In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur
Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bo...
Saved in:
Published in | Medical engineering & physics Vol. 33; no. 2; pp. 164 - 173 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.03.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force–displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density–elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density–elastic modulus conversion for this specific loading scenario. Our
in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models. |
---|---|
AbstractList | Abstract Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force–displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density–elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density–elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models. Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models. Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models.Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models. Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data was collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models. Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force–displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density–elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density–elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models. |
Author | Buijs, Jorn Op Den Dragomir-Daescu, Dan Cong, Alexander |
AuthorAffiliation | 1 Division of Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota |
AuthorAffiliation_xml | – name: 1 Division of Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota |
Author_xml | – sequence: 1 givenname: Alexander surname: Cong fullname: Cong, Alexander – sequence: 2 givenname: Jorn Op Den surname: Buijs fullname: Buijs, Jorn Op Den – sequence: 3 givenname: Dan surname: Dragomir-Daescu fullname: Dragomir-Daescu, Dan email: DragomirDaescu.Dan@mayo.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23928554$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21030287$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAQxyNURNuFVwBfEKcsdux8HSiqKj4qVeIAnC3HmXS9OHGwnYq98Q59Q56ESXdZoBJiT4nGv_ll4vmfJkeDGyBJnjG6ZJQVL9fLHloYrsfVZplRrNJ6SVn1IDlhVclTQTk9wnee01TknB8npyGsKaVCFPxRcpwxBLKqPEluLwcSTJzIqLzqIYInBsXRdEaraNxAXEfcGE2vLMEDZDc_vt-CVSEaTXrXTnYKxGNhpsPKjIEYdE7NGnRMwwh6dpHODCYCAQs96udGsGGWxxWQ0btvd1_ooJ_84-Rhp2yAJ7vnIvn89s2ni_fp1Yd3lxfnV6kuChFTBnndZjTLurxrCtBFS1XNBOeClaCbhuVagy51w6DoWAWqblnbdC1lop1LfJGcbb3j1OB1apzLKytHj6P4jXTKyL9PBrOS1-5GcipyUWYoeLETePd1ghBlb4IGa9UAbgqyzkVBRUb5f8kq53XNRVki-fTPofbT_FoZAs93gApa2c6rQZvwm-N1VuW5QK7cctq7EDx0e4RROYdIruU-RHIOkaS1xBBh56t7ndrEu_XiLRh7QP_5th83DDcGvAzawKChNR4zIVtnDnCc3XNoiwnCH_4CGwhrN_kBsyGZDJmk8uMc9TnpDEOeMUz5Inn9b8FBI_wEwIIZ_g |
CitedBy_id | crossref_primary_10_1016_j_joms_2020_09_038 crossref_primary_10_1016_j_injury_2022_01_032 crossref_primary_10_1098_rsfs_2015_0055 crossref_primary_10_1007_s10439_016_1584_8 crossref_primary_10_3390_ma13010106 crossref_primary_10_1016_j_jbiomech_2017_06_010 crossref_primary_10_1080_10255842_2015_1006209 crossref_primary_10_1016_j_jmbbm_2013_02_006 crossref_primary_10_1080_10255842_2019_1661386 crossref_primary_10_1007_s10409_015_0414_9 crossref_primary_10_1016_j_jbiomech_2014_09_016 crossref_primary_10_2319_120514_875_1 crossref_primary_10_1038_s41598_022_06267_8 crossref_primary_10_1016_j_jormas_2021_06_011 crossref_primary_10_1016_j_injury_2024_112020 crossref_primary_10_1007_s10439_019_02238_9 crossref_primary_10_1007_s11914_016_0335_y crossref_primary_10_1016_j_bone_2015_06_025 crossref_primary_10_1016_j_jcms_2017_12_020 crossref_primary_10_1016_j_jbiomech_2016_07_026 crossref_primary_10_1016_j_prostr_2022_12_051 crossref_primary_10_1007_s11517_015_1348_x crossref_primary_10_3390_bioengineering4010005 crossref_primary_10_1007_s10439_022_03067_z crossref_primary_10_1002_rcs_1418 crossref_primary_10_1016_j_jocd_2019_02_005 crossref_primary_10_3389_fendo_2023_1076990 crossref_primary_10_1016_j_jbiomech_2013_06_035 crossref_primary_10_1016_j_medengphy_2023_104032 crossref_primary_10_1080_15502287_2016_1145762 crossref_primary_10_1038_s41598_019_43028_6 crossref_primary_10_1016_j_heliyon_2024_e40668 crossref_primary_10_1016_j_jbiomech_2013_06_036 crossref_primary_10_1115_1_4040122 crossref_primary_10_1186_s40634_016_0072_2 crossref_primary_10_1016_j_jmbbm_2021_104444 crossref_primary_10_1142_S0219876218420124 crossref_primary_10_1016_j_jmbbm_2021_105059 crossref_primary_10_3390_life14070841 crossref_primary_10_1016_j_bone_2012_09_006 crossref_primary_10_17116_sudmed20226506137 crossref_primary_10_1177_09544119221144811 crossref_primary_10_1115_1_4034172 crossref_primary_10_1002_jbm4_10835 crossref_primary_10_1080_10255842_2019_1615481 crossref_primary_10_17116_sudmed20236604119 crossref_primary_10_1115_1_4042172 crossref_primary_10_1098_rsif_2014_0186 crossref_primary_10_1016_j_medengphy_2012_08_022 crossref_primary_10_1016_j_jmbbm_2020_104115 crossref_primary_10_1016_j_medengphy_2020_12_006 crossref_primary_10_1557_jmr_2014_326 crossref_primary_10_1016_j_clinbiomech_2013_12_018 |
Cites_doi | 10.1038/nmat843 10.1016/j.bone.2009.06.009 10.1016/0021-9290(94)90056-6 10.1016/j.jbiomech.2007.02.010 10.1016/0021-9290(76)90089-0 10.1016/j.jbiomech.2009.05.001 10.1016/j.jbiomech.2005.07.018 10.1016/j.jbiomech.2006.08.003 10.1007/s00198-006-0162-6 10.1016/S0021-9290(98)00177-8 10.1038/bjc.1964.55 10.1016/0021-9290(74)90018-9 10.1016/S0021-9290(03)00071-X 10.1016/S1350-4533(01)00094-7 10.1529/biophysj.107.125567 10.1007/BF00310169 10.1111/j.1742-4658.2008.06844.x 10.1115/1.2895412 10.1016/0021-9290(94)90014-0 10.1088/0031-9155/55/2/N03 10.1016/S0140-6736(06)68891-0 10.1007/BF00298717 10.1016/j.jtbi.2006.09.013 10.1016/j.jbiomech.2003.12.030 10.2106/00004623-197759070-00021 10.1016/1350-4533(95)97314-F 10.1016/S0021-9290(97)00123-1 10.1007/BF01622200 10.1016/j.clinbiomech.2007.08.024 10.1002/jbm.820281111 10.1109/42.832955 10.1016/S0021-9290(99)00099-8 10.1038/nmat832 10.1016/j.bone.2007.11.001 10.1016/0021-9290(84)90029-0 |
ContentType | Journal Article |
Copyright | 2010 IPEM IPEM 2015 INIST-CNRS Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. 2010 Institute of Physics and Engineering in Medicine. All rights reserved. 2010 |
Copyright_xml | – notice: 2010 IPEM – notice: IPEM – notice: 2015 INIST-CNRS – notice: Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. – notice: 2010 Institute of Physics and Engineering in Medicine. All rights reserved. 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7QP 8FD FR3 P64 5PM |
DOI | 10.1016/j.medengphy.2010.09.018 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 173 |
ExternalDocumentID | PMC3045472 21030287 23928554 10_1016_j_medengphy_2010_09_018 S1350453310002146 1_s2_0_S1350453310002146 |
Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR027065 – fundername: NCRR NIH HHS grantid: C06 RR018898 – fundername: NIAMS NIH HHS grantid: AR2706 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7QP 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c664t-1e59d2022f5fb6ec6d0a91433417ecbb15ccec7cb1e6f18ea9d1dbfd014d1e6f3 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Thu Aug 21 18:03:20 EDT 2025 Tue Aug 05 11:28:30 EDT 2025 Fri Jul 11 10:33:27 EDT 2025 Mon Jul 21 06:04:10 EDT 2025 Mon Jul 21 09:16:20 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Tue Jul 01 04:24:44 EDT 2025 Fri Feb 23 02:29:18 EST 2024 Sun Feb 23 10:19:58 EST 2025 Tue Aug 26 16:32:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bone FEA Power law Optimization Bone mechanical properties Human Elastic modulus Femur In situ Mechanical properties Identification Modeling Osteoarticular system Finite element method Medical imagery Bone mineral density Computerized axial tomography Biomedical engineering |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-1e59d2022f5fb6ec6d0a91433417ecbb15ccec7cb1e6f18ea9d1dbfd014d1e6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21030287 |
PQID | 853993477 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3045472 proquest_miscellaneous_954604203 proquest_miscellaneous_853993477 pubmed_primary_21030287 pascalfrancis_primary_23928554 crossref_primary_10_1016_j_medengphy_2010_09_018 crossref_citationtrail_10_1016_j_medengphy_2010_09_018 elsevier_sciencedirect_doi_10_1016_j_medengphy_2010_09_018 elsevier_clinicalkeyesjournals_1_s2_0_S1350453310002146 elsevier_clinicalkey_doi_10_1016_j_medengphy_2010_09_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Lotz, Cheal, Hayes (bib0030) 1991; 113 Ashman, Cowin, Van Buskirk, Rice (bib0105) 1984; 17 Cody, Gross, Hou, Spencer, Goldstein, Fyhrie (bib0025) 1999; 32 Kanis (bib0085) 1994; 4 Keyak, Rossi, Jones, Skinner (bib0040) 1998; 31 Reilly, Burstein, Frankel (bib0120) 1974; 7 Ashyraliyev, Fomekong-Nanfack, Kaandorp, Blom (bib0140) 2009; 276 Viceconti, Davinelli, Taddei, Cappello (bib0050) 2004; 37 Sambrook, Cooper (bib0010) 2006; 367 Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib0080) 2008; 23 Keyak, Rossi, Jones, Les, Skinner (bib0045) 2001; 23 Yan, Whalen, Beaupre, Yen, Napel (bib0150) 2000; 19 Manske, Liu-Ambrose, de Bakker, Liu, Kontulainen, Guy (bib0155) 2006; 17 Taddei, Cristofolini, Martelli, Gill, Viceconti (bib0125) 2006; 39 Turner, Rho, Takano, Tsui, Pharr (bib0110) 1999; 32 Rho, Hobatho, Ashman (bib0145) 1995; 17 de Bakker, Manske, Ebacher, Oxland, Cripton, Guy (bib0130) 2009; 42 Bessho, Ohnishi, Matsuyama, Matsumoto, Imai, Nakamura (bib0035) 2007; 40 Fritsch, Hellmich (bib0170) 2007; 244 Carter, Hayes (bib0075) 1977; 59 Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (bib0090) 1994; 27 Tanck, Deenen, Huisman, Kooloos, Huizenga, Werdonschot (bib0185) 2010; 55 Courtney, Wachtel, Myers, Hayes (bib0135) 1994; 55 Laird (bib0100) 1964; 18 Nalla, Kinney, Ritchie (bib0160) 2003; 2 Taylor (bib0165) 2003; 2 Yoon, Katz (bib0115) 1976; 9 Hayes, Myers, Morris, Gerhart, Yett, Lipsitz (bib0015) 1993; 52 Morgan, Bayraktar, Keaveny (bib0065) 2003; 36 Tanck, van Aken, van der Linden, Schreuder, Binkowski, Huizenga (bib0055) 2009; 45 Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib0060) 2007; 40 Nikolov, Raabe (bib0175) 2008; 94 Keyak, Lee, Skinner (bib0095) 1994; 28 Keller (bib0070) 1994; 27 Melton, Cummings (bib0005) 1987; 2 Kanis, McCloskey, Johansson, Oden, Melton, Khaltaev (bib0020) 2008; 42 Sambrook (10.1016/j.medengphy.2010.09.018_bib0010) 2006; 367 Yan (10.1016/j.medengphy.2010.09.018_bib0150) 2000; 19 Tanck (10.1016/j.medengphy.2010.09.018_bib0055) 2009; 45 Helgason (10.1016/j.medengphy.2010.09.018_bib0080) 2008; 23 Cody (10.1016/j.medengphy.2010.09.018_bib0025) 1999; 32 Lotz (10.1016/j.medengphy.2010.09.018_bib0030) 1991; 113 Tanck (10.1016/j.medengphy.2010.09.018_bib0185) 2010; 55 Taylor (10.1016/j.medengphy.2010.09.018_bib0165) 2003; 2 Melton (10.1016/j.medengphy.2010.09.018_bib0005) 1987; 2 Schileo (10.1016/j.medengphy.2010.09.018_bib0060) 2007; 40 Keyak (10.1016/j.medengphy.2010.09.018_bib0040) 1998; 31 Morgan (10.1016/j.medengphy.2010.09.018_bib0065) 2003; 36 Keller (10.1016/j.medengphy.2010.09.018_bib0070) 1994; 27 Carter (10.1016/j.medengphy.2010.09.018_bib0075) 1977; 59 Ashyraliyev (10.1016/j.medengphy.2010.09.018_bib0140) 2009; 276 Manske (10.1016/j.medengphy.2010.09.018_bib0155) 2006; 17 Viceconti (10.1016/j.medengphy.2010.09.018_bib0050) 2004; 37 Keyak (10.1016/j.medengphy.2010.09.018_bib0095) 1994; 28 Kanis (10.1016/j.medengphy.2010.09.018_bib0085) 1994; 4 Nalla (10.1016/j.medengphy.2010.09.018_bib0160) 2003; 2 Rho (10.1016/j.medengphy.2010.09.018_bib0145) 1995; 17 Hayes (10.1016/j.medengphy.2010.09.018_bib0015) 1993; 52 Kanis (10.1016/j.medengphy.2010.09.018_bib0020) 2008; 42 Fritsch (10.1016/j.medengphy.2010.09.018_bib0170) 2007; 244 Bessho (10.1016/j.medengphy.2010.09.018_bib0035) 2007; 40 Ashman (10.1016/j.medengphy.2010.09.018_bib0105) 1984; 17 de Bakker (10.1016/j.medengphy.2010.09.018_bib0130) 2009; 42 Yoon (10.1016/j.medengphy.2010.09.018_bib0115) 1976; 9 Turner (10.1016/j.medengphy.2010.09.018_bib0110) 1999; 32 Taddei (10.1016/j.medengphy.2010.09.018_bib0125) 2006; 39 Keyak (10.1016/j.medengphy.2010.09.018_bib0045) 2001; 23 Goulet (10.1016/j.medengphy.2010.09.018_bib0090) 1994; 27 Laird (10.1016/j.medengphy.2010.09.018_bib0100) 1964; 18 Reilly (10.1016/j.medengphy.2010.09.018_bib0120) 1974; 7 Courtney (10.1016/j.medengphy.2010.09.018_bib0135) 1994; 55 Nikolov (10.1016/j.medengphy.2010.09.018_bib0175) 2008; 94 |
References_xml | – volume: 31 start-page: 125 year: 1998 end-page: 133 ident: bib0040 article-title: Prediction of femoral fracture load using automated finite element modeling publication-title: J Biomech – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: bib0065 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J Biomech – volume: 27 start-page: 1159 year: 1994 end-page: 1168 ident: bib0070 article-title: Predicting the compressive mechanical behavior of bone publication-title: J Biomech – volume: 32 start-page: 1013 year: 1999 end-page: 1020 ident: bib0025 article-title: Femoral strength is better predicted by finite element models than QCT and DXA publication-title: J Biomech – volume: 23 start-page: 657 year: 2001 end-page: 664 ident: bib0045 article-title: Prediction of fracture location in the proximal femur using finite element models publication-title: Med Eng Phys – volume: 17 start-page: 1433 year: 2006 end-page: 2965 ident: bib0155 article-title: Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength publication-title: Osteoporosis Int – volume: 42 start-page: 1917 year: 2009 end-page: 1925 ident: bib0130 article-title: During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures publication-title: J Biomech – volume: 276 start-page: 886 year: 2009 end-page: 902 ident: bib0140 article-title: Systems biology: parameter estimation for biochemical models publication-title: FEBS J – volume: 367 start-page: 2010 year: 2006 end-page: 2018 ident: bib0010 article-title: Osteoporosis publication-title: Lancet – volume: 9 start-page: 459 year: 1976 end-page: 464 ident: bib0115 article-title: Ultrasonic wave propagation in human cortical bone--II. Measurements of elastic properties and microhardness publication-title: J Biomech – volume: 19 start-page: 1 year: 2000 end-page: 11 ident: bib0150 article-title: Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction publication-title: IEEE Trans Med Img – volume: 37 start-page: 1597 year: 2004 end-page: 1605 ident: bib0050 article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies publication-title: J Biomech – volume: 113 start-page: 353 year: 1991 end-page: 360 ident: bib0030 article-title: Fracture prediction for the proximal femur using finite element models: Part I. Linear analysis publication-title: J Biomech Eng – volume: 2 start-page: 321 year: 1987 end-page: 331 ident: bib0005 article-title: Heterogeneity of age-related fractures: implications for epidemiology publication-title: Bone Miner – volume: 2 start-page: 133 year: 2003 end-page: 134 ident: bib0165 article-title: Fracture mechanics: how does bone break? publication-title: Nat Mater – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: bib0080 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin Biomech (Bristol Avon) – volume: 2 start-page: 164 year: 2003 end-page: 168 ident: bib0160 article-title: Mechanistic fracture criteria for the failure of human cortical bone publication-title: Nat Mater – volume: 17 start-page: 347 year: 1995 end-page: 355 ident: bib0145 article-title: Relations of mechanical properties to density and CT numbers in human bone publication-title: Med Eng Phys – volume: 59 start-page: 954 year: 1977 end-page: 962 ident: bib0075 article-title: The compressive behavior of bone as a two-phase porous structure publication-title: J Bone Joint Surg Am – volume: 27 start-page: 375 year: 1994 end-page: 389 ident: bib0090 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: J Biomech – volume: 55 start-page: N57 year: 2010 end-page: N62 ident: bib0185 article-title: An anatomically shaped lower body model for CT scanning of cadaver femurs publication-title: Phys Med Biol – volume: 4 start-page: 368 year: 1994 end-page: 381 ident: bib0085 article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group publication-title: Osteoporos Int – volume: 45 start-page: 777 year: 2009 end-page: 783 ident: bib0055 article-title: Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models publication-title: Bone – volume: 17 start-page: 349 year: 1984 end-page: 361 ident: bib0105 article-title: A continuous wave technique for the measurement of the elastic properties of cortical bone publication-title: J Biomech – volume: 32 start-page: 437 year: 1999 end-page: 441 ident: bib0110 article-title: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques publication-title: J Biomech – volume: 40 start-page: 2982 year: 2007 end-page: 2989 ident: bib0060 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J Biomech – volume: 244 start-page: 597 year: 2007 end-page: 620 ident: bib0170 article-title: ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity publication-title: J Theor Biol – volume: 39 start-page: 2457 year: 2006 end-page: 2467 ident: bib0125 article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy publication-title: J Biomech – volume: 42 start-page: 467 year: 2008 end-page: 475 ident: bib0020 article-title: A reference standard for the description of osteoporosis publication-title: Bone – volume: 28 start-page: 1329 year: 1994 end-page: 1336 ident: bib0095 article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures publication-title: J Biomed Mater Res – volume: 94 start-page: 4220 year: 2008 end-page: 4232 ident: bib0175 article-title: Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization publication-title: Biophys J – volume: 52 start-page: 192 year: 1993 end-page: 198 ident: bib0015 article-title: Impact near the hip dominates fracture risk in elderly nursing home residents who fall publication-title: Calcif Tissue Int – volume: 18 start-page: 490 year: 1964 end-page: 502 ident: bib0100 article-title: Dynamics of tumour growth publication-title: Br J Cancer – volume: 40 start-page: 1745 year: 2007 end-page: 1753 ident: bib0035 article-title: Prediction of strength and strain of the proximal femur by a CT-based finite element method publication-title: J Biomech – volume: 7 start-page: 271 year: 1974 end-page: 275 ident: bib0120 article-title: The elastic modulus for bone publication-title: J Biomech – volume: 55 start-page: 53 year: 1994 end-page: 58 ident: bib0135 article-title: Effects of loading rate on strength of the proximal femur publication-title: Calcif Tissue Int – volume: 2 start-page: 133 year: 2003 ident: 10.1016/j.medengphy.2010.09.018_bib0165 article-title: Fracture mechanics: how does bone break? publication-title: Nat Mater doi: 10.1038/nmat843 – volume: 45 start-page: 777 issue: 4 year: 2009 ident: 10.1016/j.medengphy.2010.09.018_bib0055 article-title: Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models publication-title: Bone doi: 10.1016/j.bone.2009.06.009 – volume: 27 start-page: 1159 issue: 9 year: 1994 ident: 10.1016/j.medengphy.2010.09.018_bib0070 article-title: Predicting the compressive mechanical behavior of bone publication-title: J Biomech doi: 10.1016/0021-9290(94)90056-6 – volume: 40 start-page: 2982 issue: 13 year: 2007 ident: 10.1016/j.medengphy.2010.09.018_bib0060 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.02.010 – volume: 9 start-page: 459 issue: 7 year: 1976 ident: 10.1016/j.medengphy.2010.09.018_bib0115 article-title: Ultrasonic wave propagation in human cortical bone--II. Measurements of elastic properties and microhardness publication-title: J Biomech doi: 10.1016/0021-9290(76)90089-0 – volume: 42 start-page: 1917 issue: 12 year: 2009 ident: 10.1016/j.medengphy.2010.09.018_bib0130 article-title: During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.05.001 – volume: 39 start-page: 2457 issue: 13 year: 2006 ident: 10.1016/j.medengphy.2010.09.018_bib0125 article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.07.018 – volume: 40 start-page: 1745 issue: 8 year: 2007 ident: 10.1016/j.medengphy.2010.09.018_bib0035 article-title: Prediction of strength and strain of the proximal femur by a CT-based finite element method publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.08.003 – volume: 17 start-page: 1433 issue: 10 year: 2006 ident: 10.1016/j.medengphy.2010.09.018_bib0155 article-title: Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength publication-title: Osteoporosis Int doi: 10.1007/s00198-006-0162-6 – volume: 32 start-page: 437 issue: 4 year: 1999 ident: 10.1016/j.medengphy.2010.09.018_bib0110 article-title: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques publication-title: J Biomech doi: 10.1016/S0021-9290(98)00177-8 – volume: 18 start-page: 490 issue: 3 year: 1964 ident: 10.1016/j.medengphy.2010.09.018_bib0100 article-title: Dynamics of tumour growth publication-title: Br J Cancer doi: 10.1038/bjc.1964.55 – volume: 7 start-page: 271 issue: 3 year: 1974 ident: 10.1016/j.medengphy.2010.09.018_bib0120 article-title: The elastic modulus for bone publication-title: J Biomech doi: 10.1016/0021-9290(74)90018-9 – volume: 36 start-page: 897 issue: 7 year: 2003 ident: 10.1016/j.medengphy.2010.09.018_bib0065 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J Biomech doi: 10.1016/S0021-9290(03)00071-X – volume: 23 start-page: 657 issue: 9 year: 2001 ident: 10.1016/j.medengphy.2010.09.018_bib0045 article-title: Prediction of fracture location in the proximal femur using finite element models publication-title: Med Eng Phys doi: 10.1016/S1350-4533(01)00094-7 – volume: 94 start-page: 4220 issue: 11 year: 2008 ident: 10.1016/j.medengphy.2010.09.018_bib0175 article-title: Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization publication-title: Biophys J doi: 10.1529/biophysj.107.125567 – volume: 55 start-page: 53 issue: 1 year: 1994 ident: 10.1016/j.medengphy.2010.09.018_bib0135 article-title: Effects of loading rate on strength of the proximal femur publication-title: Calcif Tissue Int doi: 10.1007/BF00310169 – volume: 276 start-page: 886 issue: 4 year: 2009 ident: 10.1016/j.medengphy.2010.09.018_bib0140 article-title: Systems biology: parameter estimation for biochemical models publication-title: FEBS J doi: 10.1111/j.1742-4658.2008.06844.x – volume: 113 start-page: 353 issue: 4 year: 1991 ident: 10.1016/j.medengphy.2010.09.018_bib0030 article-title: Fracture prediction for the proximal femur using finite element models: Part I. Linear analysis publication-title: J Biomech Eng doi: 10.1115/1.2895412 – volume: 27 start-page: 375 issue: 4 year: 1994 ident: 10.1016/j.medengphy.2010.09.018_bib0090 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: J Biomech doi: 10.1016/0021-9290(94)90014-0 – volume: 55 start-page: N57 issue: 2 year: 2010 ident: 10.1016/j.medengphy.2010.09.018_bib0185 article-title: An anatomically shaped lower body model for CT scanning of cadaver femurs publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/2/N03 – volume: 367 start-page: 2010 issue: 9527 year: 2006 ident: 10.1016/j.medengphy.2010.09.018_bib0010 article-title: Osteoporosis publication-title: Lancet doi: 10.1016/S0140-6736(06)68891-0 – volume: 52 start-page: 192 issue: 3 year: 1993 ident: 10.1016/j.medengphy.2010.09.018_bib0015 article-title: Impact near the hip dominates fracture risk in elderly nursing home residents who fall publication-title: Calcif Tissue Int doi: 10.1007/BF00298717 – volume: 244 start-page: 597 issue: 4 year: 2007 ident: 10.1016/j.medengphy.2010.09.018_bib0170 article-title: ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity publication-title: J Theor Biol doi: 10.1016/j.jtbi.2006.09.013 – volume: 37 start-page: 1597 issue: 10 year: 2004 ident: 10.1016/j.medengphy.2010.09.018_bib0050 article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies publication-title: J Biomech doi: 10.1016/j.jbiomech.2003.12.030 – volume: 59 start-page: 954 issue: 7 year: 1977 ident: 10.1016/j.medengphy.2010.09.018_bib0075 article-title: The compressive behavior of bone as a two-phase porous structure publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-197759070-00021 – volume: 17 start-page: 347 issue: 5 year: 1995 ident: 10.1016/j.medengphy.2010.09.018_bib0145 article-title: Relations of mechanical properties to density and CT numbers in human bone publication-title: Med Eng Phys doi: 10.1016/1350-4533(95)97314-F – volume: 31 start-page: 125 issue: 2 year: 1998 ident: 10.1016/j.medengphy.2010.09.018_bib0040 article-title: Prediction of femoral fracture load using automated finite element modeling publication-title: J Biomech doi: 10.1016/S0021-9290(97)00123-1 – volume: 4 start-page: 368 issue: 6 year: 1994 ident: 10.1016/j.medengphy.2010.09.018_bib0085 article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group publication-title: Osteoporos Int doi: 10.1007/BF01622200 – volume: 23 start-page: 135 issue: 2 year: 2008 ident: 10.1016/j.medengphy.2010.09.018_bib0080 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin Biomech (Bristol Avon) doi: 10.1016/j.clinbiomech.2007.08.024 – volume: 28 start-page: 1329 issue: 11 year: 1994 ident: 10.1016/j.medengphy.2010.09.018_bib0095 article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures publication-title: J Biomed Mater Res doi: 10.1002/jbm.820281111 – volume: 19 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.medengphy.2010.09.018_bib0150 article-title: Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction publication-title: IEEE Trans Med Img doi: 10.1109/42.832955 – volume: 2 start-page: 321 issue: 4 year: 1987 ident: 10.1016/j.medengphy.2010.09.018_bib0005 article-title: Heterogeneity of age-related fractures: implications for epidemiology publication-title: Bone Miner – volume: 32 start-page: 1013 issue: 10 year: 1999 ident: 10.1016/j.medengphy.2010.09.018_bib0025 article-title: Femoral strength is better predicted by finite element models than QCT and DXA publication-title: J Biomech doi: 10.1016/S0021-9290(99)00099-8 – volume: 2 start-page: 164 year: 2003 ident: 10.1016/j.medengphy.2010.09.018_bib0160 article-title: Mechanistic fracture criteria for the failure of human cortical bone publication-title: Nat Mater doi: 10.1038/nmat832 – volume: 42 start-page: 467 issue: 3 year: 2008 ident: 10.1016/j.medengphy.2010.09.018_bib0020 article-title: A reference standard for the description of osteoporosis publication-title: Bone doi: 10.1016/j.bone.2007.11.001 – volume: 17 start-page: 349 issue: 5 year: 1984 ident: 10.1016/j.medengphy.2010.09.018_bib0105 article-title: A continuous wave technique for the measurement of the elastic properties of cortical bone publication-title: J Biomech doi: 10.1016/0021-9290(84)90029-0 |
SSID | ssj0004463 |
Score | 2.2051218 |
Snippet | Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength... Abstract Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 164 |
SubjectTerms | Absorptiometry, Photon - methods Aged Aged, 80 and over Biological and medical sciences Bone density Bone Density - physiology Bone FEA Bone mechanical properties Compressive Strength Computed tomography Computer Simulation Data processing Elastic Modulus Elasticity Female Femur Femur - diagnostic imaging Finite Element Analysis Fractures Fractures, Bone - diagnostic imaging Fundamental and applied biological sciences. Psychology Humans Loading Male Mathematical models Mechanical properties Middle Aged Models, Biological Optimization Power law Radiology Skeleton and joints Stress, Mechanical Tomography, X-Ray Computed - methods Vertebrates: osteoarticular system, musculoskeletal system Weight-Bearing |
Title | In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453310002146 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453310002146 https://dx.doi.org/10.1016/j.medengphy.2010.09.018 https://www.ncbi.nlm.nih.gov/pubmed/21030287 https://www.proquest.com/docview/853993477 https://www.proquest.com/docview/954604203 https://pubmed.ncbi.nlm.nih.gov/PMC3045472 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIvEQQrA8Gh4rH7imm5edhFu1otqC2gtU6s2KH6Gpuslqkxy4VPyH_kN-CTOJk3ZhUZG4JvZYtsczn-3PM4S8jzQerDFY3yyQbsQC5WaZga1KguhbZyboYukdn_DFafTpjJ3tkPnwFgZpldb29za9s9b2y8yO5mxVFLMvfsgAj4TdCTWmp8YX7FGMWr5_dUPzgO1OR7KHwi6W3uB4gcMx5Tfoj-V4pfseZv_Y7qEer7Iaxi3vE15sQ6S_EytvearDp-SJhZj0oO_FM7Jjygl5MB8yu03Io1tBCCfk_rG9Xn9Oro9KWhdNSzEg-BKJMrTQlk7UzSCtclqBkVmCfI3U9-b7zx_XBhA4tEWXlW4v25quB4LdebGqaQEyW4nHPS4-60RZNC8Q6lLTc9dpl46nRuEARykya7oWcrNs1y_I6eHHr_OFa7M2uIrzqHF9w1IdADTIWS65UVx7WQqoDNxlbJSUPlPKqFhJ3_DcT0yWal_LXMNeTeOn8CXZLavS7CHtCtC0l2GEfti1JUpqnshYKsySzZn2HMKHmRLKhjTHzBqXYuCuXYhxigVOsfBSAVPsEG-suOqjetxdJRlUQQyPVsHMCvA8d1eNt1U1tTUXtfBFHQhP_KHSDvkw1txYFf_W7HRDY8eeBoCJkZ3oEDqosAANxJuirDRVW4sE4xWHURz_vUjKIg4G3wsd8qpX-hv5mLoOduLQ743lMBbAkOabf8rivAttjvf2URy8_p9-vyEP-4N_JAq-JbvNujXvADk2ctqZhim5d3D0eXHyCx5HdVg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlEQQhBe5lH2AEc3tuMnEgdUqBLa9EIr9bZ4H6ZGjRPFsVAviP_Qn8I_4pcwY6_dBoKKhHq1PbPendnZmd1vZwBe-oo21gKc34EnbD_wpJ2mGkOVmLxvlWqvzqU33g-Hh_6Ho-BoDX60d2EIVmlsf2PTa2ttnvTNaPZned7_6A4C9EcG9Q41lac2yMpdffoV47byzegdCvmV5-28P9ge2qa0gC3D0F_Yrg4ShXG_lwWZCLUMlZMm6DqgTY-0FMINpNQyksLVYebGOk2Uq0SmMKBQ9GiAfK_BdWw-prIJW9_OcSUYX9Wofvw7m35vCVSGK5wuPuMAGlBZsuVQuZHVS-LtWVqioLKmwsYqF_h3JOeFpXHnLtwxPi172wzbPVjTRQ82tttScj24dSHrYQ9ujM15_n04GxWszBcVowzkE0LmsFwZ_FKtMmyasSlatQnyV4S1X5z-_H6m0eXHtthkqqqTqmTzFtF3nM9KliPPStD-kk33SIkXy3LyrZluwPKsrv9TEnP0fxlBeeoWMj2p5g_g8Epk-RDWi2mhHxPOC913J6WSABgmxlKoMBaRkFSWOwyUY0HYSopLk0OdSnmc8BYs94V3IuYkYu4kHEVsgdMRzpo0IpeTxK0q8PaWLNp1jkvd5aTRKlJdGvtUcpeXHnf4H3PIgtcd5dI0_LdmN5c0tuuph044wSEtYK0Kc9RAOppKCz2tSh5TguSBH0V__yQJ_BBXGGdgwaNG6c_5U608DP2x30vTofuAcqgvvyny4zqXOgEF_Mh78j_9fgEbw4PxHt8b7e8-hZvNqQOhFJ_B-mJe6efoti7EZm0mGHy6arv0C91Lszw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+parameter+identification+of+optimal+density-elastic+modulus+relationships+in+subject-specific+finite+element+models+of+the+proximal+femur&rft.jtitle=Medical+engineering+%26+physics&rft.au=Cong%2C+Alexander&rft.au=Buijs%2C+Jorn+Op+Den&rft.au=Dragomir-Daescu%2C+Dan&rft.date=2011-03-01&rft.eissn=1873-4030&rft.volume=33&rft.issue=2&rft.spage=164&rft_id=info:doi/10.1016%2Fj.medengphy.2010.09.018&rft_id=info%3Apmid%2F21030287&rft.externalDocID=21030287 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453311X00024%2Fcov150h.gif |