Multi-scale comparative transcriptome analysis reveals key genes and metabolic reprogramming processes associated with oil palm fruit abscission
Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale co...
Saved in:
Published in | BMC plant biology Vol. 21; no. 1; p. 92 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
11.02.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues.
Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress.
The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process. |
---|---|
AbstractList | Abstract Background Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Results Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. Conclusions The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process. Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues.BACKGROUNDFruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues.Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress.RESULTSCombining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress.The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.CONCLUSIONSThe study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process. Background: Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Results: Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. Conclusions: The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process. Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process. Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process. Background Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Results Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. Conclusions The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process. Keywords: Transcriptome, Fruit abscission, Abscission zone, Monocotyledon, Metabolic reprogramming, Elaeis guineensis |
ArticleNumber | 92 |
Audience | Academic |
Author | Fooyontphanich, Kim Morcillo, Fabienne Verdeil, Jean-Luc Tranbarger, Timothy J. Joët, Thierry Tangphatsornruang, Sithichoke Roongsattham, Peerapat Serret, Julien Collin, Myriam Jantasuriyarat, Chatchawan Dussert, Stéphane Amblard, Philippe |
Author_xml | – sequence: 1 givenname: Kim surname: Fooyontphanich fullname: Fooyontphanich, Kim – sequence: 2 givenname: Fabienne surname: Morcillo fullname: Morcillo, Fabienne – sequence: 3 givenname: Thierry surname: Joët fullname: Joët, Thierry – sequence: 4 givenname: Stéphane surname: Dussert fullname: Dussert, Stéphane – sequence: 5 givenname: Julien surname: Serret fullname: Serret, Julien – sequence: 6 givenname: Myriam surname: Collin fullname: Collin, Myriam – sequence: 7 givenname: Philippe surname: Amblard fullname: Amblard, Philippe – sequence: 8 givenname: Sithichoke surname: Tangphatsornruang fullname: Tangphatsornruang, Sithichoke – sequence: 9 givenname: Peerapat surname: Roongsattham fullname: Roongsattham, Peerapat – sequence: 10 givenname: Chatchawan surname: Jantasuriyarat fullname: Jantasuriyarat, Chatchawan – sequence: 11 givenname: Jean-Luc surname: Verdeil fullname: Verdeil, Jean-Luc – sequence: 12 givenname: Timothy J. orcidid: 0000-0001-6278-8321 surname: Tranbarger fullname: Tranbarger, Timothy J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33573592$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-03168980$$DView record in HAL |
BookMark | eNqFk8tu1TAQhiNURC_wAixQJDbtIsXXxN4gVRXQSkVIXNaW44xTlyQ-2M6BvgWPjNPTQk-FQFESa-ab3_Lvmf1iZ_ITFMVzjI4xFvWriIloUIUIzq9oWIUfFXuYNbgihMide-vdYj_GK4RwI5h8UuxSyhvKJdkrfr6fh-SqaPQApfHjSged3BrKFPQUTXCr5Eco9aSH6-hiGWANeojlV7gue5gg5lRXjpB06wdncn4VfB_0OLqpL_PaQIwLFaM3Tifoyu8uXZbeDeVKD2Npw-xSqdtoXIzOT0-LxzZvAM9u_wfFl7dvPp-eVRcf3p2fnlxUpq5ZqohEnLRti7iklhDRakQst8JqSzqsJWgQLYaWEW0sSAmckqaW-dPxBpikB8X5Rrfz-kqtght1uFZeO3UT8KFXOiRnBlAMhMzeaWSZZpRaaThiDGNiOLWd7rLW643Wam5H6AxM2b1hS3Q7M7lL1fu1akQja4mywNFG4PJB2dnJhVpiiOJaSIHWOLOHt5sF_22GmNToooFh0BP4OSrCCcvdQDD6P8qEJJxxtKi-fIBe-TnkW18oiWnNuSB_qD63i3KT9fk4ZhFVJzWnXFAheKaO_0Llp4PRmdzD1uX4VsHRVkFmEvxIvZ5jVOefPm6zL-57_dutu5bOgNgAJvgYA1hlXMo97Rfr3aAwUsv0qM30qDw96mZ61GICeVB6p_6Pol9PKhyA |
CitedBy_id | crossref_primary_10_3389_fpls_2024_1524893 crossref_primary_10_1016_j_hpj_2023_03_008 crossref_primary_10_1016_j_scienta_2023_112755 crossref_primary_10_3390_plants13243504 crossref_primary_10_3390_genes12111724 crossref_primary_10_3390_ijms232314633 |
Cites_doi | 10.1093/jxb/erm111 10.1146/annurev.arplant.53.092701.180236 10.1111/j.1469-8137.2009.02908.x 10.1093/jxb/erx256 10.1104/pp.106.079277 10.1105/tpc.111.093245 10.1093/jxb/erx408 10.1016/j.plipres.2010.01.001 10.3389/fpls.2015.00360 10.1038/nature05046 10.1111/j.1469-8137.2009.02843.x 10.1038/nplants.2017.97 10.1105/tpc.111.089847 10.3390/ijms21144819 10.1105/tpc.19.00695 10.3390/ijms21113815 10.1016/j.plantsci.2019.03.016 10.1104/pp.010610 10.1038/ncomms11095 10.1093/oxfordjournals.jhered.a104134 10.1038/nature11001 10.1104/pp.111.182667 10.1111/tpj.13567 10.1104/pp.110.155077 10.3389/fpls.2015.00476 10.3390/life10110273 10.1104/pp.126.2.494 10.1105/tpc.108.059139 10.1104/pp.15.00567 10.1101/gr.8.3.163 10.1007/s11103-005-4526-7 10.3389/fpls.2011.00065 10.1105/tpc.17.00414 10.1104/pp.114.252338 10.1126/science.1126410 10.3390/plants5020025 10.1016/j.plantsci.2012.10.008 10.1094/MPMI-4-315 10.1104/pp.109.138388 10.1023/A:1015255030047 10.3389/fpls.2017.00603 10.1104/pp.98.3.955 10.1146/annurev.arplant.57.032905.105316 10.1186/1471-2229-10-43 10.1093/jexbot/53.368.429 10.1242/dev.033605 10.3390/plants8060143 10.1111/j.1365-313X.2008.03577.x 10.3389/fpls.2016.00540 10.1104/pp.111.175141 10.1016/S0031-9422(00)00447-7 10.1101/gr.7.10.986 10.1093/jxb/eru037 10.1007/s00299-020-02638-5 10.1186/s12870-015-0548-8 10.1105/tpc.112.108373 10.1016/j.cub.2011.06.008 10.1007/BF00027155 10.1093/pcp/pcu201 10.1104/pp.17.01494 10.1111/tpj.13030 10.1002/9781119312994.apr0652 10.1105/tpc.108.063768 10.1016/j.molp.2015.09.005 10.1111/j.1365-3040.2006.01624.x 10.1093/jxb/erx040 10.1038/334724a0 10.1016/j.ifset.2005.02.003 10.1016/0014-5793(91)81119-S 10.1104/pp.110.160697 10.4161/psb.6.11.17612 10.1111/j.1365-313X.2006.02932.x 10.1016/j.pbi.2016.11.008 10.1007/s004380050758 10.1007/BF00197577 10.15252/embr.201948967 10.1016/0160-9327(92)90044-P 10.1105/tpc.113.117861 10.1007/s00709-011-0371-5 10.1105/tpc.110.075390 10.1093/treephys/26.5.585 10.1111/pce.12231 10.1093/jxb/41.2.203 10.1242/dev.012807 10.1371/journal.pone.0058363 10.1093/jxb/45.7.943 10.1111/tpj.12680 10.3389/fpls.2015.00931 10.1016/j.bbrc.2017.09.094 10.1016/j.tplants.2013.08.008 10.1104/pp.111.175224 10.1093/nar/14.21.8595 10.1186/1471-2229-12-150 10.1016/j.chom.2017.01.007 10.1034/j.1399-3054.1998.1020209.x 10.1371/journal.pone.0165867 10.1105/tpc.110.078972 10.1007/BF00021190 10.1093/jxb/eru533 10.1016/j.cub.2011.02.020 10.1186/1471-2164-9-512 10.1111/j.1469-8137.2008.02557.x 10.1038/ng.2281 10.1038/35022611 10.1016/j.pbi.2008.03.006 10.1073/pnas.85.23.8805 10.1016/j.tplants.2018.03.012 10.3389/fpls.2012.00284 10.1093/bioinformatics/btp352 10.1002/pei3.10011 10.1073/pnas.1612635113 10.1104/pp.113.4.1303 10.1105/tpc.014365 10.1094/MPMI-04-15-0096-R 10.1093/jxb/ers270 10.17660/ActaHortic.2016.1119.13 10.1093/jxb/erz038 10.1093/jxb/eru483 10.1105/tpc.9.7.1169 10.1111/tpj.12581 10.1093/jxb/erf082 10.1101/gad.14.1.108 10.1007/BF00014975 10.1104/pp.16.00430 10.1093/pcp/pcs179 10.1105/tpc.113.120394 10.1016/j.cell.2018.03.060 10.1093/pcp/pcs166 10.1105/tpc.16.00045 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution The Author(s) 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: The Author(s) 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X2 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M7N M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 1XC VOOES 5PM DOA |
DOI | 10.1186/s12870-021-02874-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1471-2229 |
EndPage | 92 |
ExternalDocumentID | oai_doaj_org_article_4e89001a0f4a433f9c5044112c53fdad PMC7879690 oai_HAL_hal_03168980v1 A653583885 33573592 10_1186_s12870_021_02874_1 |
Genre | Journal Article Comparative Study |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5GY 5VS 6J9 7X2 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS APEBS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IGH IGS IHR INH INR ISR ITC KQ8 LK8 M0K M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. M7N PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 1XC 2VQ 4.4 AHSBF C1A EJD H13 IPNFZ RIG VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c664t-29052bbb0593f228ba02f5f8faf2d1a9eae8b1eb42acfe99e532769327d57e493 |
IEDL.DBID | DOA |
ISSN | 1471-2229 |
IngestDate | Wed Aug 27 01:14:24 EDT 2025 Thu Aug 21 14:07:39 EDT 2025 Fri May 09 12:19:37 EDT 2025 Fri Jul 11 04:04:14 EDT 2025 Fri Jul 11 08:57:40 EDT 2025 Fri Jul 25 10:38:22 EDT 2025 Tue Jun 17 21:29:06 EDT 2025 Tue Jun 10 20:40:38 EDT 2025 Fri Jun 27 04:19:22 EDT 2025 Mon Jul 21 06:06:59 EDT 2025 Tue Jul 01 03:52:27 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Abscission zone Fruit abscission Monocotyledon Metabolic reprogramming Elaeis guineensis Transcriptome |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-29052bbb0593f228ba02f5f8faf2d1a9eae8b1eb42acfe99e532769327d57e493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0001-6278-8321 0000-0002-7144-9580 |
OpenAccessLink | https://doaj.org/article/4e89001a0f4a433f9c5044112c53fdad |
PMID | 33573592 |
PQID | 2491365582 |
PQPubID | 44650 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e89001a0f4a433f9c5044112c53fdad pubmedcentral_primary_oai_pubmedcentral_nih_gov_7879690 hal_primary_oai_HAL_hal_03168980v1 proquest_miscellaneous_2524287210 proquest_miscellaneous_2489254501 proquest_journals_2491365582 gale_infotracmisc_A653583885 gale_infotracacademiconefile_A653583885 gale_incontextgauss_ISR_A653583885 pubmed_primary_33573592 crossref_citationtrail_10_1186_s12870_021_02874_1 crossref_primary_10_1186_s12870_021_02874_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-11 |
PublicationDateYYYYMMDD | 2021-02-11 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC plant biology |
PublicationTitleAlternate | BMC Plant Biol |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | P Roongsattham (2874_CR23) 2016; 7 P Merelo (2874_CR86) 2017; 8 L Mao (2874_CR124) 2000; 406 E Del Campillo (2874_CR127) 1992; 98 C Draeger (2874_CR75) 2015; 15 K Fooyontphanich (2874_CR25) 2016; 1119 B Ruperti (2874_CR128) 2002; 53 K Shin (2874_CR34) 2015; 56 J Agusti (2874_CR80) 2012; 63 LH Estornell (2874_CR4) 2013; 199–200 JK Burns (2874_CR88) 1998; 102 J Henderson (2874_CR21) 2001; 56 JA Gil-Amado (2874_CR83) 2013; 54 C Wang (2874_CR41) 2013; 25 H Li (2874_CR135) 2009; 25 EA Doyle (2874_CR48) 2007; 30 CS Westfall (2874_CR42) 2016; 113 A Ayadi (2874_CR110) 2015; 167 L Butler (2874_CR1) 1936; 27 2874_CR20 S Meir (2874_CR13) 2015; 2 E Liscum (2874_CR43) 2002; 49 FT Addicott (2874_CR3) 1982 Y Lee (2874_CR5) 2018; 173 CM Rojas (2874_CR58) 2012; 24 2874_CR2 P Xu (2874_CR121) 2020; 21 M Lohse (2874_CR136) 2014; 37 S Sundaresan (2874_CR85) 2015; 66 AJ Vigers (2874_CR126) 1991; 4 J Henderson (2874_CR17) 1990; 41 S Meir (2874_CR6) 2019; 70 J Selinski (2874_CR63) 2018; 23 S Tisné (2874_CR9) 2020; 1 JA Eisen (2874_CR133) 1998; 8 TJ Tranbarger (2874_CR24) 2017; 8 OR Patharkar (2874_CR67) 2019; 284 MA Butenko (2874_CR102) 2003; 15 M Tannert (2874_CR54) 2018; 69 TY Liu (2874_CR111) 2016; 7 JE Taylor (2874_CR91) 1991; 183 LC Enns (2874_CR76) 2005; 58 I Verlent (2874_CR99) 2005; 6 W Yuan (2874_CR57) 2017; 68 S Audic (2874_CR132) 1997; 7 E Barbez (2874_CR39) 2012; 485 TD Missihoun (2874_CR28) 2016; 11 N Stiti (2874_CR60) 2011; 2 RE Sheehy (2874_CR94) 1988; 85 CA Burr (2874_CR15) 2011; 156 M Sakamoto (2874_CR120) 2008; 56 H He (2874_CR31) 2018; 176 P Kalaitzis (2874_CR89) 1995; 28 TL Jinn (2874_CR32) 2000; 14 J Wojtera-Kwiczor (2874_CR64) 2013; 3 M Hinz (2874_CR117) 2010; 153 CY Kim (2874_CR45) 2008; 180 S Santi (2874_CR79) 2009; 183 K Dietrich (2874_CR56) 2011; 23 AA Arsovski (2874_CR74) 2009; 150 TM Hildebrandt (2874_CR113) 2015; 8 S Song (2874_CR36) 2014; 26 C Bonghi (2874_CR87) 1992; 20 KM Chen (2874_CR61) 2010; 10 PO Lim (2874_CR107) 2007; 58 TJ Tranbarger (2874_CR131) 2011; 156 C Dubreuil-Maurizi (2874_CR59) 2011; 157 2874_CR134 SJ Liljegren (2874_CR16) 2009; 136 DJ Osborne (2874_CR18) 1992; 16 M Rauf (2874_CR35) 2013; 25 AT Fuglsang (2874_CR78) 2014; 80 KS Yoo (2874_CR27) 2011; 23 X Zhu (2874_CR51) 2015; 84 ZW Lin (2874_CR70) 2012; 44 D Van de Wouwer (2874_CR77) 2016; 172 AB Bleecker (2874_CR100) 1997; 9 2874_CR73 SE Patterson (2874_CR10) 2001; 126 P Kalaitzis (2874_CR90) 1997; 113 S Meir (2874_CR12) 2010; 154 ML Tucker (2874_CR14) 2015; 2 C Ferrandiz (2874_CR66) 2002; 53 L Pedrotti (2874_CR112) 2018; 30 KW Jung (2874_CR26) 2013; 54 HM Yuan (2874_CR38) 2017; 21 2874_CR123 2874_CR122 CJS Smith (2874_CR95) 1988; 334 P Ballester (2874_CR69) 2017; 35 ZH Gonzalez-Carranza (2874_CR29) 2002; 128 MB Lanahan (2874_CR101) 1994; 6 2874_CR65 N Arnaud (2874_CR68) 2011; 21 M Sugliani (2874_CR62) 2016; 28 SM McKim (2874_CR72) 2008; 135 M Sawicki (2874_CR8) 2015; 66 H Thomas (2874_CR46) 2014; 65 M Ogawa (2874_CR30) 2009; 21 JE Taylor (2874_CR92) 1993; 44 VJ Nalam (2874_CR37) 2015; 28 J Hejgaard (2874_CR125) 1991; 291 J Yoon (2874_CR33) 2014; 79 LS Tran (2874_CR47) 2007; 49 D Mohnen (2874_CR97) 2008; 11 J Henderson (2874_CR19) 1994; 45 L Gaufichon (2874_CR108) 2017; 91 2874_CR119 2874_CR118 R Zrenner (2874_CR55) 2009; 183 OR Patharkar (2874_CR7) 2018; 69 S Meir (2874_CR11) 2006; 141 2874_CR114 JM Kim (2874_CR115) 2017; 3 K Herbers (2874_CR52) 1995; 29 D Grierson (2874_CR93) 1986; 14 GE Stenvik (2874_CR103) 2008; 20 SB Hong (2874_CR96) 1998; 258 MK Chen (2874_CR106) 2011; 6 J Corbacho (2874_CR82) 2013; 8 S Baud (2874_CR116) 2010; 49 S Konishi (2874_CR71) 2006; 312 A Iwase (2874_CR50) 2011; 21 X Argout (2874_CR130) 2008; 9 2874_CR81 2874_CR84 2874_CR105 JA Roberts (2874_CR22) 2002; 53 2874_CR104 P Garapati (2874_CR49) 2015; 168 S Jurado (2874_CR44) 2010; 22 S Léran (2874_CR53) 2014; 19 Y Jaillais (2874_CR40) 2006; 443 S Wolf (2874_CR98) 2012; 249 AE Angkawijaya (2874_CR109) 2017; 494 F Morcillo (2874_CR129) 2006; 26 |
References_xml | – ident: 2874_CR123 doi: 10.1093/jxb/erm111 – volume: 53 start-page: 131 issue: 1 year: 2002 ident: 2874_CR22 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.53.092701.180236 – volume: 183 start-page: 1072 issue: 4 year: 2009 ident: 2874_CR79 publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.02908.x – volume: 69 start-page: 733 issue: 4 year: 2018 ident: 2874_CR7 publication-title: J Exp Bot doi: 10.1093/jxb/erx256 – volume: 141 start-page: 1604 issue: 4 year: 2006 ident: 2874_CR11 publication-title: Plant Physiol doi: 10.1104/pp.106.079277 – volume: 24 start-page: 336 issue: 1 year: 2012 ident: 2874_CR58 publication-title: Plant Cell doi: 10.1105/tpc.111.093245 – volume: 69 start-page: 467 issue: 3 year: 2018 ident: 2874_CR54 publication-title: J Exp Bot doi: 10.1093/jxb/erx408 – volume: 49 start-page: 235 issue: 3 year: 2010 ident: 2874_CR116 publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2010.01.001 – ident: 2874_CR122 doi: 10.3389/fpls.2015.00360 – volume: 2 start-page: 1 issue: 2 year: 2015 ident: 2874_CR13 publication-title: Stewart Postharvest Rev – volume: 443 start-page: 106 issue: 7107 year: 2006 ident: 2874_CR40 publication-title: Nature. doi: 10.1038/nature05046 – volume: 183 start-page: 117 issue: 1 year: 2009 ident: 2874_CR55 publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.02843.x – volume: 3 start-page: 17097 year: 2017 ident: 2874_CR115 publication-title: Nat Plants doi: 10.1038/nplants.2017.97 – volume: 23 start-page: 3577 issue: 10 year: 2011 ident: 2874_CR27 publication-title: Plant Cell doi: 10.1105/tpc.111.089847 – ident: 2874_CR81 doi: 10.3390/ijms21144819 – ident: 2874_CR118 doi: 10.1105/tpc.19.00695 – ident: 2874_CR119 doi: 10.3390/ijms21113815 – volume: 284 start-page: 25 year: 2019 ident: 2874_CR67 publication-title: Plant Sci doi: 10.1016/j.plantsci.2019.03.016 – volume: 128 start-page: 534 issue: 2 year: 2002 ident: 2874_CR29 publication-title: Plant Physiol doi: 10.1104/pp.010610 – volume: 7 start-page: 11095 year: 2016 ident: 2874_CR111 publication-title: Nat Commun doi: 10.1038/ncomms11095 – volume: 27 start-page: 25 issue: 1 year: 1936 ident: 2874_CR1 publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a104134 – volume: 485 start-page: 119 issue: 7396 year: 2012 ident: 2874_CR39 publication-title: Nature. doi: 10.1038/nature11001 – volume: 157 start-page: 2000 issue: 4 year: 2011 ident: 2874_CR59 publication-title: Plant Physiol doi: 10.1104/pp.111.182667 – volume: 91 start-page: 371 issue: 3 year: 2017 ident: 2874_CR108 publication-title: Plant J doi: 10.1111/tpj.13567 – volume: 153 start-page: 757 issue: 2 year: 2010 ident: 2874_CR117 publication-title: Plant Physiol doi: 10.1104/pp.110.155077 – ident: 2874_CR65 doi: 10.3389/fpls.2015.00476 – ident: 2874_CR84 doi: 10.3390/life10110273 – volume: 126 start-page: 494 issue: 2 year: 2001 ident: 2874_CR10 publication-title: Plant Physiol doi: 10.1104/pp.126.2.494 – volume: 20 start-page: 1805 issue: 7 year: 2008 ident: 2874_CR103 publication-title: Plant Cell doi: 10.1105/tpc.108.059139 – volume: 168 start-page: 1122 issue: 3 year: 2015 ident: 2874_CR49 publication-title: Plant Physiol doi: 10.1104/pp.15.00567 – volume: 8 start-page: 163 issue: 3 year: 1998 ident: 2874_CR133 publication-title: Genome Res doi: 10.1101/gr.8.3.163 – volume: 58 start-page: 333 issue: 3 year: 2005 ident: 2874_CR76 publication-title: Plant Mol Biol doi: 10.1007/s11103-005-4526-7 – volume: 2 start-page: 65 year: 2011 ident: 2874_CR60 publication-title: Front Plant Sci doi: 10.3389/fpls.2011.00065 – volume: 44 start-page: 93 issue: 258 year: 1993 ident: 2874_CR92 publication-title: J Exp Bot – volume: 30 start-page: 495 issue: 2 year: 2018 ident: 2874_CR112 publication-title: Plant Cell doi: 10.1105/tpc.17.00414 – volume: 167 start-page: 1511 issue: 4 year: 2015 ident: 2874_CR110 publication-title: Plant Physiol doi: 10.1104/pp.114.252338 – volume: 312 start-page: 1392 issue: 5778 year: 2006 ident: 2874_CR71 publication-title: Science. doi: 10.1126/science.1126410 – ident: 2874_CR114 doi: 10.3390/plants5020025 – volume: 199–200 start-page: 48 year: 2013 ident: 2874_CR4 publication-title: Plant Sci doi: 10.1016/j.plantsci.2012.10.008 – volume: 4 start-page: 315 issue: 4 year: 1991 ident: 2874_CR126 publication-title: Mol Plant-Microbe Interact doi: 10.1094/MPMI-4-315 – volume: 150 start-page: 1219 issue: 3 year: 2009 ident: 2874_CR74 publication-title: Plant Physiol doi: 10.1104/pp.109.138388 – volume: 49 start-page: 387 issue: 3–4 year: 2002 ident: 2874_CR43 publication-title: Plant Mol Biol doi: 10.1023/A:1015255030047 – volume: 8 start-page: 603 year: 2017 ident: 2874_CR24 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00603 – volume: 98 start-page: 955 issue: 3 year: 1992 ident: 2874_CR127 publication-title: Plant Physiol doi: 10.1104/pp.98.3.955 – volume: 58 start-page: 115 year: 2007 ident: 2874_CR107 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.57.032905.105316 – volume: 10 start-page: 43 year: 2010 ident: 2874_CR61 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-10-43 – volume: 53 start-page: 429 issue: 368 year: 2002 ident: 2874_CR128 publication-title: J Exp Bot doi: 10.1093/jexbot/53.368.429 – volume: 136 start-page: 1909 issue: 11 year: 2009 ident: 2874_CR16 publication-title: Development. doi: 10.1242/dev.033605 – ident: 2874_CR105 doi: 10.3390/plants8060143 – volume: 56 start-page: 13 issue: 1 year: 2008 ident: 2874_CR120 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03577.x – volume: 7 start-page: 540 year: 2016 ident: 2874_CR23 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00540 – volume: 156 start-page: 564 issue: 2 year: 2011 ident: 2874_CR131 publication-title: Plant Physiol doi: 10.1104/pp.111.175141 – volume: 56 start-page: 131 issue: 2 year: 2001 ident: 2874_CR21 publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)00447-7 – volume: 7 start-page: 986 issue: 10 year: 1997 ident: 2874_CR132 publication-title: Genome Res doi: 10.1101/gr.7.10.986 – volume: 65 start-page: 3889 issue: 14 year: 2014 ident: 2874_CR46 publication-title: J Exp Bot doi: 10.1093/jxb/eru037 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 2874_CR14 publication-title: Stewart Postharvest Rev – ident: 2874_CR73 doi: 10.1007/s00299-020-02638-5 – volume: 15 start-page: 155 year: 2015 ident: 2874_CR75 publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0548-8 – volume: 25 start-page: 499 issue: 2 year: 2013 ident: 2874_CR41 publication-title: Plant Cell doi: 10.1105/tpc.112.108373 – volume: 21 start-page: 1215 issue: 14 year: 2011 ident: 2874_CR68 publication-title: Curr Biol doi: 10.1016/j.cub.2011.06.008 – volume: 20 start-page: 839 issue: 5 year: 1992 ident: 2874_CR87 publication-title: Plant Mol Biol doi: 10.1007/BF00027155 – volume: 56 start-page: 572 issue: 3 year: 2015 ident: 2874_CR34 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu201 – volume: 176 start-page: 2186 issue: 3 year: 2018 ident: 2874_CR31 publication-title: Plant Physiol doi: 10.1104/pp.17.01494 – volume: 84 start-page: 597 issue: 3 year: 2015 ident: 2874_CR51 publication-title: Plant J doi: 10.1111/tpj.13030 – ident: 2874_CR2 doi: 10.1002/9781119312994.apr0652 – volume: 21 start-page: 216 issue: 1 year: 2009 ident: 2874_CR30 publication-title: Plant Cell doi: 10.1105/tpc.108.063768 – volume: 8 start-page: 1563 issue: 11 year: 2015 ident: 2874_CR113 publication-title: Mol Plant doi: 10.1016/j.molp.2015.09.005 – volume: 8 start-page: 126 year: 2017 ident: 2874_CR86 publication-title: Front Plant Sci – volume: 30 start-page: 388 issue: 4 year: 2007 ident: 2874_CR48 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2006.01624.x – volume: 68 start-page: 1731 issue: 7 year: 2017 ident: 2874_CR57 publication-title: J Exp Bot doi: 10.1093/jxb/erx040 – volume: 334 start-page: 724 issue: 6184 year: 1988 ident: 2874_CR95 publication-title: Nature doi: 10.1038/334724a0 – volume: 6 start-page: 293 issue: 3 year: 2005 ident: 2874_CR99 publication-title: Innov Food Sci Emerg doi: 10.1016/j.ifset.2005.02.003 – volume: 291 start-page: 127 issue: 1 year: 1991 ident: 2874_CR125 publication-title: FEBS Lett doi: 10.1016/0014-5793(91)81119-S – volume-title: Abscission year: 1982 ident: 2874_CR3 – volume: 154 start-page: 1929 issue: 4 year: 2010 ident: 2874_CR12 publication-title: Plant Physiol doi: 10.1104/pp.110.160697 – volume: 6 start-page: 1841 issue: 11 year: 2011 ident: 2874_CR106 publication-title: Plant Signal Behav doi: 10.4161/psb.6.11.17612 – volume: 49 start-page: 46 issue: 1 year: 2007 ident: 2874_CR47 publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02932.x – volume: 35 start-page: 68 year: 2017 ident: 2874_CR69 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2016.11.008 – volume: 258 start-page: 479 issue: 5 year: 1998 ident: 2874_CR96 publication-title: Mol Gen Genet doi: 10.1007/s004380050758 – volume: 183 start-page: 133 issue: 1 year: 1991 ident: 2874_CR91 publication-title: Planta. doi: 10.1007/BF00197577 – volume: 21 start-page: e48967 issue: 7 year: 2020 ident: 2874_CR121 publication-title: EMBO Rep doi: 10.15252/embr.201948967 – volume: 16 start-page: 173 issue: 4 year: 1992 ident: 2874_CR18 publication-title: Endeavour doi: 10.1016/0160-9327(92)90044-P – volume: 25 start-page: 4941 issue: 12 year: 2013 ident: 2874_CR35 publication-title: Plant Cell doi: 10.1105/tpc.113.117861 – volume: 249 start-page: 169 year: 2012 ident: 2874_CR98 publication-title: Protoplasma doi: 10.1007/s00709-011-0371-5 – volume: 23 start-page: 381 issue: 1 year: 2011 ident: 2874_CR56 publication-title: Plant Cell doi: 10.1105/tpc.110.075390 – volume: 26 start-page: 585 issue: 5 year: 2006 ident: 2874_CR129 publication-title: Tree Physiol doi: 10.1093/treephys/26.5.585 – volume: 37 start-page: 1250 issue: 5 year: 2014 ident: 2874_CR136 publication-title: Plant Cell Environ doi: 10.1111/pce.12231 – volume: 41 start-page: 203 issue: 2 year: 1990 ident: 2874_CR17 publication-title: J Exp Bot doi: 10.1093/jxb/41.2.203 – volume: 135 start-page: 1537 issue: 8 year: 2008 ident: 2874_CR72 publication-title: Development. doi: 10.1242/dev.012807 – volume: 8 start-page: e58363 issue: 3 year: 2013 ident: 2874_CR82 publication-title: PLoS One doi: 10.1371/journal.pone.0058363 – volume: 45 start-page: 943 issue: 276 year: 1994 ident: 2874_CR19 publication-title: J Exp Bot doi: 10.1093/jxb/45.7.943 – volume: 80 start-page: 951 issue: 6 year: 2014 ident: 2874_CR78 publication-title: Plant J doi: 10.1111/tpj.12680 – ident: 2874_CR104 doi: 10.3389/fpls.2015.00931 – volume: 494 start-page: 397 issue: 1–2 year: 2017 ident: 2874_CR109 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.09.094 – volume: 19 start-page: 5 issue: 1 year: 2014 ident: 2874_CR53 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2013.08.008 – volume: 156 start-page: 1837 issue: 4 year: 2011 ident: 2874_CR15 publication-title: Plant Physiol doi: 10.1104/pp.111.175224 – volume: 14 start-page: 8595 issue: 21 year: 1986 ident: 2874_CR93 publication-title: Nucleic Acids Res doi: 10.1093/nar/14.21.8595 – ident: 2874_CR20 doi: 10.1186/1471-2229-12-150 – volume: 21 start-page: 143 issue: 2 year: 2017 ident: 2874_CR38 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.01.007 – volume: 102 start-page: 217 issue: 2 year: 1998 ident: 2874_CR88 publication-title: Physiol Plant doi: 10.1034/j.1399-3054.1998.1020209.x – volume: 11 start-page: e0165867 issue: 10 year: 2016 ident: 2874_CR28 publication-title: PLoS One doi: 10.1371/journal.pone.0165867 – volume: 22 start-page: 3891 issue: 12 year: 2010 ident: 2874_CR44 publication-title: Plant Cell doi: 10.1105/tpc.110.078972 – volume: 28 start-page: 647 issue: 4 year: 1995 ident: 2874_CR89 publication-title: Plant Mol Biol doi: 10.1007/BF00021190 – volume: 66 start-page: 1707 issue: 7 year: 2015 ident: 2874_CR8 publication-title: J Exp Bot doi: 10.1093/jxb/eru533 – volume: 21 start-page: 508 issue: 6 year: 2011 ident: 2874_CR50 publication-title: Curr Biol doi: 10.1016/j.cub.2011.02.020 – volume: 9 start-page: 512 year: 2008 ident: 2874_CR130 publication-title: BMC Genomics doi: 10.1186/1471-2164-9-512 – volume: 180 start-page: 57 issue: 1 year: 2008 ident: 2874_CR45 publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02557.x – volume: 44 start-page: 720 issue: 6 year: 2012 ident: 2874_CR70 publication-title: Nat Genet doi: 10.1038/ng.2281 – volume: 406 start-page: 910 issue: 6798 year: 2000 ident: 2874_CR124 publication-title: Nature doi: 10.1038/35022611 – volume: 11 start-page: 266 issue: 3 year: 2008 ident: 2874_CR97 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2008.03.006 – volume: 85 start-page: 8805 issue: 23 year: 1988 ident: 2874_CR94 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.85.23.8805 – volume: 23 start-page: 588 issue: 7 year: 2018 ident: 2874_CR63 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2018.03.012 – volume: 3 start-page: 284 year: 2013 ident: 2874_CR64 publication-title: Front Plant Sci doi: 10.3389/fpls.2012.00284 – ident: 2874_CR134 – volume: 25 start-page: 2078 issue: 16 year: 2009 ident: 2874_CR135 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 1 start-page: 17 issue: 1 year: 2020 ident: 2874_CR9 publication-title: Plant Environ Interact doi: 10.1002/pei3.10011 – volume: 6 start-page: 521 issue: 4 year: 1994 ident: 2874_CR101 publication-title: Plant Cell – volume: 113 start-page: 13917 issue: 48 year: 2016 ident: 2874_CR42 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1612635113 – volume: 113 start-page: 1303 issue: 4 year: 1997 ident: 2874_CR90 publication-title: Plant Physiol doi: 10.1104/pp.113.4.1303 – volume: 15 start-page: 2296 issue: 10 year: 2003 ident: 2874_CR102 publication-title: Plant Cell doi: 10.1105/tpc.014365 – volume: 28 start-page: 1142 issue: 10 year: 2015 ident: 2874_CR37 publication-title: Mol Plant-Microbe Interact doi: 10.1094/MPMI-04-15-0096-R – volume: 63 start-page: 6079 issue: 17 year: 2012 ident: 2874_CR80 publication-title: J Exp Bot doi: 10.1093/jxb/ers270 – volume: 1119 start-page: 97 year: 2016 ident: 2874_CR25 publication-title: Acta Hortic doi: 10.17660/ActaHortic.2016.1119.13 – volume: 70 start-page: 1461 issue: 5 year: 2019 ident: 2874_CR6 publication-title: J Exp Bot doi: 10.1093/jxb/erz038 – volume: 66 start-page: 1355 issue: 5 year: 2015 ident: 2874_CR85 publication-title: J Exp Bot doi: 10.1093/jxb/eru483 – volume: 9 start-page: 1169 issue: 7 year: 1997 ident: 2874_CR100 publication-title: Plant Cell doi: 10.1105/tpc.9.7.1169 – volume: 79 start-page: 717 issue: 5 year: 2014 ident: 2874_CR33 publication-title: Plant J doi: 10.1111/tpj.12581 – volume: 53 start-page: 2031 issue: 377 year: 2002 ident: 2874_CR66 publication-title: J Exp Bot doi: 10.1093/jxb/erf082 – volume: 14 start-page: 108 issue: 1 year: 2000 ident: 2874_CR32 publication-title: Genes Dev doi: 10.1101/gad.14.1.108 – volume: 29 start-page: 1027 issue: 5 year: 1995 ident: 2874_CR52 publication-title: Plant Mol Biol doi: 10.1007/BF00014975 – volume: 172 start-page: 198 issue: 1 year: 2016 ident: 2874_CR77 publication-title: Plant Physiol doi: 10.1104/pp.16.00430 – volume: 54 start-page: 244 issue: 2 year: 2013 ident: 2874_CR83 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcs179 – volume: 26 start-page: 263 issue: 1 year: 2014 ident: 2874_CR36 publication-title: Plant Cell doi: 10.1105/tpc.113.120394 – volume: 173 start-page: 1 year: 2018 ident: 2874_CR5 publication-title: Cell doi: 10.1016/j.cell.2018.03.060 – volume: 54 start-page: 195 issue: 2 year: 2013 ident: 2874_CR26 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcs166 – volume: 28 start-page: 661 issue: 3 year: 2016 ident: 2874_CR62 publication-title: Plant Cell doi: 10.1105/tpc.16.00045 |
SSID | ssj0017849 |
Score | 2.3444624 |
Snippet | Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of... Background Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the... BACKGROUND: Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the... Background: Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the... Abstract Background Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To... |
SourceID | doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 92 |
SubjectTerms | Abscission Abscission zone Adaptation Agricultural research Alternative energy sources Animal reproduction Arecaceae - genetics Arecaceae - metabolism Cell adhesion & migration Cell separation Cell walls Dehiscence Domestication Elaeis guineensis energy ethylene Fruit - genetics Fruit - growth & development Fruit - metabolism Fruit abscission fruit drop Fruits Gene expression Gene Expression Profiling Gene Expression Regulation, Plant Gene regulation Genes Genes, Plant Genetic aspects Genetic transcription Genetic Variation Genotype Life Sciences Magnoliopsida Metabolic reprogramming Metabolism - genetics Monocotyledon Oil palm Original Research Oxidative stress Physiological aspects Senescence Transcription transcription (genetics) Transcriptome Transcriptomes transcriptomics Vegetable oils Vegetal Biology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbYhQMXxJtCQWaFxAFFaztxYp9QF7EqCDgAK_VmOY7drdQmpUmR-Bf8ZGaSNEtAWvVSxdPGybzt8TeEvLLMextsAZpmWZRoxSLFpYdv1oN_Ei7XeDj585d0fpF8XMhFv-BW92WVB5vYGuqicrhGfgppAlZkSSXebn9E2DUKd1f7FhpH5CZCl2FJV7YYEi6eqUQfDsqo9LTmuKsXYVECQ5j3iI-cUYvZP1jmo0ssjPw_6vy3ePIvb3R-l9zpw0g66_h-j9zw5X1y66yCUO_XA_K7PVYb1fD-PXVX-N60Qc_U2olq46ntAUkowjiBGFJQaLpE4wdDBd34BiRkvXIUkS_bMq4NODq67c4WIFXPW19QXM-l1WpNt3a9oWG3XzXUgk1aYZVt-ZBcnL___m4e9a0XIpemSRMJzaTI8xwb_gUhVG6ZCDKoYIMouNXeepVznyfCuuC19jIW2FVRZIXMfKLjR-S4rEr_hFDhuMqctnHBdRJbyIgLXmQiMPgUuUsnhB94YFyPS47tMdamzU9Uajq-GeCbaflm-IS8GX6z7VA5rqU-Q9YOlIio3V6odkvTK6hJvNIgMpaFxCZxHLSTDEJFLpyMQ2GLCTlBwTCImVFiUc7S7uvafPj21cxSGePus5IT8ronChU8g7P9GQd4EwizNaKcjihBqd1o-ATkbzTj-eyTwWsMW42BTv2E55oexNP0lqc2V3oyIS-HYfx7rKYrfbVHGqUFhM6MX0MjBWbTgrMJedxJ_DCdOJZZLDXcIRvpwmi-45Fyddlil4N_0KlmT6-f-jNyW3RqGnE-JcfNbu-fQ_DX5C9aDf8D3PdaOw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfG4IEXxP8VCjITEg8oYDtxYj8g1CGmghgPQKW9WY5jd5XapLQpYt-Cj8xdknYEpj2hvlTxpXF8d767-u53hDy3zHsbbAGaZlmUaMUixaWHb9aDfRIu11icfPI5HU-Sj6fydI9s2x11C7i-NLTDflKT1fzVz-_nb0Hh3zQKr9LXa46ndREmGzCEb48gGroOlilDRT1JLk4VMpXobeHMpff1jFOD4b_bqa-dYaLkv17o38mUf1in49vkVudW0lErB3fIni_vkhtHFbh-5_fIr6bMNloDPzx1F3jftEZL1ewb1cJT2wGUUIR1guWhoOB0ipshDBV04WuQmPnMUUTCbNK6FmD46LKtNUCqjte-oPj_Lq1mc7q08wUNq82sphb2qBlm3Zb3yeT4_bd346hrxRC5NE3qSGgmRZ7n2AAwCKFyy0SQQQUbRMGt9tarnPs8EdYFr7WXscAuiyIrZOYTHT8g-2VV-gNCheMqc9rGBddJbCFCLniRicDgU-QuHRC-5YFxHU45tsuYmyZeUalp-WaAb6bhm-ED8nJ3z7JF6biS-ghZu6NEhO3mQrWamk5hTeKVBpGxLCQ2ieOgnWTgOnLhZBwKWwzIIQqGQQyNEpN0pnazXpsPX7-YUSpjPI1WckBedEShgndwtqt5gJVA2K0e5bBHCUruesOHIH-9GY9HnwxeY9h6DHTsB7zXcCueZqtIBsJrzGSUSgzIs90w_jxm15W-2iCN0gJcacavoJECo2vB2YA8bCV-N504llksNTwh6-lCb779kXJ21mCZg73QqWaP_gdLHpObolXmiPMh2a9XG_8EXMY6f9rsA78BnnxqJA priority: 102 providerName: Scholars Portal |
Title | Multi-scale comparative transcriptome analysis reveals key genes and metabolic reprogramming processes associated with oil palm fruit abscission |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33573592 https://www.proquest.com/docview/2491365582 https://www.proquest.com/docview/2489254501 https://www.proquest.com/docview/2524287210 https://hal.inrae.fr/hal-03168980 https://pubmed.ncbi.nlm.nih.gov/PMC7879690 https://doaj.org/article/4e89001a0f4a433f9c5044112c53fdad |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfY4MAF8b1AqcyExAFFs504sY8t2lQQm1Bh0sTFchx7q9Qm1doi8V_wJ_NekpYFpHFBlaIqfm0dv-_6-fcIeWOZ9zbYEjTNsjjVisWKSw_vrAf_JFyh8XDy6Vk2OU8_XsiLG62-sCashQduF-4o9UqDKbUspDZNkqCdZODCuXAyCaUt0fqCz9smU93-Qa5SvT0io7KjFcf9vBjLERgCvMe854YatP6dTd67wpLIv-PNP8smb_ihk4fkQRdA0lE78Ufkjq8ek3vjGoK8H0_Iz-ZAbbyClffU_Ub2pmv0SY2FqBee2g6KhCKAEwggBVWml2j2YKikC78G2ZjPHEXMy6aAawEuji7bUwVI1XHVlxT_yaX1bE6Xdr6g4XozW1ML1miG9bXVU3J-cvz1_STumi7ELsvSdSw0k6IoCmz1F4RQhWUiyKCCDaLkVnvrVcF9kQrrgtfay0RgP0WRlzL3qU6ekf2qrvwBocJxlTttk5LrNLGQC5e8zEVg8CoLl0WEb3lgXIdIjo0x5qbJTFRmWr4Z4Jtp-GZ4RN7tPrNs8ThupR4ja3eUiKXd3AAJM52EmX9JWEQOUTAMomVUWI5zaTerlfnwZWpGmUxw31nJiLztiEINz-Bsd7oBVgIBtnqUgx4lqLPrDR-C_PVmPBl9MniPYZMx0Kbv8FyDrXiazuasDCTSWLMolYjI690wfj3W0VW-3iCN0gKCZsZvoZEC82jBWUSetxK_m06SyDyRGn4h7-lCb779kWp21aCWg2fQmWYv_gdLXpL7olXmmPMB2V9fb_wrCA7XxZDs5Rf5kNwdH599ng4bqwDX01TBdTr-9gusLmas |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGhgQviDuFAWYC8YCi2U6c2A8IbbCpYxehsUl7M45jb5XapKwtaP-CX8Jv5Jwk7QhIe5v6UsWnrdNzj8_5DiGvLfPeBluAplkWJVqxSHHp4Z314J-EyzU2J-8fpP3j5POJPFkiv-e9MFhWObeJtaEuKofPyNchTcCKLKnEh_H3CKdG4enqfIRGIxa7_uInpGyT9zufgL9vhNjeOvrYj9qpApFL02QaCc2kyPMcZ9kFIVRumQgyqGCDKLjV3nqVc58nwrrgtfYyFjgwUGSFzHyC4Etg8leSGFKZZbKyuXXw5XBxbpGpRM9bc1S6PuF4jhhhGQRDYPmId9xfPSVg4QtunGEp5v9x7r_lmn_5v-275E4buNKNRtLukSVf3ic3NysILi8ekF91I280AY576i4RxekUfWFtmaqRp7aFQKEIHAWCT8GE0FM0t7BU0JGfgkwOB44i1mZdODYC10rHTTcDUrXS5AuKT5BpNRjSsR2OaDifDabUghUcYF1v-ZAcXwtbHpHlsir9E0KF4ypz2sYF10lsIQcveJGJwOBV5C7tET7ngXEtEjoO5BiaOiNSqWn4ZoBvpuab4T3ybvGZcYMDciX1JrJ2QYkY3vWF6vzUtCbBJF5pEBnLQmKTOA7aSQbBKRdOxqGwRY-soWAYROkosQzo1M4mE7Pz9dBspDLG824le-RtSxQquAdn264K-CcQ2KtDudqhBDPiOstrIH-dHfc39gxeYzjcDLT4B9zX6lw8TWvrJuZSM3vk1WIZvx7r90pfzZBGaQHBOuNX0EiB-bvgrEceNxK_2E4cyyyWGn4h6-hCZ7_dlXJwVqOlg0fSqWZPr976S3Krf7S_Z_Z2DnafkduiUdmI81WyPD2f-ecQek7zF62-U_Ltuk3MH4yomRo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+comparative+transcriptome+analysis+reveals+key+genes+and+metabolic+reprogramming+processes+associated+with+oil+palm+fruit+abscission&rft.jtitle=BMC+plant+biology&rft.au=Kim+Fooyontphanich&rft.au=Fabienne+Morcillo&rft.au=Thierry+Jo%C3%ABt&rft.au=St%C3%A9phane+Dussert&rft.date=2021-02-11&rft.pub=BMC&rft.eissn=1471-2229&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1186%2Fs12870-021-02874-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4e89001a0f4a433f9c5044112c53fdad |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon |