Dengue virus ensures its fusion in late endosomes using compartment-specific lipids
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses...
Saved in:
Published in | PLoS pathogens Vol. 6; no. 10; p. e1001131 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.10.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. |
---|---|
AbstractList | Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Dengue virus infection is a growing public health problem with up to 100 million cases annually, and neither vaccines nor effective therapies are available. To search for the ways of preventing and treating dengue infections we need to better understand their molecular mechanisms. As with many other viruses, dengue virus enters cells by fusion between the viral membrane and the membrane of intracellular vesicles (endosomes). In this work we explored the fusion stage of dengue virus entry in different experimental systems ranging from virus fusion to artificial lipid membranes to fusion inside the cells. While earlier work on dengue virus entry has focused on viral protein that mediates fusion, we found that effective action of this protein requires specific lipid composition of the membrane the virus fuses to. In effect, this lipid dependence allows virus to control intracellular location of the fusion event and, thus, the place of its RNA release by exploiting cell-controlled differences between lipid compositions of different organelles the virus travels through. The essential role of the interactions between dengue virus and its lipid cofactors during viral entry suggests that these interactions may be targeted in drug design. Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma-and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DENbis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Dengue virus infection is a growing public health problem with up to 100 million cases annually, and neither vaccines nor effective therapies are available. To search for the ways of preventing and treating dengue infections we need to better understand their molecular mechanisms. As with many other viruses, dengue virus enters cells by fusion between the viral membrane and the membrane of intracellular vesicles (endosomes). In this work we explored the fusion stage of dengue virus entry in different experimental systems ranging from virus fusion to artificial lipid membranes to fusion inside the cells. While earlier work on dengue virus entry has focused on viral protein that mediates fusion, we found that effective action of this protein requires specific lipid composition of the membrane the virus fuses to. In effect, this lipid dependence allows virus to control intracellular location of the fusion event and, thus, the place of its RNA release by exploiting cell-controlled differences between lipid compositions of different organelles the virus travels through. The essential role of the interactions between dengue virus and its lipid cofactors during viral entry suggests that these interactions may be targeted in drug design. Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. |
Audience | Academic |
Author | Chernomordik, Leonid V Melikov, Kamran Yang, Sung-Tae Pourmal, Sergei Zaitseva, Elena |
AuthorAffiliation | Washington University School of Medicine, United States of America Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America |
AuthorAffiliation_xml | – name: Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America – name: Washington University School of Medicine, United States of America |
Author_xml | – sequence: 1 givenname: Elena surname: Zaitseva fullname: Zaitseva, Elena organization: Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America – sequence: 2 givenname: Sung-Tae surname: Yang fullname: Yang, Sung-Tae – sequence: 3 givenname: Kamran surname: Melikov fullname: Melikov, Kamran – sequence: 4 givenname: Sergei surname: Pourmal fullname: Pourmal, Sergei – sequence: 5 givenname: Leonid V surname: Chernomordik fullname: Chernomordik, Leonid V |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20949067$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl1rFDEUhgep2A_9B6IDXkgvds3XJJMboVSrC0XB9j5kk5Mxy0wyJjNF_73Z7rZ0wRvJRcI5z3mTc_KeVkchBqiq1xgtMRX4wybOKeh-OY56WmKEMKb4WXWCm4YuBBXs6Mn5uDrNeYMQKwx_UR0TJJlEXJxUN58gdDPUdz7NuYaQ5wS59lOu3Zx9DLUPda8nKCkbcxxKssRDV5s4jDpNA4RpkUcw3nlT9370Nr-snjvdZ3i138-q26vPt5dfF9ffv6wuL64XhnM2LVpmnMFSsHUjgVvXOiwscVaAMEBb2xpDqUXEAdNGEgSYc45lqwmTa-PoWfV2Jzv2Mav9OLLCpJVIMIRkIVY7wka9UWPyg05_VNRe3Qdi6lRpwZseVCO41ODWIDBlFps1oS0HQjilRACwovVxf9u8HsCa0nfS_YHoYSb4n6qLd4rIBlO-fcz7vUCKv2bIkxp8NtD3OkCcs2q3vyXJPfluR3a6vMwHF4ug2dLqgjDMiSwtFmr5D6osC4M3xSvOl_hBwflBQWEm-D11es5ZrW5-_Af77ZBlO9akmHMC9zgUjNTWqg9_o7ZWVXurlrI3Twf6WPTgTfoX46_oGQ |
CitedBy_id | crossref_primary_10_1128_AAC_01367_16 crossref_primary_10_1021_acs_jctc_8b00438 crossref_primary_10_3390_biology11101536 crossref_primary_10_1128_mbio_02087_23 crossref_primary_10_3390_v3081332 crossref_primary_10_1016_j_cmpb_2020_105481 crossref_primary_10_1016_j_jmb_2013_09_024 crossref_primary_10_1371_journal_pone_0081450 crossref_primary_10_3390_pathogens8010001 crossref_primary_10_1016_j_virol_2016_06_021 crossref_primary_10_1093_protein_gzu040 crossref_primary_10_1016_j_ijpharm_2019_118453 crossref_primary_10_1016_j_chembiol_2020_07_015 crossref_primary_10_1016_j_virol_2019_12_010 crossref_primary_10_3390_idr13030060 crossref_primary_10_1007_s00232_013_9568_1 crossref_primary_10_1371_journal_pone_0056265 crossref_primary_10_3390_metabo10090356 crossref_primary_10_1016_j_virusres_2016_10_005 crossref_primary_10_1016_j_cub_2017_01_049 crossref_primary_10_3389_fcvm_2021_619690 crossref_primary_10_3390_membranes12121190 crossref_primary_10_1128_JVI_00634_16 crossref_primary_10_1016_j_virol_2013_04_003 crossref_primary_10_3390_vaccines9020148 crossref_primary_10_1016_j_ab_2023_115130 crossref_primary_10_1074_jbc_M117_783878 crossref_primary_10_1186_1742_4690_11_47 crossref_primary_10_1016_j_biochi_2020_10_018 crossref_primary_10_1038_srep22791 crossref_primary_10_1016_j_virol_2015_08_011 crossref_primary_10_2139_ssrn_3581354 crossref_primary_10_1016_j_coviro_2012_12_001 crossref_primary_10_1146_annurev_cellbio_101512_122422 crossref_primary_10_2217_fvl_11_85 crossref_primary_10_1016_j_jbc_2021_100813 crossref_primary_10_1126_scitranslmed_3005471 crossref_primary_10_1016_j_chom_2017_06_012 crossref_primary_10_1128_JVI_03184_15 crossref_primary_10_1016_j_virol_2019_04_008 crossref_primary_10_1128_MMBR_00024_15 crossref_primary_10_1016_j_ebiom_2016_09_003 crossref_primary_10_3389_fcimb_2023_1163569 crossref_primary_10_1128_JVI_01203_17 crossref_primary_10_3390_v14020240 crossref_primary_10_1128_mbio_02495_23 crossref_primary_10_1002_jcp_30118 crossref_primary_10_1242_jcs_216259 crossref_primary_10_1016_j_tim_2011_03_007 crossref_primary_10_1371_journal_ppat_1003585 crossref_primary_10_1371_journal_ppat_1006853 crossref_primary_10_3390_v7092852 crossref_primary_10_1371_journal_pntd_0002373 crossref_primary_10_1007_s12250_016_3902_6 crossref_primary_10_1038_srep29201 crossref_primary_10_1142_S0218127422501188 crossref_primary_10_1016_j_febslet_2011_02_015 crossref_primary_10_1371_journal_pone_0050995 crossref_primary_10_1016_j_biochi_2020_05_013 crossref_primary_10_1371_journal_ppat_1004548 crossref_primary_10_1074_jbc_M113_462028 crossref_primary_10_1016_j_bbamem_2020_183413 crossref_primary_10_1111_tra_12012 crossref_primary_10_1038_srep11753 crossref_primary_10_1016_j_semcdb_2016_06_019 crossref_primary_10_1083_jcb_201108131 crossref_primary_10_1016_j_pt_2018_04_011 crossref_primary_10_1371_journal_pntd_0006685 crossref_primary_10_1111_cmi_12340 crossref_primary_10_1242_jcs_119685 crossref_primary_10_1186_s12964_019_0349_z crossref_primary_10_1021_jasms_0c00238 crossref_primary_10_1146_annurev_virology_092917_043300 crossref_primary_10_1371_journal_ppat_1001260 crossref_primary_10_1016_j_bbamem_2016_07_004 crossref_primary_10_1007_s11705_014_1457_3 crossref_primary_10_3109_09687688_2013_805835 crossref_primary_10_1016_j_biochi_2022_09_016 crossref_primary_10_1128_JVI_00018_16 crossref_primary_10_1093_abbs_gms122 crossref_primary_10_2139_ssrn_3155754 crossref_primary_10_1016_j_addr_2021_03_017 crossref_primary_10_1016_j_biotechadv_2023_108103 crossref_primary_10_1016_j_plipres_2016_09_005 crossref_primary_10_1371_journal_ppat_1002584 crossref_primary_10_1186_s12929_014_0080_4 crossref_primary_10_1371_journal_ppat_1011848 crossref_primary_10_1371_journal_pone_0219312 crossref_primary_10_1586_14760584_2016_1121814 crossref_primary_10_1016_j_bbamem_2018_02_012 crossref_primary_10_1016_j_virusres_2012_05_024 crossref_primary_10_1016_j_antiviral_2022_105347 crossref_primary_10_1371_journal_pone_0140824 crossref_primary_10_1016_j_virol_2015_11_006 crossref_primary_10_1371_journal_ppat_1002694 crossref_primary_10_1080_20477724_2022_2117939 crossref_primary_10_1080_07391102_2018_1508372 crossref_primary_10_1371_journal_ppat_1006257 crossref_primary_10_1016_j_bbamem_2023_184198 crossref_primary_10_1007_s00018_021_03834_6 crossref_primary_10_1016_j_virusres_2018_12_015 crossref_primary_10_1038_s42003_020_01254_z crossref_primary_10_1073_pnas_1703807114 crossref_primary_10_1128_JVI_02411_14 crossref_primary_10_1242_jcs_261121 crossref_primary_10_1093_ve_vead016 crossref_primary_10_1073_pnas_1211714109 crossref_primary_10_3389_fphys_2021_749770 crossref_primary_10_1016_j_ymeth_2011_07_009 crossref_primary_10_1093_femsre_fuu004 crossref_primary_10_1016_j_str_2017_11_017 crossref_primary_10_1074_jbc_M117_818088 crossref_primary_10_1126_science_aal2712 crossref_primary_10_1074_jbc_M115_691113 crossref_primary_10_1016_j_bbamem_2022_184031 crossref_primary_10_1074_jbc_M115_700856 crossref_primary_10_1016_j_pneurobio_2018_11_004 crossref_primary_10_1128_mbio_03347_21 crossref_primary_10_1126_sciadv_abj6894 crossref_primary_10_1016_j_virol_2015_10_021 crossref_primary_10_1093_infdis_jis351 crossref_primary_10_1111_tra_12715 crossref_primary_10_1016_j_coviro_2014_09_020 crossref_primary_10_1128_JVI_01578_18 crossref_primary_10_1016_j_virusres_2017_05_007 crossref_primary_10_1039_C8LC00311D crossref_primary_10_1371_journal_ppat_1010717 crossref_primary_10_3390_v13101967 crossref_primary_10_1016_j_jbc_2021_100411 crossref_primary_10_1111_jam_13038 crossref_primary_10_1021_acscentsci_8b00494 crossref_primary_10_1021_acsnano_9b10033 crossref_primary_10_1128_JVI_01950_12 crossref_primary_10_3389_fphys_2021_763195 crossref_primary_10_1016_j_celrep_2020_107584 crossref_primary_10_1021_nn405884a crossref_primary_10_1042_BJ20110868 crossref_primary_10_1016_j_bbamem_2014_12_018 crossref_primary_10_1186_s12985_020_01329_7 crossref_primary_10_1016_j_virusres_2012_12_006 crossref_primary_10_18410_jebmh_2017_296 crossref_primary_10_1111_tra_12389 crossref_primary_10_1128_AAC_04177_14 crossref_primary_10_1021_acsinfecdis_8b00322 crossref_primary_10_1038_s42003_023_04573_z crossref_primary_10_2217_fvl_15_35 crossref_primary_10_1146_annurev_virology_031413_085453 crossref_primary_10_1038_nm_2581 crossref_primary_10_2174_1389557521666210805105146 crossref_primary_10_15252_embr_201745302 crossref_primary_10_1128_JVI_00709_19 crossref_primary_10_3390_v5020605 crossref_primary_10_1016_j_scib_2020_11_003 crossref_primary_10_1021_acsnano_0c04489 crossref_primary_10_1016_j_tcb_2014_03_006 crossref_primary_10_1080_21505594_2021_1996059 crossref_primary_10_1128_JVI_02273_12 crossref_primary_10_1371_journal_ppat_1010814 crossref_primary_10_3390_v12121475 crossref_primary_10_3389_fcimb_2020_606743 crossref_primary_10_1038_srep28768 crossref_primary_10_1371_journal_pntd_0010890 crossref_primary_10_1371_journal_pone_0076174 crossref_primary_10_1007_s40475_013_0002_7 crossref_primary_10_1371_journal_ppat_1003835 crossref_primary_10_3390_ijms19123940 crossref_primary_10_1016_j_bpj_2019_06_022 crossref_primary_10_4103_0972_9062_313961 crossref_primary_10_1016_j_str_2018_10_009 crossref_primary_10_3390_v3020160 crossref_primary_10_1016_j_biochi_2020_07_005 crossref_primary_10_1016_j_str_2016_05_014 crossref_primary_10_1128_mBio_01552_15 crossref_primary_10_37489_0235_2990_2022_67_3_4_53_69 crossref_primary_10_1016_j_biochi_2013_05_019 crossref_primary_10_1371_journal_pone_0048853 crossref_primary_10_1021_acs_bioconjchem_8b00799 crossref_primary_10_1080_07391102_2019_1697368 crossref_primary_10_1016_j_antiviral_2018_04_005 crossref_primary_10_1146_annurev_virology_092818_015748 crossref_primary_10_1080_00032719_2024_2313708 crossref_primary_10_1016_j_jmb_2013_11_023 crossref_primary_10_3390_v14091896 crossref_primary_10_1021_acs_jpcb_2c06642 crossref_primary_10_1099_vir_0_000113 crossref_primary_10_1128_AEM_00275_16 crossref_primary_10_1021_la504970n crossref_primary_10_1016_j_immuni_2017_02_012 crossref_primary_10_1371_journal_ppat_1009488 crossref_primary_10_1038_emboj_2011_439 crossref_primary_10_1016_j_chom_2016_07_004 crossref_primary_10_1016_j_antiviral_2015_10_013 crossref_primary_10_1016_j_bbamem_2022_183889 crossref_primary_10_1038_ncomms4877 crossref_primary_10_3390_molecules25184154 crossref_primary_10_1586_eri_12_104 crossref_primary_10_1111_febs_13274 |
Cites_doi | 10.1038/nrmicro1067 10.1002/j.1460-2075.1994.tb06573.x 10.1016/0168-1702(89)90095-6 10.1038/ncb1269 10.1128/JVI.45.3.1090-1097.1983 10.1080/09687680701633091 10.1006/excr.1996.0334 10.1083/jcb.98.1.139 10.1016/S0014-5793(02)02823-5 10.1371/journal.ppat.1000244 10.1083/jcb.200806081 10.1111/j.1462-5822.2009.01345.x 10.1128/JVI.00975-08 10.1128/JVI.00300-07 10.1080/10409230903193307 10.1099/0022-1317-67-1-157 10.1083/jcb.108.4.1291 10.1073/pnas.77.6.3273 10.1016/0092-8674(93)90260-W 10.1007/0-306-46824-7_11 10.1083/jcb.101.1.19 10.1128/JVI.02210-06 10.1529/biophysj.106.097485 10.4269/ajtmh.1982.31.548 10.1128/JVI.01864-08 10.4161/auto.5.3.7925 10.1016/j.virol.2008.05.012 10.1083/jcb.136.5.995 10.1016/j.febslet.2007.01.093 10.1099/vir.0.82210-0 10.1099/0022-1317-71-8-1845 10.1083/jcb.200507075 10.1038/nsmb.1456 10.2174/092986609788681823 10.1128/JVI.73.10.8476-8484.1999 10.1016/0022-1759(95)00072-I 10.1006/viro.1994.1355 10.1006/viro.1997.8686 10.1111/j.1751-1097.2008.00475.x 10.1083/jcb.140.6.1369 10.1038/342555a0 10.1091/mbc.02-04-0053 10.1006/viro.1993.1252 10.1038/nrmicro1326 10.1016/S0021-9258(18)67334-X 10.1128/JVI.78.20.10920-10926.2004 10.1074/jbc.M202838200 10.1083/jcb.200412059 10.1128/JVI.01041-07 10.1128/JVI.02574-08 10.1006/viro.1999.0172 10.1128/JVI.76.24.12691-12702.2002 10.1371/journal.ppat.1000851 10.1016/j.antiviral.2009.09.011 10.1083/jcb.89.3.674 10.1146/annurev.biochem.72.121801.161504 10.1146/annurev.micro.62.081307.163005 10.1083/jcb.200903020 10.1128/JVI.72.12.9645-9655.1998 10.1128/JVI.52.1.281-283.1984 10.1128/JVI.68.11.6940-6946.1994 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zaitseva E, Yang S-T, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog 6(10): e1001131. doi:10.1371/journal.ppat.1001131 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010 – notice: 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zaitseva E, Yang S-T, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog 6(10): e1001131. doi:10.1371/journal.ppat.1001131 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISN ISR 7U9 C1K F1W H94 H95 H97 L.G 5PM DOA |
DOI | 10.1371/journal.ppat.1001131 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Canada Gale In Context: Science Virology and AIDS Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Lipid Cofactors of Dengue Virus Fusion Machinery |
EISSN | 1553-7374 |
Editor | Diamond, Michael S. |
Editor_xml | – sequence: 1 givenname: Michael S. surname: Diamond fullname: Diamond, Michael S. |
ExternalDocumentID | 1289074009 oai_doaj_org_article_5769aefbe7134d1cb2386e2263327ee4 A241629289 10_1371_journal_ppat_1001131 20949067 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Intramural NIH HHS |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD ECM EIF EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO QN7 RIG RNS RPM SV3 TR2 TUS UKHRP WOW ~8M AAYXX CITATION 7U9 C1K F1W H94 H95 H97 L.G 5PM AAPBV ABPTK |
ID | FETCH-LOGICAL-c664t-84cfc1974b59e6df8f17d2fd7e7ce38d8cc33d02fe4ac920e1666198a249bcf3 |
IEDL.DBID | RPM |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:20 EDT 2023 Tue Oct 22 15:16:12 EDT 2024 Tue Sep 17 21:22:40 EDT 2024 Fri Aug 16 23:36:33 EDT 2024 Fri Feb 23 00:07:44 EST 2024 Fri Feb 02 04:16:12 EST 2024 Thu Aug 01 19:28:58 EDT 2024 Thu Aug 01 19:15:44 EDT 2024 Fri Aug 23 00:55:35 EDT 2024 Sat Sep 28 08:04:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-84cfc1974b59e6df8f17d2fd7e7ce38d8cc33d02fe4ac920e1666198a249bcf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: EZ STY KM LVC. Performed the experiments: EZ STY SP. Analyzed the data: EZ STY KM SP LVC. Wrote the paper: EZ KM LVC. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951369/ |
PMID | 20949067 |
PQID | 815539269 |
PQPubID | 23462 |
ParticipantIDs | plos_journals_1289074009 doaj_primary_oai_doaj_org_article_5769aefbe7134d1cb2386e2263327ee4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2951369 proquest_miscellaneous_815539269 gale_infotracmisc_A241629289 gale_infotracacademiconefile_A241629289 gale_incontextgauss_ISR_A241629289 gale_incontextgauss_ISN_A241629289 crossref_primary_10_1371_journal_ppat_1001131 pubmed_primary_20949067 |
PublicationCentury | 2000 |
PublicationDate | 2010-10-01 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | 19202356 - Autophagy. 2009 Apr;5(3):434-5 16216925 - J Cell Biol. 2005 Oct 10;171(1):111-20 19067945 - Photochem Photobiol. 2009 May-Jun;85(3):801-6 14527322 - Annu Rev Biochem. 2003;72:175-207 3944582 - J Gen Virol. 1986 Jan;67 ( Pt 1):157-66 10725196 - Virology. 2000 Mar 30;269(1):37-46 19523154 - Cell Microbiol. 2009 Oct;11(10):1533-49 9060465 - J Cell Biol. 1997 Mar 10;136(5):995-1005 17728239 - J Virol. 2007 Nov;81(21):12019-28 18571214 - Virology. 2008 Aug 15;378(1):193-9 18971266 - J Virol. 2009 Jan;83(1):440-53 9300043 - Virology. 1997 Aug 18;235(1):118-28 2543161 - Virus Res. 1989 Apr;12(4):383-92 12067727 - FEBS Lett. 2002 Jun 19;521(1-3):62-6 3733744 - J Biol Chem. 1986 Aug 25;261(24):10966-9 6481854 - J Virol. 1984 Oct;52(1):281-3 18632857 - J Virol. 2008 Sep;82(18):9245-53 19601907 - Protein Pept Lett. 2009;16(7):779-85 12438595 - J Virol. 2002 Dec;76(24):12691-702 17670824 - J Virol. 2007 Oct;81(20):11526-31 20386713 - PLoS Pathog. 2010 Apr;6(4):e1000851 6177259 - Am J Trop Med Hyg. 1982 May;31(3 Pt 1):548-55 17301152 - J Virol. 2007 May;81(9):4881-5 18307100 - Mol Membr Biol. 2008 Feb;25(2):128-38 9508770 - J Cell Biol. 1998 Mar 23;140(6):1369-82 19096510 - PLoS Pathog. 2008 Dec;4(12):e1000244 12065580 - J Biol Chem. 2002 Aug 30;277(35):32157-64 19244332 - J Virol. 2009 May;83(9):4338-44 19780638 - Crit Rev Biochem Mol Biol. 2009 Sep-Oct;44(5):264-77 6834477 - J Virol. 1983 Mar;45(3):1090-7 15608696 - Nat Rev Microbiol. 2005 Jan;3(1):13-22 15452212 - J Virol. 2004 Oct;78(20):10920-6 2167941 - J Gen Virol. 1990 Aug;71 ( Pt 8):1845-50 9811698 - J Virol. 1998 Dec;72(12):9645-55 8480420 - Virology. 1993 May;194(1):219-23 16963734 - J Gen Virol. 2006 Oct;87(Pt 10):2755-66 7912022 - Virology. 1994 Jul;202(1):390-400 12589044 - Mol Biol Cell. 2003 Feb;14(2):417-31 8912728 - Exp Cell Res. 1996 Nov 1;228(2):341-6 16357862 - Nat Rev Microbiol. 2006 Jan;4(1):67-76 15951806 - Nat Cell Biol. 2005 Jul;7(7):653-64 18596815 - Nat Struct Mol Biol. 2008 Jul;15(7):690-8 10482600 - J Virol. 1999 Oct;73(10):8476-84 17320081 - FEBS Lett. 2007 May 22;581(11):2150-5 18429680 - Annu Rev Microbiol. 2008;62:71-92 12138173 - J Biol Chem. 2002 Oct 11;277(41):38141-7 2660821 - Annu Rev Biophys Biophys Chem. 1989;18:113-36 7622868 - J Immunol Methods. 1995 Jul 17;184(1):39-51 19800368 - Antiviral Res. 2009 Dec;84(3):260-6 15809312 - J Cell Biol. 2005 Apr 11;169(1):167-77 8026464 - EMBO J. 1994 Jun 15;13(12):2797-804 8500173 - Cell. 1993 May 21;73(4):823-32 2925786 - J Cell Biol. 1989 Apr;108(4):1291-300 7933075 - J Virol. 1994 Nov;68(11):6940-6 18946025 - J Cell Sci. 2008 Nov 1;121(Pt 21):3619-28 10808340 - Subcell Biochem. 2000;34:409-55 17449662 - Biophys J. 2007 Jul 15;93(2):526-38 2989298 - J Cell Biol. 1985 Jul;101(1):19-27 6265470 - J Cell Biol. 1981 Jun;89(3):674-9 18936253 - J Cell Biol. 2008 Oct 20;183(2):353-61 6707081 - J Cell Biol. 1984 Jan;98(1):139-45 2586627 - Nature. 1989 Nov 30;342(6249):555-8 19487458 - J Cell Biol. 2009 Jun 1;185(5):917-28 20335260 - J Virol. 2010 Jun;84(11):5730-40 6997876 - Proc Natl Acad Sci U S A. 1980 Jun;77(6):3273-7 C Mosso (ref4) 2008; 378 W Weissenhorn (ref10) 2007; 581 M Liao (ref12) 2010 JL Kyle (ref1) 2008; 62 SJ Doxsey (ref41) 1985; 101 E Zaitseva (ref43) 2005; 169 S Schmid (ref38) 1989; 108 J White (ref52) 1980; 77 HM van der Schaar (ref57) 2007; 81 N Naslavsky (ref66) 2003; 14 SC Harrison (ref6) 2008; 15 S McLaughlin (ref49) 1989 JM Smit (ref17) 1999; 73 M Kielian (ref18) 2000; 34 AT Da Poian (ref25) 2009; 16 K Stiasny (ref2) 2006; 87 GB Melikyan (ref40) 1997; 136 LV Chernomordik (ref62) 1998; 140 J Edwards (ref24) 1983; 45 MK Gentry (ref26) 1982; 31 HK Johannsdottir (ref59) 2009; 83 L Wessels (ref32) 2007; 93 SW Gollins (ref54) 1986; 67 T Yeung (ref35) 2009; 185 PL Summers (ref14) 1989; 12 J Corver (ref44) 2000; 269 S Mukhopadhyay (ref7) 2005; 3 MK Poh (ref51) 2009; 84 V Nayak (ref9) 2009; 83 H Lee (ref29) 1994; 202 R Fritz (ref45) 2008; 183 LV Chernomordik (ref39) 2003; 72 MC Kielian (ref16) 1984; 52 MR Klimjack (ref47) 1994; 68 TA Endo (ref64) 1996; 228 JL Nieva (ref46) 1994; 13 N Bayer (ref36) 1998; 72 J White (ref27) 1981; 89 B Fadeel (ref33) 2009; 44 M Panyasrivanit (ref5) 2009; 5 W Thongthai (ref31) 2009; 85 VB Randolph (ref13) 1990; 71 T Stegmann (ref22) 1986; 261 AE Spruce (ref42) 1989; 342 F Guirakhoo (ref15) 1993; 194 MN Krishnan (ref61) 2007; 81 DA Coil (ref20) 2004; 78 HM van der Schaar (ref56) 2009 GB Melikyan (ref63) 1997; 235 M Liao (ref34) 2005; 171 MC Kielian (ref28) 1984; 98 A Chen (ref23) 2008 JM Smit (ref30) 2002; 521 AV Samsonov (ref48) 2002; 76 I Le Blanc (ref58) 2005; 7 F Stauffer (ref50) 2008; 25 HM van der Schaar (ref3) 2008; 4 AG Schmidt (ref11) 2010; 6 M Kielian (ref8) 2006; 4 M Umashankar (ref19) 2008; 82 EG Acosta (ref60) 2009; 11 K Stiasny (ref53) 2007; 81 T Kobayashi (ref21) 2002; 277 CM Carr (ref37) 1993; 73 I Vermes (ref65) 1995; 184 BL Waarts (ref55) 2002; 23 |
References_xml | – volume: 3 start-page: 13 year: 2005 ident: ref7 article-title: A structural perspective of the flavivirus life cycle. publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1067 contributor: fullname: S Mukhopadhyay – volume: 13 start-page: 2797 year: 1994 ident: ref46 article-title: Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06573.x contributor: fullname: JL Nieva – volume: 12 start-page: 383 year: 1989 ident: ref14 article-title: Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. publication-title: Virus Res doi: 10.1016/0168-1702(89)90095-6 contributor: fullname: PL Summers – volume: 7 start-page: 653 year: 2005 ident: ref58 article-title: Endosome-to-cytosol transport of viral nucleocapsids. publication-title: Nat Cell Biol doi: 10.1038/ncb1269 contributor: fullname: I Le Blanc – volume: 45 start-page: 1090 year: 1983 ident: ref24 article-title: Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH. publication-title: J Virol doi: 10.1128/JVI.45.3.1090-1097.1983 contributor: fullname: J Edwards – volume: 25 start-page: 128 year: 2008 ident: ref50 article-title: Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering. publication-title: Mol Membr Biol doi: 10.1080/09687680701633091 contributor: fullname: F Stauffer – volume: 228 start-page: 341 year: 1996 ident: ref64 article-title: A Chinese hamster ovary cell mutant resistant to phosphatidylserine is defective in transbilayer movement of cell surface phosphatidylserine. publication-title: Exp Cell Res doi: 10.1006/excr.1996.0334 contributor: fullname: TA Endo – volume: 98 start-page: 139 year: 1984 ident: ref28 article-title: Membrane fusion mutants of Semliki Forest virus. publication-title: J Cell Biol doi: 10.1083/jcb.98.1.139 contributor: fullname: MC Kielian – volume: 521 start-page: 62 year: 2002 ident: ref30 article-title: Fusion of alphaviruses with liposomes is a non-leaky process. publication-title: FEBS Lett doi: 10.1016/S0014-5793(02)02823-5 contributor: fullname: JM Smit – volume: 4 start-page: e1000244 year: 2008 ident: ref3 article-title: Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000244 contributor: fullname: HM van der Schaar – volume: 183 start-page: 353 year: 2008 ident: ref45 article-title: Identification of specific histidines as pH sensors in flavivirus membrane fusion. publication-title: J Cell Biol doi: 10.1083/jcb.200806081 contributor: fullname: R Fritz – volume: 11 start-page: 1533 year: 2009 ident: ref60 article-title: Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2009.01345.x contributor: fullname: EG Acosta – volume: 82 start-page: 9245 year: 2008 ident: ref19 article-title: Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. publication-title: J Virol doi: 10.1128/JVI.00975-08 contributor: fullname: M Umashankar – volume: 81 start-page: 12019 year: 2007 ident: ref57 article-title: Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. publication-title: J Virol doi: 10.1128/JVI.00300-07 contributor: fullname: HM van der Schaar – year: 2008 ident: ref23 article-title: Fusion pore expansion during syncytium formation is restricted by an actin network. publication-title: Journal of Cell Science in press contributor: fullname: A Chen – volume: 44 start-page: 264 year: 2009 ident: ref33 article-title: The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. publication-title: Crit Rev Biochem Mol Biol doi: 10.1080/10409230903193307 contributor: fullname: B Fadeel – start-page: 160 year: 2009 ident: ref56 article-title: Cell entry mechanisms of dengue virus: University of Groningen. contributor: fullname: HM van der Schaar – volume: 67 start-page: 157 year: 1986 ident: ref54 article-title: pH-dependent fusion between the flavivirus West Nile and liposomal model membranes. publication-title: J Gen Virol doi: 10.1099/0022-1317-67-1-157 contributor: fullname: SW Gollins – volume: 108 start-page: 1291 year: 1989 ident: ref38 article-title: Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. publication-title: J Cell Biol doi: 10.1083/jcb.108.4.1291 contributor: fullname: S Schmid – volume: 77 start-page: 3273 year: 1980 ident: ref52 article-title: pH-dependent fusion between the Semliki Forest virus membrane and liposomes. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.77.6.3273 contributor: fullname: J White – volume: 73 start-page: 823 year: 1993 ident: ref37 article-title: A spring-loaded mechanism for the conformational change of influenza hemagglutinin. publication-title: Cell doi: 10.1016/0092-8674(93)90260-W contributor: fullname: CM Carr – volume: 34 start-page: 409 year: 2000 ident: ref18 article-title: Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses. publication-title: Subcell Biochem doi: 10.1007/0-306-46824-7_11 contributor: fullname: M Kielian – volume: 101 start-page: 19 year: 1985 ident: ref41 article-title: An efficient method for introducing macromolecules into living cells. publication-title: J Cell Biol doi: 10.1083/jcb.101.1.19 contributor: fullname: SJ Doxsey – volume: 81 start-page: 4881 year: 2007 ident: ref61 article-title: Rab 5 is required for the cellular entry of dengue and West Nile viruses. publication-title: J Virol doi: 10.1128/JVI.02210-06 contributor: fullname: MN Krishnan – volume: 93 start-page: 526 year: 2007 ident: ref32 article-title: Rapid membrane fusion of individual virus particles with supported lipid bilayers. publication-title: Biophys J doi: 10.1529/biophysj.106.097485 contributor: fullname: L Wessels – volume: 31 start-page: 548 year: 1982 ident: ref26 article-title: Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1982.31.548 contributor: fullname: MK Gentry – volume: 83 start-page: 440 year: 2009 ident: ref59 article-title: Host cell factors and functions involved in vesicular stomatitis virus entry. publication-title: J Virol doi: 10.1128/JVI.01864-08 contributor: fullname: HK Johannsdottir – volume: 5 start-page: 434 year: 2009 ident: ref5 article-title: Linking dengue virus entry and translation/replication through amphisomes. publication-title: Autophagy doi: 10.4161/auto.5.3.7925 contributor: fullname: M Panyasrivanit – volume: 378 start-page: 193 year: 2008 ident: ref4 article-title: Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. publication-title: Virology doi: 10.1016/j.virol.2008.05.012 contributor: fullname: C Mosso – volume: 136 start-page: 995 year: 1997 ident: ref40 article-title: Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. publication-title: J Cell Biol doi: 10.1083/jcb.136.5.995 contributor: fullname: GB Melikyan – volume: 581 start-page: 2150 year: 2007 ident: ref10 article-title: Virus membrane fusion. publication-title: FEBS Lett doi: 10.1016/j.febslet.2007.01.093 contributor: fullname: W Weissenhorn – volume: 87 start-page: 2755 year: 2006 ident: ref2 article-title: Flavivirus membrane fusion. publication-title: J Gen Virol doi: 10.1099/vir.0.82210-0 contributor: fullname: K Stiasny – volume: 71 start-page: 1845 issue: Pt 8 year: 1990 ident: ref13 article-title: Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. publication-title: J Gen Virol doi: 10.1099/0022-1317-71-8-1845 contributor: fullname: VB Randolph – volume: 171 start-page: 111 year: 2005 ident: ref34 article-title: Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. publication-title: J Cell Biol doi: 10.1083/jcb.200507075 contributor: fullname: M Liao – volume: 15 start-page: 690 year: 2008 ident: ref6 article-title: Viral membrane fusion. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1456 contributor: fullname: SC Harrison – volume: 16 start-page: 779 year: 2009 ident: ref25 article-title: Viral inactivation based on inhibition of membrane fusion: understanding the role of histidine protonation to develop new viral vaccines. publication-title: Protein Pept Lett doi: 10.2174/092986609788681823 contributor: fullname: AT Da Poian – volume: 73 start-page: 8476 year: 1999 ident: ref17 article-title: Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. publication-title: J Virol doi: 10.1128/JVI.73.10.8476-8484.1999 contributor: fullname: JM Smit – volume: 184 start-page: 39 year: 1995 ident: ref65 article-title: A novel assay for apoptosis.Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. publication-title: J Immunol Methods doi: 10.1016/0022-1759(95)00072-I contributor: fullname: I Vermes – volume: 202 start-page: 390 year: 1994 ident: ref29 article-title: Mutations in an exposed domain of Sindbis virus capsid protein result in the production of noninfectious virions and morphological variants. publication-title: Virology doi: 10.1006/viro.1994.1355 contributor: fullname: H Lee – volume: 235 start-page: 118 year: 1997 ident: ref63 article-title: The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. publication-title: Virology doi: 10.1006/viro.1997.8686 contributor: fullname: GB Melikyan – volume: 85 start-page: 801 year: 2009 ident: ref31 article-title: Photoinactivation of sindbis virus infectivity without inhibition of membrane fusion. publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.2008.00475.x contributor: fullname: W Thongthai – volume: 140 start-page: 1369 year: 1998 ident: ref62 article-title: The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. publication-title: J Cell Biol doi: 10.1083/jcb.140.6.1369 contributor: fullname: LV Chernomordik – volume: 342 start-page: 555 year: 1989 ident: ref42 article-title: Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. publication-title: Nature doi: 10.1038/342555a0 contributor: fullname: AE Spruce – volume: 14 start-page: 417 year: 2003 ident: ref66 article-title: Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. publication-title: Mol Biol Cell doi: 10.1091/mbc.02-04-0053 contributor: fullname: N Naslavsky – volume: 194 start-page: 219 year: 1993 ident: ref15 article-title: Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. publication-title: Virology doi: 10.1006/viro.1993.1252 contributor: fullname: F Guirakhoo – volume: 4 start-page: 67 year: 2006 ident: ref8 article-title: Virus membrane-fusion proteins: more than one way to make a hairpin. publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1326 contributor: fullname: M Kielian – volume: 261 start-page: 10966 year: 1986 ident: ref22 article-title: Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)67334-X contributor: fullname: T Stegmann – volume: 78 start-page: 10920 year: 2004 ident: ref20 article-title: Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. publication-title: J Virol doi: 10.1128/JVI.78.20.10920-10926.2004 contributor: fullname: DA Coil – volume: 277 start-page: 32157 year: 2002 ident: ref21 article-title: Separation and characterization of late endosomal membrane domains. publication-title: J Biol Chem doi: 10.1074/jbc.M202838200 contributor: fullname: T Kobayashi – volume: 169 start-page: 167 year: 2005 ident: ref43 article-title: Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. publication-title: J Cell Biol doi: 10.1083/jcb.200412059 contributor: fullname: E Zaitseva – volume: 81 start-page: 11526 year: 2007 ident: ref53 article-title: Probing the flavivirus membrane fusion mechanism by using monoclonal antibodies. publication-title: J Virol doi: 10.1128/JVI.01041-07 contributor: fullname: K Stiasny – volume: 83 start-page: 4338 year: 2009 ident: ref9 article-title: Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. publication-title: J Virol doi: 10.1128/JVI.02574-08 contributor: fullname: V Nayak – volume: 269 start-page: 37 year: 2000 ident: ref44 article-title: Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. publication-title: Virology doi: 10.1006/viro.1999.0172 contributor: fullname: J Corver – start-page: 113 year: 1989 ident: ref49 article-title: The Electrostatic Properties of Membranes. contributor: fullname: S McLaughlin – volume: 76 start-page: 12691 year: 2002 ident: ref48 article-title: Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus. publication-title: J Virol doi: 10.1128/JVI.76.24.12691-12702.2002 contributor: fullname: AV Samsonov – volume: 6 start-page: e1000851 year: 2010 ident: ref11 article-title: Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000851 contributor: fullname: AG Schmidt – volume: 23 start-page: 23 year: 2002 ident: ref55 article-title: Sphingolipid- and cholesterol-dependence of alphavirus membrane fusion: Lack of correlation with lipid raft formation in target liposomes. publication-title: J Biol Chem contributor: fullname: BL Waarts – volume: 84 start-page: 260 year: 2009 ident: ref51 article-title: A small molecule fusion inhibitor of dengue virus. publication-title: Antiviral Res doi: 10.1016/j.antiviral.2009.09.011 contributor: fullname: MK Poh – volume: 89 start-page: 674 year: 1981 ident: ref27 article-title: Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. publication-title: J Cell Biol doi: 10.1083/jcb.89.3.674 contributor: fullname: J White – year: 2010 ident: ref12 article-title: In Vitro Reconstitution Reveals Key Intermediate States of Trimer Formation by the Dengue Virus Membrane Fusion Protein. publication-title: J Virol contributor: fullname: M Liao – volume: 72 start-page: 175 year: 2003 ident: ref39 article-title: Protein-lipid interplay in fusion and fission of biological membranes. publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.72.121801.161504 contributor: fullname: LV Chernomordik – volume: 62 start-page: 71 year: 2008 ident: ref1 article-title: Global spread and persistence of dengue. publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.62.081307.163005 contributor: fullname: JL Kyle – volume: 185 start-page: 917 year: 2009 ident: ref35 article-title: Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. publication-title: J Cell Biol doi: 10.1083/jcb.200903020 contributor: fullname: T Yeung – volume: 72 start-page: 9645 year: 1998 ident: ref36 article-title: Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. publication-title: J Virol doi: 10.1128/JVI.72.12.9645-9655.1998 contributor: fullname: N Bayer – volume: 52 start-page: 281 year: 1984 ident: ref16 article-title: Role of cholesterol in fusion of Semliki Forest virus with membranes. publication-title: J Virol doi: 10.1128/JVI.52.1.281-283.1984 contributor: fullname: MC Kielian – volume: 68 start-page: 6940 year: 1994 ident: ref47 article-title: Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein. publication-title: J Virol doi: 10.1128/JVI.68.11.6940-6946.1994 contributor: fullname: MR Klimjack |
SSID | ssj0041316 |
Score | 2.485699 |
Snippet | Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome... Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1001131 |
SubjectTerms | Animals Cell Compartmentation - physiology Cell Membrane - metabolism Cell Membrane - physiology Cells, Cultured Cercopithecus aethiops CHO Cells Cricetinae Cricetulus Dengue - metabolism Dengue - virology Dengue fever Dengue virus Dengue Virus - physiology Dengue viruses Endocytosis - physiology Endosomes - chemistry Endosomes - metabolism Endosomes - virology Experiments Genomes Humans Infections Lipids Membrane Lipids - metabolism Membrane Lipids - physiology Mice Models, Biological NIH 3T3 Cells Phospholipids Physiological aspects Proteins Substrate Specificity Vero Cells Virology/Host Invasion and Cell Entry Virus Internalization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8uFGQhJE6BOE78OJZHVZDogRapNyvxY4m0TaImQeq_74yTXTUIxIVrZnLw54k9E3_-hpA3aeaLkFZpAntxmuTS6URLFpJCOa-4UtpGLb1vp-LkR_71ori41eoLOWGTPPAEHBTsQpc-VB4vPTpmK9hjhIekgfNMej8pgaZ6V0xNazCszLHpKTbFSSQXYr40xyV7P8_Ru64rh6hAxDhbbEpRu3-_Qq-6bdv_Kf38nUV5a1s6fkDuz_kkPZrG8ZDc8c0jcnfqMHn9mJx98s1m9PRXfTX2FNtaQHlN66GnYcT_ZLRu6BbSTTC5tm8vwYhM-A2duOmRgp7gbUxkFNFt3dWuf0LOjz-ffzxJ5j4KiRUiHxKV22AZFA5Vob1wQQUmXRac9NJ6rpyylnOXZsHnpdVZ6vEokWlVQmlW2cCfklXTNv6A0KwA5FPNtXU2Z7qqMqeKADliEVgJ6-qaJDscTTepZZh4ZCahypgAMYi7mXFfkw8I9t4Xta7jA4gAM0eA-VcErMlrnCqDahYN0mU25dj35svZqTmC_ERkGorKvzp9Xzi9nZ1CC1Nqy_mKAgweVbIWnocLT_gm7cJ8gGGzG3NvGJ7nSlgvwUR3oWTwLeS4Nb4de6MwWnUmwOXZFFl7XADzXENesSZyEXML4JaWpv4ZxcIzSKG50M__B9IvyL1InohcxkOyGq5G_xJysqF6FT-_G_4FMtE priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqRUhcEO8uLchCSJxSJY4T2weECnTVIuiBtqg3K_FjWakk23gj0X_PjDe7Iqg9cM1MouTzePxNPJ4h5G3KXOHTOk1gLU4TLqxKlMh8UkjrZC6lMrGW3rfT8viCf7ksLnfIpmfrAGC4NbTDflIX3dXB7-ubDzDh38euDSLb3HSwXFarWFMow4PV9xiHWB2T-fh2XwE8dmyGis1yEpELPhymu-spo8Uq1vTfeu7J8qoNt9HSf7Mr_1quZo_Iw4Fn0sO1YTwmO655Qu6vO0_ePCVnn10z7x39sej6QI8a_E8Y6Mkq0FmP_8_ooqFfgYaCyLah_QXCmFxAo__oYmp6EnvX-4Wh2ADbhmfkfHZ0_uk4GforJKYs-SqR3HiTQUBRF8qV1kufCcu8FU4Yl0srjclzmzLveGUUSx1uMWZKVhCy1cbnz8mkaRu3SygrHGOpypWxhmeqrpmVhQfuWPisAn87JckGR71cV9HQcStNQPSxBkQj7nrAfUo-IthbXayBHS-03VwPU0pDpKQq52uHx2FtZmpgHyW8R5nnTDjHp-QNDpXGKhcNptHMqz4EfXJ2qg-Bt5RMQbB5p9L3kdK7Qcm3MKSmGo4uwMdj9ayR5v5IE-aqGYl30Ww23xx0hvu8AvwoiOjGlDTehblvjWv7oCVaq2IlqLxYW9YWF8CcK-AbUyJGNjcCbixpFj9jEXEG1Dov1cv_HJk98iDmT8R0xn0yWXW9ewW0bFW_jjPtD45DNUI priority: 102 providerName: Scholars Portal |
Title | Dengue virus ensures its fusion in late endosomes using compartment-specific lipids |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20949067 https://search.proquest.com/docview/815539269 https://pubmed.ncbi.nlm.nih.gov/PMC2951369 https://doaj.org/article/5769aefbe7134d1cb2386e2263327ee4 http://dx.doi.org/10.1371/journal.ppat.1001131 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2IiQuiO8VRmUhJE5pEzuJ7eM2Wm2IVtM2UG9W4o-u0ppUTXPgv-fZSQpBcOHSQ9-LlLwvv2f__B5CH0NiEhvmYQBrcRjETItAsMgGCdeGU86F8r305ov08lv8ZZksj1DS3YXxoH2Vr8fFw2ZcrO89tnK7UZMOJza5nl8QSAtoKibH6BgMtCvRm_ALQdnPO3XzcAJG07S9L0dZNGnVM95us71vPgS8rhswlDgi9JPmfy1NvoP_IU4Ptg9l9bck9E8s5W-L0-wZetpmlfisefvn6MgUL9DjZs7kj5fo9rMpVrXB39e7usLTwu0KVvhqX-FZ7XbL8LrAXyHpBJIuq3IDRA8lwD5a7DwQPfCT6u1aYTfuWlev0N1sendxGbTTFAKVpvE-4LGyKoLyIU-ESbXlNmKaWM0MU4ZyzZWiVIfEmjhTgoTGHShGgmdQoOXK0tdoUJSFOUGYJIaAzKhQWsWRyHOieWIhU0xslEF0HaKgk6PcNj0zpD84Y1BrNAKRTgWyVcEQnTthH3hdx2v_R7lbyVbvEuoikRmbG3f5VUcqh1wjhfdIKSXMmHiIPjhVSdfTonCgmVVWV5W8ul3IM8hSUiKgtPwn002P6VPLZEtQqcraiwrw8a5XVo_ztMcJnql65BNnNt03VzJyp7oMoiaQcGdK0j3lkG6FKetKcme4gqTA8qaxrINcOjsdItazuZ7g-hTwIN8yvPWYt__95Dv0xOMmPIzxFA32u9q8h3Rsn4_ACZdshB6dTxfXNyO_qQG_85iPvGP-BLXZNp0 |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,31732,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWIgQX3rCFBSKExClt4iSOfVyWrVpoK0TLam9W4kep2CZRkxzg1zN2kkJWcIBrZiLFnvF4Jv78DUJvPKwi7aWeC3ux54axZC6Lfe1GVCoaUMqE5dJbLMn0S_jhMro8QlF3F8aC9kW6HWVXu1G2_WqxlcVOjDuc2PjT4gxDWhAQNr6BbsJ69cKuSG8CMIRl2_HUdMRx44CQ9sZcEPvj1kCjokgqSz8EuoYPGIoc5tle8782J8vhf4jUg-IqL_-Uhl5HU_62PU3uoYtuYA0q5duortKR-HGN8_GfR34f3W0TVue0ET9ARyp7iG41LSy_P0Kr9yrb1Mq52O7r0jnPzA_H0plVpTOpzY84Z5s5c8hnQSTzMt-B0KIUHBuI9hbj7q4KZaGBjumkLcvHaD05X59N3bZRgysICSuXhkILHyqTNGKKSE21H0usZaxioQIqqRBBID2sVZgIhj1lzip9RhOo_VKhgydokOWZOkYOjhQGYwRMSBH6LE2xpJGGJDTSfgKBe4jczkC8aOg4uD2Ti6GMaSaEG9vy1rZD9M5Y8aBryLTtg3y_4e3Ecii5WKJ0qsy9WumLFNIYAt9BggDHSoVD9Nr4ADd0GZnB42ySuiz5bLXkp5AAEcygav2r0uee0ttWSefgKyJp70DA4A0NV0_zpKcJi170xMfGH7sxl9w3B8YxBGQQOZ2PcvOWAdFlKq9LTs2KYJiAytPGZQ_z0i2AIYp7ztybuL4EXNSykbcu-ey_33yFbk_Xizmfz5Yfn6M7Fp5h0ZInaFDta_UCsr4qfWnX-E-TNFRG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgEYgLb-hCgQghccpu4iR-HEvbVQvtqmILqrhYiR_Lim4SbZID_HrGTrI0FVx6jSdS7Hl4Jv78DULvA6wTE2SBD3tx4MdUcZ_T0PgJU5pFjHHpuPRO5-Toa_zpIrm40urLgfZltprkl-tJvvrhsJXlWk57nNj07HQfQ1oQET4tlZneRnfAZwPSF-ptEIbQ7Lqe2q44Po0I6W7NRTScdkqalGVaOwoikLWcwFDo8MD1m_-7QTke_220HpWXRfWvVPQ6ovLKFjV7iL73k2uRKT8nTZ1N5O9rvI83mv0j9KBLXL29VuQxuqXzJ-hu28ry11O0OND5stHet9WmqbzD3P54rLzjuvJmjf0h561y7wTyWhhSRVWsYdChFTwXkDYO6-4vSu0ggp7tqK2qZ-h8dni-f-R3DRt8SUhc-yyWRoZQoWQJ10QZZkKqsFFUU6kjppiUUaQCbHScSo4Dbc8sQ85SqAEzaaLnaJQXud5BHk40BoVEXCoZhzzLsGKJgWQ0MWEKAXyM_F5JomxpOYQ7m6NQzrQLIqx-RaffMfpoNbmVtaTa7kGxWYpucQWUXjzVJtP2fq0KZQbpDIHvIFGEqdbxGL2zdiAsbUZucTnLtKkqcbyYiz1IhAjmUL3-V-jLQOhDJ2QKsBeZdnchYPKWjmsguTuQBOeXg-Eda5P9nCsR2oNjCoEZhrzeToV9y4Lpcl00lWDWKzgmIPKiNdvtuvROMEZ0YNCDhRuOgJk6VvLOLF_e-M236N7ZwUycHM8_v0L3HUrDgSZ30ajeNPo1JH919sa5-R8rAVbG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dengue+Virus+Ensures+Its+Fusion+in+Late+Endosomes+Using+Compartment-Specific+Lipids&rft.jtitle=PLoS+pathogens&rft.au=Zaitseva%2C+Elena&rft.au=Yang%2C+Sung-Tae&rft.au=Melikov%2C+Kamran&rft.au=Pourmal%2C+Sergei&rft.date=2010-10-01&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=6&rft.issue=10&rft.spage=e1001131&rft_id=info:doi/10.1371%2Fjournal.ppat.1001131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_ppat_1001131 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |