Multi-scale comparative transcriptome analysis reveals key genes and metabolic reprogramming processes associated with oil palm fruit abscission

Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale co...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 21; no. 1; p. 92
Main Authors Fooyontphanich, Kim, Morcillo, Fabienne, Joët, Thierry, Dussert, Stéphane, Serret, Julien, Collin, Myriam, Amblard, Philippe, Tangphatsornruang, Sithichoke, Roongsattham, Peerapat, Jantasuriyarat, Chatchawan, Verdeil, Jean-Luc, Tranbarger, Timothy J.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 11.02.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
AbstractList Abstract Background Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Results Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. Conclusions The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues.BACKGROUNDFruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues.Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress.RESULTSCombining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress.The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.CONCLUSIONSThe study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Background: Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Results: Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. Conclusions: The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Background Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Results Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. Conclusions The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process. Keywords: Transcriptome, Fruit abscission, Abscission zone, Monocotyledon, Metabolic reprogramming, Elaeis guineensis
ArticleNumber 92
Audience Academic
Author Fooyontphanich, Kim
Morcillo, Fabienne
Verdeil, Jean-Luc
Tranbarger, Timothy J.
Joët, Thierry
Tangphatsornruang, Sithichoke
Roongsattham, Peerapat
Serret, Julien
Collin, Myriam
Jantasuriyarat, Chatchawan
Dussert, Stéphane
Amblard, Philippe
Author_xml – sequence: 1
  givenname: Kim
  surname: Fooyontphanich
  fullname: Fooyontphanich, Kim
– sequence: 2
  givenname: Fabienne
  surname: Morcillo
  fullname: Morcillo, Fabienne
– sequence: 3
  givenname: Thierry
  surname: Joët
  fullname: Joët, Thierry
– sequence: 4
  givenname: Stéphane
  surname: Dussert
  fullname: Dussert, Stéphane
– sequence: 5
  givenname: Julien
  surname: Serret
  fullname: Serret, Julien
– sequence: 6
  givenname: Myriam
  surname: Collin
  fullname: Collin, Myriam
– sequence: 7
  givenname: Philippe
  surname: Amblard
  fullname: Amblard, Philippe
– sequence: 8
  givenname: Sithichoke
  surname: Tangphatsornruang
  fullname: Tangphatsornruang, Sithichoke
– sequence: 9
  givenname: Peerapat
  surname: Roongsattham
  fullname: Roongsattham, Peerapat
– sequence: 10
  givenname: Chatchawan
  surname: Jantasuriyarat
  fullname: Jantasuriyarat, Chatchawan
– sequence: 11
  givenname: Jean-Luc
  surname: Verdeil
  fullname: Verdeil, Jean-Luc
– sequence: 12
  givenname: Timothy J.
  orcidid: 0000-0001-6278-8321
  surname: Tranbarger
  fullname: Tranbarger, Timothy J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33573592$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-03168980$$DView record in HAL
BookMark eNqFk8tu1TAQhiNURC_wAixQJDbtIsXXxN4gVRXQSkVIXNaW44xTlyQ-2M6BvgWPjNPTQk-FQFESa-ab3_Lvmf1iZ_ITFMVzjI4xFvWriIloUIUIzq9oWIUfFXuYNbgihMide-vdYj_GK4RwI5h8UuxSyhvKJdkrfr6fh-SqaPQApfHjSged3BrKFPQUTXCr5Eco9aSH6-hiGWANeojlV7gue5gg5lRXjpB06wdncn4VfB_0OLqpL_PaQIwLFaM3Tifoyu8uXZbeDeVKD2Npw-xSqdtoXIzOT0-LxzZvAM9u_wfFl7dvPp-eVRcf3p2fnlxUpq5ZqohEnLRti7iklhDRakQst8JqSzqsJWgQLYaWEW0sSAmckqaW-dPxBpikB8X5Rrfz-kqtght1uFZeO3UT8KFXOiRnBlAMhMzeaWSZZpRaaThiDGNiOLWd7rLW643Wam5H6AxM2b1hS3Q7M7lL1fu1akQja4mywNFG4PJB2dnJhVpiiOJaSIHWOLOHt5sF_22GmNToooFh0BP4OSrCCcvdQDD6P8qEJJxxtKi-fIBe-TnkW18oiWnNuSB_qD63i3KT9fk4ZhFVJzWnXFAheKaO_0Llp4PRmdzD1uX4VsHRVkFmEvxIvZ5jVOefPm6zL-57_dutu5bOgNgAJvgYA1hlXMo97Rfr3aAwUsv0qM30qDw96mZ61GICeVB6p_6Pol9PKhyA
CitedBy_id crossref_primary_10_3389_fpls_2024_1524893
crossref_primary_10_1016_j_hpj_2023_03_008
crossref_primary_10_1016_j_scienta_2023_112755
crossref_primary_10_3390_plants13243504
crossref_primary_10_3390_genes12111724
crossref_primary_10_3390_ijms232314633
Cites_doi 10.1093/jxb/erm111
10.1146/annurev.arplant.53.092701.180236
10.1111/j.1469-8137.2009.02908.x
10.1093/jxb/erx256
10.1104/pp.106.079277
10.1105/tpc.111.093245
10.1093/jxb/erx408
10.1016/j.plipres.2010.01.001
10.3389/fpls.2015.00360
10.1038/nature05046
10.1111/j.1469-8137.2009.02843.x
10.1038/nplants.2017.97
10.1105/tpc.111.089847
10.3390/ijms21144819
10.1105/tpc.19.00695
10.3390/ijms21113815
10.1016/j.plantsci.2019.03.016
10.1104/pp.010610
10.1038/ncomms11095
10.1093/oxfordjournals.jhered.a104134
10.1038/nature11001
10.1104/pp.111.182667
10.1111/tpj.13567
10.1104/pp.110.155077
10.3389/fpls.2015.00476
10.3390/life10110273
10.1104/pp.126.2.494
10.1105/tpc.108.059139
10.1104/pp.15.00567
10.1101/gr.8.3.163
10.1007/s11103-005-4526-7
10.3389/fpls.2011.00065
10.1105/tpc.17.00414
10.1104/pp.114.252338
10.1126/science.1126410
10.3390/plants5020025
10.1016/j.plantsci.2012.10.008
10.1094/MPMI-4-315
10.1104/pp.109.138388
10.1023/A:1015255030047
10.3389/fpls.2017.00603
10.1104/pp.98.3.955
10.1146/annurev.arplant.57.032905.105316
10.1186/1471-2229-10-43
10.1093/jexbot/53.368.429
10.1242/dev.033605
10.3390/plants8060143
10.1111/j.1365-313X.2008.03577.x
10.3389/fpls.2016.00540
10.1104/pp.111.175141
10.1016/S0031-9422(00)00447-7
10.1101/gr.7.10.986
10.1093/jxb/eru037
10.1007/s00299-020-02638-5
10.1186/s12870-015-0548-8
10.1105/tpc.112.108373
10.1016/j.cub.2011.06.008
10.1007/BF00027155
10.1093/pcp/pcu201
10.1104/pp.17.01494
10.1111/tpj.13030
10.1002/9781119312994.apr0652
10.1105/tpc.108.063768
10.1016/j.molp.2015.09.005
10.1111/j.1365-3040.2006.01624.x
10.1093/jxb/erx040
10.1038/334724a0
10.1016/j.ifset.2005.02.003
10.1016/0014-5793(91)81119-S
10.1104/pp.110.160697
10.4161/psb.6.11.17612
10.1111/j.1365-313X.2006.02932.x
10.1016/j.pbi.2016.11.008
10.1007/s004380050758
10.1007/BF00197577
10.15252/embr.201948967
10.1016/0160-9327(92)90044-P
10.1105/tpc.113.117861
10.1007/s00709-011-0371-5
10.1105/tpc.110.075390
10.1093/treephys/26.5.585
10.1111/pce.12231
10.1093/jxb/41.2.203
10.1242/dev.012807
10.1371/journal.pone.0058363
10.1093/jxb/45.7.943
10.1111/tpj.12680
10.3389/fpls.2015.00931
10.1016/j.bbrc.2017.09.094
10.1016/j.tplants.2013.08.008
10.1104/pp.111.175224
10.1093/nar/14.21.8595
10.1186/1471-2229-12-150
10.1016/j.chom.2017.01.007
10.1034/j.1399-3054.1998.1020209.x
10.1371/journal.pone.0165867
10.1105/tpc.110.078972
10.1007/BF00021190
10.1093/jxb/eru533
10.1016/j.cub.2011.02.020
10.1186/1471-2164-9-512
10.1111/j.1469-8137.2008.02557.x
10.1038/ng.2281
10.1038/35022611
10.1016/j.pbi.2008.03.006
10.1073/pnas.85.23.8805
10.1016/j.tplants.2018.03.012
10.3389/fpls.2012.00284
10.1093/bioinformatics/btp352
10.1002/pei3.10011
10.1073/pnas.1612635113
10.1104/pp.113.4.1303
10.1105/tpc.014365
10.1094/MPMI-04-15-0096-R
10.1093/jxb/ers270
10.17660/ActaHortic.2016.1119.13
10.1093/jxb/erz038
10.1093/jxb/eru483
10.1105/tpc.9.7.1169
10.1111/tpj.12581
10.1093/jxb/erf082
10.1101/gad.14.1.108
10.1007/BF00014975
10.1104/pp.16.00430
10.1093/pcp/pcs179
10.1105/tpc.113.120394
10.1016/j.cell.2018.03.060
10.1093/pcp/pcs166
10.1105/tpc.16.00045
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X2
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
1XC
VOOES
5PM
DOA
DOI 10.1186/s12870-021-02874-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic



MEDLINE
Agricultural Science Database
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1471-2229
EndPage 92
ExternalDocumentID oai_doaj_org_article_4e89001a0f4a433f9c5044112c53fdad
PMC7879690
oai_HAL_hal_03168980v1
A653583885
33573592
10_1186_s12870_021_02874_1
Genre Journal Article
Comparative Study
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
1XC
2VQ
4.4
AHSBF
C1A
EJD
H13
IPNFZ
RIG
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c664t-29052bbb0593f228ba02f5f8faf2d1a9eae8b1eb42acfe99e532769327d57e493
IEDL.DBID DOA
ISSN 1471-2229
IngestDate Wed Aug 27 01:14:24 EDT 2025
Thu Aug 21 14:07:39 EDT 2025
Fri May 09 12:19:37 EDT 2025
Fri Jul 11 04:04:14 EDT 2025
Fri Jul 11 08:57:40 EDT 2025
Fri Jul 25 10:38:22 EDT 2025
Tue Jun 17 21:29:06 EDT 2025
Tue Jun 10 20:40:38 EDT 2025
Fri Jun 27 04:19:22 EDT 2025
Mon Jul 21 06:06:59 EDT 2025
Tue Jul 01 03:52:27 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Abscission zone
Fruit abscission
Monocotyledon
Metabolic reprogramming
Elaeis guineensis
Transcriptome
Language English
License Attribution: http://creativecommons.org/licenses/by
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-29052bbb0593f228ba02f5f8faf2d1a9eae8b1eb42acfe99e532769327d57e493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-6278-8321
0000-0002-7144-9580
OpenAccessLink https://doaj.org/article/4e89001a0f4a433f9c5044112c53fdad
PMID 33573592
PQID 2491365582
PQPubID 44650
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_4e89001a0f4a433f9c5044112c53fdad
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7879690
hal_primary_oai_HAL_hal_03168980v1
proquest_miscellaneous_2524287210
proquest_miscellaneous_2489254501
proquest_journals_2491365582
gale_infotracmisc_A653583885
gale_infotracacademiconefile_A653583885
gale_incontextgauss_ISR_A653583885
pubmed_primary_33573592
crossref_citationtrail_10_1186_s12870_021_02874_1
crossref_primary_10_1186_s12870_021_02874_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-11
PublicationDateYYYYMMDD 2021-02-11
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC plant biology
PublicationTitleAlternate BMC Plant Biol
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References P Roongsattham (2874_CR23) 2016; 7
P Merelo (2874_CR86) 2017; 8
L Mao (2874_CR124) 2000; 406
E Del Campillo (2874_CR127) 1992; 98
C Draeger (2874_CR75) 2015; 15
K Fooyontphanich (2874_CR25) 2016; 1119
B Ruperti (2874_CR128) 2002; 53
K Shin (2874_CR34) 2015; 56
J Agusti (2874_CR80) 2012; 63
LH Estornell (2874_CR4) 2013; 199–200
JK Burns (2874_CR88) 1998; 102
J Henderson (2874_CR21) 2001; 56
JA Gil-Amado (2874_CR83) 2013; 54
C Wang (2874_CR41) 2013; 25
H Li (2874_CR135) 2009; 25
EA Doyle (2874_CR48) 2007; 30
CS Westfall (2874_CR42) 2016; 113
A Ayadi (2874_CR110) 2015; 167
L Butler (2874_CR1) 1936; 27
2874_CR20
S Meir (2874_CR13) 2015; 2
E Liscum (2874_CR43) 2002; 49
FT Addicott (2874_CR3) 1982
Y Lee (2874_CR5) 2018; 173
CM Rojas (2874_CR58) 2012; 24
2874_CR2
P Xu (2874_CR121) 2020; 21
M Lohse (2874_CR136) 2014; 37
S Sundaresan (2874_CR85) 2015; 66
AJ Vigers (2874_CR126) 1991; 4
J Henderson (2874_CR17) 1990; 41
S Meir (2874_CR6) 2019; 70
J Selinski (2874_CR63) 2018; 23
S Tisné (2874_CR9) 2020; 1
JA Eisen (2874_CR133) 1998; 8
TJ Tranbarger (2874_CR24) 2017; 8
OR Patharkar (2874_CR67) 2019; 284
MA Butenko (2874_CR102) 2003; 15
M Tannert (2874_CR54) 2018; 69
TY Liu (2874_CR111) 2016; 7
JE Taylor (2874_CR91) 1991; 183
LC Enns (2874_CR76) 2005; 58
I Verlent (2874_CR99) 2005; 6
W Yuan (2874_CR57) 2017; 68
S Audic (2874_CR132) 1997; 7
E Barbez (2874_CR39) 2012; 485
TD Missihoun (2874_CR28) 2016; 11
N Stiti (2874_CR60) 2011; 2
RE Sheehy (2874_CR94) 1988; 85
CA Burr (2874_CR15) 2011; 156
M Sakamoto (2874_CR120) 2008; 56
H He (2874_CR31) 2018; 176
P Kalaitzis (2874_CR89) 1995; 28
TL Jinn (2874_CR32) 2000; 14
J Wojtera-Kwiczor (2874_CR64) 2013; 3
M Hinz (2874_CR117) 2010; 153
CY Kim (2874_CR45) 2008; 180
S Santi (2874_CR79) 2009; 183
K Dietrich (2874_CR56) 2011; 23
AA Arsovski (2874_CR74) 2009; 150
TM Hildebrandt (2874_CR113) 2015; 8
S Song (2874_CR36) 2014; 26
C Bonghi (2874_CR87) 1992; 20
KM Chen (2874_CR61) 2010; 10
PO Lim (2874_CR107) 2007; 58
TJ Tranbarger (2874_CR131) 2011; 156
C Dubreuil-Maurizi (2874_CR59) 2011; 157
2874_CR134
SJ Liljegren (2874_CR16) 2009; 136
DJ Osborne (2874_CR18) 1992; 16
M Rauf (2874_CR35) 2013; 25
AT Fuglsang (2874_CR78) 2014; 80
KS Yoo (2874_CR27) 2011; 23
X Zhu (2874_CR51) 2015; 84
ZW Lin (2874_CR70) 2012; 44
D Van de Wouwer (2874_CR77) 2016; 172
AB Bleecker (2874_CR100) 1997; 9
2874_CR73
SE Patterson (2874_CR10) 2001; 126
P Kalaitzis (2874_CR90) 1997; 113
S Meir (2874_CR12) 2010; 154
ML Tucker (2874_CR14) 2015; 2
C Ferrandiz (2874_CR66) 2002; 53
L Pedrotti (2874_CR112) 2018; 30
KW Jung (2874_CR26) 2013; 54
HM Yuan (2874_CR38) 2017; 21
2874_CR123
2874_CR122
CJS Smith (2874_CR95) 1988; 334
P Ballester (2874_CR69) 2017; 35
ZH Gonzalez-Carranza (2874_CR29) 2002; 128
MB Lanahan (2874_CR101) 1994; 6
2874_CR65
N Arnaud (2874_CR68) 2011; 21
M Sugliani (2874_CR62) 2016; 28
SM McKim (2874_CR72) 2008; 135
M Sawicki (2874_CR8) 2015; 66
H Thomas (2874_CR46) 2014; 65
M Ogawa (2874_CR30) 2009; 21
JE Taylor (2874_CR92) 1993; 44
VJ Nalam (2874_CR37) 2015; 28
J Hejgaard (2874_CR125) 1991; 291
J Yoon (2874_CR33) 2014; 79
LS Tran (2874_CR47) 2007; 49
D Mohnen (2874_CR97) 2008; 11
J Henderson (2874_CR19) 1994; 45
L Gaufichon (2874_CR108) 2017; 91
2874_CR119
2874_CR118
R Zrenner (2874_CR55) 2009; 183
OR Patharkar (2874_CR7) 2018; 69
S Meir (2874_CR11) 2006; 141
2874_CR114
JM Kim (2874_CR115) 2017; 3
K Herbers (2874_CR52) 1995; 29
D Grierson (2874_CR93) 1986; 14
GE Stenvik (2874_CR103) 2008; 20
SB Hong (2874_CR96) 1998; 258
MK Chen (2874_CR106) 2011; 6
J Corbacho (2874_CR82) 2013; 8
S Baud (2874_CR116) 2010; 49
S Konishi (2874_CR71) 2006; 312
A Iwase (2874_CR50) 2011; 21
X Argout (2874_CR130) 2008; 9
2874_CR81
2874_CR84
2874_CR105
JA Roberts (2874_CR22) 2002; 53
2874_CR104
P Garapati (2874_CR49) 2015; 168
S Jurado (2874_CR44) 2010; 22
S Léran (2874_CR53) 2014; 19
Y Jaillais (2874_CR40) 2006; 443
S Wolf (2874_CR98) 2012; 249
AE Angkawijaya (2874_CR109) 2017; 494
F Morcillo (2874_CR129) 2006; 26
References_xml – ident: 2874_CR123
  doi: 10.1093/jxb/erm111
– volume: 53
  start-page: 131
  issue: 1
  year: 2002
  ident: 2874_CR22
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.53.092701.180236
– volume: 183
  start-page: 1072
  issue: 4
  year: 2009
  ident: 2874_CR79
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2009.02908.x
– volume: 69
  start-page: 733
  issue: 4
  year: 2018
  ident: 2874_CR7
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx256
– volume: 141
  start-page: 1604
  issue: 4
  year: 2006
  ident: 2874_CR11
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.079277
– volume: 24
  start-page: 336
  issue: 1
  year: 2012
  ident: 2874_CR58
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.093245
– volume: 69
  start-page: 467
  issue: 3
  year: 2018
  ident: 2874_CR54
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx408
– volume: 49
  start-page: 235
  issue: 3
  year: 2010
  ident: 2874_CR116
  publication-title: Prog Lipid Res
  doi: 10.1016/j.plipres.2010.01.001
– ident: 2874_CR122
  doi: 10.3389/fpls.2015.00360
– volume: 2
  start-page: 1
  issue: 2
  year: 2015
  ident: 2874_CR13
  publication-title: Stewart Postharvest Rev
– volume: 443
  start-page: 106
  issue: 7107
  year: 2006
  ident: 2874_CR40
  publication-title: Nature.
  doi: 10.1038/nature05046
– volume: 183
  start-page: 117
  issue: 1
  year: 2009
  ident: 2874_CR55
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2009.02843.x
– volume: 3
  start-page: 17097
  year: 2017
  ident: 2874_CR115
  publication-title: Nat Plants
  doi: 10.1038/nplants.2017.97
– volume: 23
  start-page: 3577
  issue: 10
  year: 2011
  ident: 2874_CR27
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.089847
– ident: 2874_CR81
  doi: 10.3390/ijms21144819
– ident: 2874_CR118
  doi: 10.1105/tpc.19.00695
– ident: 2874_CR119
  doi: 10.3390/ijms21113815
– volume: 284
  start-page: 25
  year: 2019
  ident: 2874_CR67
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2019.03.016
– volume: 128
  start-page: 534
  issue: 2
  year: 2002
  ident: 2874_CR29
  publication-title: Plant Physiol
  doi: 10.1104/pp.010610
– volume: 7
  start-page: 11095
  year: 2016
  ident: 2874_CR111
  publication-title: Nat Commun
  doi: 10.1038/ncomms11095
– volume: 27
  start-page: 25
  issue: 1
  year: 1936
  ident: 2874_CR1
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a104134
– volume: 485
  start-page: 119
  issue: 7396
  year: 2012
  ident: 2874_CR39
  publication-title: Nature.
  doi: 10.1038/nature11001
– volume: 157
  start-page: 2000
  issue: 4
  year: 2011
  ident: 2874_CR59
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.182667
– volume: 91
  start-page: 371
  issue: 3
  year: 2017
  ident: 2874_CR108
  publication-title: Plant J
  doi: 10.1111/tpj.13567
– volume: 153
  start-page: 757
  issue: 2
  year: 2010
  ident: 2874_CR117
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.155077
– ident: 2874_CR65
  doi: 10.3389/fpls.2015.00476
– ident: 2874_CR84
  doi: 10.3390/life10110273
– volume: 126
  start-page: 494
  issue: 2
  year: 2001
  ident: 2874_CR10
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.2.494
– volume: 20
  start-page: 1805
  issue: 7
  year: 2008
  ident: 2874_CR103
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.059139
– volume: 168
  start-page: 1122
  issue: 3
  year: 2015
  ident: 2874_CR49
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00567
– volume: 8
  start-page: 163
  issue: 3
  year: 1998
  ident: 2874_CR133
  publication-title: Genome Res
  doi: 10.1101/gr.8.3.163
– volume: 58
  start-page: 333
  issue: 3
  year: 2005
  ident: 2874_CR76
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-005-4526-7
– volume: 2
  start-page: 65
  year: 2011
  ident: 2874_CR60
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2011.00065
– volume: 44
  start-page: 93
  issue: 258
  year: 1993
  ident: 2874_CR92
  publication-title: J Exp Bot
– volume: 30
  start-page: 495
  issue: 2
  year: 2018
  ident: 2874_CR112
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00414
– volume: 167
  start-page: 1511
  issue: 4
  year: 2015
  ident: 2874_CR110
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.252338
– volume: 312
  start-page: 1392
  issue: 5778
  year: 2006
  ident: 2874_CR71
  publication-title: Science.
  doi: 10.1126/science.1126410
– ident: 2874_CR114
  doi: 10.3390/plants5020025
– volume: 199–200
  start-page: 48
  year: 2013
  ident: 2874_CR4
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2012.10.008
– volume: 4
  start-page: 315
  issue: 4
  year: 1991
  ident: 2874_CR126
  publication-title: Mol Plant-Microbe Interact
  doi: 10.1094/MPMI-4-315
– volume: 150
  start-page: 1219
  issue: 3
  year: 2009
  ident: 2874_CR74
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.138388
– volume: 49
  start-page: 387
  issue: 3–4
  year: 2002
  ident: 2874_CR43
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1015255030047
– volume: 8
  start-page: 603
  year: 2017
  ident: 2874_CR24
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00603
– volume: 98
  start-page: 955
  issue: 3
  year: 1992
  ident: 2874_CR127
  publication-title: Plant Physiol
  doi: 10.1104/pp.98.3.955
– volume: 58
  start-page: 115
  year: 2007
  ident: 2874_CR107
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.57.032905.105316
– volume: 10
  start-page: 43
  year: 2010
  ident: 2874_CR61
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-43
– volume: 53
  start-page: 429
  issue: 368
  year: 2002
  ident: 2874_CR128
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/53.368.429
– volume: 136
  start-page: 1909
  issue: 11
  year: 2009
  ident: 2874_CR16
  publication-title: Development.
  doi: 10.1242/dev.033605
– ident: 2874_CR105
  doi: 10.3390/plants8060143
– volume: 56
  start-page: 13
  issue: 1
  year: 2008
  ident: 2874_CR120
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03577.x
– volume: 7
  start-page: 540
  year: 2016
  ident: 2874_CR23
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00540
– volume: 156
  start-page: 564
  issue: 2
  year: 2011
  ident: 2874_CR131
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175141
– volume: 56
  start-page: 131
  issue: 2
  year: 2001
  ident: 2874_CR21
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)00447-7
– volume: 7
  start-page: 986
  issue: 10
  year: 1997
  ident: 2874_CR132
  publication-title: Genome Res
  doi: 10.1101/gr.7.10.986
– volume: 65
  start-page: 3889
  issue: 14
  year: 2014
  ident: 2874_CR46
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru037
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 2874_CR14
  publication-title: Stewart Postharvest Rev
– ident: 2874_CR73
  doi: 10.1007/s00299-020-02638-5
– volume: 15
  start-page: 155
  year: 2015
  ident: 2874_CR75
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-015-0548-8
– volume: 25
  start-page: 499
  issue: 2
  year: 2013
  ident: 2874_CR41
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.108373
– volume: 21
  start-page: 1215
  issue: 14
  year: 2011
  ident: 2874_CR68
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.06.008
– volume: 20
  start-page: 839
  issue: 5
  year: 1992
  ident: 2874_CR87
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00027155
– volume: 56
  start-page: 572
  issue: 3
  year: 2015
  ident: 2874_CR34
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu201
– volume: 176
  start-page: 2186
  issue: 3
  year: 2018
  ident: 2874_CR31
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.01494
– volume: 84
  start-page: 597
  issue: 3
  year: 2015
  ident: 2874_CR51
  publication-title: Plant J
  doi: 10.1111/tpj.13030
– ident: 2874_CR2
  doi: 10.1002/9781119312994.apr0652
– volume: 21
  start-page: 216
  issue: 1
  year: 2009
  ident: 2874_CR30
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.063768
– volume: 8
  start-page: 1563
  issue: 11
  year: 2015
  ident: 2874_CR113
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2015.09.005
– volume: 8
  start-page: 126
  year: 2017
  ident: 2874_CR86
  publication-title: Front Plant Sci
– volume: 30
  start-page: 388
  issue: 4
  year: 2007
  ident: 2874_CR48
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2006.01624.x
– volume: 68
  start-page: 1731
  issue: 7
  year: 2017
  ident: 2874_CR57
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx040
– volume: 334
  start-page: 724
  issue: 6184
  year: 1988
  ident: 2874_CR95
  publication-title: Nature
  doi: 10.1038/334724a0
– volume: 6
  start-page: 293
  issue: 3
  year: 2005
  ident: 2874_CR99
  publication-title: Innov Food Sci Emerg
  doi: 10.1016/j.ifset.2005.02.003
– volume: 291
  start-page: 127
  issue: 1
  year: 1991
  ident: 2874_CR125
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(91)81119-S
– volume-title: Abscission
  year: 1982
  ident: 2874_CR3
– volume: 154
  start-page: 1929
  issue: 4
  year: 2010
  ident: 2874_CR12
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.160697
– volume: 6
  start-page: 1841
  issue: 11
  year: 2011
  ident: 2874_CR106
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.6.11.17612
– volume: 49
  start-page: 46
  issue: 1
  year: 2007
  ident: 2874_CR47
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02932.x
– volume: 35
  start-page: 68
  year: 2017
  ident: 2874_CR69
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2016.11.008
– volume: 258
  start-page: 479
  issue: 5
  year: 1998
  ident: 2874_CR96
  publication-title: Mol Gen Genet
  doi: 10.1007/s004380050758
– volume: 183
  start-page: 133
  issue: 1
  year: 1991
  ident: 2874_CR91
  publication-title: Planta.
  doi: 10.1007/BF00197577
– volume: 21
  start-page: e48967
  issue: 7
  year: 2020
  ident: 2874_CR121
  publication-title: EMBO Rep
  doi: 10.15252/embr.201948967
– volume: 16
  start-page: 173
  issue: 4
  year: 1992
  ident: 2874_CR18
  publication-title: Endeavour
  doi: 10.1016/0160-9327(92)90044-P
– volume: 25
  start-page: 4941
  issue: 12
  year: 2013
  ident: 2874_CR35
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117861
– volume: 249
  start-page: 169
  year: 2012
  ident: 2874_CR98
  publication-title: Protoplasma
  doi: 10.1007/s00709-011-0371-5
– volume: 23
  start-page: 381
  issue: 1
  year: 2011
  ident: 2874_CR56
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.075390
– volume: 26
  start-page: 585
  issue: 5
  year: 2006
  ident: 2874_CR129
  publication-title: Tree Physiol
  doi: 10.1093/treephys/26.5.585
– volume: 37
  start-page: 1250
  issue: 5
  year: 2014
  ident: 2874_CR136
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12231
– volume: 41
  start-page: 203
  issue: 2
  year: 1990
  ident: 2874_CR17
  publication-title: J Exp Bot
  doi: 10.1093/jxb/41.2.203
– volume: 135
  start-page: 1537
  issue: 8
  year: 2008
  ident: 2874_CR72
  publication-title: Development.
  doi: 10.1242/dev.012807
– volume: 8
  start-page: e58363
  issue: 3
  year: 2013
  ident: 2874_CR82
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058363
– volume: 45
  start-page: 943
  issue: 276
  year: 1994
  ident: 2874_CR19
  publication-title: J Exp Bot
  doi: 10.1093/jxb/45.7.943
– volume: 80
  start-page: 951
  issue: 6
  year: 2014
  ident: 2874_CR78
  publication-title: Plant J
  doi: 10.1111/tpj.12680
– ident: 2874_CR104
  doi: 10.3389/fpls.2015.00931
– volume: 494
  start-page: 397
  issue: 1–2
  year: 2017
  ident: 2874_CR109
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2017.09.094
– volume: 19
  start-page: 5
  issue: 1
  year: 2014
  ident: 2874_CR53
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2013.08.008
– volume: 156
  start-page: 1837
  issue: 4
  year: 2011
  ident: 2874_CR15
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175224
– volume: 14
  start-page: 8595
  issue: 21
  year: 1986
  ident: 2874_CR93
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/14.21.8595
– ident: 2874_CR20
  doi: 10.1186/1471-2229-12-150
– volume: 21
  start-page: 143
  issue: 2
  year: 2017
  ident: 2874_CR38
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.01.007
– volume: 102
  start-page: 217
  issue: 2
  year: 1998
  ident: 2874_CR88
  publication-title: Physiol Plant
  doi: 10.1034/j.1399-3054.1998.1020209.x
– volume: 11
  start-page: e0165867
  issue: 10
  year: 2016
  ident: 2874_CR28
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0165867
– volume: 22
  start-page: 3891
  issue: 12
  year: 2010
  ident: 2874_CR44
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.078972
– volume: 28
  start-page: 647
  issue: 4
  year: 1995
  ident: 2874_CR89
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00021190
– volume: 66
  start-page: 1707
  issue: 7
  year: 2015
  ident: 2874_CR8
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru533
– volume: 21
  start-page: 508
  issue: 6
  year: 2011
  ident: 2874_CR50
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.02.020
– volume: 9
  start-page: 512
  year: 2008
  ident: 2874_CR130
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-512
– volume: 180
  start-page: 57
  issue: 1
  year: 2008
  ident: 2874_CR45
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2008.02557.x
– volume: 44
  start-page: 720
  issue: 6
  year: 2012
  ident: 2874_CR70
  publication-title: Nat Genet
  doi: 10.1038/ng.2281
– volume: 406
  start-page: 910
  issue: 6798
  year: 2000
  ident: 2874_CR124
  publication-title: Nature
  doi: 10.1038/35022611
– volume: 11
  start-page: 266
  issue: 3
  year: 2008
  ident: 2874_CR97
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2008.03.006
– volume: 85
  start-page: 8805
  issue: 23
  year: 1988
  ident: 2874_CR94
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.85.23.8805
– volume: 23
  start-page: 588
  issue: 7
  year: 2018
  ident: 2874_CR63
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2018.03.012
– volume: 3
  start-page: 284
  year: 2013
  ident: 2874_CR64
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2012.00284
– ident: 2874_CR134
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  ident: 2874_CR135
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 1
  start-page: 17
  issue: 1
  year: 2020
  ident: 2874_CR9
  publication-title: Plant Environ Interact
  doi: 10.1002/pei3.10011
– volume: 6
  start-page: 521
  issue: 4
  year: 1994
  ident: 2874_CR101
  publication-title: Plant Cell
– volume: 113
  start-page: 13917
  issue: 48
  year: 2016
  ident: 2874_CR42
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1612635113
– volume: 113
  start-page: 1303
  issue: 4
  year: 1997
  ident: 2874_CR90
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.4.1303
– volume: 15
  start-page: 2296
  issue: 10
  year: 2003
  ident: 2874_CR102
  publication-title: Plant Cell
  doi: 10.1105/tpc.014365
– volume: 28
  start-page: 1142
  issue: 10
  year: 2015
  ident: 2874_CR37
  publication-title: Mol Plant-Microbe Interact
  doi: 10.1094/MPMI-04-15-0096-R
– volume: 63
  start-page: 6079
  issue: 17
  year: 2012
  ident: 2874_CR80
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ers270
– volume: 1119
  start-page: 97
  year: 2016
  ident: 2874_CR25
  publication-title: Acta Hortic
  doi: 10.17660/ActaHortic.2016.1119.13
– volume: 70
  start-page: 1461
  issue: 5
  year: 2019
  ident: 2874_CR6
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erz038
– volume: 66
  start-page: 1355
  issue: 5
  year: 2015
  ident: 2874_CR85
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru483
– volume: 9
  start-page: 1169
  issue: 7
  year: 1997
  ident: 2874_CR100
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.7.1169
– volume: 79
  start-page: 717
  issue: 5
  year: 2014
  ident: 2874_CR33
  publication-title: Plant J
  doi: 10.1111/tpj.12581
– volume: 53
  start-page: 2031
  issue: 377
  year: 2002
  ident: 2874_CR66
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erf082
– volume: 14
  start-page: 108
  issue: 1
  year: 2000
  ident: 2874_CR32
  publication-title: Genes Dev
  doi: 10.1101/gad.14.1.108
– volume: 29
  start-page: 1027
  issue: 5
  year: 1995
  ident: 2874_CR52
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00014975
– volume: 172
  start-page: 198
  issue: 1
  year: 2016
  ident: 2874_CR77
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.00430
– volume: 54
  start-page: 244
  issue: 2
  year: 2013
  ident: 2874_CR83
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcs179
– volume: 26
  start-page: 263
  issue: 1
  year: 2014
  ident: 2874_CR36
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.120394
– volume: 173
  start-page: 1
  year: 2018
  ident: 2874_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.060
– volume: 54
  start-page: 195
  issue: 2
  year: 2013
  ident: 2874_CR26
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcs166
– volume: 28
  start-page: 661
  issue: 3
  year: 2016
  ident: 2874_CR62
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00045
SSID ssj0017849
Score 2.3444624
Snippet Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of...
Background Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the...
BACKGROUND: Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the...
Background: Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the...
Abstract Background Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To...
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 92
SubjectTerms Abscission
Abscission zone
Adaptation
Agricultural research
Alternative energy sources
Animal reproduction
Arecaceae - genetics
Arecaceae - metabolism
Cell adhesion & migration
Cell separation
Cell walls
Dehiscence
Domestication
Elaeis guineensis
energy
ethylene
Fruit - genetics
Fruit - growth & development
Fruit - metabolism
Fruit abscission
fruit drop
Fruits
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant
Gene regulation
Genes
Genes, Plant
Genetic aspects
Genetic transcription
Genetic Variation
Genotype
Life Sciences
Magnoliopsida
Metabolic reprogramming
Metabolism - genetics
Monocotyledon
Oil palm
Original Research
Oxidative stress
Physiological aspects
Senescence
Transcription
transcription (genetics)
Transcriptome
Transcriptomes
transcriptomics
Vegetable oils
Vegetal Biology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbYhQMXxJtCQWaFxAFFaztxYp9QF7EqCDgAK_VmOY7drdQmpUmR-Bf8ZGaSNEtAWvVSxdPGybzt8TeEvLLMextsAZpmWZRoxSLFpYdv1oN_Ei7XeDj585d0fpF8XMhFv-BW92WVB5vYGuqicrhGfgppAlZkSSXebn9E2DUKd1f7FhpH5CZCl2FJV7YYEi6eqUQfDsqo9LTmuKsXYVECQ5j3iI-cUYvZP1jmo0ssjPw_6vy3ePIvb3R-l9zpw0g66_h-j9zw5X1y66yCUO_XA_K7PVYb1fD-PXVX-N60Qc_U2olq46ntAUkowjiBGFJQaLpE4wdDBd34BiRkvXIUkS_bMq4NODq67c4WIFXPW19QXM-l1WpNt3a9oWG3XzXUgk1aYZVt-ZBcnL___m4e9a0XIpemSRMJzaTI8xwb_gUhVG6ZCDKoYIMouNXeepVznyfCuuC19jIW2FVRZIXMfKLjR-S4rEr_hFDhuMqctnHBdRJbyIgLXmQiMPgUuUsnhB94YFyPS47tMdamzU9Uajq-GeCbaflm-IS8GX6z7VA5rqU-Q9YOlIio3V6odkvTK6hJvNIgMpaFxCZxHLSTDEJFLpyMQ2GLCTlBwTCImVFiUc7S7uvafPj21cxSGePus5IT8ronChU8g7P9GQd4EwizNaKcjihBqd1o-ATkbzTj-eyTwWsMW42BTv2E55oexNP0lqc2V3oyIS-HYfx7rKYrfbVHGqUFhM6MX0MjBWbTgrMJedxJ_DCdOJZZLDXcIRvpwmi-45Fyddlil4N_0KlmT6-f-jNyW3RqGnE-JcfNbu-fQ_DX5C9aDf8D3PdaOw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfG4IEXxP8VCjITEg8oYDtxYj8g1CGmghgPQKW9WY5jd5XapLQpYt-Cj8xdknYEpj2hvlTxpXF8d767-u53hDy3zHsbbAGaZlmUaMUixaWHb9aDfRIu11icfPI5HU-Sj6fydI9s2x11C7i-NLTDflKT1fzVz-_nb0Hh3zQKr9LXa46ndREmGzCEb48gGroOlilDRT1JLk4VMpXobeHMpff1jFOD4b_bqa-dYaLkv17o38mUf1in49vkVudW0lErB3fIni_vkhtHFbh-5_fIr6bMNloDPzx1F3jftEZL1ewb1cJT2wGUUIR1guWhoOB0ipshDBV04WuQmPnMUUTCbNK6FmD46LKtNUCqjte-oPj_Lq1mc7q08wUNq82sphb2qBlm3Zb3yeT4_bd346hrxRC5NE3qSGgmRZ7n2AAwCKFyy0SQQQUbRMGt9tarnPs8EdYFr7WXscAuiyIrZOYTHT8g-2VV-gNCheMqc9rGBddJbCFCLniRicDgU-QuHRC-5YFxHU45tsuYmyZeUalp-WaAb6bhm-ED8nJ3z7JF6biS-ghZu6NEhO3mQrWamk5hTeKVBpGxLCQ2ieOgnWTgOnLhZBwKWwzIIQqGQQyNEpN0pnazXpsPX7-YUSpjPI1WckBedEShgndwtqt5gJVA2K0e5bBHCUruesOHIH-9GY9HnwxeY9h6DHTsB7zXcCueZqtIBsJrzGSUSgzIs90w_jxm15W-2iCN0gJcacavoJECo2vB2YA8bCV-N504llksNTwh6-lCb779kXJ21mCZg73QqWaP_gdLHpObolXmiPMh2a9XG_8EXMY6f9rsA78BnnxqJA
  priority: 102
  providerName: Scholars Portal
Title Multi-scale comparative transcriptome analysis reveals key genes and metabolic reprogramming processes associated with oil palm fruit abscission
URI https://www.ncbi.nlm.nih.gov/pubmed/33573592
https://www.proquest.com/docview/2491365582
https://www.proquest.com/docview/2489254501
https://www.proquest.com/docview/2524287210
https://hal.inrae.fr/hal-03168980
https://pubmed.ncbi.nlm.nih.gov/PMC7879690
https://doaj.org/article/4e89001a0f4a433f9c5044112c53fdad
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfY4MAF8b1AqcyExAFFs504sY8t2lQQm1Bh0sTFchx7q9Qm1doi8V_wJ_NekpYFpHFBlaIqfm0dv-_6-fcIeWOZ9zbYEjTNsjjVisWKSw_vrAf_JFyh8XDy6Vk2OU8_XsiLG62-sCashQduF-4o9UqDKbUspDZNkqCdZODCuXAyCaUt0fqCz9smU93-Qa5SvT0io7KjFcf9vBjLERgCvMe854YatP6dTd67wpLIv-PNP8smb_ihk4fkQRdA0lE78Ufkjq8ek3vjGoK8H0_Iz-ZAbbyClffU_Ub2pmv0SY2FqBee2g6KhCKAEwggBVWml2j2YKikC78G2ZjPHEXMy6aAawEuji7bUwVI1XHVlxT_yaX1bE6Xdr6g4XozW1ML1miG9bXVU3J-cvz1_STumi7ELsvSdSw0k6IoCmz1F4RQhWUiyKCCDaLkVnvrVcF9kQrrgtfay0RgP0WRlzL3qU6ekf2qrvwBocJxlTttk5LrNLGQC5e8zEVg8CoLl0WEb3lgXIdIjo0x5qbJTFRmWr4Z4Jtp-GZ4RN7tPrNs8ThupR4ja3eUiKXd3AAJM52EmX9JWEQOUTAMomVUWI5zaTerlfnwZWpGmUxw31nJiLztiEINz-Bsd7oBVgIBtnqUgx4lqLPrDR-C_PVmPBl9MniPYZMx0Kbv8FyDrXiazuasDCTSWLMolYjI690wfj3W0VW-3iCN0gKCZsZvoZEC82jBWUSetxK_m06SyDyRGn4h7-lCb779kWp21aCWg2fQmWYv_gdLXpL7olXmmPMB2V9fb_wrCA7XxZDs5Rf5kNwdH599ng4bqwDX01TBdTr-9gusLmas
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGhgQviDuFAWYC8YCi2U6c2A8IbbCpYxehsUl7M45jb5XapKwtaP-CX8Jv5Jwk7QhIe5v6UsWnrdNzj8_5DiGvLfPeBluAplkWJVqxSHHp4Z314J-EyzU2J-8fpP3j5POJPFkiv-e9MFhWObeJtaEuKofPyNchTcCKLKnEh_H3CKdG4enqfIRGIxa7_uInpGyT9zufgL9vhNjeOvrYj9qpApFL02QaCc2kyPMcZ9kFIVRumQgyqGCDKLjV3nqVc58nwrrgtfYyFjgwUGSFzHyC4Etg8leSGFKZZbKyuXXw5XBxbpGpRM9bc1S6PuF4jhhhGQRDYPmId9xfPSVg4QtunGEp5v9x7r_lmn_5v-275E4buNKNRtLukSVf3ic3NysILi8ekF91I280AY576i4RxekUfWFtmaqRp7aFQKEIHAWCT8GE0FM0t7BU0JGfgkwOB44i1mZdODYC10rHTTcDUrXS5AuKT5BpNRjSsR2OaDifDabUghUcYF1v-ZAcXwtbHpHlsir9E0KF4ypz2sYF10lsIQcveJGJwOBV5C7tET7ngXEtEjoO5BiaOiNSqWn4ZoBvpuab4T3ybvGZcYMDciX1JrJ2QYkY3vWF6vzUtCbBJF5pEBnLQmKTOA7aSQbBKRdOxqGwRY-soWAYROkosQzo1M4mE7Pz9dBspDLG824le-RtSxQquAdn264K-CcQ2KtDudqhBDPiOstrIH-dHfc39gxeYzjcDLT4B9zX6lw8TWvrJuZSM3vk1WIZvx7r90pfzZBGaQHBOuNX0EiB-bvgrEceNxK_2E4cyyyWGn4h6-hCZ7_dlXJwVqOlg0fSqWZPr976S3Krf7S_Z_Z2DnafkduiUdmI81WyPD2f-ecQek7zF62-U_Ltuk3MH4yomRo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+comparative+transcriptome+analysis+reveals+key+genes+and+metabolic+reprogramming+processes+associated+with+oil+palm+fruit+abscission&rft.jtitle=BMC+plant+biology&rft.au=Kim+Fooyontphanich&rft.au=Fabienne+Morcillo&rft.au=Thierry+Jo%C3%ABt&rft.au=St%C3%A9phane+Dussert&rft.date=2021-02-11&rft.pub=BMC&rft.eissn=1471-2229&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1186%2Fs12870-021-02874-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4e89001a0f4a433f9c5044112c53fdad
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon