppat.1001131
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISN
ISR
7U9
C1K
F1W
H94
H95
H97
L.G
5PM
DOA
DOI 10.1371/journal.ppat.1001131
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Canada
Gale In Context: Science
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Lipid Cofactors of Dengue Virus Fusion Machinery
EISSN 1553-7374
Editor Diamond, Michael S.
Editor_xml – sequence: 1
  givenname: Michael S.
  surname: Diamond
  fullname: Diamond, Michael S.
ExternalDocumentID 1289074009
oai_doaj_org_article_5769aefbe7134d1cb2386e2263327ee4
A241629289
10_1371_journal_ppat_1001131
20949067
Genre Journal Article
Research Support, N.I.H., Intramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
AAYXX
CITATION
7U9
C1K
F1W
H94
H95
H97
L.G
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c664t-84cfc1974b59e6df8f17d2fd7e7ce38d8cc33d02fe4ac920e1666198a249bcf3
IEDL.DBID RPM
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:20 EDT 2023
Tue Oct 22 15:16:12 EDT 2024
Tue Sep 17 21:22:40 EDT 2024
Fri Aug 16 23:36:33 EDT 2024
Fri Feb 23 00:07:44 EST 2024
Fri Feb 02 04:16:12 EST 2024
Thu Aug 01 19:28:58 EDT 2024
Thu Aug 01 19:15:44 EDT 2024
Fri Aug 23 00:55:35 EDT 2024
Sat Sep 28 08:04:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-84cfc1974b59e6df8f17d2fd7e7ce38d8cc33d02fe4ac920e1666198a249bcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: EZ STY KM LVC. Performed the experiments: EZ STY SP. Analyzed the data: EZ STY KM SP LVC. Wrote the paper: EZ KM LVC.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951369/
PMID 20949067
PQID 815539269
PQPubID 23462
ParticipantIDs plos_journals_1289074009
doaj_primary_oai_doaj_org_article_5769aefbe7134d1cb2386e2263327ee4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2951369
proquest_miscellaneous_815539269
gale_infotracmisc_A241629289
gale_infotracacademiconefile_A241629289
gale_incontextgauss_ISR_A241629289
gale_incontextgauss_ISN_A241629289
crossref_primary_10_1371_journal_ppat_1001131
pubmed_primary_20949067
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References 19202356 - Autophagy. 2009 Apr;5(3):434-5
16216925 - J Cell Biol. 2005 Oct 10;171(1):111-20
19067945 - Photochem Photobiol. 2009 May-Jun;85(3):801-6
14527322 - Annu Rev Biochem. 2003;72:175-207
3944582 - J Gen Virol. 1986 Jan;67 ( Pt 1):157-66
10725196 - Virology. 2000 Mar 30;269(1):37-46
19523154 - Cell Microbiol. 2009 Oct;11(10):1533-49
9060465 - J Cell Biol. 1997 Mar 10;136(5):995-1005
17728239 - J Virol. 2007 Nov;81(21):12019-28
18571214 - Virology. 2008 Aug 15;378(1):193-9
18971266 - J Virol. 2009 Jan;83(1):440-53
9300043 - Virology. 1997 Aug 18;235(1):118-28
2543161 - Virus Res. 1989 Apr;12(4):383-92
12067727 - FEBS Lett. 2002 Jun 19;521(1-3):62-6
3733744 - J Biol Chem. 1986 Aug 25;261(24):10966-9
6481854 - J Virol. 1984 Oct;52(1):281-3
18632857 - J Virol. 2008 Sep;82(18):9245-53
19601907 - Protein Pept Lett. 2009;16(7):779-85
12438595 - J Virol. 2002 Dec;76(24):12691-702
17670824 - J Virol. 2007 Oct;81(20):11526-31
20386713 - PLoS Pathog. 2010 Apr;6(4):e1000851
6177259 - Am J Trop Med Hyg. 1982 May;31(3 Pt 1):548-55
17301152 - J Virol. 2007 May;81(9):4881-5
18307100 - Mol Membr Biol. 2008 Feb;25(2):128-38
9508770 - J Cell Biol. 1998 Mar 23;140(6):1369-82
19096510 - PLoS Pathog. 2008 Dec;4(12):e1000244
12065580 - J Biol Chem. 2002 Aug 30;277(35):32157-64
19244332 - J Virol. 2009 May;83(9):4338-44
19780638 - Crit Rev Biochem Mol Biol. 2009 Sep-Oct;44(5):264-77
6834477 - J Virol. 1983 Mar;45(3):1090-7
15608696 - Nat Rev Microbiol. 2005 Jan;3(1):13-22
15452212 - J Virol. 2004 Oct;78(20):10920-6
2167941 - J Gen Virol. 1990 Aug;71 ( Pt 8):1845-50
9811698 - J Virol. 1998 Dec;72(12):9645-55
8480420 - Virology. 1993 May;194(1):219-23
16963734 - J Gen Virol. 2006 Oct;87(Pt 10):2755-66
7912022 - Virology. 1994 Jul;202(1):390-400
12589044 - Mol Biol Cell. 2003 Feb;14(2):417-31
8912728 - Exp Cell Res. 1996 Nov 1;228(2):341-6
16357862 - Nat Rev Microbiol. 2006 Jan;4(1):67-76
15951806 - Nat Cell Biol. 2005 Jul;7(7):653-64
18596815 - Nat Struct Mol Biol. 2008 Jul;15(7):690-8
10482600 - J Virol. 1999 Oct;73(10):8476-84
17320081 - FEBS Lett. 2007 May 22;581(11):2150-5
18429680 - Annu Rev Microbiol. 2008;62:71-92
12138173 - J Biol Chem. 2002 Oct 11;277(41):38141-7
2660821 - Annu Rev Biophys Biophys Chem. 1989;18:113-36
7622868 - J Immunol Methods. 1995 Jul 17;184(1):39-51
19800368 - Antiviral Res. 2009 Dec;84(3):260-6
15809312 - J Cell Biol. 2005 Apr 11;169(1):167-77
8026464 - EMBO J. 1994 Jun 15;13(12):2797-804
8500173 - Cell. 1993 May 21;73(4):823-32
2925786 - J Cell Biol. 1989 Apr;108(4):1291-300
7933075 - J Virol. 1994 Nov;68(11):6940-6
18946025 - J Cell Sci. 2008 Nov 1;121(Pt 21):3619-28
10808340 - Subcell Biochem. 2000;34:409-55
17449662 - Biophys J. 2007 Jul 15;93(2):526-38
2989298 - J Cell Biol. 1985 Jul;101(1):19-27
6265470 - J Cell Biol. 1981 Jun;89(3):674-9
18936253 - J Cell Biol. 2008 Oct 20;183(2):353-61
6707081 - J Cell Biol. 1984 Jan;98(1):139-45
2586627 - Nature. 1989 Nov 30;342(6249):555-8
19487458 - J Cell Biol. 2009 Jun 1;185(5):917-28
20335260 - J Virol. 2010 Jun;84(11):5730-40
6997876 - Proc Natl Acad Sci U S A. 1980 Jun;77(6):3273-7
C Mosso (ref4) 2008; 378
W Weissenhorn (ref10) 2007; 581
M Liao (ref12) 2010
JL Kyle (ref1) 2008; 62
SJ Doxsey (ref41) 1985; 101
E Zaitseva (ref43) 2005; 169
S Schmid (ref38) 1989; 108
J White (ref52) 1980; 77
HM van der Schaar (ref57) 2007; 81
N Naslavsky (ref66) 2003; 14
SC Harrison (ref6) 2008; 15
S McLaughlin (ref49) 1989
JM Smit (ref17) 1999; 73
M Kielian (ref18) 2000; 34
AT Da Poian (ref25) 2009; 16
K Stiasny (ref2) 2006; 87
GB Melikyan (ref40) 1997; 136
LV Chernomordik (ref62) 1998; 140
J Edwards (ref24) 1983; 45
MK Gentry (ref26) 1982; 31
HK Johannsdottir (ref59) 2009; 83
L Wessels (ref32) 2007; 93
SW Gollins (ref54) 1986; 67
T Yeung (ref35) 2009; 185
PL Summers (ref14) 1989; 12
J Corver (ref44) 2000; 269
S Mukhopadhyay (ref7) 2005; 3
MK Poh (ref51) 2009; 84
V Nayak (ref9) 2009; 83
H Lee (ref29) 1994; 202
R Fritz (ref45) 2008; 183
LV Chernomordik (ref39) 2003; 72
MC Kielian (ref16) 1984; 52
MR Klimjack (ref47) 1994; 68
TA Endo (ref64) 1996; 228
JL Nieva (ref46) 1994; 13
N Bayer (ref36) 1998; 72
J White (ref27) 1981; 89
B Fadeel (ref33) 2009; 44
M Panyasrivanit (ref5) 2009; 5
W Thongthai (ref31) 2009; 85
VB Randolph (ref13) 1990; 71
T Stegmann (ref22) 1986; 261
AE Spruce (ref42) 1989; 342
F Guirakhoo (ref15) 1993; 194
MN Krishnan (ref61) 2007; 81
DA Coil (ref20) 2004; 78
HM van der Schaar (ref56) 2009
GB Melikyan (ref63) 1997; 235
M Liao (ref34) 2005; 171
MC Kielian (ref28) 1984; 98
A Chen (ref23) 2008
JM Smit (ref30) 2002; 521
AV Samsonov (ref48) 2002; 76
I Le Blanc (ref58) 2005; 7
F Stauffer (ref50) 2008; 25
HM van der Schaar (ref3) 2008; 4
AG Schmidt (ref11) 2010; 6
M Kielian (ref8) 2006; 4
M Umashankar (ref19) 2008; 82
EG Acosta (ref60) 2009; 11
K Stiasny (ref53) 2007; 81
T Kobayashi (ref21) 2002; 277
CM Carr (ref37) 1993; 73
I Vermes (ref65) 1995; 184
BL Waarts (ref55) 2002; 23
References_xml – volume: 3
  start-page: 13
  year: 2005
  ident: ref7
  article-title: A structural perspective of the flavivirus life cycle.
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1067
  contributor:
    fullname: S Mukhopadhyay
– volume: 13
  start-page: 2797
  year: 1994
  ident: ref46
  article-title: Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane.
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06573.x
  contributor:
    fullname: JL Nieva
– volume: 12
  start-page: 383
  year: 1989
  ident: ref14
  article-title: Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures.
  publication-title: Virus Res
  doi: 10.1016/0168-1702(89)90095-6
  contributor:
    fullname: PL Summers
– volume: 7
  start-page: 653
  year: 2005
  ident: ref58
  article-title: Endosome-to-cytosol transport of viral nucleocapsids.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1269
  contributor:
    fullname: I Le Blanc
– volume: 45
  start-page: 1090
  year: 1983
  ident: ref24
  article-title: Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH.
  publication-title: J Virol
  doi: 10.1128/JVI.45.3.1090-1097.1983
  contributor:
    fullname: J Edwards
– volume: 25
  start-page: 128
  year: 2008
  ident: ref50
  article-title: Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering.
  publication-title: Mol Membr Biol
  doi: 10.1080/09687680701633091
  contributor:
    fullname: F Stauffer
– volume: 228
  start-page: 341
  year: 1996
  ident: ref64
  article-title: A Chinese hamster ovary cell mutant resistant to phosphatidylserine is defective in transbilayer movement of cell surface phosphatidylserine.
  publication-title: Exp Cell Res
  doi: 10.1006/excr.1996.0334
  contributor:
    fullname: TA Endo
– volume: 98
  start-page: 139
  year: 1984
  ident: ref28
  article-title: Membrane fusion mutants of Semliki Forest virus.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.98.1.139
  contributor:
    fullname: MC Kielian
– volume: 521
  start-page: 62
  year: 2002
  ident: ref30
  article-title: Fusion of alphaviruses with liposomes is a non-leaky process.
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(02)02823-5
  contributor:
    fullname: JM Smit
– volume: 4
  start-page: e1000244
  year: 2008
  ident: ref3
  article-title: Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000244
  contributor:
    fullname: HM van der Schaar
– volume: 183
  start-page: 353
  year: 2008
  ident: ref45
  article-title: Identification of specific histidines as pH sensors in flavivirus membrane fusion.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200806081
  contributor:
    fullname: R Fritz
– volume: 11
  start-page: 1533
  year: 2009
  ident: ref60
  article-title: Alternative infectious entry pathways for dengue virus serotypes into mammalian cells.
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2009.01345.x
  contributor:
    fullname: EG Acosta
– volume: 82
  start-page: 9245
  year: 2008
  ident: ref19
  article-title: Differential cholesterol binding by class II fusion proteins determines membrane fusion properties.
  publication-title: J Virol
  doi: 10.1128/JVI.00975-08
  contributor:
    fullname: M Umashankar
– volume: 81
  start-page: 12019
  year: 2007
  ident: ref57
  article-title: Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking.
  publication-title: J Virol
  doi: 10.1128/JVI.00300-07
  contributor:
    fullname: HM van der Schaar
– year: 2008
  ident: ref23
  article-title: Fusion pore expansion during syncytium formation is restricted by an actin network.
  publication-title: Journal of Cell Science in press
  contributor:
    fullname: A Chen
– volume: 44
  start-page: 264
  year: 2009
  ident: ref33
  article-title: The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease.
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.1080/10409230903193307
  contributor:
    fullname: B Fadeel
– start-page: 160
  year: 2009
  ident: ref56
  article-title: Cell entry mechanisms of dengue virus: University of Groningen.
  contributor:
    fullname: HM van der Schaar
– volume: 67
  start-page: 157
  year: 1986
  ident: ref54
  article-title: pH-dependent fusion between the flavivirus West Nile and liposomal model membranes.
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-67-1-157
  contributor:
    fullname: SW Gollins
– volume: 108
  start-page: 1291
  year: 1989
  ident: ref38
  article-title: Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.108.4.1291
  contributor:
    fullname: S Schmid
– volume: 77
  start-page: 3273
  year: 1980
  ident: ref52
  article-title: pH-dependent fusion between the Semliki Forest virus membrane and liposomes.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.77.6.3273
  contributor:
    fullname: J White
– volume: 73
  start-page: 823
  year: 1993
  ident: ref37
  article-title: A spring-loaded mechanism for the conformational change of influenza hemagglutinin.
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90260-W
  contributor:
    fullname: CM Carr
– volume: 34
  start-page: 409
  year: 2000
  ident: ref18
  article-title: Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses.
  publication-title: Subcell Biochem
  doi: 10.1007/0-306-46824-7_11
  contributor:
    fullname: M Kielian
– volume: 101
  start-page: 19
  year: 1985
  ident: ref41
  article-title: An efficient method for introducing macromolecules into living cells.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.101.1.19
  contributor:
    fullname: SJ Doxsey
– volume: 81
  start-page: 4881
  year: 2007
  ident: ref61
  article-title: Rab 5 is required for the cellular entry of dengue and West Nile viruses.
  publication-title: J Virol
  doi: 10.1128/JVI.02210-06
  contributor:
    fullname: MN Krishnan
– volume: 93
  start-page: 526
  year: 2007
  ident: ref32
  article-title: Rapid membrane fusion of individual virus particles with supported lipid bilayers.
  publication-title: Biophys J
  doi: 10.1529/biophysj.106.097485
  contributor:
    fullname: L Wessels
– volume: 31
  start-page: 548
  year: 1982
  ident: ref26
  article-title: Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies.
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1982.31.548
  contributor:
    fullname: MK Gentry
– volume: 83
  start-page: 440
  year: 2009
  ident: ref59
  article-title: Host cell factors and functions involved in vesicular stomatitis virus entry.
  publication-title: J Virol
  doi: 10.1128/JVI.01864-08
  contributor:
    fullname: HK Johannsdottir
– volume: 5
  start-page: 434
  year: 2009
  ident: ref5
  article-title: Linking dengue virus entry and translation/replication through amphisomes.
  publication-title: Autophagy
  doi: 10.4161/auto.5.3.7925
  contributor:
    fullname: M Panyasrivanit
– volume: 378
  start-page: 193
  year: 2008
  ident: ref4
  article-title: Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT.
  publication-title: Virology
  doi: 10.1016/j.virol.2008.05.012
  contributor:
    fullname: C Mosso
– volume: 136
  start-page: 995
  year: 1997
  ident: ref40
  article-title: Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.136.5.995
  contributor:
    fullname: GB Melikyan
– volume: 581
  start-page: 2150
  year: 2007
  ident: ref10
  article-title: Virus membrane fusion.
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2007.01.093
  contributor:
    fullname: W Weissenhorn
– volume: 87
  start-page: 2755
  year: 2006
  ident: ref2
  article-title: Flavivirus membrane fusion.
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.82210-0
  contributor:
    fullname: K Stiasny
– volume: 71
  start-page: 1845
  issue: Pt 8
  year: 1990
  ident: ref13
  article-title: Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures.
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-71-8-1845
  contributor:
    fullname: VB Randolph
– volume: 171
  start-page: 111
  year: 2005
  ident: ref34
  article-title: Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200507075
  contributor:
    fullname: M Liao
– volume: 15
  start-page: 690
  year: 2008
  ident: ref6
  article-title: Viral membrane fusion.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1456
  contributor:
    fullname: SC Harrison
– volume: 16
  start-page: 779
  year: 2009
  ident: ref25
  article-title: Viral inactivation based on inhibition of membrane fusion: understanding the role of histidine protonation to develop new viral vaccines.
  publication-title: Protein Pept Lett
  doi: 10.2174/092986609788681823
  contributor:
    fullname: AT Da Poian
– volume: 73
  start-page: 8476
  year: 1999
  ident: ref17
  article-title: Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes.
  publication-title: J Virol
  doi: 10.1128/JVI.73.10.8476-8484.1999
  contributor:
    fullname: JM Smit
– volume: 184
  start-page: 39
  year: 1995
  ident: ref65
  article-title: A novel assay for apoptosis.Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V.
  publication-title: J Immunol Methods
  doi: 10.1016/0022-1759(95)00072-I
  contributor:
    fullname: I Vermes
– volume: 202
  start-page: 390
  year: 1994
  ident: ref29
  article-title: Mutations in an exposed domain of Sindbis virus capsid protein result in the production of noninfectious virions and morphological variants.
  publication-title: Virology
  doi: 10.1006/viro.1994.1355
  contributor:
    fullname: H Lee
– volume: 235
  start-page: 118
  year: 1997
  ident: ref63
  article-title: The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores.
  publication-title: Virology
  doi: 10.1006/viro.1997.8686
  contributor:
    fullname: GB Melikyan
– volume: 85
  start-page: 801
  year: 2009
  ident: ref31
  article-title: Photoinactivation of sindbis virus infectivity without inhibition of membrane fusion.
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.2008.00475.x
  contributor:
    fullname: W Thongthai
– volume: 140
  start-page: 1369
  year: 1998
  ident: ref62
  article-title: The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.140.6.1369
  contributor:
    fullname: LV Chernomordik
– volume: 342
  start-page: 555
  year: 1989
  ident: ref42
  article-title: Patch clamp studies of single cell-fusion events mediated by a viral fusion protein.
  publication-title: Nature
  doi: 10.1038/342555a0
  contributor:
    fullname: AE Spruce
– volume: 14
  start-page: 417
  year: 2003
  ident: ref66
  article-title: Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides.
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.02-04-0053
  contributor:
    fullname: N Naslavsky
– volume: 194
  start-page: 219
  year: 1993
  ident: ref15
  article-title: Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH.
  publication-title: Virology
  doi: 10.1006/viro.1993.1252
  contributor:
    fullname: F Guirakhoo
– volume: 4
  start-page: 67
  year: 2006
  ident: ref8
  article-title: Virus membrane-fusion proteins: more than one way to make a hairpin.
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1326
  contributor:
    fullname: M Kielian
– volume: 261
  start-page: 10966
  year: 1986
  ident: ref22
  article-title: Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)67334-X
  contributor:
    fullname: T Stegmann
– volume: 78
  start-page: 10920
  year: 2004
  ident: ref20
  article-title: Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus.
  publication-title: J Virol
  doi: 10.1128/JVI.78.20.10920-10926.2004
  contributor:
    fullname: DA Coil
– volume: 277
  start-page: 32157
  year: 2002
  ident: ref21
  article-title: Separation and characterization of late endosomal membrane domains.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M202838200
  contributor:
    fullname: T Kobayashi
– volume: 169
  start-page: 167
  year: 2005
  ident: ref43
  article-title: Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200412059
  contributor:
    fullname: E Zaitseva
– volume: 81
  start-page: 11526
  year: 2007
  ident: ref53
  article-title: Probing the flavivirus membrane fusion mechanism by using monoclonal antibodies.
  publication-title: J Virol
  doi: 10.1128/JVI.01041-07
  contributor:
    fullname: K Stiasny
– volume: 83
  start-page: 4338
  year: 2009
  ident: ref9
  article-title: Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion.
  publication-title: J Virol
  doi: 10.1128/JVI.02574-08
  contributor:
    fullname: V Nayak
– volume: 269
  start-page: 37
  year: 2000
  ident: ref44
  article-title: Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system.
  publication-title: Virology
  doi: 10.1006/viro.1999.0172
  contributor:
    fullname: J Corver
– start-page: 113
  year: 1989
  ident: ref49
  article-title: The Electrostatic Properties of Membranes.
  contributor:
    fullname: S McLaughlin
– volume: 76
  start-page: 12691
  year: 2002
  ident: ref48
  article-title: Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus.
  publication-title: J Virol
  doi: 10.1128/JVI.76.24.12691-12702.2002
  contributor:
    fullname: AV Samsonov
– volume: 6
  start-page: e1000851
  year: 2010
  ident: ref11
  article-title: Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000851
  contributor:
    fullname: AG Schmidt
– volume: 23
  start-page: 23
  year: 2002
  ident: ref55
  article-title: Sphingolipid- and cholesterol-dependence of alphavirus membrane fusion: Lack of correlation with lipid raft formation in target liposomes.
  publication-title: J Biol Chem
  contributor:
    fullname: BL Waarts
– volume: 84
  start-page: 260
  year: 2009
  ident: ref51
  article-title: A small molecule fusion inhibitor of dengue virus.
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2009.09.011
  contributor:
    fullname: MK Poh
– volume: 89
  start-page: 674
  year: 1981
  ident: ref27
  article-title: Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.89.3.674
  contributor:
    fullname: J White
– year: 2010
  ident: ref12
  article-title: In Vitro Reconstitution Reveals Key Intermediate States of Trimer Formation by the Dengue Virus Membrane Fusion Protein.
  publication-title: J Virol
  contributor:
    fullname: M Liao
– volume: 72
  start-page: 175
  year: 2003
  ident: ref39
  article-title: Protein-lipid interplay in fusion and fission of biological membranes.
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.72.121801.161504
  contributor:
    fullname: LV Chernomordik
– volume: 62
  start-page: 71
  year: 2008
  ident: ref1
  article-title: Global spread and persistence of dengue.
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.62.081307.163005
  contributor:
    fullname: JL Kyle
– volume: 185
  start-page: 917
  year: 2009
  ident: ref35
  article-title: Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200903020
  contributor:
    fullname: T Yeung
– volume: 72
  start-page: 9645
  year: 1998
  ident: ref36
  article-title: Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection.
  publication-title: J Virol
  doi: 10.1128/JVI.72.12.9645-9655.1998
  contributor:
    fullname: N Bayer
– volume: 52
  start-page: 281
  year: 1984
  ident: ref16
  article-title: Role of cholesterol in fusion of Semliki Forest virus with membranes.
  publication-title: J Virol
  doi: 10.1128/JVI.52.1.281-283.1984
  contributor:
    fullname: MC Kielian
– volume: 68
  start-page: 6940
  year: 1994
  ident: ref47
  article-title: Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein.
  publication-title: J Virol
  doi: 10.1128/JVI.68.11.6940-6946.1994
  contributor:
    fullname: MR Klimjack
SSID ssj0041316
Score 2.485699
Snippet Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome...
  Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1001131
SubjectTerms Animals
Cell Compartmentation - physiology
Cell Membrane - metabolism
Cell Membrane - physiology
Cells, Cultured
Cercopithecus aethiops
CHO Cells
Cricetinae
Cricetulus
Dengue - metabolism
Dengue - virology
Dengue fever
Dengue virus
Dengue Virus - physiology
Dengue viruses
Endocytosis - physiology
Endosomes - chemistry
Endosomes - metabolism
Endosomes - virology
Experiments
Genomes
Humans
Infections
Lipids
Membrane Lipids - metabolism
Membrane Lipids - physiology
Mice
Models, Biological
NIH 3T3 Cells
Phospholipids
Physiological aspects
Proteins
Substrate Specificity
Vero Cells
Virology/Host Invasion and Cell Entry
Virus Internalization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8uFGQhJE6BOE78OJZHVZDogRapNyvxY4m0TaImQeq_74yTXTUIxIVrZnLw54k9E3_-hpA3aeaLkFZpAntxmuTS6URLFpJCOa-4UtpGLb1vp-LkR_71ori41eoLOWGTPPAEHBTsQpc-VB4vPTpmK9hjhIekgfNMej8pgaZ6V0xNazCszLHpKTbFSSQXYr40xyV7P8_Ru64rh6hAxDhbbEpRu3-_Qq-6bdv_Kf38nUV5a1s6fkDuz_kkPZrG8ZDc8c0jcnfqMHn9mJx98s1m9PRXfTX2FNtaQHlN66GnYcT_ZLRu6BbSTTC5tm8vwYhM-A2duOmRgp7gbUxkFNFt3dWuf0LOjz-ffzxJ5j4KiRUiHxKV22AZFA5Vob1wQQUmXRac9NJ6rpyylnOXZsHnpdVZ6vEokWlVQmlW2cCfklXTNv6A0KwA5FPNtXU2Z7qqMqeKADliEVgJ6-qaJDscTTepZZh4ZCahypgAMYi7mXFfkw8I9t4Xta7jA4gAM0eA-VcErMlrnCqDahYN0mU25dj35svZqTmC_ERkGorKvzp9Xzi9nZ1CC1Nqy_mKAgweVbIWnocLT_gm7cJ8gGGzG3NvGJ7nSlgvwUR3oWTwLeS4Nb4de6MwWnUmwOXZFFl7XADzXENesSZyEXML4JaWpv4ZxcIzSKG50M__B9IvyL1InohcxkOyGq5G_xJysqF6FT-_G_4FMtE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqRUhcEO8uLchCSJxSJY4T2weECnTVIuiBtqg3K_FjWakk23gj0X_PjDe7Iqg9cM1MouTzePxNPJ4h5G3KXOHTOk1gLU4TLqxKlMh8UkjrZC6lMrGW3rfT8viCf7ksLnfIpmfrAGC4NbTDflIX3dXB7-ubDzDh38euDSLb3HSwXFarWFMow4PV9xiHWB2T-fh2XwE8dmyGis1yEpELPhymu-spo8Uq1vTfeu7J8qoNt9HSf7Mr_1quZo_Iw4Fn0sO1YTwmO655Qu6vO0_ePCVnn10z7x39sej6QI8a_E8Y6Mkq0FmP_8_ooqFfgYaCyLah_QXCmFxAo__oYmp6EnvX-4Wh2ADbhmfkfHZ0_uk4GforJKYs-SqR3HiTQUBRF8qV1kufCcu8FU4Yl0srjclzmzLveGUUSx1uMWZKVhCy1cbnz8mkaRu3SygrHGOpypWxhmeqrpmVhQfuWPisAn87JckGR71cV9HQcStNQPSxBkQj7nrAfUo-IthbXayBHS-03VwPU0pDpKQq52uHx2FtZmpgHyW8R5nnTDjHp-QNDpXGKhcNptHMqz4EfXJ2qg-Bt5RMQbB5p9L3kdK7Qcm3MKSmGo4uwMdj9ayR5v5IE-aqGYl30Ww23xx0hvu8AvwoiOjGlDTehblvjWv7oCVaq2IlqLxYW9YWF8CcK-AbUyJGNjcCbixpFj9jEXEG1Dov1cv_HJk98iDmT8R0xn0yWXW9ewW0bFW_jjPtD45DNUI
  priority: 102
  providerName: Scholars Portal
Title Dengue virus ensures its fusion in late endosomes using compartment-specific lipids
URI https://www.ncbi.nlm.nih.gov/pubmed/20949067
https://search.proquest.com/docview/815539269
https://pubmed.ncbi.nlm.nih.gov/PMC2951369
https://doaj.org/article/5769aefbe7134d1cb2386e2263327ee4
http://dx.doi.org/10.1371/journal.ppat.1001131
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2IiQuiO8VRmUhJE5pEzuJ7eM2Wm2IVtM2UG9W4o-u0ppUTXPgv-fZSQpBcOHSQ9-LlLwvv2f__B5CH0NiEhvmYQBrcRjETItAsMgGCdeGU86F8r305ov08lv8ZZksj1DS3YXxoH2Vr8fFw2ZcrO89tnK7UZMOJza5nl8QSAtoKibH6BgMtCvRm_ALQdnPO3XzcAJG07S9L0dZNGnVM95us71vPgS8rhswlDgi9JPmfy1NvoP_IU4Ptg9l9bck9E8s5W-L0-wZetpmlfisefvn6MgUL9DjZs7kj5fo9rMpVrXB39e7usLTwu0KVvhqX-FZ7XbL8LrAXyHpBJIuq3IDRA8lwD5a7DwQPfCT6u1aYTfuWlev0N1sendxGbTTFAKVpvE-4LGyKoLyIU-ESbXlNmKaWM0MU4ZyzZWiVIfEmjhTgoTGHShGgmdQoOXK0tdoUJSFOUGYJIaAzKhQWsWRyHOieWIhU0xslEF0HaKgk6PcNj0zpD84Y1BrNAKRTgWyVcEQnTthH3hdx2v_R7lbyVbvEuoikRmbG3f5VUcqh1wjhfdIKSXMmHiIPjhVSdfTonCgmVVWV5W8ul3IM8hSUiKgtPwn002P6VPLZEtQqcraiwrw8a5XVo_ztMcJnql65BNnNt03VzJyp7oMoiaQcGdK0j3lkG6FKetKcme4gqTA8qaxrINcOjsdItazuZ7g-hTwIN8yvPWYt__95Dv0xOMmPIzxFA32u9q8h3Rsn4_ACZdshB6dTxfXNyO_qQG_85iPvGP-BLXZNp0
link.rule.ids 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,31732,33757,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWIgQX3rCFBSKExClt4iSOfVyWrVpoK0TLam9W4kep2CZRkxzg1zN2kkJWcIBrZiLFnvF4Jv78DUJvPKwi7aWeC3ux54axZC6Lfe1GVCoaUMqE5dJbLMn0S_jhMro8QlF3F8aC9kW6HWVXu1G2_WqxlcVOjDuc2PjT4gxDWhAQNr6BbsJ69cKuSG8CMIRl2_HUdMRx44CQ9sZcEPvj1kCjokgqSz8EuoYPGIoc5tle8782J8vhf4jUg-IqL_-Uhl5HU_62PU3uoYtuYA0q5duortKR-HGN8_GfR34f3W0TVue0ET9ARyp7iG41LSy_P0Kr9yrb1Mq52O7r0jnPzA_H0plVpTOpzY84Z5s5c8hnQSTzMt-B0KIUHBuI9hbj7q4KZaGBjumkLcvHaD05X59N3bZRgysICSuXhkILHyqTNGKKSE21H0usZaxioQIqqRBBID2sVZgIhj1lzip9RhOo_VKhgydokOWZOkYOjhQGYwRMSBH6LE2xpJGGJDTSfgKBe4jczkC8aOg4uD2Ti6GMaSaEG9vy1rZD9M5Y8aBryLTtg3y_4e3Ecii5WKJ0qsy9WumLFNIYAt9BggDHSoVD9Nr4ADd0GZnB42ySuiz5bLXkp5AAEcygav2r0uee0ttWSefgKyJp70DA4A0NV0_zpKcJi170xMfGH7sxl9w3B8YxBGQQOZ2PcvOWAdFlKq9LTs2KYJiAytPGZQ_z0i2AIYp7ztybuL4EXNSykbcu-ey_33yFbk_Xizmfz5Yfn6M7Fp5h0ZInaFDta_UCsr4qfWnX-E-TNFRG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgEYgLb-hCgQghccpu4iR-HEvbVQvtqmILqrhYiR_Lim4SbZID_HrGTrI0FVx6jSdS7Hl4Jv78DULvA6wTE2SBD3tx4MdUcZ_T0PgJU5pFjHHpuPRO5-Toa_zpIrm40urLgfZltprkl-tJvvrhsJXlWk57nNj07HQfQ1oQET4tlZneRnfAZwPSF-ptEIbQ7Lqe2q44Po0I6W7NRTScdkqalGVaOwoikLWcwFDo8MD1m_-7QTke_220HpWXRfWvVPQ6ovLKFjV7iL73k2uRKT8nTZ1N5O9rvI83mv0j9KBLXL29VuQxuqXzJ-hu28ry11O0OND5stHet9WmqbzD3P54rLzjuvJmjf0h561y7wTyWhhSRVWsYdChFTwXkDYO6-4vSu0ggp7tqK2qZ-h8dni-f-R3DRt8SUhc-yyWRoZQoWQJ10QZZkKqsFFUU6kjppiUUaQCbHScSo4Dbc8sQ85SqAEzaaLnaJQXud5BHk40BoVEXCoZhzzLsGKJgWQ0MWEKAXyM_F5JomxpOYQ7m6NQzrQLIqx-RaffMfpoNbmVtaTa7kGxWYpucQWUXjzVJtP2fq0KZQbpDIHvIFGEqdbxGL2zdiAsbUZucTnLtKkqcbyYiz1IhAjmUL3-V-jLQOhDJ2QKsBeZdnchYPKWjmsguTuQBOeXg-Eda5P9nCsR2oNjCoEZhrzeToV9y4Lpcl00lWDWKzgmIPKiNdvtuvROMEZ0YNCDhRuOgJk6VvLOLF_e-M236N7ZwUycHM8_v0L3HUrDgSZ30ajeNPo1JH919sa5-R8rAVbG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dengue+Virus+Ensures+Its+Fusion+in+Late+Endosomes+Using+Compartment-Specific+Lipids&rft.jtitle=PLoS+pathogens&rft.au=Zaitseva%2C+Elena&rft.au=Yang%2C+Sung-Tae&rft.au=Melikov%2C+Kamran&rft.au=Pourmal%2C+Sergei&rft.date=2010-10-01&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=6&rft.issue=10&rft.spage=e1001131&rft_id=info:doi/10.1371%2Fjournal.ppat.1001131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_ppat_1001131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon