In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur

Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bo...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 33; no. 2; pp. 164 - 173
Main Authors Cong, Alexander, Buijs, Jorn Op Den, Dragomir-Daescu, Dan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force–displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density–elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density–elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models.
AbstractList Abstract Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force–displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density–elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density–elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models.
Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models.
Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models.Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models.
Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data was collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models.
Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force–displacement data were collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density–elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density–elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models.
Author Buijs, Jorn Op Den
Dragomir-Daescu, Dan
Cong, Alexander
AuthorAffiliation 1 Division of Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
AuthorAffiliation_xml – name: 1 Division of Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
Author_xml – sequence: 1
  givenname: Alexander
  surname: Cong
  fullname: Cong, Alexander
– sequence: 2
  givenname: Jorn Op Den
  surname: Buijs
  fullname: Buijs, Jorn Op Den
– sequence: 3
  givenname: Dan
  surname: Dragomir-Daescu
  fullname: Dragomir-Daescu, Dan
  email: DragomirDaescu.Dan@mayo.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23928554$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21030287$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAQxyNURNuFVwBfEKcsdux8HSiqKj4qVeIAnC3HmXS9OHGwnYq98Q59Q56ESXdZoBJiT4nGv_ll4vmfJkeDGyBJnjG6ZJQVL9fLHloYrsfVZplRrNJ6SVn1IDlhVclTQTk9wnee01TknB8npyGsKaVCFPxRcpwxBLKqPEluLwcSTJzIqLzqIYInBsXRdEaraNxAXEfcGE2vLMEDZDc_vt-CVSEaTXrXTnYKxGNhpsPKjIEYdE7NGnRMwwh6dpHODCYCAQs96udGsGGWxxWQ0btvd1_ooJ_84-Rhp2yAJ7vnIvn89s2ni_fp1Yd3lxfnV6kuChFTBnndZjTLurxrCtBFS1XNBOeClaCbhuVagy51w6DoWAWqblnbdC1lop1LfJGcbb3j1OB1apzLKytHj6P4jXTKyL9PBrOS1-5GcipyUWYoeLETePd1ghBlb4IGa9UAbgqyzkVBRUb5f8kq53XNRVki-fTPofbT_FoZAs93gApa2c6rQZvwm-N1VuW5QK7cctq7EDx0e4RROYdIruU-RHIOkaS1xBBh56t7ndrEu_XiLRh7QP_5th83DDcGvAzawKChNR4zIVtnDnCc3XNoiwnCH_4CGwhrN_kBsyGZDJmk8uMc9TnpDEOeMUz5Inn9b8FBI_wEwIIZ_g
CitedBy_id crossref_primary_10_1016_j_joms_2020_09_038
crossref_primary_10_1016_j_injury_2022_01_032
crossref_primary_10_1098_rsfs_2015_0055
crossref_primary_10_1007_s10439_016_1584_8
crossref_primary_10_3390_ma13010106
crossref_primary_10_1016_j_jbiomech_2017_06_010
crossref_primary_10_1080_10255842_2015_1006209
crossref_primary_10_1016_j_jmbbm_2013_02_006
crossref_primary_10_1080_10255842_2019_1661386
crossref_primary_10_1007_s10409_015_0414_9
crossref_primary_10_1016_j_jbiomech_2014_09_016
crossref_primary_10_2319_120514_875_1
crossref_primary_10_1038_s41598_022_06267_8
crossref_primary_10_1016_j_jormas_2021_06_011
crossref_primary_10_1016_j_injury_2024_112020
crossref_primary_10_1007_s10439_019_02238_9
crossref_primary_10_1007_s11914_016_0335_y
crossref_primary_10_1016_j_bone_2015_06_025
crossref_primary_10_1016_j_jcms_2017_12_020
crossref_primary_10_1016_j_jbiomech_2016_07_026
crossref_primary_10_1016_j_prostr_2022_12_051
crossref_primary_10_1007_s11517_015_1348_x
crossref_primary_10_3390_bioengineering4010005
crossref_primary_10_1007_s10439_022_03067_z
crossref_primary_10_1002_rcs_1418
crossref_primary_10_1016_j_jocd_2019_02_005
crossref_primary_10_3389_fendo_2023_1076990
crossref_primary_10_1016_j_jbiomech_2013_06_035
crossref_primary_10_1016_j_medengphy_2023_104032
crossref_primary_10_1080_15502287_2016_1145762
crossref_primary_10_1038_s41598_019_43028_6
crossref_primary_10_1016_j_heliyon_2024_e40668
crossref_primary_10_1016_j_jbiomech_2013_06_036
crossref_primary_10_1115_1_4040122
crossref_primary_10_1186_s40634_016_0072_2
crossref_primary_10_1016_j_jmbbm_2021_104444
crossref_primary_10_1142_S0219876218420124
crossref_primary_10_1016_j_jmbbm_2021_105059
crossref_primary_10_3390_life14070841
crossref_primary_10_1016_j_bone_2012_09_006
crossref_primary_10_17116_sudmed20226506137
crossref_primary_10_1177_09544119221144811
crossref_primary_10_1115_1_4034172
crossref_primary_10_1002_jbm4_10835
crossref_primary_10_1080_10255842_2019_1615481
crossref_primary_10_17116_sudmed20236604119
crossref_primary_10_1115_1_4042172
crossref_primary_10_1098_rsif_2014_0186
crossref_primary_10_1016_j_medengphy_2012_08_022
crossref_primary_10_1016_j_jmbbm_2020_104115
crossref_primary_10_1016_j_medengphy_2020_12_006
crossref_primary_10_1557_jmr_2014_326
crossref_primary_10_1016_j_clinbiomech_2013_12_018
Cites_doi 10.1038/nmat843
10.1016/j.bone.2009.06.009
10.1016/0021-9290(94)90056-6
10.1016/j.jbiomech.2007.02.010
10.1016/0021-9290(76)90089-0
10.1016/j.jbiomech.2009.05.001
10.1016/j.jbiomech.2005.07.018
10.1016/j.jbiomech.2006.08.003
10.1007/s00198-006-0162-6
10.1016/S0021-9290(98)00177-8
10.1038/bjc.1964.55
10.1016/0021-9290(74)90018-9
10.1016/S0021-9290(03)00071-X
10.1016/S1350-4533(01)00094-7
10.1529/biophysj.107.125567
10.1007/BF00310169
10.1111/j.1742-4658.2008.06844.x
10.1115/1.2895412
10.1016/0021-9290(94)90014-0
10.1088/0031-9155/55/2/N03
10.1016/S0140-6736(06)68891-0
10.1007/BF00298717
10.1016/j.jtbi.2006.09.013
10.1016/j.jbiomech.2003.12.030
10.2106/00004623-197759070-00021
10.1016/1350-4533(95)97314-F
10.1016/S0021-9290(97)00123-1
10.1007/BF01622200
10.1016/j.clinbiomech.2007.08.024
10.1002/jbm.820281111
10.1109/42.832955
10.1016/S0021-9290(99)00099-8
10.1038/nmat832
10.1016/j.bone.2007.11.001
10.1016/0021-9290(84)90029-0
ContentType Journal Article
Copyright 2010 IPEM
IPEM
2015 INIST-CNRS
Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
2010 Institute of Physics and Engineering in Medicine. All rights reserved. 2010
Copyright_xml – notice: 2010 IPEM
– notice: IPEM
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
– notice: 2010 Institute of Physics and Engineering in Medicine. All rights reserved. 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7QP
8FD
FR3
P64
5PM
DOI 10.1016/j.medengphy.2010.09.018
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 173
ExternalDocumentID PMC3045472
21030287
23928554
10_1016_j_medengphy_2010_09_018
S1350453310002146
1_s2_0_S1350453310002146
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR027065
– fundername: NCRR NIH HHS
  grantid: C06 RR018898
– fundername: NIAMS NIH HHS
  grantid: AR2706
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7QP
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c664t-1e59d2022f5fb6ec6d0a91433417ecbb15ccec7cb1e6f18ea9d1dbfd014d1e6f3
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Thu Aug 21 18:03:20 EDT 2025
Tue Aug 05 11:28:30 EDT 2025
Fri Jul 11 10:33:27 EDT 2025
Mon Jul 21 06:04:10 EDT 2025
Mon Jul 21 09:16:20 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Tue Jul 01 04:24:44 EDT 2025
Fri Feb 23 02:29:18 EST 2024
Sun Feb 23 10:19:58 EST 2025
Tue Aug 26 16:32:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bone FEA
Power law
Optimization
Bone mechanical properties
Human
Elastic modulus
Femur
In situ
Mechanical properties
Identification
Modeling
Osteoarticular system
Finite element method
Medical imagery
Bone mineral density
Computerized axial tomography
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-1e59d2022f5fb6ec6d0a91433417ecbb15ccec7cb1e6f18ea9d1dbfd014d1e6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ObjectType-Article-2
ObjectType-Feature-1
PMID 21030287
PQID 853993477
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3045472
proquest_miscellaneous_954604203
proquest_miscellaneous_853993477
pubmed_primary_21030287
pascalfrancis_primary_23928554
crossref_primary_10_1016_j_medengphy_2010_09_018
crossref_citationtrail_10_1016_j_medengphy_2010_09_018
elsevier_sciencedirect_doi_10_1016_j_medengphy_2010_09_018
elsevier_clinicalkeyesjournals_1_s2_0_S1350453310002146
elsevier_clinicalkey_doi_10_1016_j_medengphy_2010_09_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Lotz, Cheal, Hayes (bib0030) 1991; 113
Ashman, Cowin, Van Buskirk, Rice (bib0105) 1984; 17
Cody, Gross, Hou, Spencer, Goldstein, Fyhrie (bib0025) 1999; 32
Kanis (bib0085) 1994; 4
Keyak, Rossi, Jones, Skinner (bib0040) 1998; 31
Reilly, Burstein, Frankel (bib0120) 1974; 7
Ashyraliyev, Fomekong-Nanfack, Kaandorp, Blom (bib0140) 2009; 276
Viceconti, Davinelli, Taddei, Cappello (bib0050) 2004; 37
Sambrook, Cooper (bib0010) 2006; 367
Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib0080) 2008; 23
Keyak, Rossi, Jones, Les, Skinner (bib0045) 2001; 23
Yan, Whalen, Beaupre, Yen, Napel (bib0150) 2000; 19
Manske, Liu-Ambrose, de Bakker, Liu, Kontulainen, Guy (bib0155) 2006; 17
Taddei, Cristofolini, Martelli, Gill, Viceconti (bib0125) 2006; 39
Turner, Rho, Takano, Tsui, Pharr (bib0110) 1999; 32
Rho, Hobatho, Ashman (bib0145) 1995; 17
de Bakker, Manske, Ebacher, Oxland, Cripton, Guy (bib0130) 2009; 42
Bessho, Ohnishi, Matsuyama, Matsumoto, Imai, Nakamura (bib0035) 2007; 40
Fritsch, Hellmich (bib0170) 2007; 244
Carter, Hayes (bib0075) 1977; 59
Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (bib0090) 1994; 27
Tanck, Deenen, Huisman, Kooloos, Huizenga, Werdonschot (bib0185) 2010; 55
Courtney, Wachtel, Myers, Hayes (bib0135) 1994; 55
Laird (bib0100) 1964; 18
Nalla, Kinney, Ritchie (bib0160) 2003; 2
Taylor (bib0165) 2003; 2
Yoon, Katz (bib0115) 1976; 9
Hayes, Myers, Morris, Gerhart, Yett, Lipsitz (bib0015) 1993; 52
Morgan, Bayraktar, Keaveny (bib0065) 2003; 36
Tanck, van Aken, van der Linden, Schreuder, Binkowski, Huizenga (bib0055) 2009; 45
Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib0060) 2007; 40
Nikolov, Raabe (bib0175) 2008; 94
Keyak, Lee, Skinner (bib0095) 1994; 28
Keller (bib0070) 1994; 27
Melton, Cummings (bib0005) 1987; 2
Kanis, McCloskey, Johansson, Oden, Melton, Khaltaev (bib0020) 2008; 42
Sambrook (10.1016/j.medengphy.2010.09.018_bib0010) 2006; 367
Yan (10.1016/j.medengphy.2010.09.018_bib0150) 2000; 19
Tanck (10.1016/j.medengphy.2010.09.018_bib0055) 2009; 45
Helgason (10.1016/j.medengphy.2010.09.018_bib0080) 2008; 23
Cody (10.1016/j.medengphy.2010.09.018_bib0025) 1999; 32
Lotz (10.1016/j.medengphy.2010.09.018_bib0030) 1991; 113
Tanck (10.1016/j.medengphy.2010.09.018_bib0185) 2010; 55
Taylor (10.1016/j.medengphy.2010.09.018_bib0165) 2003; 2
Melton (10.1016/j.medengphy.2010.09.018_bib0005) 1987; 2
Schileo (10.1016/j.medengphy.2010.09.018_bib0060) 2007; 40
Keyak (10.1016/j.medengphy.2010.09.018_bib0040) 1998; 31
Morgan (10.1016/j.medengphy.2010.09.018_bib0065) 2003; 36
Keller (10.1016/j.medengphy.2010.09.018_bib0070) 1994; 27
Carter (10.1016/j.medengphy.2010.09.018_bib0075) 1977; 59
Ashyraliyev (10.1016/j.medengphy.2010.09.018_bib0140) 2009; 276
Manske (10.1016/j.medengphy.2010.09.018_bib0155) 2006; 17
Viceconti (10.1016/j.medengphy.2010.09.018_bib0050) 2004; 37
Keyak (10.1016/j.medengphy.2010.09.018_bib0095) 1994; 28
Kanis (10.1016/j.medengphy.2010.09.018_bib0085) 1994; 4
Nalla (10.1016/j.medengphy.2010.09.018_bib0160) 2003; 2
Rho (10.1016/j.medengphy.2010.09.018_bib0145) 1995; 17
Hayes (10.1016/j.medengphy.2010.09.018_bib0015) 1993; 52
Kanis (10.1016/j.medengphy.2010.09.018_bib0020) 2008; 42
Fritsch (10.1016/j.medengphy.2010.09.018_bib0170) 2007; 244
Bessho (10.1016/j.medengphy.2010.09.018_bib0035) 2007; 40
Ashman (10.1016/j.medengphy.2010.09.018_bib0105) 1984; 17
de Bakker (10.1016/j.medengphy.2010.09.018_bib0130) 2009; 42
Yoon (10.1016/j.medengphy.2010.09.018_bib0115) 1976; 9
Turner (10.1016/j.medengphy.2010.09.018_bib0110) 1999; 32
Taddei (10.1016/j.medengphy.2010.09.018_bib0125) 2006; 39
Keyak (10.1016/j.medengphy.2010.09.018_bib0045) 2001; 23
Goulet (10.1016/j.medengphy.2010.09.018_bib0090) 1994; 27
Laird (10.1016/j.medengphy.2010.09.018_bib0100) 1964; 18
Reilly (10.1016/j.medengphy.2010.09.018_bib0120) 1974; 7
Courtney (10.1016/j.medengphy.2010.09.018_bib0135) 1994; 55
Nikolov (10.1016/j.medengphy.2010.09.018_bib0175) 2008; 94
References_xml – volume: 31
  start-page: 125
  year: 1998
  end-page: 133
  ident: bib0040
  article-title: Prediction of femoral fracture load using automated finite element modeling
  publication-title: J Biomech
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: bib0065
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J Biomech
– volume: 27
  start-page: 1159
  year: 1994
  end-page: 1168
  ident: bib0070
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J Biomech
– volume: 32
  start-page: 1013
  year: 1999
  end-page: 1020
  ident: bib0025
  article-title: Femoral strength is better predicted by finite element models than QCT and DXA
  publication-title: J Biomech
– volume: 23
  start-page: 657
  year: 2001
  end-page: 664
  ident: bib0045
  article-title: Prediction of fracture location in the proximal femur using finite element models
  publication-title: Med Eng Phys
– volume: 17
  start-page: 1433
  year: 2006
  end-page: 2965
  ident: bib0155
  article-title: Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength
  publication-title: Osteoporosis Int
– volume: 42
  start-page: 1917
  year: 2009
  end-page: 1925
  ident: bib0130
  article-title: During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures
  publication-title: J Biomech
– volume: 276
  start-page: 886
  year: 2009
  end-page: 902
  ident: bib0140
  article-title: Systems biology: parameter estimation for biochemical models
  publication-title: FEBS J
– volume: 367
  start-page: 2010
  year: 2006
  end-page: 2018
  ident: bib0010
  article-title: Osteoporosis
  publication-title: Lancet
– volume: 9
  start-page: 459
  year: 1976
  end-page: 464
  ident: bib0115
  article-title: Ultrasonic wave propagation in human cortical bone--II. Measurements of elastic properties and microhardness
  publication-title: J Biomech
– volume: 19
  start-page: 1
  year: 2000
  end-page: 11
  ident: bib0150
  article-title: Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction
  publication-title: IEEE Trans Med Img
– volume: 37
  start-page: 1597
  year: 2004
  end-page: 1605
  ident: bib0050
  article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies
  publication-title: J Biomech
– volume: 113
  start-page: 353
  year: 1991
  end-page: 360
  ident: bib0030
  article-title: Fracture prediction for the proximal femur using finite element models: Part I. Linear analysis
  publication-title: J Biomech Eng
– volume: 2
  start-page: 321
  year: 1987
  end-page: 331
  ident: bib0005
  article-title: Heterogeneity of age-related fractures: implications for epidemiology
  publication-title: Bone Miner
– volume: 2
  start-page: 133
  year: 2003
  end-page: 134
  ident: bib0165
  article-title: Fracture mechanics: how does bone break?
  publication-title: Nat Mater
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: bib0080
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin Biomech (Bristol Avon)
– volume: 2
  start-page: 164
  year: 2003
  end-page: 168
  ident: bib0160
  article-title: Mechanistic fracture criteria for the failure of human cortical bone
  publication-title: Nat Mater
– volume: 17
  start-page: 347
  year: 1995
  end-page: 355
  ident: bib0145
  article-title: Relations of mechanical properties to density and CT numbers in human bone
  publication-title: Med Eng Phys
– volume: 59
  start-page: 954
  year: 1977
  end-page: 962
  ident: bib0075
  article-title: The compressive behavior of bone as a two-phase porous structure
  publication-title: J Bone Joint Surg Am
– volume: 27
  start-page: 375
  year: 1994
  end-page: 389
  ident: bib0090
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: J Biomech
– volume: 55
  start-page: N57
  year: 2010
  end-page: N62
  ident: bib0185
  article-title: An anatomically shaped lower body model for CT scanning of cadaver femurs
  publication-title: Phys Med Biol
– volume: 4
  start-page: 368
  year: 1994
  end-page: 381
  ident: bib0085
  article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group
  publication-title: Osteoporos Int
– volume: 45
  start-page: 777
  year: 2009
  end-page: 783
  ident: bib0055
  article-title: Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models
  publication-title: Bone
– volume: 17
  start-page: 349
  year: 1984
  end-page: 361
  ident: bib0105
  article-title: A continuous wave technique for the measurement of the elastic properties of cortical bone
  publication-title: J Biomech
– volume: 32
  start-page: 437
  year: 1999
  end-page: 441
  ident: bib0110
  article-title: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques
  publication-title: J Biomech
– volume: 40
  start-page: 2982
  year: 2007
  end-page: 2989
  ident: bib0060
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J Biomech
– volume: 244
  start-page: 597
  year: 2007
  end-page: 620
  ident: bib0170
  article-title: ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity
  publication-title: J Theor Biol
– volume: 39
  start-page: 2457
  year: 2006
  end-page: 2467
  ident: bib0125
  article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy
  publication-title: J Biomech
– volume: 42
  start-page: 467
  year: 2008
  end-page: 475
  ident: bib0020
  article-title: A reference standard for the description of osteoporosis
  publication-title: Bone
– volume: 28
  start-page: 1329
  year: 1994
  end-page: 1336
  ident: bib0095
  article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures
  publication-title: J Biomed Mater Res
– volume: 94
  start-page: 4220
  year: 2008
  end-page: 4232
  ident: bib0175
  article-title: Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization
  publication-title: Biophys J
– volume: 52
  start-page: 192
  year: 1993
  end-page: 198
  ident: bib0015
  article-title: Impact near the hip dominates fracture risk in elderly nursing home residents who fall
  publication-title: Calcif Tissue Int
– volume: 18
  start-page: 490
  year: 1964
  end-page: 502
  ident: bib0100
  article-title: Dynamics of tumour growth
  publication-title: Br J Cancer
– volume: 40
  start-page: 1745
  year: 2007
  end-page: 1753
  ident: bib0035
  article-title: Prediction of strength and strain of the proximal femur by a CT-based finite element method
  publication-title: J Biomech
– volume: 7
  start-page: 271
  year: 1974
  end-page: 275
  ident: bib0120
  article-title: The elastic modulus for bone
  publication-title: J Biomech
– volume: 55
  start-page: 53
  year: 1994
  end-page: 58
  ident: bib0135
  article-title: Effects of loading rate on strength of the proximal femur
  publication-title: Calcif Tissue Int
– volume: 2
  start-page: 133
  year: 2003
  ident: 10.1016/j.medengphy.2010.09.018_bib0165
  article-title: Fracture mechanics: how does bone break?
  publication-title: Nat Mater
  doi: 10.1038/nmat843
– volume: 45
  start-page: 777
  issue: 4
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.018_bib0055
  article-title: Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models
  publication-title: Bone
  doi: 10.1016/j.bone.2009.06.009
– volume: 27
  start-page: 1159
  issue: 9
  year: 1994
  ident: 10.1016/j.medengphy.2010.09.018_bib0070
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J Biomech
  doi: 10.1016/0021-9290(94)90056-6
– volume: 40
  start-page: 2982
  issue: 13
  year: 2007
  ident: 10.1016/j.medengphy.2010.09.018_bib0060
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.02.010
– volume: 9
  start-page: 459
  issue: 7
  year: 1976
  ident: 10.1016/j.medengphy.2010.09.018_bib0115
  article-title: Ultrasonic wave propagation in human cortical bone--II. Measurements of elastic properties and microhardness
  publication-title: J Biomech
  doi: 10.1016/0021-9290(76)90089-0
– volume: 42
  start-page: 1917
  issue: 12
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.018_bib0130
  article-title: During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.05.001
– volume: 39
  start-page: 2457
  issue: 13
  year: 2006
  ident: 10.1016/j.medengphy.2010.09.018_bib0125
  article-title: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2005.07.018
– volume: 40
  start-page: 1745
  issue: 8
  year: 2007
  ident: 10.1016/j.medengphy.2010.09.018_bib0035
  article-title: Prediction of strength and strain of the proximal femur by a CT-based finite element method
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.08.003
– volume: 17
  start-page: 1433
  issue: 10
  year: 2006
  ident: 10.1016/j.medengphy.2010.09.018_bib0155
  article-title: Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength
  publication-title: Osteoporosis Int
  doi: 10.1007/s00198-006-0162-6
– volume: 32
  start-page: 437
  issue: 4
  year: 1999
  ident: 10.1016/j.medengphy.2010.09.018_bib0110
  article-title: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(98)00177-8
– volume: 18
  start-page: 490
  issue: 3
  year: 1964
  ident: 10.1016/j.medengphy.2010.09.018_bib0100
  article-title: Dynamics of tumour growth
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1964.55
– volume: 7
  start-page: 271
  issue: 3
  year: 1974
  ident: 10.1016/j.medengphy.2010.09.018_bib0120
  article-title: The elastic modulus for bone
  publication-title: J Biomech
  doi: 10.1016/0021-9290(74)90018-9
– volume: 36
  start-page: 897
  issue: 7
  year: 2003
  ident: 10.1016/j.medengphy.2010.09.018_bib0065
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 23
  start-page: 657
  issue: 9
  year: 2001
  ident: 10.1016/j.medengphy.2010.09.018_bib0045
  article-title: Prediction of fracture location in the proximal femur using finite element models
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(01)00094-7
– volume: 94
  start-page: 4220
  issue: 11
  year: 2008
  ident: 10.1016/j.medengphy.2010.09.018_bib0175
  article-title: Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization
  publication-title: Biophys J
  doi: 10.1529/biophysj.107.125567
– volume: 55
  start-page: 53
  issue: 1
  year: 1994
  ident: 10.1016/j.medengphy.2010.09.018_bib0135
  article-title: Effects of loading rate on strength of the proximal femur
  publication-title: Calcif Tissue Int
  doi: 10.1007/BF00310169
– volume: 276
  start-page: 886
  issue: 4
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.018_bib0140
  article-title: Systems biology: parameter estimation for biochemical models
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2008.06844.x
– volume: 113
  start-page: 353
  issue: 4
  year: 1991
  ident: 10.1016/j.medengphy.2010.09.018_bib0030
  article-title: Fracture prediction for the proximal femur using finite element models: Part I. Linear analysis
  publication-title: J Biomech Eng
  doi: 10.1115/1.2895412
– volume: 27
  start-page: 375
  issue: 4
  year: 1994
  ident: 10.1016/j.medengphy.2010.09.018_bib0090
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: J Biomech
  doi: 10.1016/0021-9290(94)90014-0
– volume: 55
  start-page: N57
  issue: 2
  year: 2010
  ident: 10.1016/j.medengphy.2010.09.018_bib0185
  article-title: An anatomically shaped lower body model for CT scanning of cadaver femurs
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/2/N03
– volume: 367
  start-page: 2010
  issue: 9527
  year: 2006
  ident: 10.1016/j.medengphy.2010.09.018_bib0010
  article-title: Osteoporosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68891-0
– volume: 52
  start-page: 192
  issue: 3
  year: 1993
  ident: 10.1016/j.medengphy.2010.09.018_bib0015
  article-title: Impact near the hip dominates fracture risk in elderly nursing home residents who fall
  publication-title: Calcif Tissue Int
  doi: 10.1007/BF00298717
– volume: 244
  start-page: 597
  issue: 4
  year: 2007
  ident: 10.1016/j.medengphy.2010.09.018_bib0170
  article-title: ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2006.09.013
– volume: 37
  start-page: 1597
  issue: 10
  year: 2004
  ident: 10.1016/j.medengphy.2010.09.018_bib0050
  article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2003.12.030
– volume: 59
  start-page: 954
  issue: 7
  year: 1977
  ident: 10.1016/j.medengphy.2010.09.018_bib0075
  article-title: The compressive behavior of bone as a two-phase porous structure
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-197759070-00021
– volume: 17
  start-page: 347
  issue: 5
  year: 1995
  ident: 10.1016/j.medengphy.2010.09.018_bib0145
  article-title: Relations of mechanical properties to density and CT numbers in human bone
  publication-title: Med Eng Phys
  doi: 10.1016/1350-4533(95)97314-F
– volume: 31
  start-page: 125
  issue: 2
  year: 1998
  ident: 10.1016/j.medengphy.2010.09.018_bib0040
  article-title: Prediction of femoral fracture load using automated finite element modeling
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(97)00123-1
– volume: 4
  start-page: 368
  issue: 6
  year: 1994
  ident: 10.1016/j.medengphy.2010.09.018_bib0085
  article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group
  publication-title: Osteoporos Int
  doi: 10.1007/BF01622200
– volume: 23
  start-page: 135
  issue: 2
  year: 2008
  ident: 10.1016/j.medengphy.2010.09.018_bib0080
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin Biomech (Bristol Avon)
  doi: 10.1016/j.clinbiomech.2007.08.024
– volume: 28
  start-page: 1329
  issue: 11
  year: 1994
  ident: 10.1016/j.medengphy.2010.09.018_bib0095
  article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.820281111
– volume: 19
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.medengphy.2010.09.018_bib0150
  article-title: Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction
  publication-title: IEEE Trans Med Img
  doi: 10.1109/42.832955
– volume: 2
  start-page: 321
  issue: 4
  year: 1987
  ident: 10.1016/j.medengphy.2010.09.018_bib0005
  article-title: Heterogeneity of age-related fractures: implications for epidemiology
  publication-title: Bone Miner
– volume: 32
  start-page: 1013
  issue: 10
  year: 1999
  ident: 10.1016/j.medengphy.2010.09.018_bib0025
  article-title: Femoral strength is better predicted by finite element models than QCT and DXA
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(99)00099-8
– volume: 2
  start-page: 164
  year: 2003
  ident: 10.1016/j.medengphy.2010.09.018_bib0160
  article-title: Mechanistic fracture criteria for the failure of human cortical bone
  publication-title: Nat Mater
  doi: 10.1038/nmat832
– volume: 42
  start-page: 467
  issue: 3
  year: 2008
  ident: 10.1016/j.medengphy.2010.09.018_bib0020
  article-title: A reference standard for the description of osteoporosis
  publication-title: Bone
  doi: 10.1016/j.bone.2007.11.001
– volume: 17
  start-page: 349
  issue: 5
  year: 1984
  ident: 10.1016/j.medengphy.2010.09.018_bib0105
  article-title: A continuous wave technique for the measurement of the elastic properties of cortical bone
  publication-title: J Biomech
  doi: 10.1016/0021-9290(84)90029-0
SSID ssj0004463
Score 2.2051218
Snippet Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength...
Abstract Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 164
SubjectTerms Absorptiometry, Photon - methods
Aged
Aged, 80 and over
Biological and medical sciences
Bone density
Bone Density - physiology
Bone FEA
Bone mechanical properties
Compressive Strength
Computed tomography
Computer Simulation
Data processing
Elastic Modulus
Elasticity
Female
Femur
Femur - diagnostic imaging
Finite Element Analysis
Fractures
Fractures, Bone - diagnostic imaging
Fundamental and applied biological sciences. Psychology
Humans
Loading
Male
Mathematical models
Mechanical properties
Middle Aged
Models, Biological
Optimization
Power law
Radiology
Skeleton and joints
Stress, Mechanical
Tomography, X-Ray Computed - methods
Vertebrates: osteoarticular system, musculoskeletal system
Weight-Bearing
Title In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453310002146
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453310002146
https://dx.doi.org/10.1016/j.medengphy.2010.09.018
https://www.ncbi.nlm.nih.gov/pubmed/21030287
https://www.proquest.com/docview/853993477
https://www.proquest.com/docview/954604203
https://pubmed.ncbi.nlm.nih.gov/PMC3045472
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIvEQQrA8Gh4rH7imm5edhFu1otqC2gtU6s2KH6Gpuslqkxy4VPyH_kN-CTOJk3ZhUZG4JvZYtsczn-3PM4S8jzQerDFY3yyQbsQC5WaZga1KguhbZyboYukdn_DFafTpjJ3tkPnwFgZpldb29za9s9b2y8yO5mxVFLMvfsgAj4TdCTWmp8YX7FGMWr5_dUPzgO1OR7KHwi6W3uB4gcMx5Tfoj-V4pfseZv_Y7qEer7Iaxi3vE15sQ6S_EytvearDp-SJhZj0oO_FM7Jjygl5MB8yu03Io1tBCCfk_rG9Xn9Oro9KWhdNSzEg-BKJMrTQlk7UzSCtclqBkVmCfI3U9-b7zx_XBhA4tEWXlW4v25quB4LdebGqaQEyW4nHPS4-60RZNC8Q6lLTc9dpl46nRuEARykya7oWcrNs1y_I6eHHr_OFa7M2uIrzqHF9w1IdADTIWS65UVx7WQqoDNxlbJSUPlPKqFhJ3_DcT0yWal_LXMNeTeOn8CXZLavS7CHtCtC0l2GEfti1JUpqnshYKsySzZn2HMKHmRLKhjTHzBqXYuCuXYhxigVOsfBSAVPsEG-suOqjetxdJRlUQQyPVsHMCvA8d1eNt1U1tTUXtfBFHQhP_KHSDvkw1txYFf_W7HRDY8eeBoCJkZ3oEDqosAANxJuirDRVW4sE4xWHURz_vUjKIg4G3wsd8qpX-hv5mLoOduLQ743lMBbAkOabf8rivAttjvf2URy8_p9-vyEP-4N_JAq-JbvNujXvADk2ctqZhim5d3D0eXHyCx5HdVg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlEQQhBe5lH2AEc3tuMnEgdUqBLa9EIr9bZ4H6ZGjRPFsVAviP_Qn8I_4pcwY6_dBoKKhHq1PbPendnZmd1vZwBe-oo21gKc34EnbD_wpJ2mGkOVmLxvlWqvzqU33g-Hh_6Ho-BoDX60d2EIVmlsf2PTa2ttnvTNaPZned7_6A4C9EcG9Q41lac2yMpdffoV47byzegdCvmV5-28P9ge2qa0gC3D0F_Yrg4ShXG_lwWZCLUMlZMm6DqgTY-0FMINpNQyksLVYebGOk2Uq0SmMKBQ9GiAfK_BdWw-prIJW9_OcSUYX9Wofvw7m35vCVSGK5wuPuMAGlBZsuVQuZHVS-LtWVqioLKmwsYqF_h3JOeFpXHnLtwxPi172wzbPVjTRQ82tttScj24dSHrYQ9ujM15_n04GxWszBcVowzkE0LmsFwZ_FKtMmyasSlatQnyV4S1X5z-_H6m0eXHtthkqqqTqmTzFtF3nM9KliPPStD-kk33SIkXy3LyrZluwPKsrv9TEnP0fxlBeeoWMj2p5g_g8Epk-RDWi2mhHxPOC913J6WSABgmxlKoMBaRkFSWOwyUY0HYSopLk0OdSnmc8BYs94V3IuYkYu4kHEVsgdMRzpo0IpeTxK0q8PaWLNp1jkvd5aTRKlJdGvtUcpeXHnf4H3PIgtcd5dI0_LdmN5c0tuuph044wSEtYK0Kc9RAOppKCz2tSh5TguSBH0V__yQJ_BBXGGdgwaNG6c_5U608DP2x30vTofuAcqgvvyny4zqXOgEF_Mh78j_9fgEbw4PxHt8b7e8-hZvNqQOhFJ_B-mJe6efoti7EZm0mGHy6arv0C91Lszw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+parameter+identification+of+optimal+density-elastic+modulus+relationships+in+subject-specific+finite+element+models+of+the+proximal+femur&rft.jtitle=Medical+engineering+%26+physics&rft.au=Cong%2C+Alexander&rft.au=Buijs%2C+Jorn+Op+Den&rft.au=Dragomir-Daescu%2C+Dan&rft.date=2011-03-01&rft.eissn=1873-4030&rft.volume=33&rft.issue=2&rft.spage=164&rft_id=info:doi/10.1016%2Fj.medengphy.2010.09.018&rft_id=info%3Apmid%2F21030287&rft.externalDocID=21030287
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453311X00024%2Fcov150h.gif