The emerging role of RNA modifications in the regulation of mRNA stability
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding pro...
Saved in:
Published in | Experimental & molecular medicine Vol. 52; no. 3; pp. 400 - 408 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2020
Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including
N
6
-methyladenosine (m
6
A),
N
6
,2′-
O
-dimethyladenosine (m
6
Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m
5
C), and
N
4
-acetylcytidine (ac
4
C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Gene activity: the significance of RNA modification
Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability. |
---|---|
AbstractList | Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.Gene activity: the significance of RNA modificationMessenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability. Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. Gene activity: the significance of RNA modification Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability. Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N 6 -methyladenosine (m 6 A), N 6 ,2′- O -dimethyladenosine (m 6 Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m 5 C), and N 4 -acetylcytidine (ac 4 C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. Gene activity: the significance of RNA modification Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability. Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N 6 -methyladenosine (m 6 A), N 6 ,2′- O -dimethyladenosine (m 6 Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m 5 C), and N 4 -acetylcytidine (ac 4 C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. KCI Citation Count: 0 Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N -methyladenosine (m A), N ,2'-O-dimethyladenosine (m Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m C), and N -acetylcytidine (ac C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N 6 -methyladenosine (m 6 A), N 6 ,2′- O -dimethyladenosine (m 6 Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m 5 C), and N 4 -acetylcytidine (ac 4 C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications. Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the genetic information in DNA. Sung Ho Boo and Yoon Ki Kim at Korea University in Seoul review current understanding of the significance of modifications to messenger RNA with respect to RNA stability in mammalian cells. Recent advances in RNA sequencing technology have revealed hundreds of different modifications which, by influencing RNA stability, can control gene expression. The modifications largely involve small chemical groups added to any of the four nucleotide groups that make up an RNA molecule. This can affect all aspects of mature RNA biogenesis, including transcription, pre-mRNA splicing, RNA export form the nucleus to the cytoplasm, translation, and stability. |
Author | Boo, Sung Ho Kim, Yoon Ki |
Author_xml | – sequence: 1 givenname: Sung Ho surname: Boo fullname: Boo, Sung Ho organization: Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Division of Life Sciences, Korea University – sequence: 2 givenname: Yoon Ki orcidid: 0000-0003-1303-072X surname: Kim fullname: Kim, Yoon Ki email: yk-kim@korea.ac.kr organization: Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Division of Life Sciences, Korea University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32210357$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002573620$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kk9v1DAQxS1URLeFD8AFReJCDwH_ix1fkFYVhUUVSNVytiaJnXqb2MXOIrWfHu-mBVqJnizN_N7TeOYdoQMfvEHoNcHvCWb1h0QolaLEFJeYY1nePkMLihUtBSfsAC1yW5RMEHaIjlLaYEwrLvkLdMgozQaVXKCv60tTmNHE3vm-iGEwRbDFxbdlMYbOWdfC5IJPhfPFlMlo-u2wL-2wccelCRo3uOnmJXpuYUjm1d17jH6cfVqffinPv39enS7Py1YIPpWEKpBgpOKEYgaiIxa6TlLVKGMZYLBQs5qbCnKvtQ2R3NqGV0IyAKY6doxOZl8frb5qnQ7g9m8f9FXUy4v1StecC8arzK5mtguw0dfRjRBv9oJ9IcReQ5xcOxgNnGLAUgFuCO8qW1NZWSEEYFHRusXZ6-Psdb1tRtO1xk8RhgemDzveXeaZfmlJKsGUzAbv7gxi-Lk1adKjS60ZBvAmbJOmrGYVEQKrjL59hG7CNvq8Vk3zCZXCVIgnKVYrUecd8Ey9-XfuPwPfhyADcgbaGFKKxurWTfsj52-4QROsd3HTc9x0jpvexU3fZiV5pLw3f0pDZ03KrO9N_Dv0_0W_AaIB5OE |
CitedBy_id | crossref_primary_10_1109_TCBB_2024_3389094 crossref_primary_10_1002_jcp_31477 crossref_primary_10_3390_ijms22116166 crossref_primary_10_1002_mas_21923 crossref_primary_10_3390_cancers14215196 crossref_primary_10_1016_j_jbc_2021_100270 crossref_primary_10_1016_j_ejpb_2024_114207 crossref_primary_10_1021_acsnano_4c02987 crossref_primary_10_3390_pharmaceutics14122699 crossref_primary_10_3390_v14061338 crossref_primary_10_1016_j_mocell_2024_100130 crossref_primary_10_1093_humupd_dmaf002 crossref_primary_10_1186_s12943_022_01555_3 crossref_primary_10_1016_j_pbiomolbio_2025_01_003 crossref_primary_10_1111_imr_13033 crossref_primary_10_1016_j_lfs_2025_123505 crossref_primary_10_1093_nar_gkad802 crossref_primary_10_1016_j_tibs_2020_11_010 crossref_primary_10_2174_1568009621666210127092828 crossref_primary_10_3389_fcell_2021_694673 crossref_primary_10_3390_biology11020214 crossref_primary_10_2217_epi_2022_0110 crossref_primary_10_5423_PPJ_RW_07_2021_0111 crossref_primary_10_3389_fcell_2025_1533148 crossref_primary_10_1002_iid3_708 crossref_primary_10_1152_ajpheart_00532_2023 crossref_primary_10_1021_acssynbio_3c00621 crossref_primary_10_1038_s12276_024_01307_x crossref_primary_10_3389_fmolb_2021_710738 crossref_primary_10_1093_nar_gkae1222 crossref_primary_10_2174_0929867330666221014111403 crossref_primary_10_1042_BCJ20230096 crossref_primary_10_33549_physiolres_935265 crossref_primary_10_1016_j_omtn_2024_102284 crossref_primary_10_1017_S1047951122003523 crossref_primary_10_1016_j_clim_2023_109838 crossref_primary_10_1038_s41467_024_48428_5 crossref_primary_10_1016_j_jbc_2024_108015 crossref_primary_10_1021_jasms_3c00411 crossref_primary_10_1016_j_apsb_2023_03_001 crossref_primary_10_1016_j_ijbiomac_2024_131139 crossref_primary_10_1016_j_yexcr_2023_113620 crossref_primary_10_3389_fnmol_2023_1148219 crossref_primary_10_3390_ijms24076109 crossref_primary_10_1021_acschembio_4c00831 crossref_primary_10_1080_15476286_2021_2002003 crossref_primary_10_1016_j_plaphy_2022_04_031 crossref_primary_10_1002_advs_202206433 crossref_primary_10_1080_07853890_2024_2437046 crossref_primary_10_1038_s41592_022_01714_w crossref_primary_10_1038_s41418_023_01238_6 crossref_primary_10_3390_antiox10091483 crossref_primary_10_1002_2211_5463_13382 crossref_primary_10_59717_j_xinn_life_2024_100112 crossref_primary_10_3390_pharmaceutics15020622 crossref_primary_10_1016_j_exphem_2024_104279 crossref_primary_10_3390_pharmaceutics15020620 crossref_primary_10_1016_j_heliyon_2024_e38588 crossref_primary_10_1007_s40259_024_00665_2 crossref_primary_10_3389_fphar_2022_984453 crossref_primary_10_1016_j_ymthe_2023_02_012 crossref_primary_10_1038_s41467_024_51410_w crossref_primary_10_1021_acs_chemrev_3c00575 crossref_primary_10_1016_j_molcel_2024_04_011 crossref_primary_10_1172_JCI174847 crossref_primary_10_1007_s10565_024_09962_6 crossref_primary_10_1371_journal_pone_0268283 crossref_primary_10_1038_s41418_025_01483_x crossref_primary_10_1039_D1BM01658J crossref_primary_10_1016_j_smim_2023_101841 crossref_primary_10_1016_j_csbj_2024_10_042 crossref_primary_10_3390_ijms22094512 crossref_primary_10_1021_acscentsci_1c00197 crossref_primary_10_1039_D4CB00022F crossref_primary_10_1186_s12885_023_11794_2 crossref_primary_10_1002_mco2_559 crossref_primary_10_1186_s12967_022_03814_9 crossref_primary_10_1007_s12672_024_01093_y crossref_primary_10_1042_CS20210449 crossref_primary_10_1016_j_abb_2023_109714 crossref_primary_10_1093_g3journal_jkaa058 crossref_primary_10_1016_j_bioorg_2025_108328 crossref_primary_10_1021_acs_molpharmaceut_4c00826 crossref_primary_10_3389_fimmu_2022_839291 crossref_primary_10_1021_acs_chemrev_1c00009 crossref_primary_10_3389_fimmu_2024_1494873 crossref_primary_10_1021_acs_jpclett_2c01342 crossref_primary_10_3389_fcell_2022_915685 crossref_primary_10_1093_bib_bbae169 crossref_primary_10_3390_ijms23116210 crossref_primary_10_1021_acscentsci_1c00768 crossref_primary_10_3390_cells14060432 crossref_primary_10_3389_fgene_2023_1158954 crossref_primary_10_1016_j_csbj_2022_10_023 crossref_primary_10_1016_j_plaphy_2022_12_001 crossref_primary_10_1002_mc_23418 crossref_primary_10_1038_s41419_024_07257_6 crossref_primary_10_3390_cancers14153812 crossref_primary_10_1002_cbf_3750 crossref_primary_10_3390_ncrna7010003 crossref_primary_10_3390_genes13030540 crossref_primary_10_1002_advs_202303113 crossref_primary_10_1186_s12929_023_00911_9 crossref_primary_10_1371_journal_pone_0292212 crossref_primary_10_3390_ijms25020981 crossref_primary_10_1002_cbf_3996 crossref_primary_10_1016_j_ejphar_2025_177397 crossref_primary_10_1016_j_ijbiomac_2022_08_182 crossref_primary_10_1038_s41598_022_23585_z crossref_primary_10_1038_s41419_023_05909_7 crossref_primary_10_1186_s11658_024_00540_6 crossref_primary_10_3390_biomedicines10010050 crossref_primary_10_3892_ijo_2025_5735 crossref_primary_10_1111_jnc_16311 crossref_primary_10_1111_apha_14123 crossref_primary_10_1007_s11095_022_03433_5 crossref_primary_10_1016_j_conb_2024_102934 crossref_primary_10_1093_narmme_ugae004 crossref_primary_10_1136_jitc_2024_010301 crossref_primary_10_1186_s13619_024_00190_1 crossref_primary_10_1002_ange_202308028 crossref_primary_10_1016_j_celrep_2024_113779 crossref_primary_10_1038_s41477_025_01926_w crossref_primary_10_1016_j_jmb_2023_168299 crossref_primary_10_1515_hsz_2023_0182 crossref_primary_10_2174_0113892029288843240402042529 crossref_primary_10_1016_j_isci_2023_106215 crossref_primary_10_1080_17501911_2024_2390818 crossref_primary_10_1177_03936155231184908 crossref_primary_10_1002_cbic_202400220 crossref_primary_10_1002_wrna_1707 crossref_primary_10_1021_acs_est_4c05599 crossref_primary_10_1016_j_jconrel_2024_08_030 crossref_primary_10_1126_scitranslmed_ado2084 crossref_primary_10_1016_j_ygcen_2022_114047 crossref_primary_10_1016_j_ygcen_2023_114440 crossref_primary_10_1016_j_celrep_2022_111317 crossref_primary_10_1016_j_omtn_2024_102391 crossref_primary_10_1021_acschembio_1c00569 crossref_primary_10_26508_lsa_202302240 crossref_primary_10_1111_php_13688 crossref_primary_10_1128_mmbr_00057_21 crossref_primary_10_1186_s12866_025_03898_5 crossref_primary_10_1002_anie_202308028 crossref_primary_10_1038_s41388_023_02746_y crossref_primary_10_3390_ijms222111387 crossref_primary_10_1186_s12964_023_01357_0 crossref_primary_10_1186_s13046_024_03040_9 crossref_primary_10_1016_j_chembiol_2023_12_011 crossref_primary_10_1186_s12915_023_01651_w crossref_primary_10_1093_bib_bbae170 crossref_primary_10_3389_fmolb_2023_1163089 crossref_primary_10_3390_ijms21186770 crossref_primary_10_3390_ncrna7020031 crossref_primary_10_3390_microorganisms10091754 crossref_primary_10_1007_s00439_023_02560_2 crossref_primary_10_1186_s12864_022_08462_3 crossref_primary_10_1021_acsami_4c13087 crossref_primary_10_1186_s12943_024_02041_8 crossref_primary_10_3389_fimmu_2023_1152806 crossref_primary_10_3389_fgene_2023_1121694 crossref_primary_10_1093_biolre_ioac112 crossref_primary_10_1016_j_cbd_2024_101189 crossref_primary_10_3389_fmolb_2022_871737 crossref_primary_10_1002_adma_202107781 crossref_primary_10_1002_wrna_1689 crossref_primary_10_1210_endocr_bqae074 crossref_primary_10_1093_nar_gkab1083 crossref_primary_10_1080_15476286_2024_2372138 crossref_primary_10_3389_fcell_2021_628415 crossref_primary_10_1002_wrna_1681 crossref_primary_10_3390_genes14071386 crossref_primary_10_1038_s41593_022_01207_1 crossref_primary_10_3389_fcell_2024_1435717 crossref_primary_10_3389_fpls_2021_748120 crossref_primary_10_1002_cpz1_683 crossref_primary_10_1021_acs_jmedchem_4c00599 crossref_primary_10_1080_15476286_2020_1841458 crossref_primary_10_3389_fendo_2022_907060 crossref_primary_10_1261_rna_079396_122 crossref_primary_10_3389_fmolb_2021_780315 crossref_primary_10_1007_s40820_025_01665_9 crossref_primary_10_3390_genes15080996 crossref_primary_10_3390_ijms24054721 crossref_primary_10_3390_molecules28041517 crossref_primary_10_1371_journal_ppat_1010972 crossref_primary_10_3390_ijms25073696 crossref_primary_10_1016_j_heliyon_2023_e20969 crossref_primary_10_3389_fgene_2023_1245683 crossref_primary_10_1097_SHK_0000000000002211 crossref_primary_10_1177_11772719221105145 crossref_primary_10_1186_s10020_021_00362_8 crossref_primary_10_1016_j_semcancer_2020_11_007 crossref_primary_10_1016_j_freeradbiomed_2023_12_041 crossref_primary_10_3389_fcell_2022_975684 crossref_primary_10_5582_bst_2022_01473 crossref_primary_10_3389_fphys_2022_837662 crossref_primary_10_7759_cureus_16197 crossref_primary_10_1021_acschembio_3c00555 crossref_primary_10_3390_ijms22179578 crossref_primary_10_1186_s13287_022_02851_x crossref_primary_10_1038_s41586_023_06800_3 crossref_primary_10_1016_j_omtn_2024_102440 crossref_primary_10_1371_journal_pone_0318697 crossref_primary_10_1128_msystems_01163_23 crossref_primary_10_1002_ctm2_180 crossref_primary_10_1016_j_bbadis_2024_167273 crossref_primary_10_1016_j_phrs_2024_107187 crossref_primary_10_1016_j_semcancer_2022_03_018 crossref_primary_10_1021_acsami_5c00920 crossref_primary_10_3390_plants11081033 crossref_primary_10_1146_annurev_biochem_030222_112310 crossref_primary_10_1111_cas_15503 crossref_primary_10_1016_j_bbagen_2023_130498 crossref_primary_10_1016_j_canlet_2024_217159 crossref_primary_10_31083_j_fbl2812346 crossref_primary_10_1111_php_13923 crossref_primary_10_3934_mbe_2024013 crossref_primary_10_1261_rna_079950_124 crossref_primary_10_1038_s42003_025_07488_z crossref_primary_10_3390_diseases11020064 crossref_primary_10_1016_j_ymthe_2022_05_001 crossref_primary_10_1002_cbic_202300784 crossref_primary_10_3390_cancers15082243 crossref_primary_10_1002_adhm_202302409 crossref_primary_10_3390_cells11152399 crossref_primary_10_1002_adhm_202203022 crossref_primary_10_1038_s41576_023_00645_2 crossref_primary_10_3389_fendo_2023_1223583 crossref_primary_10_1007_s13353_024_00840_9 crossref_primary_10_1016_j_scienta_2024_113725 crossref_primary_10_1002_pmic_202000235 crossref_primary_10_1039_D0SC03509B crossref_primary_10_1371_journal_pone_0237689 crossref_primary_10_1016_j_ijpharm_2024_125069 crossref_primary_10_1007_s00018_024_05304_1 crossref_primary_10_1038_s41573_023_00827_x crossref_primary_10_3390_sym15030731 crossref_primary_10_1007_s11240_023_02538_y crossref_primary_10_3390_ncrna10050052 crossref_primary_10_1016_j_jchromb_2022_123396 crossref_primary_10_1186_s10020_024_00965_x crossref_primary_10_1021_acs_molpharmaceut_3c00439 crossref_primary_10_3390_v14081666 crossref_primary_10_3390_ijms222111870 crossref_primary_10_3390_jpm14060555 crossref_primary_10_3390_ijms23010501 crossref_primary_10_1016_j_intimp_2024_111997 crossref_primary_10_1093_bib_bbae688 crossref_primary_10_3390_cells10061557 crossref_primary_10_1016_j_micres_2024_127671 crossref_primary_10_1016_j_toxlet_2023_01_010 crossref_primary_10_3390_pharmaceutics13020140 crossref_primary_10_3390_plants14050780 crossref_primary_10_1016_j_cellsig_2024_111242 crossref_primary_10_1038_s41419_023_06412_9 crossref_primary_10_1016_j_ijbiomac_2025_140863 crossref_primary_10_1039_D2SC00670G crossref_primary_10_1093_nar_gkad565 crossref_primary_10_1016_j_csbj_2025_02_029 crossref_primary_10_2217_imt_2021_0187 crossref_primary_10_1093_nar_gkac594 crossref_primary_10_1186_s12967_023_04173_9 crossref_primary_10_1186_s12943_025_02283_0 crossref_primary_10_1016_j_envpol_2025_125896 crossref_primary_10_2174_1566523222666220830150446 crossref_primary_10_3389_fimmu_2023_1286820 crossref_primary_10_3390_biochem2030012 crossref_primary_10_3390_biom10091310 crossref_primary_10_2174_0113816128270476231023052228 crossref_primary_10_1016_j_isci_2023_108703 crossref_primary_10_1016_j_exer_2021_108889 crossref_primary_10_3390_ijms21145161 crossref_primary_10_1186_s12864_023_09573_1 crossref_primary_10_1002_cam4_5500 crossref_primary_10_1111_bph_16030 crossref_primary_10_1111_febs_16688 crossref_primary_10_1007_s12016_025_09041_6 crossref_primary_10_3390_cancers14030527 crossref_primary_10_1016_j_jhazmat_2024_136873 crossref_primary_10_1186_s13048_022_01058_1 crossref_primary_10_1016_j_omtn_2022_05_024 crossref_primary_10_4103_NRR_NRR_D_23_01592 crossref_primary_10_1093_jmcb_mjae012 crossref_primary_10_1002_ibra_12183 crossref_primary_10_1093_bfgp_elab003 crossref_primary_10_1080_09553002_2021_2004329 crossref_primary_10_3390_ijms222312912 crossref_primary_10_1016_j_critrevonc_2024_104459 crossref_primary_10_1016_j_addr_2021_113834 crossref_primary_10_1016_j_addr_2021_114007 crossref_primary_10_1016_j_tig_2024_01_001 crossref_primary_10_3390_cells13100819 crossref_primary_10_1007_s12539_023_00561_3 crossref_primary_10_1038_s41388_022_02439_y crossref_primary_10_1038_s41467_023_42015_w crossref_primary_10_1002_wcms_1643 crossref_primary_10_1111_mmi_14688 crossref_primary_10_1002_adtp_202400269 crossref_primary_10_1016_j_arr_2024_102234 crossref_primary_10_1007_s12640_023_00669_w crossref_primary_10_1093_nar_gkaf049 crossref_primary_10_1016_j_celrep_2022_110861 crossref_primary_10_1186_s13046_022_02551_7 crossref_primary_10_1161_CIRCRESAHA_123_323428 crossref_primary_10_1038_s41467_021_25710_4 crossref_primary_10_1016_j_ceb_2024_102400 crossref_primary_10_1021_acs_molpharmaceut_3c00089 crossref_primary_10_1093_bioinformatics_btad696 crossref_primary_10_1021_acsnano_4c05653 crossref_primary_10_2174_2211738510666220825145124 crossref_primary_10_1007_s00299_023_03046_1 crossref_primary_10_1007_s10528_024_10875_6 crossref_primary_10_1016_j_addr_2023_114973 crossref_primary_10_56530_lcgc_eu_jk3969w4 crossref_primary_10_1021_acs_analchem_4c01446 crossref_primary_10_1016_j_jhazmat_2023_132677 crossref_primary_10_1002_jmv_29942 crossref_primary_10_1093_nar_gkae1168 crossref_primary_10_47570_joci_2024_004 crossref_primary_10_1016_j_biomaterials_2024_122853 crossref_primary_10_1172_JCI179016 crossref_primary_10_1038_s41418_023_01201_5 |
Cites_doi | 10.1038/s41422-018-0113-8 10.1042/BST20160433 10.1261/rna.2191905 10.1038/s41467-019-11375-7 10.3389/fgene.2018.00743 10.1016/j.molcel.2019.04.025 10.1101/cshperspect.a012559 10.1038/nature12730 10.1038/s41556-018-0045-z 10.1016/j.molcel.2019.06.033 10.1261/rna.062794.117 10.1038/nchembio.687 10.1371/journal.pone.0193804 10.1016/j.cell.2017.05.003 10.1016/j.celrep.2014.05.048 10.1016/j.molcel.2012.10.015 10.1038/nrm3457 10.1016/j.cell.2018.10.030 10.1038/nsmb.3462 10.1038/nchembio.1432 10.1038/nature21022 10.1074/jbc.REV119.006513 10.7554/eLife.49117 10.1186/s12943-019-1033-z 10.1146/annurev-genet-120417-031522 10.5483/BMBRep.2015.48.7.131 10.1038/s41594-018-0164-z 10.1093/nar/gkn954 10.1073/pnas.0609737104 10.1016/j.molcel.2019.03.036 10.1093/nar/gkx1030 10.1186/s13059-016-1139-1 10.1016/j.tig.2019.10.011 10.1007/978-3-030-19966-1_4 10.2144/000113801 10.1242/jcs.024976 10.1038/cr.2014.3 10.1093/nar/gkx306 10.1038/nbt.2566 10.1371/journal.pgen.1006804 10.1016/j.cell.2012.04.017 10.1038/s41580-019-0126-2 10.1038/s41422-018-0117-4 10.1186/gb4143 10.1038/ncomms12626 10.1007/s00018-010-0568-3 10.1038/onc.2017.351 10.1101/gad.286484.116 10.1038/nature11112 10.1261/rna.064238.117 10.1038/mt.2008.200 10.1016/j.molcel.2018.08.004 10.1016/j.stem.2019.03.021 10.1093/nar/gkq701 10.1093/nar/gkp1117 10.1038/nature10165 10.1261/rna.063503.117 10.1074/jbc.RA118.004215 10.3390/genes8110301 10.1007/978-3-030-31434-7_4 10.1016/j.bbagrm.2018.11.002 10.1016/j.tig.2017.06.006 10.1002/wrna.1332 10.1016/j.celrep.2014.10.042 10.1038/nature21355 10.1038/nchembio.1836 10.1038/cr.2017.55 10.1016/j.molcel.2019.05.030 10.1038/nmeth.4110 10.1038/s41556-019-0361-y 10.1073/pnas.1806912115 10.1146/annurev-biochem-080111-092106 10.1016/j.cell.2017.09.003 10.7554/eLife.15528 10.1016/j.molcel.2018.08.011 10.1016/j.freeradbiomed.2012.01.009 10.1371/journal.pone.0227647 10.1038/nrg.2016.169 10.1016/j.freeradbiomed.2014.11.018 10.1093/nar/gks144 10.1038/ncb2902 10.1016/j.molcel.2019.06.006 10.1016/j.cell.2017.05.045 10.1038/ncomms1692 10.1038/s41422-019-0230-z 10.1016/j.molmed.2018.07.010 10.1038/s41556-019-0319-0 10.1038/nature04530 10.1016/j.cell.2014.08.028 10.1038/cr.2017.15 10.1038/nature13802 10.3390/genes10020117 10.1002/wrna.1366 10.1038/s41467-019-13579-3 10.1261/rna.070136.118 10.1016/j.ccell.2017.02.013 10.1002/bies.201600092 10.1016/j.celrep.2013.06.029 10.1016/j.molcel.2019.02.034 10.1126/science.aax2957 10.1021/bi0201872 10.1016/j.cell.2012.05.003 10.1126/science.aav0080 10.1016/j.tig.2019.12.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA ACYCR |
DOI | 10.1038/s12276-020-0407-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2092-6413 |
EndPage | 408 |
ExternalDocumentID | oai_kci_go_kr_ARTI_8446345 oai_doaj_org_article_a420a079a0b14d5f8275f666a06528c0 PMC7156397 32210357 10_1038_s12276_020_0407_z |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2018R1A5A1024261 funderid: https://doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2018R1A5A1024261 – fundername: ; grantid: NRF-2018R1A5A1024261 |
GroupedDBID | --- 0R~ 29G 2WC 3V. 5-W 53G 5GY 7X7 87B 88E 8FE 8FH 8FI 8FJ 8JR 9ZL AAJSJ ABUWG ACGFO ACGFS ACPRK ACSMW ACYCR ADBBV AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI C1A C6C CCPQU DIK DU5 E3Z EBLON EBS EF. EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE LK8 M1P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT TR2 UKHRP W2D XSB AASML AAYXX CITATION OVT PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO AAADF AFGXO |
ID | FETCH-LOGICAL-c664t-129a7ae7941203a6d1fadd729b9ef3a0afa8384e5aa6dcfb174ffb45673aa39d3 |
IEDL.DBID | DOA |
ISSN | 1226-3613 2092-6413 |
IngestDate | Wed Feb 07 01:48:16 EST 2024 Wed Aug 27 01:28:00 EDT 2025 Thu Aug 21 18:08:33 EDT 2025 Fri Jul 11 02:40:40 EDT 2025 Wed Aug 13 02:51:21 EDT 2025 Wed Aug 13 04:44:01 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Tue Jul 01 04:10:30 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Fri Feb 21 02:40:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-129a7ae7941203a6d1fadd729b9ef3a0afa8384e5aa6dcfb174ffb45673aa39d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1303-072X |
OpenAccessLink | https://doaj.org/article/a420a079a0b14d5f8275f666a06528c0 |
PMID | 32210357 |
PQID | 2389686344 |
PQPubID | 2041975 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_8446345 doaj_primary_oai_doaj_org_article_a420a079a0b14d5f8275f666a06528c0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7156397 proquest_miscellaneous_2383516609 proquest_journals_2474990266 proquest_journals_2389686344 pubmed_primary_32210357 crossref_citationtrail_10_1038_s12276_020_0407_z crossref_primary_10_1038_s12276_020_0407_z springer_journals_10_1038_s12276_020_0407_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: Seoul |
PublicationTitle | Experimental & molecular medicine |
PublicationTitleAbbrev | Exp Mol Med |
PublicationTitleAlternate | Exp Mol Med |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group – name: 생화학분자생물학회 |
References | Yang (CR93) 2017; 27 Schmid, Jensen (CR39) 2019; 1203 Singh, Pratt, Yeo, Moore (CR13) 2015; 84 Malbec (CR106) 2019; 29 Sharma (CR102) 2017; 13 Dimitrova, Teysset, Carre (CR2) 2019; 10 Kim, Maquat (CR43) 2019; 25 Park (CR44) 2016; 30 Chen, Zhang, Zhu (CR17) 2019; 18 Tanaka, Chock, Stadtman (CR73) 2007; 104 Hayakawa (CR79) 2002; 41 Shi (CR51) 2017; 27 Park (CR36) 2019; 74 Ping (CR23) 2014; 24 Nunomura, Lee, Zhu, Perry (CR68) 2017; 45 Zhang (CR105) 2019; 74 Rehwinkel, Behm-Ansmant, Gatfield, Izaurralde (CR66) 2005; 11 Graille, Seraphin (CR76) 2012; 13 Zhang (CR55) 2018; 27 Shi, Wei, He (CR7) 2019; 74 Poulsen (CR69) 2012; 52 Wu (CR59) 2019; 29 Wolin, Maquat (CR41) 2019; 366 Delaunay, Frye (CR1) 2019; 21 Cho (CR46) 2015; 112 Jamar, Kritsiligkou, Grant (CR70) 2017; 45 Sun, Zhang, Li, Bai, Yi (CR61) 2019; 29 Jarrous (CR47) 2017; 33 Picard-Jean (CR104) 2018; 13 Squires (CR98) 2012; 40 Jarrous, Gopalan (CR49) 2010; 38 Kadumuri, Janga (CR4) 2018; 24 Edupuganti (CR56) 2017; 24 Boccaletto (CR9) 2018; 46 Li (CR84) 2015; 11 Nachtergaele, He (CR5) 2018; 52 Zhao (CR14) 2017; 542 Li, Xiong, Yi (CR10) 2016; 14 Dominissini (CR20) 2012; 485 Mattijssen (CR48) 2011; 68 Schwartz (CR83) 2014; 159 Yang (CR95) 2019; 75 D’Orazio (CR78) 2019; 8 Saramago, da Costa, Viegas, Arraiano (CR40) 2019; 1157 Penzo, Guerrieri, Zacchini, Trere, Montanaro (CR86) 2017; 8 Meyer (CR21) 2012; 149 Zhang (CR100) 2012; 3 Khoddami, Cairns (CR92) 2013; 31 Kato (CR35) 2012; 149 Reijns, Alexander, Spiller, Beggs (CR34) 2008; 121 Sendinc (CR63) 2019; 75 Tirumuru (CR52) 2016; 5 Wang (CR58) 2014; 16 Ishii, Hayakawa, Igawa, Sekiguchi, Sekiguchi (CR81) 2018; 115 Zhang (CR60) 2017; 31 CR64 Chen (CR94) 2019; 21 Park, Do, Kim (CR45) 2015; 48 Collart (CR37) 2016; 7 Mugridge, Coller, Gross (CR65) 2018; 25 Huang, Weng, Chen (CR18) 2020; 36 Simms, Hudson, Mosior, Rangwala, Zaher (CR71) 2014; 9 Elliott (CR103) 2019; 10 Kretschmer (CR53) 2018; 24 Adachi, De Zoysa, Yu (CR85) 2019; 1862 Motorin, Lyko, Helm (CR96) 2010; 38 Yan, Zaher (CR11) 2019; 294 Nance (CR27) 2020; 15 Amort (CR99) 2017; 18 Simms, Thomas, Zaher (CR75) 2017; 8 Paris (CR16) 2019; 25 Jia (CR29) 2011; 7 Wang (CR25) 2014; 505 Carlile (CR82) 2014; 515 Liu (CR22) 2014; 10 Mendel (CR26) 2018; 71 Hussain, Aleksic, Blanco, Dietmann, Frye (CR90) 2013; 14 Huang (CR54) 2018; 20 Hussain (CR91) 2013; 4 Visvanathan (CR57) 2018; 37 Cadet, Wagner (CR67) 2013; 5 Karijolich, Yu (CR87) 2011; 474 Boulias (CR62) 2019; 75 Schwartz (CR24) 2014; 8 Mauer (CR31) 2017; 541 Yan, Simms, McLoughlin, Vierstra, Zaher (CR12) 2019; 10 CR19 Doma, Parker (CR77) 2006; 440 Roundtree, Evans, Pan, He (CR6) 2017; 169 Ikeuchi, Izawa, Inada (CR74) 2018; 9 Wei (CR32) 2018; 71 Lu (CR50) 2018; 293 Pendleton (CR28) 2017; 169 Ukleja, Valpuesta, Dziembowski, Cuellar (CR38) 2016; 38 Du (CR33) 2016; 7 Kurosaki, Popp, Maquat (CR42) 2019; 20 Jonkhout (CR3) 2017; 23 McKinlay, Gerard, Fields (CR72) 2012; 52 Arango (CR101) 2018; 175 Helm, Motorin (CR8) 2017; 18 Schaefer, Pollex, Hanna, Lyko (CR97) 2009; 37 Ishii, Hayakawa, Sekiguchi, Adachi, Sekiguchi (CR80) 2015; 79 Zheng (CR30) 2013; 49 Yoon (CR15) 2017; 171 Nakamoto, Lovejoy, Cygan, Boothroyd (CR89) 2017; 23 Kariko (CR88) 2008; 16 J Cadet (407_CR67) 2013; 5 N Tirumuru (407_CR52) 2016; 5 X Yang (407_CR93) 2017; 27 M Schaefer (407_CR97) 2009; 37 S Schwartz (407_CR83) 2014; 159 V Khoddami (407_CR92) 2013; 31 J Rehwinkel (407_CR66) 2005; 11 LL Yan (407_CR11) 2019; 294 S Mattijssen (407_CR48) 2011; 68 KJ Yoon (407_CR15) 2017; 171 M Helm (407_CR8) 2017; 18 HE Poulsen (407_CR69) 2012; 52 KD Meyer (407_CR21) 2012; 149 G Jia (407_CR29) 2011; 7 IA Roundtree (407_CR6) 2017; 169 H Huang (407_CR18) 2020; 36 BS Zhao (407_CR14) 2017; 542 CL Simms (407_CR71) 2014; 9 X Li (407_CR10) 2016; 14 K Ikeuchi (407_CR74) 2018; 9 OH Park (407_CR45) 2015; 48 M Penzo (407_CR86) 2017; 8 T Amort (407_CR99) 2017; 18 D Dominissini (407_CR20) 2012; 485 407_CR19 KN D’Orazio (407_CR78) 2019; 8 CL Simms (407_CR75) 2017; 8 Y Motorin (407_CR96) 2010; 38 MK Doma (407_CR77) 2006; 440 N Jarrous (407_CR49) 2010; 38 JS Mugridge (407_CR65) 2018; 25 A Visvanathan (407_CR57) 2018; 37 K Kariko (407_CR88) 2008; 16 S Hussain (407_CR91) 2013; 4 XY Chen (407_CR17) 2019; 18 G Zheng (407_CR30) 2013; 49 RV Kadumuri (407_CR4) 2018; 24 Y Wang (407_CR58) 2014; 16 T Ishii (407_CR80) 2015; 79 G Singh (407_CR13) 2015; 84 F Zhang (407_CR55) 2018; 27 OH Park (407_CR36) 2019; 74 M Schmid (407_CR39) 2019; 1203 F Picard-Jean (407_CR104) 2018; 13 H Sun (407_CR61) 2019; 29 A Nunomura (407_CR68) 2017; 45 L Malbec (407_CR106) 2019; 29 N Jonkhout (407_CR3) 2017; 23 P Boccaletto (407_CR9) 2018; 46 TM Carlile (407_CR82) 2014; 515 S Hussain (407_CR90) 2013; 14 JE Squires (407_CR98) 2012; 40 T Kurosaki (407_CR42) 2019; 20 SL Wolin (407_CR41) 2019; 366 M Kato (407_CR35) 2012; 149 D Arango (407_CR101) 2018; 175 MA Collart (407_CR37) 2016; 7 MA Nakamoto (407_CR89) 2017; 23 H Hayakawa (407_CR79) 2002; 41 H Du (407_CR33) 2016; 7 J Kretschmer (407_CR53) 2018; 24 T Ishii (407_CR81) 2018; 115 J Paris (407_CR16) 2019; 25 M Saramago (407_CR40) 2019; 1157 X Wang (407_CR25) 2014; 505 J Wei (407_CR32) 2018; 71 BA Elliott (407_CR103) 2019; 10 NH Jamar (407_CR70) 2017; 45 W Lu (407_CR50) 2018; 293 A McKinlay (407_CR72) 2012; 52 S Sharma (407_CR102) 2017; 13 H Shi (407_CR7) 2019; 74 RR Edupuganti (407_CR56) 2017; 24 N Jarrous (407_CR47) 2017; 33 R Wu (407_CR59) 2019; 29 M Ukleja (407_CR38) 2016; 38 M Tanaka (407_CR73) 2007; 104 X Li (407_CR84) 2015; 11 S Delaunay (407_CR1) 2019; 21 E Sendinc (407_CR63) 2019; 75 H Adachi (407_CR85) 2019; 1862 J Liu (407_CR22) 2014; 10 XL Ping (407_CR23) 2014; 24 H Shi (407_CR51) 2017; 27 S Schwartz (407_CR24) 2014; 8 DG Dimitrova (407_CR2) 2019; 10 S Zhang (407_CR60) 2017; 31 YK Kim (407_CR43) 2019; 25 KE Pendleton (407_CR28) 2017; 169 J Mauer (407_CR31) 2017; 541 J Karijolich (407_CR87) 2011; 474 H Huang (407_CR54) 2018; 20 LL Yan (407_CR12) 2019; 10 K Boulias (407_CR62) 2019; 75 407_CR64 H Cho (407_CR46) 2015; 112 S Nachtergaele (407_CR5) 2018; 52 MA Reijns (407_CR34) 2008; 121 M Mendel (407_CR26) 2018; 71 OH Park (407_CR44) 2016; 30 M Graille (407_CR76) 2012; 13 X Chen (407_CR94) 2019; 21 DJ Nance (407_CR27) 2020; 15 LS Zhang (407_CR105) 2019; 74 Y Yang (407_CR95) 2019; 75 X Zhang (407_CR100) 2012; 3 |
References_xml | – volume: 29 start-page: 23 year: 2019 end-page: 41 ident: CR59 article-title: A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination publication-title: Cell Res. doi: 10.1038/s41422-018-0113-8 – volume: 45 start-page: 1053 year: 2017 end-page: 1066 ident: CR68 article-title: Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders publication-title: Biochem Soc. Trans. doi: 10.1042/BST20160433 – volume: 11 start-page: 1640 year: 2005 end-page: 1647 ident: CR66 article-title: A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing publication-title: RNA doi: 10.1261/rna.2191905 – volume: 10 year: 2019 ident: CR103 article-title: Modification of messenger RNA by 2’-O-methylation regulates gene expression in vivo publication-title: Nat. Commun. doi: 10.1038/s41467-019-11375-7 – volume: 9 start-page: 743 year: 2018 ident: CR74 article-title: Recent progress on the molecular mechanism of quality controls induced by ribosome stalling publication-title: Front. Genet. doi: 10.3389/fgene.2018.00743 – volume: 74 start-page: 640 year: 2019 end-page: 650 ident: CR7 article-title: Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.04.025 – volume: 5 start-page: a012559 year: 2013 ident: CR67 article-title: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a012559 – volume: 505 start-page: 117 year: 2014 end-page: 120 ident: CR25 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 – volume: 20 start-page: 285 year: 2018 end-page: 295 ident: CR54 article-title: Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0045-z – volume: 75 start-page: 1188 year: 2019 end-page: 1202 e1111 ident: CR95 article-title: RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.033 – volume: 23 start-page: 1834 year: 2017 end-page: 1849 ident: CR89 article-title: mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii publication-title: RNA doi: 10.1261/rna.062794.117 – volume: 7 start-page: 885 year: 2011 end-page: 887 ident: CR29 article-title: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.687 – volume: 13 year: 2018 ident: CR104 article-title: 2’-O-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO publication-title: PLoS ONE doi: 10.1371/journal.pone.0193804 – volume: 169 start-page: 824 year: 2017 end-page: 835 e814 ident: CR28 article-title: The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention publication-title: Cell doi: 10.1016/j.cell.2017.05.003 – volume: 8 start-page: 284 year: 2014 end-page: 296 ident: CR24 article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.048 – volume: 49 start-page: 18 year: 2013 end-page: 29 ident: CR30 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 13 start-page: 727 year: 2012 end-page: 735 ident: CR76 article-title: Surveillance pathways rescuing eukaryotic ribosomes lost in translation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3457 – ident: CR19 – volume: 175 start-page: 1872 year: 2018 end-page: 1886 ident: CR101 article-title: Acetylation of cytidine in mRNA promotes translation efficiency publication-title: Cell doi: 10.1016/j.cell.2018.10.030 – volume: 24 start-page: 870 year: 2017 end-page: 878 ident: CR56 article-title: N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3462 – volume: 10 start-page: 93 year: 2014 end-page: 95 ident: CR22 article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1432 – volume: 541 start-page: 371 year: 2017 end-page: 375 ident: CR31 article-title: Reversible methylation of m(6)Am in the 5’ cap controls mRNA stability publication-title: Nature doi: 10.1038/nature21022 – volume: 294 start-page: 15158 year: 2019 end-page: 15171 ident: CR11 article-title: How do cells cope with RNA damage and its consequences? publication-title: J. Biol. Chem. doi: 10.1074/jbc.REV119.006513 – volume: 8 year: 2019 ident: CR78 article-title: The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay publication-title: Elife doi: 10.7554/eLife.49117 – volume: 18 year: 2019 ident: CR17 article-title: The role of m(6)A RNA methylation in human cancer publication-title: Mol. Cancer doi: 10.1186/s12943-019-1033-z – volume: 52 start-page: 349 year: 2018 end-page: 372 ident: CR5 article-title: Chemical modifications in the life of an mRNA transcript publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120417-031522 – volume: 48 start-page: 367 year: 2015 end-page: 368 ident: CR45 article-title: A new function of glucocorticoid receptor: regulation of mRNA stability publication-title: BMB Rep. doi: 10.5483/BMBRep.2015.48.7.131 – volume: 25 start-page: 1077 year: 2018 end-page: 1085 ident: CR65 article-title: Structural and molecular mechanisms for the control of eukaryotic 5’-3’ mRNA decay publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0164-z – volume: 37 year: 2009 ident: CR97 article-title: RNA cytosine methylation analysis by bisulfite sequencing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn954 – volume: 104 start-page: 66 year: 2007 end-page: 71 ident: CR73 article-title: Oxidized messenger RNA induces translation errors publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0609737104 – volume: 74 start-page: 1304 year: 2019 end-page: 1316. e1308 ident: CR105 article-title: Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.036 – volume: 46 start-page: D303 year: 2018 end-page: D307 ident: CR9 article-title: MODOMICS: a database of RNA modification pathways. 2017 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1030 – volume: 18 year: 2017 ident: CR99 article-title: Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain publication-title: Genome Biol. doi: 10.1186/s13059-016-1139-1 – volume: 36 start-page: 44 year: 2020 end-page: 52 ident: CR18 article-title: The biogenesis and precise control of RNA m(6)A methylation publication-title: Trends Genet. doi: 10.1016/j.tig.2019.10.011 – volume: 1157 start-page: 85 year: 2019 end-page: 98 ident: CR40 article-title: The implication of mRNA degradation disorders on human disease: focus on DIS3 and DIS3-like enzymes publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-19966-1_4 – volume: 52 start-page: 109 year: 2012 end-page: 111 ident: CR72 article-title: Global analysis of RNA oxidation in Saccharomyces cerevisiae publication-title: Biotechniques doi: 10.2144/000113801 – volume: 27 start-page: 3936 year: 2018 end-page: 3950 ident: CR55 article-title: Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets publication-title: Hum. Mol. Genet. – volume: 121 start-page: 2463 year: 2008 end-page: 2472 ident: CR34 article-title: A role for Q/N-rich aggregation-prone regions in P-body localization publication-title: J. Cell Sci. doi: 10.1242/jcs.024976 – volume: 24 start-page: 177 year: 2014 end-page: 189 ident: CR23 article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase publication-title: Cell Res. doi: 10.1038/cr.2014.3 – volume: 45 start-page: 6881 year: 2017 end-page: 6893 ident: CR70 article-title: The non-stop decay mRNA surveillance pathway is required for oxidative stress tolerance publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx306 – volume: 31 start-page: 458 year: 2013 end-page: 464 ident: CR92 article-title: Identification of direct targets and modified bases of RNA cytosine methyltransferases publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2566 – volume: 13 year: 2017 ident: CR102 article-title: Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006804 – volume: 149 start-page: 753 year: 2012 end-page: 767 ident: CR35 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 20 start-page: 406 year: 2019 end-page: 420 ident: CR42 article-title: Quality and quantity control of gene expression by nonsense-mediated mRNA decay publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0126-2 – volume: 29 start-page: 80 year: 2019 end-page: 82 ident: CR61 article-title: Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase publication-title: Cell Res. doi: 10.1038/s41422-018-0117-4 – volume: 14 year: 2013 ident: CR90 article-title: Characterizing 5-methylcytosine in the mammalian epitranscriptome publication-title: Genome Biol. doi: 10.1186/gb4143 – volume: 7 year: 2016 ident: CR33 article-title: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex publication-title: Nat. Commun. doi: 10.1038/ncomms12626 – volume: 68 start-page: 2469 year: 2011 end-page: 2480 ident: CR48 article-title: Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-010-0568-3 – volume: 112 start-page: E1540 year: 2015 end-page: E1549 ident: CR46 article-title: Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation publication-title: Proc. Natl Acad. Sci. USA – volume: 37 start-page: 522 year: 2018 end-page: 533 ident: CR57 article-title: Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance publication-title: Oncogene doi: 10.1038/onc.2017.351 – volume: 30 start-page: 2093 year: 2016 end-page: 2105 ident: CR44 article-title: Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay publication-title: Genes Dev. doi: 10.1101/gad.286484.116 – volume: 485 start-page: 201 year: 2012 end-page: 206 ident: CR20 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature doi: 10.1038/nature11112 – volume: 24 start-page: 1339 year: 2018 end-page: 1350 ident: CR53 article-title: The m(6)A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5’-3’ exoribonuclease XRN1 publication-title: RNA doi: 10.1261/rna.064238.117 – volume: 16 start-page: 1833 year: 2008 end-page: 1840 ident: CR88 article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability publication-title: Mol. Ther. doi: 10.1038/mt.2008.200 – volume: 71 start-page: 986 year: 2018 end-page: 1000 e1011 ident: CR26 article-title: Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.004 – volume: 25 start-page: 137 year: 2019 end-page: 148 e136 ident: CR16 article-title: Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.03.021 – volume: 38 start-page: 7885 year: 2010 end-page: 7894 ident: CR49 article-title: Archaeal/eukaryal RNase P: subunits, functions and RNA diversification publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq701 – volume: 38 start-page: 1415 year: 2010 end-page: 1430 ident: CR96 article-title: 5-methylcytosine in RNA: detection, enzymatic formation and biological functions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp1117 – volume: 474 start-page: 395 year: 2011 end-page: 398 ident: CR87 article-title: Converting nonsense codons into sense codons by targeted pseudouridylation publication-title: Nature doi: 10.1038/nature10165 – volume: 23 start-page: 1754 year: 2017 end-page: 1769 ident: CR3 article-title: The RNA modification landscape in human disease publication-title: RNA doi: 10.1261/rna.063503.117 – volume: 293 start-page: 12992 year: 2018 end-page: 13005 ident: CR50 article-title: N(6)-Methyladenosine-binding proteins suppress HIV-1 infectivity and viral production publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004215 – volume: 8 start-page: 301 year: 2017 ident: CR86 article-title: RNA pseudouridylation in physiology and medicine: for better and for worse publication-title: Genes (Basel) doi: 10.3390/genes8110301 – volume: 1203 start-page: 113 year: 2019 end-page: 132 ident: CR39 article-title: The nuclear RNA exosome and its cofactors publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-31434-7_4 – volume: 1862 start-page: 230 year: 2019 end-page: 239 ident: CR85 article-title: Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2018.11.002 – volume: 33 start-page: 594 year: 2017 end-page: 603 ident: CR47 article-title: Roles of RNase P and its subunits publication-title: Trends Genet. doi: 10.1016/j.tig.2017.06.006 – volume: 7 start-page: 438 year: 2016 end-page: 454 ident: CR37 article-title: The Ccr4-Not complex is a key regulator of eukaryotic gene expression publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1332 – volume: 9 start-page: 1256 year: 2014 end-page: 1264 ident: CR71 article-title: An active role for the ribosome in determining the fate of oxidized mRNA publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.042 – volume: 542 start-page: 475 year: 2017 end-page: 478 ident: CR14 article-title: m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition publication-title: Nature doi: 10.1038/nature21355 – volume: 11 start-page: 592 year: 2015 end-page: 597 ident: CR84 article-title: Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1836 – volume: 27 start-page: 606 year: 2017 end-page: 625 ident: CR93 article-title: 5-Methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader publication-title: Cell Res. doi: 10.1038/cr.2017.55 – volume: 75 start-page: 620 year: 2019 end-page: 630.e629 ident: CR63 article-title: PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.030 – volume: 14 start-page: 23 year: 2016 end-page: 31 ident: CR10 article-title: Epitranscriptome sequencing technologies: decoding RNA modifications publication-title: Nat. Methods doi: 10.1038/nmeth.4110 – volume: 21 start-page: 978 year: 2019 end-page: 990 ident: CR94 article-title: 5-Methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0361-y – volume: 115 start-page: 6715 year: 2018 end-page: 6720 ident: CR81 article-title: Specific binding of PCBP1 to heavily oxidized RNA to induce cell death publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806912115 – volume: 84 start-page: 325 year: 2015 end-page: 354 ident: CR13 article-title: The clothes make the mRNA: past and present trends in mRNP fashion publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-080111-092106 – volume: 171 start-page: 877 year: 2017 end-page: 889 e817 ident: CR15 article-title: Temporal control of mammalian cortical neurogenesis by m(6)A methylation publication-title: Cell doi: 10.1016/j.cell.2017.09.003 – volume: 5 year: 2016 ident: CR52 article-title: N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression publication-title: Elife doi: 10.7554/eLife.15528 – ident: CR64 – volume: 71 start-page: 973 year: 2018 end-page: 985 e975 ident: CR32 article-title: Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.011 – volume: 52 start-page: 1353 year: 2012 end-page: 1361 ident: CR69 article-title: RNA modifications by oxidation: a novel disease mechanism? publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.01.009 – volume: 15 year: 2020 ident: CR27 article-title: Characterization of METTL16 as a cytoplasmic RNA binding protein publication-title: PLoS ONE doi: 10.1371/journal.pone.0227647 – volume: 18 start-page: 275 year: 2017 end-page: 291 ident: CR8 article-title: Detecting RNA modifications in the epitranscriptome: predict and validate publication-title: Nat. Rev. Genet doi: 10.1038/nrg.2016.169 – volume: 79 start-page: 109 year: 2015 end-page: 116 ident: CR80 article-title: Role of Auf1 in elimination of oxidatively damaged messenger RNA in human cells publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.11.018 – volume: 40 start-page: 5023 year: 2012 end-page: 5033 ident: CR98 article-title: Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks144 – volume: 16 start-page: 191 year: 2014 end-page: 198 ident: CR58 article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2902 – volume: 75 start-page: 631 year: 2019 end-page: 643.e638 ident: CR62 article-title: Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.006 – volume: 169 start-page: 1187 year: 2017 end-page: 1200 ident: CR6 article-title: Dynamic RNA modifications in gene expression regulation publication-title: Cell doi: 10.1016/j.cell.2017.05.045 – volume: 3 year: 2012 ident: CR100 article-title: The tRNA methyltransferase NSun2 stabilizes p16INK(4) mRNA by methylating the 3’-untranslated region of p16 publication-title: Nat. Commun. doi: 10.1038/ncomms1692 – volume: 29 start-page: 927 year: 2019 end-page: 941 ident: CR106 article-title: Dynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translation publication-title: Cell Res. doi: 10.1038/s41422-019-0230-z – volume: 24 start-page: 886 year: 2018 end-page: 903 ident: CR4 article-title: Epitranscriptomic code and its alterations in human disease publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2018.07.010 – volume: 21 start-page: 552 year: 2019 end-page: 559 ident: CR1 article-title: RNA modifications regulating cell fate in cancer publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0319-0 – volume: 440 start-page: 561 year: 2006 end-page: 564 ident: CR77 article-title: Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation publication-title: Nature doi: 10.1038/nature04530 – volume: 159 start-page: 148 year: 2014 end-page: 162 ident: CR83 article-title: Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA publication-title: Cell doi: 10.1016/j.cell.2014.08.028 – volume: 27 start-page: 315 year: 2017 end-page: 328 ident: CR51 article-title: YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA publication-title: Cell Res. doi: 10.1038/cr.2017.15 – volume: 515 start-page: 143 year: 2014 end-page: 146 ident: CR82 article-title: Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells publication-title: Nature doi: 10.1038/nature13802 – volume: 10 start-page: 117 year: 2019 ident: CR2 article-title: RNA 2’-O-methylation (Nm) modification in human diseases publication-title: Genes (Basel) doi: 10.3390/genes10020117 – volume: 8 year: 2017 ident: CR75 article-title: Ribosome-based quality control of mRNA and nascent peptides publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1366 – volume: 10 year: 2019 ident: CR12 article-title: Oxidation and alkylation stresses activate ribosome-quality control publication-title: Nat. Commun. doi: 10.1038/s41467-019-13579-3 – volume: 25 start-page: 407 year: 2019 end-page: 422 ident: CR43 article-title: UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond publication-title: RNA doi: 10.1261/rna.070136.118 – volume: 31 start-page: 591 year: 2017 end-page: 606. e596 ident: CR60 article-title: m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.013 – volume: 38 start-page: 1048 year: 2016 end-page: 1058 ident: CR38 article-title: Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: new structural insights to unravel CCR4-NOT mRNA processing machinery publication-title: Bioessays doi: 10.1002/bies.201600092 – volume: 4 start-page: 255 year: 2013 end-page: 261 ident: CR91 article-title: NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.06.029 – volume: 74 start-page: 494 year: 2019 end-page: 507 e498 ident: CR36 article-title: Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.034 – volume: 366 start-page: 822 year: 2019 end-page: 827 ident: CR41 article-title: Cellular RNA surveillance in health and disease publication-title: Science doi: 10.1126/science.aax2957 – volume: 41 start-page: 12739 year: 2002 end-page: 12744 ident: CR79 article-title: Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine publication-title: Biochemistry doi: 10.1021/bi0201872 – volume: 149 start-page: 1635 year: 2012 end-page: 1646 ident: CR21 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 1157 start-page: 85 year: 2019 ident: 407_CR40 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-19966-1_4 – volume: 542 start-page: 475 year: 2017 ident: 407_CR14 publication-title: Nature doi: 10.1038/nature21355 – volume: 25 start-page: 407 year: 2019 ident: 407_CR43 publication-title: RNA doi: 10.1261/rna.070136.118 – volume: 121 start-page: 2463 year: 2008 ident: 407_CR34 publication-title: J. Cell Sci. doi: 10.1242/jcs.024976 – volume: 30 start-page: 2093 year: 2016 ident: 407_CR44 publication-title: Genes Dev. doi: 10.1101/gad.286484.116 – volume: 24 start-page: 870 year: 2017 ident: 407_CR56 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3462 – volume: 84 start-page: 325 year: 2015 ident: 407_CR13 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-080111-092106 – volume: 24 start-page: 886 year: 2018 ident: 407_CR4 publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2018.07.010 – volume: 38 start-page: 1048 year: 2016 ident: 407_CR38 publication-title: Bioessays doi: 10.1002/bies.201600092 – volume: 71 start-page: 986 year: 2018 ident: 407_CR26 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.004 – volume: 10 year: 2019 ident: 407_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13579-3 – volume: 14 start-page: 23 year: 2016 ident: 407_CR10 publication-title: Nat. Methods doi: 10.1038/nmeth.4110 – volume: 16 start-page: 1833 year: 2008 ident: 407_CR88 publication-title: Mol. Ther. doi: 10.1038/mt.2008.200 – volume: 505 start-page: 117 year: 2014 ident: 407_CR25 publication-title: Nature doi: 10.1038/nature12730 – volume: 31 start-page: 458 year: 2013 ident: 407_CR92 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2566 – volume: 75 start-page: 631 year: 2019 ident: 407_CR62 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.006 – volume: 45 start-page: 1053 year: 2017 ident: 407_CR68 publication-title: Biochem Soc. Trans. doi: 10.1042/BST20160433 – volume: 149 start-page: 1635 year: 2012 ident: 407_CR21 publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 10 start-page: 93 year: 2014 ident: 407_CR22 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1432 – volume: 23 start-page: 1754 year: 2017 ident: 407_CR3 publication-title: RNA doi: 10.1261/rna.063503.117 – volume: 25 start-page: 1077 year: 2018 ident: 407_CR65 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0164-z – volume: 515 start-page: 143 year: 2014 ident: 407_CR82 publication-title: Nature doi: 10.1038/nature13802 – volume: 45 start-page: 6881 year: 2017 ident: 407_CR70 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx306 – volume: 16 start-page: 191 year: 2014 ident: 407_CR58 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2902 – volume: 23 start-page: 1834 year: 2017 ident: 407_CR89 publication-title: RNA doi: 10.1261/rna.062794.117 – volume: 75 start-page: 620 year: 2019 ident: 407_CR63 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.030 – volume: 104 start-page: 66 year: 2007 ident: 407_CR73 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0609737104 – volume: 68 start-page: 2469 year: 2011 ident: 407_CR48 publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-010-0568-3 – volume: 29 start-page: 23 year: 2019 ident: 407_CR59 publication-title: Cell Res. doi: 10.1038/s41422-018-0113-8 – volume: 9 start-page: 1256 year: 2014 ident: 407_CR71 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.042 – volume: 74 start-page: 1304 year: 2019 ident: 407_CR105 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.036 – volume: 485 start-page: 201 year: 2012 ident: 407_CR20 publication-title: Nature doi: 10.1038/nature11112 – volume: 18 start-page: 275 year: 2017 ident: 407_CR8 publication-title: Nat. Rev. Genet doi: 10.1038/nrg.2016.169 – volume: 20 start-page: 406 year: 2019 ident: 407_CR42 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0126-2 – volume: 33 start-page: 594 year: 2017 ident: 407_CR47 publication-title: Trends Genet. doi: 10.1016/j.tig.2017.06.006 – volume: 8 year: 2017 ident: 407_CR75 publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1366 – volume: 169 start-page: 1187 year: 2017 ident: 407_CR6 publication-title: Cell doi: 10.1016/j.cell.2017.05.045 – volume: 294 start-page: 15158 year: 2019 ident: 407_CR11 publication-title: J. Biol. Chem. doi: 10.1074/jbc.REV119.006513 – volume: 18 year: 2019 ident: 407_CR17 publication-title: Mol. Cancer doi: 10.1186/s12943-019-1033-z – volume: 25 start-page: 137 year: 2019 ident: 407_CR16 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.03.021 – volume: 52 start-page: 349 year: 2018 ident: 407_CR5 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120417-031522 – volume: 474 start-page: 395 year: 2011 ident: 407_CR87 publication-title: Nature doi: 10.1038/nature10165 – volume: 13 year: 2017 ident: 407_CR102 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006804 – volume: 21 start-page: 552 year: 2019 ident: 407_CR1 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0319-0 – volume: 8 start-page: 301 year: 2017 ident: 407_CR86 publication-title: Genes (Basel) doi: 10.3390/genes8110301 – volume: 40 start-page: 5023 year: 2012 ident: 407_CR98 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks144 – volume: 13 start-page: 727 year: 2012 ident: 407_CR76 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3457 – volume: 11 start-page: 592 year: 2015 ident: 407_CR84 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1836 – volume: 1862 start-page: 230 year: 2019 ident: 407_CR85 publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2018.11.002 – ident: 407_CR64 doi: 10.1126/science.aav0080 – volume: 7 start-page: 885 year: 2011 ident: 407_CR29 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.687 – volume: 7 start-page: 438 year: 2016 ident: 407_CR37 publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1332 – volume: 27 start-page: 315 year: 2017 ident: 407_CR51 publication-title: Cell Res. doi: 10.1038/cr.2017.15 – volume: 29 start-page: 927 year: 2019 ident: 407_CR106 publication-title: Cell Res. doi: 10.1038/s41422-019-0230-z – volume: 10 year: 2019 ident: 407_CR103 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11375-7 – volume: 79 start-page: 109 year: 2015 ident: 407_CR80 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.11.018 – volume: 38 start-page: 1415 year: 2010 ident: 407_CR96 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp1117 – volume: 1203 start-page: 113 year: 2019 ident: 407_CR39 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-31434-7_4 – volume: 149 start-page: 753 year: 2012 ident: 407_CR35 publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 75 start-page: 1188 year: 2019 ident: 407_CR95 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.033 – volume: 37 start-page: 522 year: 2018 ident: 407_CR57 publication-title: Oncogene doi: 10.1038/onc.2017.351 – volume: 71 start-page: 973 year: 2018 ident: 407_CR32 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.011 – volume: 18 year: 2017 ident: 407_CR99 publication-title: Genome Biol. doi: 10.1186/s13059-016-1139-1 – volume: 36 start-page: 44 year: 2020 ident: 407_CR18 publication-title: Trends Genet. doi: 10.1016/j.tig.2019.10.011 – volume: 8 start-page: 284 year: 2014 ident: 407_CR24 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.048 – volume: 74 start-page: 640 year: 2019 ident: 407_CR7 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.04.025 – volume: 4 start-page: 255 year: 2013 ident: 407_CR91 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.06.029 – volume: 5 start-page: a012559 year: 2013 ident: 407_CR67 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a012559 – volume: 41 start-page: 12739 year: 2002 ident: 407_CR79 publication-title: Biochemistry doi: 10.1021/bi0201872 – volume: 175 start-page: 1872 year: 2018 ident: 407_CR101 publication-title: Cell doi: 10.1016/j.cell.2018.10.030 – volume: 48 start-page: 367 year: 2015 ident: 407_CR45 publication-title: BMB Rep. doi: 10.5483/BMBRep.2015.48.7.131 – volume: 29 start-page: 80 year: 2019 ident: 407_CR61 publication-title: Cell Res. doi: 10.1038/s41422-018-0117-4 – volume: 52 start-page: 1353 year: 2012 ident: 407_CR69 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.01.009 – volume: 293 start-page: 12992 year: 2018 ident: 407_CR50 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004215 – volume: 169 start-page: 824 year: 2017 ident: 407_CR28 publication-title: Cell doi: 10.1016/j.cell.2017.05.003 – volume: 8 year: 2019 ident: 407_CR78 publication-title: Elife doi: 10.7554/eLife.49117 – volume: 115 start-page: 6715 year: 2018 ident: 407_CR81 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806912115 – volume: 37 year: 2009 ident: 407_CR97 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn954 – volume: 9 start-page: 743 year: 2018 ident: 407_CR74 publication-title: Front. Genet. doi: 10.3389/fgene.2018.00743 – volume: 38 start-page: 7885 year: 2010 ident: 407_CR49 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq701 – volume: 171 start-page: 877 year: 2017 ident: 407_CR15 publication-title: Cell doi: 10.1016/j.cell.2017.09.003 – volume: 15 year: 2020 ident: 407_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0227647 – volume: 366 start-page: 822 year: 2019 ident: 407_CR41 publication-title: Science doi: 10.1126/science.aax2957 – volume: 49 start-page: 18 year: 2013 ident: 407_CR30 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 7 year: 2016 ident: 407_CR33 publication-title: Nat. Commun. doi: 10.1038/ncomms12626 – volume: 159 start-page: 148 year: 2014 ident: 407_CR83 publication-title: Cell doi: 10.1016/j.cell.2014.08.028 – volume: 3 year: 2012 ident: 407_CR100 publication-title: Nat. Commun. doi: 10.1038/ncomms1692 – volume: 20 start-page: 285 year: 2018 ident: 407_CR54 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0045-z – volume: 541 start-page: 371 year: 2017 ident: 407_CR31 publication-title: Nature doi: 10.1038/nature21022 – volume: 31 start-page: 591 year: 2017 ident: 407_CR60 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.013 – volume: 10 start-page: 117 year: 2019 ident: 407_CR2 publication-title: Genes (Basel) doi: 10.3390/genes10020117 – volume: 5 year: 2016 ident: 407_CR52 publication-title: Elife doi: 10.7554/eLife.15528 – volume: 24 start-page: 1339 year: 2018 ident: 407_CR53 publication-title: RNA doi: 10.1261/rna.064238.117 – volume: 112 start-page: E1540 year: 2015 ident: 407_CR46 publication-title: Proc. Natl Acad. Sci. USA – ident: 407_CR19 doi: 10.1016/j.tig.2019.12.007 – volume: 74 start-page: 494 year: 2019 ident: 407_CR36 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.034 – volume: 24 start-page: 177 year: 2014 ident: 407_CR23 publication-title: Cell Res. doi: 10.1038/cr.2014.3 – volume: 27 start-page: 606 year: 2017 ident: 407_CR93 publication-title: Cell Res. doi: 10.1038/cr.2017.55 – volume: 14 year: 2013 ident: 407_CR90 publication-title: Genome Biol. doi: 10.1186/gb4143 – volume: 27 start-page: 3936 year: 2018 ident: 407_CR55 publication-title: Hum. Mol. Genet. – volume: 11 start-page: 1640 year: 2005 ident: 407_CR66 publication-title: RNA doi: 10.1261/rna.2191905 – volume: 13 year: 2018 ident: 407_CR104 publication-title: PLoS ONE doi: 10.1371/journal.pone.0193804 – volume: 440 start-page: 561 year: 2006 ident: 407_CR77 publication-title: Nature doi: 10.1038/nature04530 – volume: 52 start-page: 109 year: 2012 ident: 407_CR72 publication-title: Biotechniques doi: 10.2144/000113801 – volume: 46 start-page: D303 year: 2018 ident: 407_CR9 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1030 – volume: 21 start-page: 978 year: 2019 ident: 407_CR94 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0361-y |
SSID | ssj0025474 |
Score | 2.653054 |
SecondaryResourceType | review_article |
Snippet | Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the... Gene activity: the significance of RNA modification Messenger RNA molecules play their key role in directing the manufacture of proteins via translating the... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 400 |
SubjectTerms | 631/337/1645/2020 631/337/1645/2570 Animals Biomedical and Life Sciences Biomedicine Cytoplasm Gene expression Humans Mammalian cells Mammals - genetics Medical Biochemistry Molecular Medicine Molecular modelling mRNA stability N6-methyladenosine Nucleotide sequence Review Review Article RNA - genetics RNA modification RNA Stability - genetics RNA transport RNA, Messenger - genetics RNA-binding protein RNA-Binding Proteins - genetics Splicing Stem Cells Transcription 생화학 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAXBC2PQEEGIQ6gqIkfcXJCC6IqldoDotLeLCexy6psUrLbQ_vrmXEe1ULpKZLtRHHm9Y1nMgPwThZV7fPCx7a0VSyd17EVjse8rDNVFbpMNf2cfHScHZzIw7maDwduqyGtctSJQVHXbUVn5HtcagTn6DFkn85_x9Q1iqKrQwuNu3CPSpcRV-v5tcOlZKjCnCLEiAXarTGqKfK9FQ5qSr-l5MZEx1cbdimU70dr03T-JuT5bwLlX1HUYJz2H8HDAVWyWc8Gj-GOa7ZhZ9agR728ZO9ZyPMMB-jbcP9oCKfvwCEyCaM_hKlTEaNEQ9Z69v14xpZtTTlE_XEeWzQMcSLr-r71OETLlrQOsWXIrr18Aif7X398OYiH5gpxlWVyHaOdt9o6FMeUJ8JmdepR1SHULgvnhU2st7nIpVMW5yqPNJPelwi3tLBWFLV4CltN27jnwFJJhJUVqg4hdZJbwS13SHLFnRJeRpCMn9ZUQ-VxaoDxy4QIuMhNTw2D1DBEDXMVwYfplvO-7MZtiz8TvaaFVDE7DLTdqRkE0FjJE5vowiZlKmvlc66VR9_NIgbjeZVE8Bapbc6qRbifrqetOesM-hXfTI5es5Aqgt2RGcwg6yuDoKfIcpyWN09PjBvBm2kahZgiM7Zx7UV4hFBpliVFBM961pp2gxoXt610BHqD6Ta2uznTLH6GQuEanXPEmxF8HNnz-rX--zVf3L6Jl_CAB6mhNLxd2Fp3F-4V4rJ1-ToI3x8SPzJT priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJiEuCDY-OgYKCHEAVaT5aNJjQUzjSdsBmLRblLbJ9jRei7q3w_bXz0nbhx4bSJwq1W7V1Hb8c-w4AG9FUTdeFz61la1T4bxKLXcsZVWTy7pQVabC5uTDo_zgWMxO5MkGZNNemFi0H1taxml6qg77eJExpkK5bChGpCq9vgdboVM7qvZWWc6-z1ZRlhSx9TLy5ylHZzWlMrm-_ZI1ZxR79qOLaXt_F9y8XTX5R-o0eqT9R_BwhJKkHD7-MWy4dht2ShxXt7gi70gs7oyr5ttw_3DMoe_ADDWDhG3B4XgiEqoLSefJt6OSLLomFA4Na3hk3hIEh6QfDqvHW4FtEfgQUMaS2qsncLz_5cfng3Q8USGt81wsU3TuVlmHNpgxym3eZB7nN8TXVeE8t9R6q7kWTlqk1R4FJbyvEGMpbi0vGv4UNtuudc-BZCJIU9Q4X3ChqLacWeZQzpI5yb1IgE6_1tRju_Fw6sVPE9PeXJtBGgalYYI0zHUC71eP_Bp6bfyL-VOQ14oxtMmON7r-1IxqY6xg1FJVWFplopFeMyU9BmwWgRfTNU3gDUrbnNfz-Hy4nnbmvDcYTHw1GkNlLmQCe5MymNHALwwinSLXSBZ3k1EJ0c8j-kng9YqMlhvSMbZ13WV8BZdZntMigWeDaq1Gg9MsDluqBNSa0q0Nd53Szs9id3CFETmCzAQ-TOr5-7P--jd3_4v7BTxg0YhCKd4ebC77S_cSsdmyejVa4w1znzFw priority: 102 providerName: Springer Nature |
Title | The emerging role of RNA modifications in the regulation of mRNA stability |
URI | https://link.springer.com/article/10.1038/s12276-020-0407-z https://www.ncbi.nlm.nih.gov/pubmed/32210357 https://www.proquest.com/docview/2389686344 https://www.proquest.com/docview/2474990266 https://www.proquest.com/docview/2383516609 https://pubmed.ncbi.nlm.nih.gov/PMC7156397 https://doaj.org/article/a420a079a0b14d5f8275f666a06528c0 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002573620 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental and Molecular Medicine, 2020, 52(0), , pp.1-9 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLdgSIgXBBsf3cYpIMQDqFqbjyZ97E6bxkk7ocGke4vSNoHTuBbdbg_bX4-TtgcHA154qhSnVRPb8c-1awO85nlVO5W72JSmirl1MjbM0piWdSaqXJap9D8nn06zk3M-mYnZT62-fE5YVx6427gDw2liEpmbpEx5LZyiUjjE3AZtJ1VV8NbR5g3OVO9qCR7qL6cILmKGFmuIZzJ1cImD0ife-rTGRMY3GxYpFO5HO9Ms3W2Y8_fUyV_ip8EsHT-Chz2eJEW3jsdwxzbbsFM06EsvrskbEjI8w6fzbbh_2gfSd2CC4kH8v8G-RxHxKYakdeRsWpBFW_vsoe5DHpk3BBEiWXYd63HIT1v4eYgqQ17t9RM4Pz76ND6J-7YKcZVlfBWjhTfSWFTElCbMZHXq8JBDkF3m1jGTGGcUU9wKg7TKIbe4cyUCLcmMYXnNnsJW0zb2OZCUe5byCg8NxmWiDKOGWmS2oFYwxyNIhq3VVV9z3Le--KpD7Jsp3XFDIze054a-ieDt-pZvXcGNv00-9PxaT_S1ssMASpDuJUj_S4IieIXc1hfVPNzvr59bfbHU6FG81wr9ZcZFBPuDMOheyy81wp08U0jmt5NRCNHYIwSK4OWajOrrYzKmse1VeAQTaZYleQTPOtFarwbPWly2kBHIDaHbWO4mpZl_CSXCJbrliDQjeDeI54_X-uNu7v6P3dyDBzTolk_T24et1fLKvkDctipHcFfO5AjuFcXk4wSvh0fTD2c4Os7Go6C-3wHWzD6L |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwJeEGxcAgMMAh5A0RJf4uQBoXKZ2m3tA9qkvXlOYpdqNBltJ9T9KH4jx27SqTD2tqdIsR3FPrfv-Bz7ALzmWVHaNLOhznURcmNlqJmhIc3LRBSZzGPpDif3B0n3kO8eiaM1-N2ehXFpla1O9Iq6rAu3R75NuURwjh5D8vH0Z-iqRrnoaltCY8EWe2b-C1226YfeF6TvG0p3vh587oZNVYGwSBI-C9HAaakN8mFMI6aTMrYo44gx88xYpiNtdcpSboTGtsLiz3Jrc8QZkmnNspLhd2_ATTS8kXP25NGFgye4v_U5RkgTMrSTbRSVpdtTfClduq9LpoxkeL5iB325ALRu1cRehnT_Tdj8K2rrjeHOPbjboFjSWbDdfVgz1QZsdir04Mdz8pb4vFK_Yb8Bt_pN-H4TdpEpiTuR7CojEZfYSGpLvg06ZFyXLmdpsX1IRhVBXEomZtgUF3Pdxq4fYlmfzTt_AIfXsuwPYb2qK_MYSMwdI_ECVRXjMko1o5oaZDFBjWCWBxC1S6uK5qZzV3Djh_IRd5aqBTUUUkM5aqjzAN4th5wurvm4qvMnR69lR3dDt39RT4aqEXilOY10JDMd5TEvhU2pFBZ9RY2Yj6ZFFMArpLY6KUZ-vHsOa3UyUejH9FSKXjrjIoCtlhlUo1umCkFWlqTYzC9vXgpKAC-Xzag0XCRIV6Y-859gIk6SKAvg0YK1lrNBDY_TFjIAucJ0K9NdbalG3_3F5DIWLk4cwPuWPS9-67-r-eTqSbyA292D_r7a7w32nsId6iXIpQBuwfpscmaeISac5c-9IBI4vm7J_wMxGHDQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QbDxERhgEPAAiprYTpw8INSxVevGqmli0t48J7FLNZqMdhPq_jT-Os5uElQYe9tTpNiOYt-Hf-c73wG84WlemCQ1vspU7nNthK-Ypj7NijjKU5GFwl5OPhjGu8d87yQ6WYFfzV0YG1bZ6ESnqIsqt2fkXcoFgnO0GOKuqcMiDrf7n85_-LaClPW0NuU0Fiyyr-c_0XybfRxsI63fUtrf-fp5168rDPh5HPMLHzc7JZRGngxpwFRchAblHfFmlmrDVKCMSljCdaSwLTf449yYDDGHYEqxtGD43TuwKqxV1IHVrZ3h4VFr7kXc5YAOEeD4DHfNxqfKku4MXwob_GtDKwPhXy3tiq54AO515dRch3v_Dd_8y4frtsb-fbhXY1rSWzDhA1jR5Tps9Eq05ydz8o64KFN3fL8Oawe1M38D9pBFib2fbOskERvmSCpDjoY9MqkKG8G0OEwk45IgSiVTPapLjdluE9sPka2L7Z0_hONbWfhH0CmrUj8BEnLLVjxHxcW4CBLFqKIaGS6iOmKGexA0SyvzOu-5Lb_xXTr_O0vkghoSqSEtNeSVB-_bIeeLpB83dd6y9Go72nzd7kU1Hcla_KXiNFCBSFWQhbyITEJFZNByVIgAaZIHHrxGasuzfOzG2-eokmdTiVbNQCZoszMeebDZMIOsNc1MIuRK4wSb-fXNrdh48KptRhVi_UKq1NWl-wSLwjgOUg8eL1irnQ3qe5x2JDwQS0y3NN3llnL8zaUpF2FkvcYefGjY889v_Xc1n948iZewhlIvvwyG-8_gLnUCZOMBN6FzMb3UzxEgXmQvakkkcHrbwv8b9s52aw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+emerging+role+of+RNA+modifications+in+the+regulation+of+mRNA+stability&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Boo%2C+Sung+Ho&rft.au=Kim%2C+Yoon+Ki&rft.date=2020-03-01&rft.eissn=2092-6413&rft.volume=52&rft.issue=3&rft.spage=400&rft_id=info:doi/10.1038%2Fs12276-020-0407-z&rft_id=info%3Apmid%2F32210357&rft.externalDocID=32210357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3613&client=summon |