Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid

The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly r...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 38; pp. 16548 - 16553
Main Authors Muñoz-Espín, Daniel, Holguera, Isabel, Ballesteros-Plaza, David, Carballido-López, Rut, Salas, Margarita
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.09.2010
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1010530107

Cover

Loading…
Abstract The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
AbstractList The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli , respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1–73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages phi 29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage phi 29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminaldomain the efficiency of phi 29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli , respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1–73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages {phi}29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage {phi}29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of {phi}29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages Ie29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage Ie29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of Ie29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ...29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ...29 revealed that the TP N-terminal domain (residues 1 - 73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ...29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. (ProQuest: ... denotes formulae/symbols omitted.)
Author Holguera, Isabel
Ballesteros-Plaza, David
Carballido-López, Rut
Salas, Margarita
Muñoz-Espín, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Muñoz-Espín
  fullname: Muñoz-Espín, Daniel
– sequence: 2
  givenname: Isabel
  surname: Holguera
  fullname: Holguera, Isabel
– sequence: 3
  givenname: David
  surname: Ballesteros-Plaza
  fullname: Ballesteros-Plaza, David
– sequence: 4
  givenname: Rut
  surname: Carballido-López
  fullname: Carballido-López, Rut
– sequence: 5
  givenname: Margarita
  surname: Salas
  fullname: Salas, Margarita
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20823229$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01204301$$DView record in HAL
BookMark eNqFkk1vEzEQhi1URNPAmRNoxQU4hNpef16QohYoUgQX4Gp5vd7E0cbe2k6l8uvrbUJbcmgvtuV55h175j0BRz54C8BrBD8hyOvTwetUTgjSuiz8GZggKNGMEQmPwARCzGeCYHIMTlJaQwglFfAFOMZQ4BpjOQHtHxd1X2UbN86XwxBDts5XrYvW5FRZHfvrKsSl9u6vzi74KnTVsNJLW53_mFfRDr0zu4DOVV7ZqtGmyLki5remt8G1L8HzTvfJvtrvU_D765dfZxezxc9v38_mi5lhrM6zTmvWUAwpI1B3RmPITNcYa5u2gUILKVtmWyM0JqRFnWaWNl3bciiNRB2z9RR83ukO22ZTSOtz-ZwaotvoeK2Cdur_iHcrtQxXCktCOK2LwMedwOog7WK-UOMdRBiS0uorVNj3-2IxXG5tymrjkrF9r70N26QEorSgFD5JcoYxR4izp0lKkRScj9U_PEoigSlBcpzzFLw7QNdhG8uwb_UgQQTRAr192Lq7z_9zSgFOd4CJIaVouzsEQTV6UY1eVPdeLBn0IMO4fOuU0nvXP5JX7Z8yBu6rcFULhRgloiBvdsg65RAfPJZzycuAbgC5a_eX
CitedBy_id crossref_primary_10_1073_pnas_2116278119
crossref_primary_10_1371_journal_pone_0164901
crossref_primary_10_1038_srep04823
crossref_primary_10_3389_fmolb_2016_00037
crossref_primary_10_1073_pnas_1114397108
crossref_primary_10_1073_pnas_1216635109
crossref_primary_10_1073_pnas_1203824109
crossref_primary_10_1038_s41467_020_17515_8
crossref_primary_10_1093_nar_gkv374
crossref_primary_10_1093_nar_gku660
crossref_primary_10_1016_j_mib_2013_08_007
crossref_primary_10_3389_fmicb_2021_641317
crossref_primary_10_1038_s41589_023_01387_2
crossref_primary_10_1128_JB_05104_11
crossref_primary_10_1073_pnas_1311524110
crossref_primary_10_1073_pnas_2018297118
crossref_primary_10_1074_jbc_X112_433458
crossref_primary_10_1111_mmi_12404
crossref_primary_10_1038_s42003_024_07082_9
crossref_primary_10_1016_j_mib_2011_07_010
crossref_primary_10_1016_j_virol_2014_08_003
crossref_primary_10_1016_j_virusres_2013_11_015
crossref_primary_10_1266_ggs_87_347
crossref_primary_10_1016_j_cub_2012_07_027
crossref_primary_10_1074_jbc_M115_682278
crossref_primary_10_1093_nar_gkv127
crossref_primary_10_1146_annurev_virology_012822_125828
crossref_primary_10_1111_mmi_12456
crossref_primary_10_1080_21597081_2016_1271250
crossref_primary_10_1371_journal_pone_0072765
Cites_doi 10.1074/jbc.M910058199
10.1016/S0079-6603(08)60888-0
10.1016/j.virol.2006.02.005
10.1073/pnas.0804982105
10.1016/j.cell.2005.01.007
10.1016/j.cub.2003.10.024
10.1074/jbc.M501687200
10.1111/j.1365-2958.2004.03993.x
10.1128/jvi.61.12.3983-3991.1987
10.1038/sj.emboj.7601266
10.1128/JVI.79.14.9097-9107.2005
10.1093/nar/gkm749
10.1093/nar/17.24.10353
10.1093/nar/gkg405
10.1101/gad.4.7.1197
10.1186/1471-2121-6-10
10.1128/MMBR.00014-06
10.1111/j.1365-2958.1997.mmi530.x
10.1074/jbc.M007855200
10.1111/j.1365-2958.2005.04506.x
10.1073/pnas.0906465106
10.1093/nar/gkh668
10.1146/annurev.bi.60.070191.000351
10.1101/gad.366606
10.1038/sj.emboj.7601027
10.1016/j.virol.2007.03.005
10.1007/978-1-4615-4707-5_8
10.1093/emboj/cdg504
10.1128/jvi.67.6.3384-3395.1993
10.1074/jbc.M403297200
ContentType Journal Article
Copyright Copyright National Academy of Sciences Sep 21, 2010
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright National Academy of Sciences Sep 21, 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
7T7
1XC
VOOES
5PM
DOI 10.1073/pnas.1010530107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
DatabaseTitleList CrossRef


Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic


AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 16553
ExternalDocumentID PMC2944753
oai_HAL_hal_01204301v1
2147620441
20823229
10_1073_pnas_1010530107
107_38_16548
20779704
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
7T7
.GJ
1XC
3O-
692
6TJ
79B
ACKIV
AFHIN
AFQQW
HGD
NEJ
NHB
UMC
VOH
VOOES
WHG
ZCG
5PM
ID FETCH-LOGICAL-c663t-faa6b5205640afca206cfbceebdb08a899d6edc8a244d1fa6e5bfdd709c91f6e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:29:17 EDT 2025
Fri May 09 12:11:51 EDT 2025
Fri Jul 11 00:43:46 EDT 2025
Thu Jul 10 19:14:05 EDT 2025
Thu Jul 10 23:01:18 EDT 2025
Fri Jul 11 15:35:34 EDT 2025
Mon Jun 30 08:28:23 EDT 2025
Wed Feb 19 02:04:04 EST 2025
Tue Jul 01 00:46:59 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Nov 11 00:30:50 EST 2020
Thu May 29 08:42:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords DNA polymerase
LINEAR DNA
Bacillus subtilis
ADENOVIRUS DNA
MREB
ESCHERICHIA-COLI
FUNCTIONAL DOMAIN
phage phi 29
DNA-binding
bacterial cytoskeleton
ACTIN-LIKE PROTEINS
BACILLUS-SUBTILIS
CHROMOSOME SEGREGATION
COILED-COIL
RNA-POLYMERASE
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c663t-faa6b5205640afca206cfbceebdb08a899d6edc8a244d1fa6e5bfdd709c91f6e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Contributed by Margarita Salas, July 22, 2010 (sent for review June 15, 2010)
Author contributions: D.M.-E. and M.S. designed research; D.M.-E., I.H., D.B.-P., and R.C.-L. performed research; D.M.-E. and M.S. analyzed data; and D.M.-E. and M.S. wrote the paper.
ORCID 0000-0003-2796-6596
OpenAccessLink https://hal.science/hal-01204301
PMID 20823229
PQID 755041415
PQPubID 23462
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1010530107
hal_primary_oai_HAL_hal_01204301v1
proquest_miscellaneous_762271176
proquest_miscellaneous_1825419082
proquest_miscellaneous_755198771
pnas_primary_107_38_16548
proquest_journals_755041415
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2944753
pubmed_primary_20823229
jstor_primary_20779704
proquest_miscellaneous_815543050
crossref_primary_10_1073_pnas_1010530107
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-21
PublicationDateYYYYMMDD 2010-09-21
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Yamashita S (e_1_3_3_29_2) 1989; 135
Chaconas G (e_1_3_3_4_2) 2005
de Jong RN (e_1_3_3_3_2) 2003; 272
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_22_2
e_1_3_3_21_2
19654094 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13347-52
14588250 - Curr Biol. 2003 Oct 28;13(21):1916-20
2210375 - Genes Dev. 1990 Jul;4(7):1197-208
16391237 - Genes Dev. 2006 Jan 1;20(1):113-24
10799555 - J Biol Chem. 2000 May 12;275(19):14678-83
15707892 - Cell. 2005 Feb 11;120(3):329-41
15247336 - Nucleic Acids Res. 2004;32(11):3493-502
14517265 - EMBO J. 2003 Oct 1;22(19):5283-92
15772069 - J Biol Chem. 2005 May 27;280(21):20730-9
15066038 - Mol Microbiol. 2004 Apr;52(2):529-40
11005822 - J Biol Chem. 2000 Dec 22;275(51):40529-38
15752190 - Mol Microbiol. 2005 Mar;55(6):1646-57
10822496 - Genet Eng (N Y). 1999;21:159-71
15745453 - BMC Cell Biol. 2005;6(1):10
1883199 - Annu Rev Biochem. 1991;60:39-71
17913744 - Nucleic Acids Res. 2007;35(21):7061-73
12799455 - Nucleic Acids Res. 2003 Jun 15;31(12):3274-86
9364919 - Mol Microbiol. 1997 Sep;25(5):945-54
9594570 - Prog Nucleic Acid Res Mol Biol. 1998;60:29-46
18779567 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14136-40
16511564 - EMBO J. 2006 Mar 22;25(6):1335-43
8497057 - J Virol. 1993 Jun;67(6):3384-95
16530800 - Virology. 2006 Jun 20;350(1):228-39
15371435 - J Biol Chem. 2004 Nov 26;279(48):50437-45
2516118 - J Gen Microbiol. 1989 May;135(5):1335-45
16888621 - EMBO J. 2006 Aug 23;25(16):3890-9
12747551 - Curr Top Microbiol Immunol. 2003;272:187-211
2602154 - Nucleic Acids Res. 1989 Dec 25;17(24):10353-66
17412384 - Virology. 2007 Jul 20;364(1):237-43
15994804 - J Virol. 2005 Jul;79(14):9097-107
3682063 - J Virol. 1987 Dec;61(12):3983-91
17158703 - Microbiol Mol Biol Rev. 2006 Dec;70(4):888-909
References_xml – ident: e_1_3_3_15_2
  doi: 10.1074/jbc.M910058199
– ident: e_1_3_3_9_2
  doi: 10.1016/S0079-6603(08)60888-0
– volume: 135
  start-page: 1335
  year: 1989
  ident: e_1_3_3_29_2
  article-title: Dissection of the expression signals of the spoA gene of Bacillus subtilis: Glucose represses sporulation-specific expression
  publication-title: J Gen Microbiol
– ident: e_1_3_3_6_2
  doi: 10.1016/j.virol.2006.02.005
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.0804982105
– ident: e_1_3_3_20_2
  doi: 10.1016/j.cell.2005.01.007
– ident: e_1_3_3_21_2
  doi: 10.1016/j.cub.2003.10.024
– volume: 272
  start-page: 187
  year: 2003
  ident: e_1_3_3_3_2
  article-title: Adenovirus DNA replication: Protein priming, jumping back and the role of the DNA binding protein DBP
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_3_3_31_2
  doi: 10.1074/jbc.M501687200
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1365-2958.2004.03993.x
– ident: e_1_3_3_8_2
  doi: 10.1128/jvi.61.12.3983-3991.1987
– ident: e_1_3_3_28_2
  doi: 10.1038/sj.emboj.7601266
– ident: e_1_3_3_5_2
  doi: 10.1128/JVI.79.14.9097-9107.2005
– ident: e_1_3_3_27_2
  doi: 10.1093/nar/gkm749
– ident: e_1_3_3_13_2
  doi: 10.1093/nar/17.24.10353
– ident: e_1_3_3_26_2
  doi: 10.1093/nar/gkg405
– ident: e_1_3_3_24_2
  doi: 10.1101/gad.4.7.1197
– ident: e_1_3_3_22_2
  doi: 10.1186/1471-2121-6-10
– ident: e_1_3_3_10_2
  doi: 10.1128/MMBR.00014-06
– ident: e_1_3_3_32_2
  doi: 10.1111/j.1365-2958.1997.mmi530.x
– ident: e_1_3_3_14_2
  doi: 10.1074/jbc.M007855200
– ident: e_1_3_3_23_2
  doi: 10.1111/j.1365-2958.2005.04506.x
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0906465106
– ident: e_1_3_3_16_2
  doi: 10.1093/nar/gkh668
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev.bi.60.070191.000351
– ident: e_1_3_3_19_2
  doi: 10.1101/gad.366606
– start-page: 525
  volume-title: The Bacterial Chromosome
  year: 2005
  ident: e_1_3_3_4_2
– ident: e_1_3_3_12_2
  doi: 10.1038/sj.emboj.7601027
– ident: e_1_3_3_7_2
  doi: 10.1016/j.virol.2007.03.005
– ident: e_1_3_3_2_2
  doi: 10.1007/978-1-4615-4707-5_8
– ident: e_1_3_3_18_2
  doi: 10.1093/emboj/cdg504
– ident: e_1_3_3_25_2
  doi: 10.1128/jvi.67.6.3384-3395.1993
– ident: e_1_3_3_30_2
  doi: 10.1074/jbc.M403297200
– reference: 15994804 - J Virol. 2005 Jul;79(14):9097-107
– reference: 14588250 - Curr Biol. 2003 Oct 28;13(21):1916-20
– reference: 2210375 - Genes Dev. 1990 Jul;4(7):1197-208
– reference: 12747551 - Curr Top Microbiol Immunol. 2003;272:187-211
– reference: 11005822 - J Biol Chem. 2000 Dec 22;275(51):40529-38
– reference: 15247336 - Nucleic Acids Res. 2004;32(11):3493-502
– reference: 9594570 - Prog Nucleic Acid Res Mol Biol. 1998;60:29-46
– reference: 18779567 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14136-40
– reference: 15371435 - J Biol Chem. 2004 Nov 26;279(48):50437-45
– reference: 17158703 - Microbiol Mol Biol Rev. 2006 Dec;70(4):888-909
– reference: 15752190 - Mol Microbiol. 2005 Mar;55(6):1646-57
– reference: 8497057 - J Virol. 1993 Jun;67(6):3384-95
– reference: 19654094 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13347-52
– reference: 10799555 - J Biol Chem. 2000 May 12;275(19):14678-83
– reference: 15772069 - J Biol Chem. 2005 May 27;280(21):20730-9
– reference: 1883199 - Annu Rev Biochem. 1991;60:39-71
– reference: 3682063 - J Virol. 1987 Dec;61(12):3983-91
– reference: 15745453 - BMC Cell Biol. 2005;6(1):10
– reference: 15066038 - Mol Microbiol. 2004 Apr;52(2):529-40
– reference: 12799455 - Nucleic Acids Res. 2003 Jun 15;31(12):3274-86
– reference: 9364919 - Mol Microbiol. 1997 Sep;25(5):945-54
– reference: 16888621 - EMBO J. 2006 Aug 23;25(16):3890-9
– reference: 17412384 - Virology. 2007 Jul 20;364(1):237-43
– reference: 10822496 - Genet Eng (N Y). 1999;21:159-71
– reference: 2602154 - Nucleic Acids Res. 1989 Dec 25;17(24):10353-66
– reference: 15707892 - Cell. 2005 Feb 11;120(3):329-41
– reference: 14517265 - EMBO J. 2003 Oct 1;22(19):5283-92
– reference: 2516118 - J Gen Microbiol. 1989 May;135(5):1335-45
– reference: 17913744 - Nucleic Acids Res. 2007;35(21):7061-73
– reference: 16511564 - EMBO J. 2006 Mar 22;25(6):1335-43
– reference: 16530800 - Virology. 2006 Jun 20;350(1):228-39
– reference: 16391237 - Genes Dev. 2006 Jan 1;20(1):113-24
SSID ssj0009580
Score 2.1693668
Snippet The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16548
SubjectTerms Adenoviruses
Bacillus Phages - genetics
Bacillus Phages - physiology
Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacillus subtilis - virology
Bacterial proteins
Bacteriophage PRD1 - genetics
Bacteriophage PRD1 - physiology
Bacteriophages
Binding sites
Biological Sciences
Cytoskeleton
Data processing
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA polymerase
DNA replication
DNA Replication - genetics
DNA Replication - physiology
DNA, Viral - biosynthesis
DNA, Viral - genetics
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - metabolism
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli - virology
Genes, Bacterial
Genes, Viral
Genomes
Infections
Life Sciences
Models, Biological
Models, Molecular
Molecular structure
Mutation
Nucleoids
Phages
Protein Structure, Tertiary
Proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Replication
Terminal protein
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - metabolism
Virus Replication - genetics
Virus Replication - physiology
Viruses
Title Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid
URI https://www.jstor.org/stable/20779704
http://www.pnas.org/content/107/38/16548.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20823229
https://www.proquest.com/docview/755041415
https://www.proquest.com/docview/1825419082
https://www.proquest.com/docview/755198771
https://www.proquest.com/docview/762271176
https://www.proquest.com/docview/815543050
https://hal.science/hal-01204301
https://pubmed.ncbi.nlm.nih.gov/PMC2944753
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF615cIFUaBgCmhBHIoiFz937WNKWwJKQ4USlJu16weJFNlRnXDIX-JPMrNeP1KlvC5RtJ6sH_NlPLM78w0hbzmy30LkYGZu6pienUpThHFi-plwrJgFoRVjoHg1YoOJ93nqT_f2fnayltYreRpvdtaV_I9WYQz0ilWy_6DZZlIYgO-gX_gEDcPnX-n42xzL63U-y6KnOBcwu1WZsbKXKvLiolNtqfKbZ5imcz7q435BvWSnaxp7siJvhslyJDou5lt9PK-bt11Z5xaM6sXEfluaou1F2TN716O20fHVGnflz-xiY16US7VDf563Ze4NwIrF93Wq2h_1PpVCtkfOsO8LEjsUmMMvNuJWUj7upNxIEJonhTlUJ3OX1Qr51_Wqu76BW_OhWRVNa5MMHo3JvKqp6Gm6Y6y241X7XA3YijNGm2Us2Qp2vjDAwmGX41yUuI4BFsmqp9mi5h59iS4nw2E0vpiO98k9B2ISbJfxcWp3GJ6DivpCX1rNI8Xd97em33KB9meYgFvlwiLBLojuCnZu5-x2nKDxQ_JARy-0X0HxkOyl-SNyWOubnmgS83ePSaKwSWtsUo1NqrFJFTZpF5u0yKjCJgVs0g42qVhRgBptsElrbD4hk8uL8YeBqTt6mDF4tiszE4JJ3wGn27NEFoM5YHEmAbkykVYgIPZPGNxiIMDpTOxMsNSXWZJwK4xDO2Ope0QO8iJPnxEaOzLJhGQB82MPtIumxfdFwOwUgmxfGuS0fshRrOnusevKIlJpF9yN8FFHrVYMctL8YFkxvdwt-ga01kghQ_ugP4xwDGvRPRD6YRvkSCm1EXMszkNueQYx1HztSXjkBpHCqEGOa9VH2tCUEfd9y7PB0zbI6-YovAVwa0_kabGGa8OFHvDtA8cg9A4ZmAZXGLn9GxHmONy2ObtbJMAABJwEyyBPK0R2bjCA-MwJDcK3sLr1oLaP5POZorR3QiQedZ__-eKPyf3WSrwgB6ubdfoS4oKVfKX-j78AYs8O8Q
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+terminal+protein+directs+early+organization+of+phage+DNA+replication+at+the+bacterial+nucleoid&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mu%C3%B1oz-Esp%C3%ADn%2C+Daniel&rft.au=Holguera%2C+Isabel&rft.au=Ballesteros-Plaza%2C+David&rft.au=Carballido-L%C3%B3pez%2C+Rut&rft.date=2010-09-21&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=107&rft.issue=38&rft.spage=16548&rft_id=info:doi/10.1073%2Fpnas.1010530107&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F38.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F38.cover.gif