The emerging role of RNA modifications in the regulation of mRNA stability

Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding pro...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 52; no. 3; pp. 400 - 408
Main Authors Boo, Sung Ho, Kim, Yoon Ki
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2020
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N 6 -methyladenosine (m 6 A), N 6 ,2′- O -dimethyladenosine (m 6 Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m 5 C), and N 4 -acetylcytidine (ac 4 C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. Gene activity: the significance of RNA modification Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability.
AbstractList Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.Gene activity: the significance of RNA modificationMessenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability.
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Gene activity: the significance of RNA modification Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability.
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N 6 -methyladenosine (m 6 A), N 6 ,2′- O -dimethyladenosine (m 6 Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m 5 C), and N 4 -acetylcytidine (ac 4 C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. Gene activity: the significance of RNA modification Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability.
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N 6 -methyladenosine (m 6 A), N 6 ,2′- O -dimethyladenosine (m 6 Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m 5 C), and N 4 -acetylcytidine (ac 4 C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. KCI Citation Count: 0
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N -methyladenosine (m A), N ,2'-O-dimethyladenosine (m Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m C), and N -acetylcytidine (ac C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N 6 -methyladenosine (m 6 A), N 6 ,2′- O -dimethyladenosine (m 6 Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m 5 C), and N 4 -acetylcytidine (ac 4 C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability.
Author Boo, Sung Ho
Kim, Yoon Ki
Author_xml – sequence: 1
  givenname: Sung Ho
  surname: Boo
  fullname: Boo, Sung Ho
  organization: Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Division of Life Sciences, Korea University
– sequence: 2
  givenname: Yoon Ki
  orcidid: 0000-0003-1303-072X
  surname: Kim
  fullname: Kim, Yoon Ki
  email: yk-kim@korea.ac.kr
  organization: Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Division of Life Sciences, Korea University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32210357$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002573620$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kk9v1DAQxS1URLeFD8AFReJCDwH_ix1fkFYVhUUVSNVytiaJnXqb2MXOIrWfHu-mBVqJnizN_N7TeOYdoQMfvEHoNcHvCWb1h0QolaLEFJeYY1nePkMLihUtBSfsAC1yW5RMEHaIjlLaYEwrLvkLdMgozQaVXKCv60tTmNHE3vm-iGEwRbDFxbdlMYbOWdfC5IJPhfPFlMlo-u2wL-2wccelCRo3uOnmJXpuYUjm1d17jH6cfVqffinPv39enS7Py1YIPpWEKpBgpOKEYgaiIxa6TlLVKGMZYLBQs5qbCnKvtQ2R3NqGV0IyAKY6doxOZl8frb5qnQ7g9m8f9FXUy4v1StecC8arzK5mtguw0dfRjRBv9oJ9IcReQ5xcOxgNnGLAUgFuCO8qW1NZWSEEYFHRusXZ6-Psdb1tRtO1xk8RhgemDzveXeaZfmlJKsGUzAbv7gxi-Lk1adKjS60ZBvAmbJOmrGYVEQKrjL59hG7CNvq8Vk3zCZXCVIgnKVYrUecd8Ey9-XfuPwPfhyADcgbaGFKKxurWTfsj52-4QROsd3HTc9x0jpvexU3fZiV5pLw3f0pDZ03KrO9N_Dv0_0W_AaIB5OE
CitedBy_id crossref_primary_10_1109_TCBB_2024_3389094
crossref_primary_10_1002_jcp_31477
crossref_primary_10_3390_ijms22116166
crossref_primary_10_1002_mas_21923
crossref_primary_10_3390_cancers14215196
crossref_primary_10_1016_j_jbc_2021_100270
crossref_primary_10_1016_j_ejpb_2024_114207
crossref_primary_10_1021_acsnano_4c02987
crossref_primary_10_3390_pharmaceutics14122699
crossref_primary_10_3390_v14061338
crossref_primary_10_1016_j_mocell_2024_100130
crossref_primary_10_1093_humupd_dmaf002
crossref_primary_10_1186_s12943_022_01555_3
crossref_primary_10_1016_j_pbiomolbio_2025_01_003
crossref_primary_10_1111_imr_13033
crossref_primary_10_1016_j_lfs_2025_123505
crossref_primary_10_1093_nar_gkad802
crossref_primary_10_1016_j_tibs_2020_11_010
crossref_primary_10_2174_1568009621666210127092828
crossref_primary_10_3389_fcell_2021_694673
crossref_primary_10_3390_biology11020214
crossref_primary_10_2217_epi_2022_0110
crossref_primary_10_5423_PPJ_RW_07_2021_0111
crossref_primary_10_3389_fcell_2025_1533148
crossref_primary_10_1002_iid3_708
crossref_primary_10_1152_ajpheart_00532_2023
crossref_primary_10_1021_acssynbio_3c00621
crossref_primary_10_1038_s12276_024_01307_x
crossref_primary_10_3389_fmolb_2021_710738
crossref_primary_10_1093_nar_gkae1222
crossref_primary_10_2174_0929867330666221014111403
crossref_primary_10_1042_BCJ20230096
crossref_primary_10_33549_physiolres_935265
crossref_primary_10_1016_j_omtn_2024_102284
crossref_primary_10_1017_S1047951122003523
crossref_primary_10_1016_j_clim_2023_109838
crossref_primary_10_1038_s41467_024_48428_5
crossref_primary_10_1016_j_jbc_2024_108015
crossref_primary_10_1021_jasms_3c00411
crossref_primary_10_1016_j_apsb_2023_03_001
crossref_primary_10_1016_j_ijbiomac_2024_131139
crossref_primary_10_1016_j_yexcr_2023_113620
crossref_primary_10_3389_fnmol_2023_1148219
crossref_primary_10_3390_ijms24076109
crossref_primary_10_1021_acschembio_4c00831
crossref_primary_10_1080_15476286_2021_2002003
crossref_primary_10_1016_j_plaphy_2022_04_031
crossref_primary_10_1002_advs_202206433
crossref_primary_10_1080_07853890_2024_2437046
crossref_primary_10_1038_s41592_022_01714_w
crossref_primary_10_1038_s41418_023_01238_6
crossref_primary_10_3390_antiox10091483
crossref_primary_10_1002_2211_5463_13382
crossref_primary_10_59717_j_xinn_life_2024_100112
crossref_primary_10_3390_pharmaceutics15020622
crossref_primary_10_1016_j_exphem_2024_104279
crossref_primary_10_3390_pharmaceutics15020620
crossref_primary_10_1016_j_heliyon_2024_e38588
crossref_primary_10_1007_s40259_024_00665_2
crossref_primary_10_3389_fphar_2022_984453
crossref_primary_10_1016_j_ymthe_2023_02_012
crossref_primary_10_1038_s41467_024_51410_w
crossref_primary_10_1021_acs_chemrev_3c00575
crossref_primary_10_1016_j_molcel_2024_04_011
crossref_primary_10_1172_JCI174847
crossref_primary_10_1007_s10565_024_09962_6
crossref_primary_10_1371_journal_pone_0268283
crossref_primary_10_1038_s41418_025_01483_x
crossref_primary_10_1039_D1BM01658J
crossref_primary_10_1016_j_smim_2023_101841
crossref_primary_10_1016_j_csbj_2024_10_042
crossref_primary_10_3390_ijms22094512
crossref_primary_10_1021_acscentsci_1c00197
crossref_primary_10_1039_D4CB00022F
crossref_primary_10_1186_s12885_023_11794_2
crossref_primary_10_1002_mco2_559
crossref_primary_10_1186_s12967_022_03814_9
crossref_primary_10_1007_s12672_024_01093_y
crossref_primary_10_1042_CS20210449
crossref_primary_10_1016_j_abb_2023_109714
crossref_primary_10_1093_g3journal_jkaa058
crossref_primary_10_1016_j_bioorg_2025_108328
crossref_primary_10_1021_acs_molpharmaceut_4c00826
crossref_primary_10_3389_fimmu_2022_839291
crossref_primary_10_1021_acs_chemrev_1c00009
crossref_primary_10_3389_fimmu_2024_1494873
crossref_primary_10_1021_acs_jpclett_2c01342
crossref_primary_10_3389_fcell_2022_915685
crossref_primary_10_1093_bib_bbae169
crossref_primary_10_3390_ijms23116210
crossref_primary_10_1021_acscentsci_1c00768
crossref_primary_10_3390_cells14060432
crossref_primary_10_3389_fgene_2023_1158954
crossref_primary_10_1016_j_csbj_2022_10_023
crossref_primary_10_1016_j_plaphy_2022_12_001
crossref_primary_10_1002_mc_23418
crossref_primary_10_1038_s41419_024_07257_6
crossref_primary_10_3390_cancers14153812
crossref_primary_10_1002_cbf_3750
crossref_primary_10_3390_ncrna7010003
crossref_primary_10_3390_genes13030540
crossref_primary_10_1002_advs_202303113
crossref_primary_10_1186_s12929_023_00911_9
crossref_primary_10_1371_journal_pone_0292212
crossref_primary_10_3390_ijms25020981
crossref_primary_10_1002_cbf_3996
crossref_primary_10_1016_j_ejphar_2025_177397
crossref_primary_10_1016_j_ijbiomac_2022_08_182
crossref_primary_10_1038_s41598_022_23585_z
crossref_primary_10_1038_s41419_023_05909_7
crossref_primary_10_1186_s11658_024_00540_6
crossref_primary_10_3390_biomedicines10010050
crossref_primary_10_3892_ijo_2025_5735
crossref_primary_10_1111_jnc_16311
crossref_primary_10_1111_apha_14123
crossref_primary_10_1007_s11095_022_03433_5
crossref_primary_10_1016_j_conb_2024_102934
crossref_primary_10_1093_narmme_ugae004
crossref_primary_10_1136_jitc_2024_010301
crossref_primary_10_1186_s13619_024_00190_1
crossref_primary_10_1002_ange_202308028
crossref_primary_10_1016_j_celrep_2024_113779
crossref_primary_10_1038_s41477_025_01926_w
crossref_primary_10_1016_j_jmb_2023_168299
crossref_primary_10_1515_hsz_2023_0182
crossref_primary_10_2174_0113892029288843240402042529
crossref_primary_10_1016_j_isci_2023_106215
crossref_primary_10_1080_17501911_2024_2390818
crossref_primary_10_1177_03936155231184908
crossref_primary_10_1002_cbic_202400220
crossref_primary_10_1002_wrna_1707
crossref_primary_10_1021_acs_est_4c05599
crossref_primary_10_1016_j_jconrel_2024_08_030
crossref_primary_10_1126_scitranslmed_ado2084
crossref_primary_10_1016_j_ygcen_2022_114047
crossref_primary_10_1016_j_ygcen_2023_114440
crossref_primary_10_1016_j_celrep_2022_111317
crossref_primary_10_1016_j_omtn_2024_102391
crossref_primary_10_1021_acschembio_1c00569
crossref_primary_10_26508_lsa_202302240
crossref_primary_10_1111_php_13688
crossref_primary_10_1128_mmbr_00057_21
crossref_primary_10_1186_s12866_025_03898_5
crossref_primary_10_1002_anie_202308028
crossref_primary_10_1038_s41388_023_02746_y
crossref_primary_10_3390_ijms222111387
crossref_primary_10_1186_s12964_023_01357_0
crossref_primary_10_1186_s13046_024_03040_9
crossref_primary_10_1016_j_chembiol_2023_12_011
crossref_primary_10_1186_s12915_023_01651_w
crossref_primary_10_1093_bib_bbae170
crossref_primary_10_3389_fmolb_2023_1163089
crossref_primary_10_3390_ijms21186770
crossref_primary_10_3390_ncrna7020031
crossref_primary_10_3390_microorganisms10091754
crossref_primary_10_1007_s00439_023_02560_2
crossref_primary_10_1186_s12864_022_08462_3
crossref_primary_10_1021_acsami_4c13087
crossref_primary_10_1186_s12943_024_02041_8
crossref_primary_10_3389_fimmu_2023_1152806
crossref_primary_10_3389_fgene_2023_1121694
crossref_primary_10_1093_biolre_ioac112
crossref_primary_10_1016_j_cbd_2024_101189
crossref_primary_10_3389_fmolb_2022_871737
crossref_primary_10_1002_adma_202107781
crossref_primary_10_1002_wrna_1689
crossref_primary_10_1210_endocr_bqae074
crossref_primary_10_1093_nar_gkab1083
crossref_primary_10_1080_15476286_2024_2372138
crossref_primary_10_3389_fcell_2021_628415
crossref_primary_10_1002_wrna_1681
crossref_primary_10_3390_genes14071386
crossref_primary_10_1038_s41593_022_01207_1
crossref_primary_10_3389_fcell_2024_1435717
crossref_primary_10_3389_fpls_2021_748120
crossref_primary_10_1002_cpz1_683
crossref_primary_10_1021_acs_jmedchem_4c00599
crossref_primary_10_1080_15476286_2020_1841458
crossref_primary_10_3389_fendo_2022_907060
crossref_primary_10_1261_rna_079396_122
crossref_primary_10_3389_fmolb_2021_780315
crossref_primary_10_1007_s40820_025_01665_9
crossref_primary_10_3390_genes15080996
crossref_primary_10_3390_ijms24054721
crossref_primary_10_3390_molecules28041517
crossref_primary_10_1371_journal_ppat_1010972
crossref_primary_10_3390_ijms25073696
crossref_primary_10_1016_j_heliyon_2023_e20969
crossref_primary_10_3389_fgene_2023_1245683
crossref_primary_10_1097_SHK_0000000000002211
crossref_primary_10_1177_11772719221105145
crossref_primary_10_1186_s10020_021_00362_8
crossref_primary_10_1016_j_semcancer_2020_11_007
crossref_primary_10_1016_j_freeradbiomed_2023_12_041
crossref_primary_10_3389_fcell_2022_975684
crossref_primary_10_5582_bst_2022_01473
crossref_primary_10_3389_fphys_2022_837662
crossref_primary_10_7759_cureus_16197
crossref_primary_10_1021_acschembio_3c00555
crossref_primary_10_3390_ijms22179578
crossref_primary_10_1186_s13287_022_02851_x
crossref_primary_10_1038_s41586_023_06800_3
crossref_primary_10_1016_j_omtn_2024_102440
crossref_primary_10_1371_journal_pone_0318697
crossref_primary_10_1128_msystems_01163_23
crossref_primary_10_1002_ctm2_180
crossref_primary_10_1016_j_bbadis_2024_167273
crossref_primary_10_1016_j_phrs_2024_107187
crossref_primary_10_1016_j_semcancer_2022_03_018
crossref_primary_10_1021_acsami_5c00920
crossref_primary_10_3390_plants11081033
crossref_primary_10_1146_annurev_biochem_030222_112310
crossref_primary_10_1111_cas_15503
crossref_primary_10_1016_j_bbagen_2023_130498
crossref_primary_10_1016_j_canlet_2024_217159
crossref_primary_10_31083_j_fbl2812346
crossref_primary_10_1111_php_13923
crossref_primary_10_3934_mbe_2024013
crossref_primary_10_1261_rna_079950_124
crossref_primary_10_1038_s42003_025_07488_z
crossref_primary_10_3390_diseases11020064
crossref_primary_10_1016_j_ymthe_2022_05_001
crossref_primary_10_1002_cbic_202300784
crossref_primary_10_3390_cancers15082243
crossref_primary_10_1002_adhm_202302409
crossref_primary_10_3390_cells11152399
crossref_primary_10_1002_adhm_202203022
crossref_primary_10_1038_s41576_023_00645_2
crossref_primary_10_3389_fendo_2023_1223583
crossref_primary_10_1007_s13353_024_00840_9
crossref_primary_10_1016_j_scienta_2024_113725
crossref_primary_10_1002_pmic_202000235
crossref_primary_10_1039_D0SC03509B
crossref_primary_10_1371_journal_pone_0237689
crossref_primary_10_1016_j_ijpharm_2024_125069
crossref_primary_10_1007_s00018_024_05304_1
crossref_primary_10_1038_s41573_023_00827_x
crossref_primary_10_3390_sym15030731
crossref_primary_10_1007_s11240_023_02538_y
crossref_primary_10_3390_ncrna10050052
crossref_primary_10_1016_j_jchromb_2022_123396
crossref_primary_10_1186_s10020_024_00965_x
crossref_primary_10_1021_acs_molpharmaceut_3c00439
crossref_primary_10_3390_v14081666
crossref_primary_10_3390_ijms222111870
crossref_primary_10_3390_jpm14060555
crossref_primary_10_3390_ijms23010501
crossref_primary_10_1016_j_intimp_2024_111997
crossref_primary_10_1093_bib_bbae688
crossref_primary_10_3390_cells10061557
crossref_primary_10_1016_j_micres_2024_127671
crossref_primary_10_1016_j_toxlet_2023_01_010
crossref_primary_10_3390_pharmaceutics13020140
crossref_primary_10_3390_plants14050780
crossref_primary_10_1016_j_cellsig_2024_111242
crossref_primary_10_1038_s41419_023_06412_9
crossref_primary_10_1016_j_ijbiomac_2025_140863
crossref_primary_10_1039_D2SC00670G
crossref_primary_10_1093_nar_gkad565
crossref_primary_10_1016_j_csbj_2025_02_029
crossref_primary_10_2217_imt_2021_0187
crossref_primary_10_1093_nar_gkac594
crossref_primary_10_1186_s12967_023_04173_9
crossref_primary_10_1186_s12943_025_02283_0
crossref_primary_10_1016_j_envpol_2025_125896
crossref_primary_10_2174_1566523222666220830150446
crossref_primary_10_3389_fimmu_2023_1286820
crossref_primary_10_3390_biochem2030012
crossref_primary_10_3390_biom10091310
crossref_primary_10_2174_0113816128270476231023052228
crossref_primary_10_1016_j_isci_2023_108703
crossref_primary_10_1016_j_exer_2021_108889
crossref_primary_10_3390_ijms21145161
crossref_primary_10_1186_s12864_023_09573_1
crossref_primary_10_1002_cam4_5500
crossref_primary_10_1111_bph_16030
crossref_primary_10_1111_febs_16688
crossref_primary_10_1007_s12016_025_09041_6
crossref_primary_10_3390_cancers14030527
crossref_primary_10_1016_j_jhazmat_2024_136873
crossref_primary_10_1186_s13048_022_01058_1
crossref_primary_10_1016_j_omtn_2022_05_024
crossref_primary_10_4103_NRR_NRR_D_23_01592
crossref_primary_10_1093_jmcb_mjae012
crossref_primary_10_1002_ibra_12183
crossref_primary_10_1093_bfgp_elab003
crossref_primary_10_1080_09553002_2021_2004329
crossref_primary_10_3390_ijms222312912
crossref_primary_10_1016_j_critrevonc_2024_104459
crossref_primary_10_1016_j_addr_2021_113834
crossref_primary_10_1016_j_addr_2021_114007
crossref_primary_10_1016_j_tig_2024_01_001
crossref_primary_10_3390_cells13100819
crossref_primary_10_1007_s12539_023_00561_3
crossref_primary_10_1038_s41388_022_02439_y
crossref_primary_10_1038_s41467_023_42015_w
crossref_primary_10_1002_wcms_1643
crossref_primary_10_1111_mmi_14688
crossref_primary_10_1002_adtp_202400269
crossref_primary_10_1016_j_arr_2024_102234
crossref_primary_10_1007_s12640_023_00669_w
crossref_primary_10_1093_nar_gkaf049
crossref_primary_10_1016_j_celrep_2022_110861
crossref_primary_10_1186_s13046_022_02551_7
crossref_primary_10_1161_CIRCRESAHA_123_323428
crossref_primary_10_1038_s41467_021_25710_4
crossref_primary_10_1016_j_ceb_2024_102400
crossref_primary_10_1021_acs_molpharmaceut_3c00089
crossref_primary_10_1093_bioinformatics_btad696
crossref_primary_10_1021_acsnano_4c05653
crossref_primary_10_2174_2211738510666220825145124
crossref_primary_10_1007_s00299_023_03046_1
crossref_primary_10_1007_s10528_024_10875_6
crossref_primary_10_1016_j_addr_2023_114973
crossref_primary_10_56530_lcgc_eu_jk3969w4
crossref_primary_10_1021_acs_analchem_4c01446
crossref_primary_10_1016_j_jhazmat_2023_132677
crossref_primary_10_1002_jmv_29942
crossref_primary_10_1093_nar_gkae1168
crossref_primary_10_47570_joci_2024_004
crossref_primary_10_1016_j_biomaterials_2024_122853
crossref_primary_10_1172_JCI179016
crossref_primary_10_1038_s41418_023_01201_5
Cites_doi 10.1038/s41422-018-0113-8
10.1042/BST20160433
10.1261/rna.2191905
10.1038/s41467-019-11375-7
10.3389/fgene.2018.00743
10.1016/j.molcel.2019.04.025
10.1101/cshperspect.a012559
10.1038/nature12730
10.1038/s41556-018-0045-z
10.1016/j.molcel.2019.06.033
10.1261/rna.062794.117
10.1038/nchembio.687
10.1371/journal.pone.0193804
10.1016/j.cell.2017.05.003
10.1016/j.celrep.2014.05.048
10.1016/j.molcel.2012.10.015
10.1038/nrm3457
10.1016/j.cell.2018.10.030
10.1038/nsmb.3462
10.1038/nchembio.1432
10.1038/nature21022
10.1074/jbc.REV119.006513
10.7554/eLife.49117
10.1186/s12943-019-1033-z
10.1146/annurev-genet-120417-031522
10.5483/BMBRep.2015.48.7.131
10.1038/s41594-018-0164-z
10.1093/nar/gkn954
10.1073/pnas.0609737104
10.1016/j.molcel.2019.03.036
10.1093/nar/gkx1030
10.1186/s13059-016-1139-1
10.1016/j.tig.2019.10.011
10.1007/978-3-030-19966-1_4
10.2144/000113801
10.1242/jcs.024976
10.1038/cr.2014.3
10.1093/nar/gkx306
10.1038/nbt.2566
10.1371/journal.pgen.1006804
10.1016/j.cell.2012.04.017
10.1038/s41580-019-0126-2
10.1038/s41422-018-0117-4
10.1186/gb4143
10.1038/ncomms12626
10.1007/s00018-010-0568-3
10.1038/onc.2017.351
10.1101/gad.286484.116
10.1038/nature11112
10.1261/rna.064238.117
10.1038/mt.2008.200
10.1016/j.molcel.2018.08.004
10.1016/j.stem.2019.03.021
10.1093/nar/gkq701
10.1093/nar/gkp1117
10.1038/nature10165
10.1261/rna.063503.117
10.1074/jbc.RA118.004215
10.3390/genes8110301
10.1007/978-3-030-31434-7_4
10.1016/j.bbagrm.2018.11.002
10.1016/j.tig.2017.06.006
10.1002/wrna.1332
10.1016/j.celrep.2014.10.042
10.1038/nature21355
10.1038/nchembio.1836
10.1038/cr.2017.55
10.1016/j.molcel.2019.05.030
10.1038/nmeth.4110
10.1038/s41556-019-0361-y
10.1073/pnas.1806912115
10.1146/annurev-biochem-080111-092106
10.1016/j.cell.2017.09.003
10.7554/eLife.15528
10.1016/j.molcel.2018.08.011
10.1016/j.freeradbiomed.2012.01.009
10.1371/journal.pone.0227647
10.1038/nrg.2016.169
10.1016/j.freeradbiomed.2014.11.018
10.1093/nar/gks144
10.1038/ncb2902
10.1016/j.molcel.2019.06.006
10.1016/j.cell.2017.05.045
10.1038/ncomms1692
10.1038/s41422-019-0230-z
10.1016/j.molmed.2018.07.010
10.1038/s41556-019-0319-0
10.1038/nature04530
10.1016/j.cell.2014.08.028
10.1038/cr.2017.15
10.1038/nature13802
10.3390/genes10020117
10.1002/wrna.1366
10.1038/s41467-019-13579-3
10.1261/rna.070136.118
10.1016/j.ccell.2017.02.013
10.1002/bies.201600092
10.1016/j.celrep.2013.06.029
10.1016/j.molcel.2019.02.034
10.1126/science.aax2957
10.1021/bi0201872
10.1016/j.cell.2012.05.003
10.1126/science.aav0080
10.1016/j.tig.2019.12.007
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
ACYCR
DOI 10.1038/s12276-020-0407-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


CrossRef
Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 408
ExternalDocumentID oai_kci_go_kr_ARTI_8446345
oai_doaj_org_article_a420a079a0b14d5f8275f666a06528c0
PMC7156397
32210357
10_1038_s12276_020_0407_z
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: NRF-2018R1A5A1024261
  funderid: https://doi.org/10.13039/501100003725
– fundername: National Research Foundation of Korea (NRF)
  grantid: NRF-2018R1A5A1024261
– fundername: ;
  grantid: NRF-2018R1A5A1024261
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
AAADF
AFGXO
ID FETCH-LOGICAL-c664t-129a7ae7941203a6d1fadd729b9ef3a0afa8384e5aa6dcfb174ffb45673aa39d3
IEDL.DBID DOA
ISSN 1226-3613
2092-6413
IngestDate Wed Feb 07 01:48:16 EST 2024
Wed Aug 27 01:28:00 EDT 2025
Thu Aug 21 18:08:33 EDT 2025
Fri Jul 11 02:40:40 EDT 2025
Wed Aug 13 02:51:21 EDT 2025
Wed Aug 13 04:44:01 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Tue Jul 01 04:10:30 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Fri Feb 21 02:40:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-129a7ae7941203a6d1fadd729b9ef3a0afa8384e5aa6dcfb174ffb45673aa39d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1303-072X
OpenAccessLink https://doaj.org/article/a420a079a0b14d5f8275f666a06528c0
PMID 32210357
PQID 2389686344
PQPubID 2041975
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_8446345
doaj_primary_oai_doaj_org_article_a420a079a0b14d5f8275f666a06528c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7156397
proquest_miscellaneous_2383516609
proquest_journals_2474990266
proquest_journals_2389686344
pubmed_primary_32210357
crossref_citationtrail_10_1038_s12276_020_0407_z
crossref_primary_10_1038_s12276_020_0407_z
springer_journals_10_1038_s12276_020_0407_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
– name: 생화학분자생물학회
References Yang (CR93) 2017; 27
Schmid, Jensen (CR39) 2019; 1203
Singh, Pratt, Yeo, Moore (CR13) 2015; 84
Malbec (CR106) 2019; 29
Sharma (CR102) 2017; 13
Dimitrova, Teysset, Carre (CR2) 2019; 10
Kim, Maquat (CR43) 2019; 25
Park (CR44) 2016; 30
Chen, Zhang, Zhu (CR17) 2019; 18
Tanaka, Chock, Stadtman (CR73) 2007; 104
Hayakawa (CR79) 2002; 41
Shi (CR51) 2017; 27
Park (CR36) 2019; 74
Ping (CR23) 2014; 24
Nunomura, Lee, Zhu, Perry (CR68) 2017; 45
Zhang (CR105) 2019; 74
Rehwinkel, Behm-Ansmant, Gatfield, Izaurralde (CR66) 2005; 11
Graille, Seraphin (CR76) 2012; 13
Zhang (CR55) 2018; 27
Shi, Wei, He (CR7) 2019; 74
Poulsen (CR69) 2012; 52
Wu (CR59) 2019; 29
Wolin, Maquat (CR41) 2019; 366
Delaunay, Frye (CR1) 2019; 21
Cho (CR46) 2015; 112
Jamar, Kritsiligkou, Grant (CR70) 2017; 45
Sun, Zhang, Li, Bai, Yi (CR61) 2019; 29
Jarrous (CR47) 2017; 33
Picard-Jean (CR104) 2018; 13
Squires (CR98) 2012; 40
Jarrous, Gopalan (CR49) 2010; 38
Kadumuri, Janga (CR4) 2018; 24
Edupuganti (CR56) 2017; 24
Boccaletto (CR9) 2018; 46
Li (CR84) 2015; 11
Nachtergaele, He (CR5) 2018; 52
Zhao (CR14) 2017; 542
Li, Xiong, Yi (CR10) 2016; 14
Dominissini (CR20) 2012; 485
Mattijssen (CR48) 2011; 68
Schwartz (CR83) 2014; 159
Yang (CR95) 2019; 75
D’Orazio (CR78) 2019; 8
Saramago, da Costa, Viegas, Arraiano (CR40) 2019; 1157
Penzo, Guerrieri, Zacchini, Trere, Montanaro (CR86) 2017; 8
Meyer (CR21) 2012; 149
Zhang (CR100) 2012; 3
Khoddami, Cairns (CR92) 2013; 31
Kato (CR35) 2012; 149
Reijns, Alexander, Spiller, Beggs (CR34) 2008; 121
Sendinc (CR63) 2019; 75
Tirumuru (CR52) 2016; 5
Wang (CR58) 2014; 16
Ishii, Hayakawa, Igawa, Sekiguchi, Sekiguchi (CR81) 2018; 115
Zhang (CR60) 2017; 31
CR64
Chen (CR94) 2019; 21
Park, Do, Kim (CR45) 2015; 48
Collart (CR37) 2016; 7
Mugridge, Coller, Gross (CR65) 2018; 25
Huang, Weng, Chen (CR18) 2020; 36
Simms, Hudson, Mosior, Rangwala, Zaher (CR71) 2014; 9
Elliott (CR103) 2019; 10
Kretschmer (CR53) 2018; 24
Adachi, De Zoysa, Yu (CR85) 2019; 1862
Motorin, Lyko, Helm (CR96) 2010; 38
Yan, Zaher (CR11) 2019; 294
Nance (CR27) 2020; 15
Amort (CR99) 2017; 18
Simms, Thomas, Zaher (CR75) 2017; 8
Paris (CR16) 2019; 25
Jia (CR29) 2011; 7
Wang (CR25) 2014; 505
Carlile (CR82) 2014; 515
Liu (CR22) 2014; 10
Mendel (CR26) 2018; 71
Hussain, Aleksic, Blanco, Dietmann, Frye (CR90) 2013; 14
Huang (CR54) 2018; 20
Hussain (CR91) 2013; 4
Visvanathan (CR57) 2018; 37
Cadet, Wagner (CR67) 2013; 5
Karijolich, Yu (CR87) 2011; 474
Boulias (CR62) 2019; 75
Schwartz (CR24) 2014; 8
Mauer (CR31) 2017; 541
Yan, Simms, McLoughlin, Vierstra, Zaher (CR12) 2019; 10
CR19
Doma, Parker (CR77) 2006; 440
Roundtree, Evans, Pan, He (CR6) 2017; 169
Ikeuchi, Izawa, Inada (CR74) 2018; 9
Wei (CR32) 2018; 71
Lu (CR50) 2018; 293
Pendleton (CR28) 2017; 169
Ukleja, Valpuesta, Dziembowski, Cuellar (CR38) 2016; 38
Du (CR33) 2016; 7
Kurosaki, Popp, Maquat (CR42) 2019; 20
Jonkhout (CR3) 2017; 23
McKinlay, Gerard, Fields (CR72) 2012; 52
Arango (CR101) 2018; 175
Helm, Motorin (CR8) 2017; 18
Schaefer, Pollex, Hanna, Lyko (CR97) 2009; 37
Ishii, Hayakawa, Sekiguchi, Adachi, Sekiguchi (CR80) 2015; 79
Zheng (CR30) 2013; 49
Yoon (CR15) 2017; 171
Nakamoto, Lovejoy, Cygan, Boothroyd (CR89) 2017; 23
Kariko (CR88) 2008; 16
J Cadet (407_CR67) 2013; 5
N Tirumuru (407_CR52) 2016; 5
X Yang (407_CR93) 2017; 27
M Schaefer (407_CR97) 2009; 37
S Schwartz (407_CR83) 2014; 159
V Khoddami (407_CR92) 2013; 31
J Rehwinkel (407_CR66) 2005; 11
LL Yan (407_CR11) 2019; 294
S Mattijssen (407_CR48) 2011; 68
KJ Yoon (407_CR15) 2017; 171
M Helm (407_CR8) 2017; 18
HE Poulsen (407_CR69) 2012; 52
KD Meyer (407_CR21) 2012; 149
G Jia (407_CR29) 2011; 7
IA Roundtree (407_CR6) 2017; 169
H Huang (407_CR18) 2020; 36
BS Zhao (407_CR14) 2017; 542
CL Simms (407_CR71) 2014; 9
X Li (407_CR10) 2016; 14
K Ikeuchi (407_CR74) 2018; 9
OH Park (407_CR45) 2015; 48
M Penzo (407_CR86) 2017; 8
T Amort (407_CR99) 2017; 18
D Dominissini (407_CR20) 2012; 485
407_CR19
KN D’Orazio (407_CR78) 2019; 8
CL Simms (407_CR75) 2017; 8
Y Motorin (407_CR96) 2010; 38
MK Doma (407_CR77) 2006; 440
N Jarrous (407_CR49) 2010; 38
JS Mugridge (407_CR65) 2018; 25
A Visvanathan (407_CR57) 2018; 37
K Kariko (407_CR88) 2008; 16
S Hussain (407_CR91) 2013; 4
XY Chen (407_CR17) 2019; 18
G Zheng (407_CR30) 2013; 49
RV Kadumuri (407_CR4) 2018; 24
Y Wang (407_CR58) 2014; 16
T Ishii (407_CR80) 2015; 79
G Singh (407_CR13) 2015; 84
F Zhang (407_CR55) 2018; 27
OH Park (407_CR36) 2019; 74
M Schmid (407_CR39) 2019; 1203
F Picard-Jean (407_CR104) 2018; 13
H Sun (407_CR61) 2019; 29
A Nunomura (407_CR68) 2017; 45
L Malbec (407_CR106) 2019; 29
N Jonkhout (407_CR3) 2017; 23
P Boccaletto (407_CR9) 2018; 46
TM Carlile (407_CR82) 2014; 515
S Hussain (407_CR90) 2013; 14
JE Squires (407_CR98) 2012; 40
T Kurosaki (407_CR42) 2019; 20
SL Wolin (407_CR41) 2019; 366
M Kato (407_CR35) 2012; 149
D Arango (407_CR101) 2018; 175
MA Collart (407_CR37) 2016; 7
MA Nakamoto (407_CR89) 2017; 23
H Hayakawa (407_CR79) 2002; 41
H Du (407_CR33) 2016; 7
J Kretschmer (407_CR53) 2018; 24
T Ishii (407_CR81) 2018; 115
J Paris (407_CR16) 2019; 25
M Saramago (407_CR40) 2019; 1157
X Wang (407_CR25) 2014; 505
J Wei (407_CR32) 2018; 71
BA Elliott (407_CR103) 2019; 10
NH Jamar (407_CR70) 2017; 45
W Lu (407_CR50) 2018; 293
A McKinlay (407_CR72) 2012; 52
S Sharma (407_CR102) 2017; 13
H Shi (407_CR7) 2019; 74
RR Edupuganti (407_CR56) 2017; 24
N Jarrous (407_CR47) 2017; 33
R Wu (407_CR59) 2019; 29
M Ukleja (407_CR38) 2016; 38
M Tanaka (407_CR73) 2007; 104
X Li (407_CR84) 2015; 11
S Delaunay (407_CR1) 2019; 21
E Sendinc (407_CR63) 2019; 75
H Adachi (407_CR85) 2019; 1862
J Liu (407_CR22) 2014; 10
XL Ping (407_CR23) 2014; 24
H Shi (407_CR51) 2017; 27
S Schwartz (407_CR24) 2014; 8
DG Dimitrova (407_CR2) 2019; 10
S Zhang (407_CR60) 2017; 31
YK Kim (407_CR43) 2019; 25
KE Pendleton (407_CR28) 2017; 169
J Mauer (407_CR31) 2017; 541
J Karijolich (407_CR87) 2011; 474
H Huang (407_CR54) 2018; 20
LL Yan (407_CR12) 2019; 10
K Boulias (407_CR62) 2019; 75
407_CR64
H Cho (407_CR46) 2015; 112
S Nachtergaele (407_CR5) 2018; 52
MA Reijns (407_CR34) 2008; 121
M Mendel (407_CR26) 2018; 71
OH Park (407_CR44) 2016; 30
M Graille (407_CR76) 2012; 13
X Chen (407_CR94) 2019; 21
DJ Nance (407_CR27) 2020; 15
LS Zhang (407_CR105) 2019; 74
Y Yang (407_CR95) 2019; 75
X Zhang (407_CR100) 2012; 3
References_xml – volume: 29
  start-page: 23
  year: 2019
  end-page: 41
  ident: CR59
  article-title: A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0113-8
– volume: 45
  start-page: 1053
  year: 2017
  end-page: 1066
  ident: CR68
  article-title: Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders
  publication-title: Biochem Soc. Trans.
  doi: 10.1042/BST20160433
– volume: 11
  start-page: 1640
  year: 2005
  end-page: 1647
  ident: CR66
  article-title: A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing
  publication-title: RNA
  doi: 10.1261/rna.2191905
– volume: 10
  year: 2019
  ident: CR103
  article-title: Modification of messenger RNA by 2’-O-methylation regulates gene expression in vivo
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11375-7
– volume: 9
  start-page: 743
  year: 2018
  ident: CR74
  article-title: Recent progress on the molecular mechanism of quality controls induced by ribosome stalling
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00743
– volume: 74
  start-page: 640
  year: 2019
  end-page: 650
  ident: CR7
  article-title: Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.04.025
– volume: 5
  start-page: a012559
  year: 2013
  ident: CR67
  article-title: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012559
– volume: 505
  start-page: 117
  year: 2014
  end-page: 120
  ident: CR25
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
  doi: 10.1038/nature12730
– volume: 20
  start-page: 285
  year: 2018
  end-page: 295
  ident: CR54
  article-title: Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0045-z
– volume: 75
  start-page: 1188
  year: 2019
  end-page: 1202 e1111
  ident: CR95
  article-title: RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.033
– volume: 23
  start-page: 1834
  year: 2017
  end-page: 1849
  ident: CR89
  article-title: mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii
  publication-title: RNA
  doi: 10.1261/rna.062794.117
– volume: 7
  start-page: 885
  year: 2011
  end-page: 887
  ident: CR29
  article-title: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.687
– volume: 13
  year: 2018
  ident: CR104
  article-title: 2’-O-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0193804
– volume: 169
  start-page: 824
  year: 2017
  end-page: 835 e814
  ident: CR28
  article-title: The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.003
– volume: 8
  start-page: 284
  year: 2014
  end-page: 296
  ident: CR24
  article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.048
– volume: 49
  start-page: 18
  year: 2013
  end-page: 29
  ident: CR30
  article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.015
– volume: 13
  start-page: 727
  year: 2012
  end-page: 735
  ident: CR76
  article-title: Surveillance pathways rescuing eukaryotic ribosomes lost in translation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3457
– ident: CR19
– volume: 175
  start-page: 1872
  year: 2018
  end-page: 1886
  ident: CR101
  article-title: Acetylation of cytidine in mRNA promotes translation efficiency
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.030
– volume: 24
  start-page: 870
  year: 2017
  end-page: 878
  ident: CR56
  article-title: N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3462
– volume: 10
  start-page: 93
  year: 2014
  end-page: 95
  ident: CR22
  article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1432
– volume: 541
  start-page: 371
  year: 2017
  end-page: 375
  ident: CR31
  article-title: Reversible methylation of m(6)Am in the 5’ cap controls mRNA stability
  publication-title: Nature
  doi: 10.1038/nature21022
– volume: 294
  start-page: 15158
  year: 2019
  end-page: 15171
  ident: CR11
  article-title: How do cells cope with RNA damage and its consequences?
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.REV119.006513
– volume: 8
  year: 2019
  ident: CR78
  article-title: The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay
  publication-title: Elife
  doi: 10.7554/eLife.49117
– volume: 18
  year: 2019
  ident: CR17
  article-title: The role of m(6)A RNA methylation in human cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1033-z
– volume: 52
  start-page: 349
  year: 2018
  end-page: 372
  ident: CR5
  article-title: Chemical modifications in the life of an mRNA transcript
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120417-031522
– volume: 48
  start-page: 367
  year: 2015
  end-page: 368
  ident: CR45
  article-title: A new function of glucocorticoid receptor: regulation of mRNA stability
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2015.48.7.131
– volume: 25
  start-page: 1077
  year: 2018
  end-page: 1085
  ident: CR65
  article-title: Structural and molecular mechanisms for the control of eukaryotic 5’-3’ mRNA decay
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0164-z
– volume: 37
  year: 2009
  ident: CR97
  article-title: RNA cytosine methylation analysis by bisulfite sequencing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn954
– volume: 104
  start-page: 66
  year: 2007
  end-page: 71
  ident: CR73
  article-title: Oxidized messenger RNA induces translation errors
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0609737104
– volume: 74
  start-page: 1304
  year: 2019
  end-page: 1316. e1308
  ident: CR105
  article-title: Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.036
– volume: 46
  start-page: D303
  year: 2018
  end-page: D307
  ident: CR9
  article-title: MODOMICS: a database of RNA modification pathways. 2017 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1030
– volume: 18
  year: 2017
  ident: CR99
  article-title: Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-1139-1
– volume: 36
  start-page: 44
  year: 2020
  end-page: 52
  ident: CR18
  article-title: The biogenesis and precise control of RNA m(6)A methylation
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2019.10.011
– volume: 1157
  start-page: 85
  year: 2019
  end-page: 98
  ident: CR40
  article-title: The implication of mRNA degradation disorders on human disease: focus on DIS3 and DIS3-like enzymes
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-19966-1_4
– volume: 52
  start-page: 109
  year: 2012
  end-page: 111
  ident: CR72
  article-title: Global analysis of RNA oxidation in Saccharomyces cerevisiae
  publication-title: Biotechniques
  doi: 10.2144/000113801
– volume: 27
  start-page: 3936
  year: 2018
  end-page: 3950
  ident: CR55
  article-title: Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets
  publication-title: Hum. Mol. Genet.
– volume: 121
  start-page: 2463
  year: 2008
  end-page: 2472
  ident: CR34
  article-title: A role for Q/N-rich aggregation-prone regions in P-body localization
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.024976
– volume: 24
  start-page: 177
  year: 2014
  end-page: 189
  ident: CR23
  article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.3
– volume: 45
  start-page: 6881
  year: 2017
  end-page: 6893
  ident: CR70
  article-title: The non-stop decay mRNA surveillance pathway is required for oxidative stress tolerance
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx306
– volume: 31
  start-page: 458
  year: 2013
  end-page: 464
  ident: CR92
  article-title: Identification of direct targets and modified bases of RNA cytosine methyltransferases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2566
– volume: 13
  year: 2017
  ident: CR102
  article-title: Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006804
– volume: 149
  start-page: 753
  year: 2012
  end-page: 767
  ident: CR35
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 20
  start-page: 406
  year: 2019
  end-page: 420
  ident: CR42
  article-title: Quality and quantity control of gene expression by nonsense-mediated mRNA decay
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0126-2
– volume: 29
  start-page: 80
  year: 2019
  end-page: 82
  ident: CR61
  article-title: Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0117-4
– volume: 14
  year: 2013
  ident: CR90
  article-title: Characterizing 5-methylcytosine in the mammalian epitranscriptome
  publication-title: Genome Biol.
  doi: 10.1186/gb4143
– volume: 7
  year: 2016
  ident: CR33
  article-title: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12626
– volume: 68
  start-page: 2469
  year: 2011
  end-page: 2480
  ident: CR48
  article-title: Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-010-0568-3
– volume: 112
  start-page: E1540
  year: 2015
  end-page: E1549
  ident: CR46
  article-title: Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 37
  start-page: 522
  year: 2018
  end-page: 533
  ident: CR57
  article-title: Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance
  publication-title: Oncogene
  doi: 10.1038/onc.2017.351
– volume: 30
  start-page: 2093
  year: 2016
  end-page: 2105
  ident: CR44
  article-title: Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay
  publication-title: Genes Dev.
  doi: 10.1101/gad.286484.116
– volume: 485
  start-page: 201
  year: 2012
  end-page: 206
  ident: CR20
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
  publication-title: Nature
  doi: 10.1038/nature11112
– volume: 24
  start-page: 1339
  year: 2018
  end-page: 1350
  ident: CR53
  article-title: The m(6)A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5’-3’ exoribonuclease XRN1
  publication-title: RNA
  doi: 10.1261/rna.064238.117
– volume: 16
  start-page: 1833
  year: 2008
  end-page: 1840
  ident: CR88
  article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.200
– volume: 71
  start-page: 986
  year: 2018
  end-page: 1000 e1011
  ident: CR26
  article-title: Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.08.004
– volume: 25
  start-page: 137
  year: 2019
  end-page: 148 e136
  ident: CR16
  article-title: Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.03.021
– volume: 38
  start-page: 7885
  year: 2010
  end-page: 7894
  ident: CR49
  article-title: Archaeal/eukaryal RNase P: subunits, functions and RNA diversification
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq701
– volume: 38
  start-page: 1415
  year: 2010
  end-page: 1430
  ident: CR96
  article-title: 5-methylcytosine in RNA: detection, enzymatic formation and biological functions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1117
– volume: 474
  start-page: 395
  year: 2011
  end-page: 398
  ident: CR87
  article-title: Converting nonsense codons into sense codons by targeted pseudouridylation
  publication-title: Nature
  doi: 10.1038/nature10165
– volume: 23
  start-page: 1754
  year: 2017
  end-page: 1769
  ident: CR3
  article-title: The RNA modification landscape in human disease
  publication-title: RNA
  doi: 10.1261/rna.063503.117
– volume: 293
  start-page: 12992
  year: 2018
  end-page: 13005
  ident: CR50
  article-title: N(6)-Methyladenosine-binding proteins suppress HIV-1 infectivity and viral production
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.004215
– volume: 8
  start-page: 301
  year: 2017
  ident: CR86
  article-title: RNA pseudouridylation in physiology and medicine: for better and for worse
  publication-title: Genes (Basel)
  doi: 10.3390/genes8110301
– volume: 1203
  start-page: 113
  year: 2019
  end-page: 132
  ident: CR39
  article-title: The nuclear RNA exosome and its cofactors
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-31434-7_4
– volume: 1862
  start-page: 230
  year: 2019
  end-page: 239
  ident: CR85
  article-title: Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2018.11.002
– volume: 33
  start-page: 594
  year: 2017
  end-page: 603
  ident: CR47
  article-title: Roles of RNase P and its subunits
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2017.06.006
– volume: 7
  start-page: 438
  year: 2016
  end-page: 454
  ident: CR37
  article-title: The Ccr4-Not complex is a key regulator of eukaryotic gene expression
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1332
– volume: 9
  start-page: 1256
  year: 2014
  end-page: 1264
  ident: CR71
  article-title: An active role for the ribosome in determining the fate of oxidized mRNA
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.042
– volume: 542
  start-page: 475
  year: 2017
  end-page: 478
  ident: CR14
  article-title: m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition
  publication-title: Nature
  doi: 10.1038/nature21355
– volume: 11
  start-page: 592
  year: 2015
  end-page: 597
  ident: CR84
  article-title: Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1836
– volume: 27
  start-page: 606
  year: 2017
  end-page: 625
  ident: CR93
  article-title: 5-Methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.55
– volume: 75
  start-page: 620
  year: 2019
  end-page: 630.e629
  ident: CR63
  article-title: PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.030
– volume: 14
  start-page: 23
  year: 2016
  end-page: 31
  ident: CR10
  article-title: Epitranscriptome sequencing technologies: decoding RNA modifications
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4110
– volume: 21
  start-page: 978
  year: 2019
  end-page: 990
  ident: CR94
  article-title: 5-Methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0361-y
– volume: 115
  start-page: 6715
  year: 2018
  end-page: 6720
  ident: CR81
  article-title: Specific binding of PCBP1 to heavily oxidized RNA to induce cell death
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806912115
– volume: 84
  start-page: 325
  year: 2015
  end-page: 354
  ident: CR13
  article-title: The clothes make the mRNA: past and present trends in mRNP fashion
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-080111-092106
– volume: 171
  start-page: 877
  year: 2017
  end-page: 889 e817
  ident: CR15
  article-title: Temporal control of mammalian cortical neurogenesis by m(6)A methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.003
– volume: 5
  year: 2016
  ident: CR52
  article-title: N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression
  publication-title: Elife
  doi: 10.7554/eLife.15528
– ident: CR64
– volume: 71
  start-page: 973
  year: 2018
  end-page: 985 e975
  ident: CR32
  article-title: Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.08.011
– volume: 52
  start-page: 1353
  year: 2012
  end-page: 1361
  ident: CR69
  article-title: RNA modifications by oxidation: a novel disease mechanism?
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.01.009
– volume: 15
  year: 2020
  ident: CR27
  article-title: Characterization of METTL16 as a cytoplasmic RNA binding protein
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0227647
– volume: 18
  start-page: 275
  year: 2017
  end-page: 291
  ident: CR8
  article-title: Detecting RNA modifications in the epitranscriptome: predict and validate
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg.2016.169
– volume: 79
  start-page: 109
  year: 2015
  end-page: 116
  ident: CR80
  article-title: Role of Auf1 in elimination of oxidatively damaged messenger RNA in human cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.11.018
– volume: 40
  start-page: 5023
  year: 2012
  end-page: 5033
  ident: CR98
  article-title: Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks144
– volume: 16
  start-page: 191
  year: 2014
  end-page: 198
  ident: CR58
  article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2902
– volume: 75
  start-page: 631
  year: 2019
  end-page: 643.e638
  ident: CR62
  article-title: Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.006
– volume: 169
  start-page: 1187
  year: 2017
  end-page: 1200
  ident: CR6
  article-title: Dynamic RNA modifications in gene expression regulation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.045
– volume: 3
  year: 2012
  ident: CR100
  article-title: The tRNA methyltransferase NSun2 stabilizes p16INK(4) mRNA by methylating the 3’-untranslated region of p16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1692
– volume: 29
  start-page: 927
  year: 2019
  end-page: 941
  ident: CR106
  article-title: Dynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translation
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0230-z
– volume: 24
  start-page: 886
  year: 2018
  end-page: 903
  ident: CR4
  article-title: Epitranscriptomic code and its alterations in human disease
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2018.07.010
– volume: 21
  start-page: 552
  year: 2019
  end-page: 559
  ident: CR1
  article-title: RNA modifications regulating cell fate in cancer
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0319-0
– volume: 440
  start-page: 561
  year: 2006
  end-page: 564
  ident: CR77
  article-title: Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation
  publication-title: Nature
  doi: 10.1038/nature04530
– volume: 159
  start-page: 148
  year: 2014
  end-page: 162
  ident: CR83
  article-title: Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.028
– volume: 27
  start-page: 315
  year: 2017
  end-page: 328
  ident: CR51
  article-title: YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.15
– volume: 515
  start-page: 143
  year: 2014
  end-page: 146
  ident: CR82
  article-title: Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells
  publication-title: Nature
  doi: 10.1038/nature13802
– volume: 10
  start-page: 117
  year: 2019
  ident: CR2
  article-title: RNA 2’-O-methylation (Nm) modification in human diseases
  publication-title: Genes (Basel)
  doi: 10.3390/genes10020117
– volume: 8
  year: 2017
  ident: CR75
  article-title: Ribosome-based quality control of mRNA and nascent peptides
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1366
– volume: 10
  year: 2019
  ident: CR12
  article-title: Oxidation and alkylation stresses activate ribosome-quality control
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13579-3
– volume: 25
  start-page: 407
  year: 2019
  end-page: 422
  ident: CR43
  article-title: UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond
  publication-title: RNA
  doi: 10.1261/rna.070136.118
– volume: 31
  start-page: 591
  year: 2017
  end-page: 606. e596
  ident: CR60
  article-title: m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.02.013
– volume: 38
  start-page: 1048
  year: 2016
  end-page: 1058
  ident: CR38
  article-title: Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: new structural insights to unravel CCR4-NOT mRNA processing machinery
  publication-title: Bioessays
  doi: 10.1002/bies.201600092
– volume: 4
  start-page: 255
  year: 2013
  end-page: 261
  ident: CR91
  article-title: NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.06.029
– volume: 74
  start-page: 494
  year: 2019
  end-page: 507 e498
  ident: CR36
  article-title: Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.034
– volume: 366
  start-page: 822
  year: 2019
  end-page: 827
  ident: CR41
  article-title: Cellular RNA surveillance in health and disease
  publication-title: Science
  doi: 10.1126/science.aax2957
– volume: 41
  start-page: 12739
  year: 2002
  end-page: 12744
  ident: CR79
  article-title: Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine
  publication-title: Biochemistry
  doi: 10.1021/bi0201872
– volume: 149
  start-page: 1635
  year: 2012
  end-page: 1646
  ident: CR21
  article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.003
– volume: 1157
  start-page: 85
  year: 2019
  ident: 407_CR40
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-19966-1_4
– volume: 542
  start-page: 475
  year: 2017
  ident: 407_CR14
  publication-title: Nature
  doi: 10.1038/nature21355
– volume: 25
  start-page: 407
  year: 2019
  ident: 407_CR43
  publication-title: RNA
  doi: 10.1261/rna.070136.118
– volume: 121
  start-page: 2463
  year: 2008
  ident: 407_CR34
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.024976
– volume: 30
  start-page: 2093
  year: 2016
  ident: 407_CR44
  publication-title: Genes Dev.
  doi: 10.1101/gad.286484.116
– volume: 24
  start-page: 870
  year: 2017
  ident: 407_CR56
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3462
– volume: 84
  start-page: 325
  year: 2015
  ident: 407_CR13
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-080111-092106
– volume: 24
  start-page: 886
  year: 2018
  ident: 407_CR4
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2018.07.010
– volume: 38
  start-page: 1048
  year: 2016
  ident: 407_CR38
  publication-title: Bioessays
  doi: 10.1002/bies.201600092
– volume: 71
  start-page: 986
  year: 2018
  ident: 407_CR26
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.08.004
– volume: 10
  year: 2019
  ident: 407_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13579-3
– volume: 14
  start-page: 23
  year: 2016
  ident: 407_CR10
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4110
– volume: 16
  start-page: 1833
  year: 2008
  ident: 407_CR88
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.200
– volume: 505
  start-page: 117
  year: 2014
  ident: 407_CR25
  publication-title: Nature
  doi: 10.1038/nature12730
– volume: 31
  start-page: 458
  year: 2013
  ident: 407_CR92
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2566
– volume: 75
  start-page: 631
  year: 2019
  ident: 407_CR62
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.006
– volume: 45
  start-page: 1053
  year: 2017
  ident: 407_CR68
  publication-title: Biochem Soc. Trans.
  doi: 10.1042/BST20160433
– volume: 149
  start-page: 1635
  year: 2012
  ident: 407_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.003
– volume: 10
  start-page: 93
  year: 2014
  ident: 407_CR22
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1432
– volume: 23
  start-page: 1754
  year: 2017
  ident: 407_CR3
  publication-title: RNA
  doi: 10.1261/rna.063503.117
– volume: 25
  start-page: 1077
  year: 2018
  ident: 407_CR65
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0164-z
– volume: 515
  start-page: 143
  year: 2014
  ident: 407_CR82
  publication-title: Nature
  doi: 10.1038/nature13802
– volume: 45
  start-page: 6881
  year: 2017
  ident: 407_CR70
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx306
– volume: 16
  start-page: 191
  year: 2014
  ident: 407_CR58
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2902
– volume: 23
  start-page: 1834
  year: 2017
  ident: 407_CR89
  publication-title: RNA
  doi: 10.1261/rna.062794.117
– volume: 75
  start-page: 620
  year: 2019
  ident: 407_CR63
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.030
– volume: 104
  start-page: 66
  year: 2007
  ident: 407_CR73
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0609737104
– volume: 68
  start-page: 2469
  year: 2011
  ident: 407_CR48
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-010-0568-3
– volume: 29
  start-page: 23
  year: 2019
  ident: 407_CR59
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0113-8
– volume: 9
  start-page: 1256
  year: 2014
  ident: 407_CR71
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.042
– volume: 74
  start-page: 1304
  year: 2019
  ident: 407_CR105
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.036
– volume: 485
  start-page: 201
  year: 2012
  ident: 407_CR20
  publication-title: Nature
  doi: 10.1038/nature11112
– volume: 18
  start-page: 275
  year: 2017
  ident: 407_CR8
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg.2016.169
– volume: 20
  start-page: 406
  year: 2019
  ident: 407_CR42
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0126-2
– volume: 33
  start-page: 594
  year: 2017
  ident: 407_CR47
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2017.06.006
– volume: 8
  year: 2017
  ident: 407_CR75
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1366
– volume: 169
  start-page: 1187
  year: 2017
  ident: 407_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.045
– volume: 294
  start-page: 15158
  year: 2019
  ident: 407_CR11
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.REV119.006513
– volume: 18
  year: 2019
  ident: 407_CR17
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1033-z
– volume: 25
  start-page: 137
  year: 2019
  ident: 407_CR16
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.03.021
– volume: 52
  start-page: 349
  year: 2018
  ident: 407_CR5
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120417-031522
– volume: 474
  start-page: 395
  year: 2011
  ident: 407_CR87
  publication-title: Nature
  doi: 10.1038/nature10165
– volume: 13
  year: 2017
  ident: 407_CR102
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006804
– volume: 21
  start-page: 552
  year: 2019
  ident: 407_CR1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0319-0
– volume: 8
  start-page: 301
  year: 2017
  ident: 407_CR86
  publication-title: Genes (Basel)
  doi: 10.3390/genes8110301
– volume: 40
  start-page: 5023
  year: 2012
  ident: 407_CR98
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks144
– volume: 13
  start-page: 727
  year: 2012
  ident: 407_CR76
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3457
– volume: 11
  start-page: 592
  year: 2015
  ident: 407_CR84
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1836
– volume: 1862
  start-page: 230
  year: 2019
  ident: 407_CR85
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2018.11.002
– ident: 407_CR64
  doi: 10.1126/science.aav0080
– volume: 7
  start-page: 885
  year: 2011
  ident: 407_CR29
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.687
– volume: 7
  start-page: 438
  year: 2016
  ident: 407_CR37
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1332
– volume: 27
  start-page: 315
  year: 2017
  ident: 407_CR51
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.15
– volume: 29
  start-page: 927
  year: 2019
  ident: 407_CR106
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0230-z
– volume: 10
  year: 2019
  ident: 407_CR103
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11375-7
– volume: 79
  start-page: 109
  year: 2015
  ident: 407_CR80
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.11.018
– volume: 38
  start-page: 1415
  year: 2010
  ident: 407_CR96
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1117
– volume: 1203
  start-page: 113
  year: 2019
  ident: 407_CR39
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-31434-7_4
– volume: 149
  start-page: 753
  year: 2012
  ident: 407_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 75
  start-page: 1188
  year: 2019
  ident: 407_CR95
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.033
– volume: 37
  start-page: 522
  year: 2018
  ident: 407_CR57
  publication-title: Oncogene
  doi: 10.1038/onc.2017.351
– volume: 71
  start-page: 973
  year: 2018
  ident: 407_CR32
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.08.011
– volume: 18
  year: 2017
  ident: 407_CR99
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-1139-1
– volume: 36
  start-page: 44
  year: 2020
  ident: 407_CR18
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2019.10.011
– volume: 8
  start-page: 284
  year: 2014
  ident: 407_CR24
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.048
– volume: 74
  start-page: 640
  year: 2019
  ident: 407_CR7
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.04.025
– volume: 4
  start-page: 255
  year: 2013
  ident: 407_CR91
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.06.029
– volume: 5
  start-page: a012559
  year: 2013
  ident: 407_CR67
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012559
– volume: 41
  start-page: 12739
  year: 2002
  ident: 407_CR79
  publication-title: Biochemistry
  doi: 10.1021/bi0201872
– volume: 175
  start-page: 1872
  year: 2018
  ident: 407_CR101
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.030
– volume: 48
  start-page: 367
  year: 2015
  ident: 407_CR45
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2015.48.7.131
– volume: 29
  start-page: 80
  year: 2019
  ident: 407_CR61
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0117-4
– volume: 52
  start-page: 1353
  year: 2012
  ident: 407_CR69
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.01.009
– volume: 293
  start-page: 12992
  year: 2018
  ident: 407_CR50
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.004215
– volume: 169
  start-page: 824
  year: 2017
  ident: 407_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.003
– volume: 8
  year: 2019
  ident: 407_CR78
  publication-title: Elife
  doi: 10.7554/eLife.49117
– volume: 115
  start-page: 6715
  year: 2018
  ident: 407_CR81
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806912115
– volume: 37
  year: 2009
  ident: 407_CR97
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn954
– volume: 9
  start-page: 743
  year: 2018
  ident: 407_CR74
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00743
– volume: 38
  start-page: 7885
  year: 2010
  ident: 407_CR49
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq701
– volume: 171
  start-page: 877
  year: 2017
  ident: 407_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.003
– volume: 15
  year: 2020
  ident: 407_CR27
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0227647
– volume: 366
  start-page: 822
  year: 2019
  ident: 407_CR41
  publication-title: Science
  doi: 10.1126/science.aax2957
– volume: 49
  start-page: 18
  year: 2013
  ident: 407_CR30
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.015
– volume: 7
  year: 2016
  ident: 407_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12626
– volume: 159
  start-page: 148
  year: 2014
  ident: 407_CR83
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.028
– volume: 3
  year: 2012
  ident: 407_CR100
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1692
– volume: 20
  start-page: 285
  year: 2018
  ident: 407_CR54
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0045-z
– volume: 541
  start-page: 371
  year: 2017
  ident: 407_CR31
  publication-title: Nature
  doi: 10.1038/nature21022
– volume: 31
  start-page: 591
  year: 2017
  ident: 407_CR60
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.02.013
– volume: 10
  start-page: 117
  year: 2019
  ident: 407_CR2
  publication-title: Genes (Basel)
  doi: 10.3390/genes10020117
– volume: 5
  year: 2016
  ident: 407_CR52
  publication-title: Elife
  doi: 10.7554/eLife.15528
– volume: 24
  start-page: 1339
  year: 2018
  ident: 407_CR53
  publication-title: RNA
  doi: 10.1261/rna.064238.117
– volume: 112
  start-page: E1540
  year: 2015
  ident: 407_CR46
  publication-title: Proc. Natl Acad. Sci. USA
– ident: 407_CR19
  doi: 10.1016/j.tig.2019.12.007
– volume: 74
  start-page: 494
  year: 2019
  ident: 407_CR36
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.034
– volume: 24
  start-page: 177
  year: 2014
  ident: 407_CR23
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.3
– volume: 27
  start-page: 606
  year: 2017
  ident: 407_CR93
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.55
– volume: 14
  year: 2013
  ident: 407_CR90
  publication-title: Genome Biol.
  doi: 10.1186/gb4143
– volume: 27
  start-page: 3936
  year: 2018
  ident: 407_CR55
  publication-title: Hum. Mol. Genet.
– volume: 11
  start-page: 1640
  year: 2005
  ident: 407_CR66
  publication-title: RNA
  doi: 10.1261/rna.2191905
– volume: 13
  year: 2018
  ident: 407_CR104
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0193804
– volume: 440
  start-page: 561
  year: 2006
  ident: 407_CR77
  publication-title: Nature
  doi: 10.1038/nature04530
– volume: 52
  start-page: 109
  year: 2012
  ident: 407_CR72
  publication-title: Biotechniques
  doi: 10.2144/000113801
– volume: 46
  start-page: D303
  year: 2018
  ident: 407_CR9
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1030
– volume: 21
  start-page: 978
  year: 2019
  ident: 407_CR94
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0361-y
SSID ssj0025474
Score 2.653054
SecondaryResourceType review_article
Snippet Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the...
Gene activity: the significance of RNA modification Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 400
SubjectTerms 631/337/1645/2020
631/337/1645/2570
Animals
Biomedical and Life Sciences
Biomedicine
Cytoplasm
Gene expression
Humans
Mammalian cells
Mammals - genetics
Medical Biochemistry
Molecular Medicine
Molecular modelling
mRNA stability
N6-methyladenosine
Nucleotide sequence
Review
Review Article
RNA - genetics
RNA modification
RNA Stability - genetics
RNA transport
RNA, Messenger - genetics
RNA-binding protein
RNA-Binding Proteins - genetics
Splicing
Stem Cells
Transcription
생화학
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAXBC2PQEEGIQ6gqIkfcXJCC6IqldoDotLeLCexy6psUrLbQ_vrmXEe1ULpKZLtRHHm9Y1nMgPwThZV7fPCx7a0VSyd17EVjse8rDNVFbpMNf2cfHScHZzIw7maDwduqyGtctSJQVHXbUVn5HtcagTn6DFkn85_x9Q1iqKrQwuNu3CPSpcRV-v5tcOlZKjCnCLEiAXarTGqKfK9FQ5qSr-l5MZEx1cbdimU70dr03T-JuT5bwLlX1HUYJz2H8HDAVWyWc8Gj-GOa7ZhZ9agR728ZO9ZyPMMB-jbcP9oCKfvwCEyCaM_hKlTEaNEQ9Z69v14xpZtTTlE_XEeWzQMcSLr-r71OETLlrQOsWXIrr18Aif7X398OYiH5gpxlWVyHaOdt9o6FMeUJ8JmdepR1SHULgvnhU2st7nIpVMW5yqPNJPelwi3tLBWFLV4CltN27jnwFJJhJUVqg4hdZJbwS13SHLFnRJeRpCMn9ZUQ-VxaoDxy4QIuMhNTw2D1DBEDXMVwYfplvO-7MZtiz8TvaaFVDE7DLTdqRkE0FjJE5vowiZlKmvlc66VR9_NIgbjeZVE8Bapbc6qRbifrqetOesM-hXfTI5es5Aqgt2RGcwg6yuDoKfIcpyWN09PjBvBm2kahZgiM7Zx7UV4hFBpliVFBM961pp2gxoXt610BHqD6Ta2uznTLH6GQuEanXPEmxF8HNnz-rX--zVf3L6Jl_CAB6mhNLxd2Fp3F-4V4rJ1-ToI3x8SPzJT
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJiEuCDY-OgYKCHEAVaT5aNJjQUzjSdsBmLRblLbJ9jRei7q3w_bXz0nbhx4bSJwq1W7V1Hb8c-w4AG9FUTdeFz61la1T4bxKLXcsZVWTy7pQVabC5uTDo_zgWMxO5MkGZNNemFi0H1taxml6qg77eJExpkK5bChGpCq9vgdboVM7qvZWWc6-z1ZRlhSx9TLy5ylHZzWlMrm-_ZI1ZxR79qOLaXt_F9y8XTX5R-o0eqT9R_BwhJKkHD7-MWy4dht2ShxXt7gi70gs7oyr5ttw_3DMoe_ADDWDhG3B4XgiEqoLSefJt6OSLLomFA4Na3hk3hIEh6QfDqvHW4FtEfgQUMaS2qsncLz_5cfng3Q8USGt81wsU3TuVlmHNpgxym3eZB7nN8TXVeE8t9R6q7kWTlqk1R4FJbyvEGMpbi0vGv4UNtuudc-BZCJIU9Q4X3ChqLacWeZQzpI5yb1IgE6_1tRju_Fw6sVPE9PeXJtBGgalYYI0zHUC71eP_Bp6bfyL-VOQ14oxtMmON7r-1IxqY6xg1FJVWFplopFeMyU9BmwWgRfTNU3gDUrbnNfz-Hy4nnbmvDcYTHw1GkNlLmQCe5MymNHALwwinSLXSBZ3k1EJ0c8j-kng9YqMlhvSMbZ13WV8BZdZntMigWeDaq1Gg9MsDluqBNSa0q0Nd53Szs9id3CFETmCzAQ-TOr5-7P--jd3_4v7BTxg0YhCKd4ebC77S_cSsdmyejVa4w1znzFw
  priority: 102
  providerName: Springer Nature
Title The emerging role of RNA modifications in the regulation of mRNA stability
URI https://link.springer.com/article/10.1038/s12276-020-0407-z
https://www.ncbi.nlm.nih.gov/pubmed/32210357
https://www.proquest.com/docview/2389686344
https://www.proquest.com/docview/2474990266
https://www.proquest.com/docview/2383516609
https://pubmed.ncbi.nlm.nih.gov/PMC7156397
https://doaj.org/article/a420a079a0b14d5f8275f666a06528c0
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002573620
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental and Molecular Medicine, 2020, 52(0), , pp.1-9
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLdgSIgXBBsf3cYpIMQDqFqbjyZ97E6bxkk7ocGke4vSNoHTuBbdbg_bX4-TtgcHA154qhSnVRPb8c-1awO85nlVO5W72JSmirl1MjbM0piWdSaqXJap9D8nn06zk3M-mYnZT62-fE5YVx6427gDw2liEpmbpEx5LZyiUjjE3AZtJ1VV8NbR5g3OVO9qCR7qL6cILmKGFmuIZzJ1cImD0ife-rTGRMY3GxYpFO5HO9Ms3W2Y8_fUyV_ip8EsHT-Chz2eJEW3jsdwxzbbsFM06EsvrskbEjI8w6fzbbh_2gfSd2CC4kH8v8G-RxHxKYakdeRsWpBFW_vsoe5DHpk3BBEiWXYd63HIT1v4eYgqQ17t9RM4Pz76ND6J-7YKcZVlfBWjhTfSWFTElCbMZHXq8JBDkF3m1jGTGGcUU9wKg7TKIbe4cyUCLcmMYXnNnsJW0zb2OZCUe5byCg8NxmWiDKOGWmS2oFYwxyNIhq3VVV9z3Le--KpD7Jsp3XFDIze054a-ieDt-pZvXcGNv00-9PxaT_S1ssMASpDuJUj_S4IieIXc1hfVPNzvr59bfbHU6FG81wr9ZcZFBPuDMOheyy81wp08U0jmt5NRCNHYIwSK4OWajOrrYzKmse1VeAQTaZYleQTPOtFarwbPWly2kBHIDaHbWO4mpZl_CSXCJbrliDQjeDeI54_X-uNu7v6P3dyDBzTolk_T24et1fLKvkDctipHcFfO5AjuFcXk4wSvh0fTD2c4Os7Go6C-3wHWzD6L
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwJeEGxcAgMMAh5A0RJf4uQBoXKZ2m3tA9qkvXlOYpdqNBltJ9T9KH4jx27SqTD2tqdIsR3FPrfv-Bz7ALzmWVHaNLOhznURcmNlqJmhIc3LRBSZzGPpDif3B0n3kO8eiaM1-N2ehXFpla1O9Iq6rAu3R75NuURwjh5D8vH0Z-iqRrnoaltCY8EWe2b-C1226YfeF6TvG0p3vh587oZNVYGwSBI-C9HAaakN8mFMI6aTMrYo44gx88xYpiNtdcpSboTGtsLiz3Jrc8QZkmnNspLhd2_ATTS8kXP25NGFgye4v_U5RkgTMrSTbRSVpdtTfClduq9LpoxkeL5iB325ALRu1cRehnT_Tdj8K2rrjeHOPbjboFjSWbDdfVgz1QZsdir04Mdz8pb4vFK_Yb8Bt_pN-H4TdpEpiTuR7CojEZfYSGpLvg06ZFyXLmdpsX1IRhVBXEomZtgUF3Pdxq4fYlmfzTt_AIfXsuwPYb2qK_MYSMwdI_ECVRXjMko1o5oaZDFBjWCWBxC1S6uK5qZzV3Djh_IRd5aqBTUUUkM5aqjzAN4th5wurvm4qvMnR69lR3dDt39RT4aqEXilOY10JDMd5TEvhU2pFBZ9RY2Yj6ZFFMArpLY6KUZ-vHsOa3UyUejH9FSKXjrjIoCtlhlUo1umCkFWlqTYzC9vXgpKAC-Xzag0XCRIV6Y-859gIk6SKAvg0YK1lrNBDY_TFjIAucJ0K9NdbalG3_3F5DIWLk4cwPuWPS9-67-r-eTqSbyA292D_r7a7w32nsId6iXIpQBuwfpscmaeISac5c-9IBI4vm7J_wMxGHDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QbDxERhgEPAAiprYTpw8INSxVevGqmli0t48J7FLNZqMdhPq_jT-Os5uElQYe9tTpNiOYt-Hf-c73wG84WlemCQ1vspU7nNthK-Ypj7NijjKU5GFwl5OPhjGu8d87yQ6WYFfzV0YG1bZ6ESnqIsqt2fkXcoFgnO0GOKuqcMiDrf7n85_-LaClPW0NuU0Fiyyr-c_0XybfRxsI63fUtrf-fp5168rDPh5HPMLHzc7JZRGngxpwFRchAblHfFmlmrDVKCMSljCdaSwLTf449yYDDGHYEqxtGD43TuwKqxV1IHVrZ3h4VFr7kXc5YAOEeD4DHfNxqfKku4MXwob_GtDKwPhXy3tiq54AO515dRch3v_Dd_8y4frtsb-fbhXY1rSWzDhA1jR5Tps9Eq05ydz8o64KFN3fL8Oawe1M38D9pBFib2fbOskERvmSCpDjoY9MqkKG8G0OEwk45IgSiVTPapLjdluE9sPka2L7Z0_hONbWfhH0CmrUj8BEnLLVjxHxcW4CBLFqKIaGS6iOmKGexA0SyvzOu-5Lb_xXTr_O0vkghoSqSEtNeSVB-_bIeeLpB83dd6y9Go72nzd7kU1Hcla_KXiNFCBSFWQhbyITEJFZNByVIgAaZIHHrxGasuzfOzG2-eokmdTiVbNQCZoszMeebDZMIOsNc1MIuRK4wSb-fXNrdh48KptRhVi_UKq1NWl-wSLwjgOUg8eL1irnQ3qe5x2JDwQS0y3NN3llnL8zaUpF2FkvcYefGjY889v_Xc1n948iZewhlIvvwyG-8_gLnUCZOMBN6FzMb3UzxEgXmQvakkkcHrbwv8b9s52aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+emerging+role+of+RNA+modifications+in+the+regulation+of+mRNA+stability&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Boo%2C+Sung+Ho&rft.au=Kim%2C+Yoon+Ki&rft.date=2020-03-01&rft.eissn=2092-6413&rft.volume=52&rft.issue=3&rft.spage=400&rft_id=info:doi/10.1038%2Fs12276-020-0407-z&rft_id=info%3Apmid%2F32210357&rft.externalDocID=32210357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3613&client=summon