Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly r...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 38; pp. 16548 - 16553 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
21.09.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1010530107 |
Cover
Loading…
Abstract | The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. |
---|---|
AbstractList | The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria
Bacillus subtilis
and
Escherichia coli
, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1–73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages phi 29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage phi 29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminaldomain the efficiency of phi 29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli , respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1–73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages {phi}29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage {phi}29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of {phi}29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages φ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage φ29 revealed that the TP N-terminal domain (residues 1—73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of φ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages Ie29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage Ie29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of Ie29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ...29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ...29 revealed that the TP N-terminal domain (residues 1 - 73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ...29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Holguera, Isabel Ballesteros-Plaza, David Carballido-López, Rut Salas, Margarita Muñoz-Espín, Daniel |
Author_xml | – sequence: 1 givenname: Daniel surname: Muñoz-Espín fullname: Muñoz-Espín, Daniel – sequence: 2 givenname: Isabel surname: Holguera fullname: Holguera, Isabel – sequence: 3 givenname: David surname: Ballesteros-Plaza fullname: Ballesteros-Plaza, David – sequence: 4 givenname: Rut surname: Carballido-López fullname: Carballido-López, Rut – sequence: 5 givenname: Margarita surname: Salas fullname: Salas, Margarita |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20823229$$D View this record in MEDLINE/PubMed https://hal.science/hal-01204301$$DView record in HAL |
BookMark | eNqFkk1vEzEQhi1URNPAmRNoxQU4hNpef16QohYoUgQX4Gp5vd7E0cbe2k6l8uvrbUJbcmgvtuV55h175j0BRz54C8BrBD8hyOvTwetUTgjSuiz8GZggKNGMEQmPwARCzGeCYHIMTlJaQwglFfAFOMZQ4BpjOQHtHxd1X2UbN86XwxBDts5XrYvW5FRZHfvrKsSl9u6vzi74KnTVsNJLW53_mFfRDr0zu4DOVV7ZqtGmyLki5remt8G1L8HzTvfJvtrvU_D765dfZxezxc9v38_mi5lhrM6zTmvWUAwpI1B3RmPITNcYa5u2gUILKVtmWyM0JqRFnWaWNl3bciiNRB2z9RR83ukO22ZTSOtz-ZwaotvoeK2Cdur_iHcrtQxXCktCOK2LwMedwOog7WK-UOMdRBiS0uorVNj3-2IxXG5tymrjkrF9r70N26QEorSgFD5JcoYxR4izp0lKkRScj9U_PEoigSlBcpzzFLw7QNdhG8uwb_UgQQTRAr192Lq7z_9zSgFOd4CJIaVouzsEQTV6UY1eVPdeLBn0IMO4fOuU0nvXP5JX7Z8yBu6rcFULhRgloiBvdsg65RAfPJZzycuAbgC5a_eX |
CitedBy_id | crossref_primary_10_1073_pnas_2116278119 crossref_primary_10_1371_journal_pone_0164901 crossref_primary_10_1038_srep04823 crossref_primary_10_3389_fmolb_2016_00037 crossref_primary_10_1073_pnas_1114397108 crossref_primary_10_1073_pnas_1216635109 crossref_primary_10_1073_pnas_1203824109 crossref_primary_10_1038_s41467_020_17515_8 crossref_primary_10_1093_nar_gkv374 crossref_primary_10_1093_nar_gku660 crossref_primary_10_1016_j_mib_2013_08_007 crossref_primary_10_3389_fmicb_2021_641317 crossref_primary_10_1038_s41589_023_01387_2 crossref_primary_10_1128_JB_05104_11 crossref_primary_10_1073_pnas_1311524110 crossref_primary_10_1073_pnas_2018297118 crossref_primary_10_1074_jbc_X112_433458 crossref_primary_10_1111_mmi_12404 crossref_primary_10_1038_s42003_024_07082_9 crossref_primary_10_1016_j_mib_2011_07_010 crossref_primary_10_1016_j_virol_2014_08_003 crossref_primary_10_1016_j_virusres_2013_11_015 crossref_primary_10_1266_ggs_87_347 crossref_primary_10_1016_j_cub_2012_07_027 crossref_primary_10_1074_jbc_M115_682278 crossref_primary_10_1093_nar_gkv127 crossref_primary_10_1146_annurev_virology_012822_125828 crossref_primary_10_1111_mmi_12456 crossref_primary_10_1080_21597081_2016_1271250 crossref_primary_10_1371_journal_pone_0072765 |
Cites_doi | 10.1074/jbc.M910058199 10.1016/S0079-6603(08)60888-0 10.1016/j.virol.2006.02.005 10.1073/pnas.0804982105 10.1016/j.cell.2005.01.007 10.1016/j.cub.2003.10.024 10.1074/jbc.M501687200 10.1111/j.1365-2958.2004.03993.x 10.1128/jvi.61.12.3983-3991.1987 10.1038/sj.emboj.7601266 10.1128/JVI.79.14.9097-9107.2005 10.1093/nar/gkm749 10.1093/nar/17.24.10353 10.1093/nar/gkg405 10.1101/gad.4.7.1197 10.1186/1471-2121-6-10 10.1128/MMBR.00014-06 10.1111/j.1365-2958.1997.mmi530.x 10.1074/jbc.M007855200 10.1111/j.1365-2958.2005.04506.x 10.1073/pnas.0906465106 10.1093/nar/gkh668 10.1146/annurev.bi.60.070191.000351 10.1101/gad.366606 10.1038/sj.emboj.7601027 10.1016/j.virol.2007.03.005 10.1007/978-1-4615-4707-5_8 10.1093/emboj/cdg504 10.1128/jvi.67.6.3384-3395.1993 10.1074/jbc.M403297200 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Sep 21, 2010 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright National Academy of Sciences Sep 21, 2010 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 7T7 1XC VOOES 5PM |
DOI | 10.1073/pnas.1010530107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts Virology and AIDS Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 16553 |
ExternalDocumentID | PMC2944753 oai_HAL_hal_01204301v1 2147620441 20823229 10_1073_pnas_1010530107 107_38_16548 20779704 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 7T7 .GJ 1XC 3O- 692 6TJ 79B ACKIV AFHIN AFQQW HGD NEJ NHB UMC VOH VOOES WHG ZCG 5PM |
ID | FETCH-LOGICAL-c663t-faa6b5205640afca206cfbceebdb08a899d6edc8a244d1fa6e5bfdd709c91f6e3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:29:17 EDT 2025 Fri May 09 12:11:51 EDT 2025 Fri Jul 11 00:43:46 EDT 2025 Thu Jul 10 19:14:05 EDT 2025 Thu Jul 10 23:01:18 EDT 2025 Fri Jul 11 15:35:34 EDT 2025 Mon Jun 30 08:28:23 EDT 2025 Wed Feb 19 02:04:04 EST 2025 Tue Jul 01 00:46:59 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Nov 11 00:30:50 EST 2020 Thu May 29 08:42:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | DNA polymerase LINEAR DNA Bacillus subtilis ADENOVIRUS DNA MREB ESCHERICHIA-COLI FUNCTIONAL DOMAIN phage phi 29 DNA-binding bacterial cytoskeleton ACTIN-LIKE PROTEINS BACILLUS-SUBTILIS CHROMOSOME SEGREGATION COILED-COIL RNA-POLYMERASE |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c663t-faa6b5205640afca206cfbceebdb08a899d6edc8a244d1fa6e5bfdd709c91f6e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Contributed by Margarita Salas, July 22, 2010 (sent for review June 15, 2010) Author contributions: D.M.-E. and M.S. designed research; D.M.-E., I.H., D.B.-P., and R.C.-L. performed research; D.M.-E. and M.S. analyzed data; and D.M.-E. and M.S. wrote the paper. |
ORCID | 0000-0003-2796-6596 |
OpenAccessLink | https://hal.science/hal-01204301 |
PMID | 20823229 |
PQID | 755041415 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1010530107 hal_primary_oai_HAL_hal_01204301v1 proquest_miscellaneous_762271176 proquest_miscellaneous_1825419082 proquest_miscellaneous_755198771 pnas_primary_107_38_16548 proquest_journals_755041415 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2944753 pubmed_primary_20823229 jstor_primary_20779704 proquest_miscellaneous_815543050 crossref_primary_10_1073_pnas_1010530107 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-21 |
PublicationDateYYYYMMDD | 2010-09-21 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Yamashita S (e_1_3_3_29_2) 1989; 135 Chaconas G (e_1_3_3_4_2) 2005 de Jong RN (e_1_3_3_3_2) 2003; 272 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_22_2 e_1_3_3_21_2 19654094 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13347-52 14588250 - Curr Biol. 2003 Oct 28;13(21):1916-20 2210375 - Genes Dev. 1990 Jul;4(7):1197-208 16391237 - Genes Dev. 2006 Jan 1;20(1):113-24 10799555 - J Biol Chem. 2000 May 12;275(19):14678-83 15707892 - Cell. 2005 Feb 11;120(3):329-41 15247336 - Nucleic Acids Res. 2004;32(11):3493-502 14517265 - EMBO J. 2003 Oct 1;22(19):5283-92 15772069 - J Biol Chem. 2005 May 27;280(21):20730-9 15066038 - Mol Microbiol. 2004 Apr;52(2):529-40 11005822 - J Biol Chem. 2000 Dec 22;275(51):40529-38 15752190 - Mol Microbiol. 2005 Mar;55(6):1646-57 10822496 - Genet Eng (N Y). 1999;21:159-71 15745453 - BMC Cell Biol. 2005;6(1):10 1883199 - Annu Rev Biochem. 1991;60:39-71 17913744 - Nucleic Acids Res. 2007;35(21):7061-73 12799455 - Nucleic Acids Res. 2003 Jun 15;31(12):3274-86 9364919 - Mol Microbiol. 1997 Sep;25(5):945-54 9594570 - Prog Nucleic Acid Res Mol Biol. 1998;60:29-46 18779567 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14136-40 16511564 - EMBO J. 2006 Mar 22;25(6):1335-43 8497057 - J Virol. 1993 Jun;67(6):3384-95 16530800 - Virology. 2006 Jun 20;350(1):228-39 15371435 - J Biol Chem. 2004 Nov 26;279(48):50437-45 2516118 - J Gen Microbiol. 1989 May;135(5):1335-45 16888621 - EMBO J. 2006 Aug 23;25(16):3890-9 12747551 - Curr Top Microbiol Immunol. 2003;272:187-211 2602154 - Nucleic Acids Res. 1989 Dec 25;17(24):10353-66 17412384 - Virology. 2007 Jul 20;364(1):237-43 15994804 - J Virol. 2005 Jul;79(14):9097-107 3682063 - J Virol. 1987 Dec;61(12):3983-91 17158703 - Microbiol Mol Biol Rev. 2006 Dec;70(4):888-909 |
References_xml | – ident: e_1_3_3_15_2 doi: 10.1074/jbc.M910058199 – ident: e_1_3_3_9_2 doi: 10.1016/S0079-6603(08)60888-0 – volume: 135 start-page: 1335 year: 1989 ident: e_1_3_3_29_2 article-title: Dissection of the expression signals of the spoA gene of Bacillus subtilis: Glucose represses sporulation-specific expression publication-title: J Gen Microbiol – ident: e_1_3_3_6_2 doi: 10.1016/j.virol.2006.02.005 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.0804982105 – ident: e_1_3_3_20_2 doi: 10.1016/j.cell.2005.01.007 – ident: e_1_3_3_21_2 doi: 10.1016/j.cub.2003.10.024 – volume: 272 start-page: 187 year: 2003 ident: e_1_3_3_3_2 article-title: Adenovirus DNA replication: Protein priming, jumping back and the role of the DNA binding protein DBP publication-title: Curr Top Microbiol Immunol – ident: e_1_3_3_31_2 doi: 10.1074/jbc.M501687200 – ident: e_1_3_3_33_2 doi: 10.1111/j.1365-2958.2004.03993.x – ident: e_1_3_3_8_2 doi: 10.1128/jvi.61.12.3983-3991.1987 – ident: e_1_3_3_28_2 doi: 10.1038/sj.emboj.7601266 – ident: e_1_3_3_5_2 doi: 10.1128/JVI.79.14.9097-9107.2005 – ident: e_1_3_3_27_2 doi: 10.1093/nar/gkm749 – ident: e_1_3_3_13_2 doi: 10.1093/nar/17.24.10353 – ident: e_1_3_3_26_2 doi: 10.1093/nar/gkg405 – ident: e_1_3_3_24_2 doi: 10.1101/gad.4.7.1197 – ident: e_1_3_3_22_2 doi: 10.1186/1471-2121-6-10 – ident: e_1_3_3_10_2 doi: 10.1128/MMBR.00014-06 – ident: e_1_3_3_32_2 doi: 10.1111/j.1365-2958.1997.mmi530.x – ident: e_1_3_3_14_2 doi: 10.1074/jbc.M007855200 – ident: e_1_3_3_23_2 doi: 10.1111/j.1365-2958.2005.04506.x – ident: e_1_3_3_11_2 doi: 10.1073/pnas.0906465106 – ident: e_1_3_3_16_2 doi: 10.1093/nar/gkh668 – ident: e_1_3_3_1_2 doi: 10.1146/annurev.bi.60.070191.000351 – ident: e_1_3_3_19_2 doi: 10.1101/gad.366606 – start-page: 525 volume-title: The Bacterial Chromosome year: 2005 ident: e_1_3_3_4_2 – ident: e_1_3_3_12_2 doi: 10.1038/sj.emboj.7601027 – ident: e_1_3_3_7_2 doi: 10.1016/j.virol.2007.03.005 – ident: e_1_3_3_2_2 doi: 10.1007/978-1-4615-4707-5_8 – ident: e_1_3_3_18_2 doi: 10.1093/emboj/cdg504 – ident: e_1_3_3_25_2 doi: 10.1128/jvi.67.6.3384-3395.1993 – ident: e_1_3_3_30_2 doi: 10.1074/jbc.M403297200 – reference: 15994804 - J Virol. 2005 Jul;79(14):9097-107 – reference: 14588250 - Curr Biol. 2003 Oct 28;13(21):1916-20 – reference: 2210375 - Genes Dev. 1990 Jul;4(7):1197-208 – reference: 12747551 - Curr Top Microbiol Immunol. 2003;272:187-211 – reference: 11005822 - J Biol Chem. 2000 Dec 22;275(51):40529-38 – reference: 15247336 - Nucleic Acids Res. 2004;32(11):3493-502 – reference: 9594570 - Prog Nucleic Acid Res Mol Biol. 1998;60:29-46 – reference: 18779567 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14136-40 – reference: 15371435 - J Biol Chem. 2004 Nov 26;279(48):50437-45 – reference: 17158703 - Microbiol Mol Biol Rev. 2006 Dec;70(4):888-909 – reference: 15752190 - Mol Microbiol. 2005 Mar;55(6):1646-57 – reference: 8497057 - J Virol. 1993 Jun;67(6):3384-95 – reference: 19654094 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13347-52 – reference: 10799555 - J Biol Chem. 2000 May 12;275(19):14678-83 – reference: 15772069 - J Biol Chem. 2005 May 27;280(21):20730-9 – reference: 1883199 - Annu Rev Biochem. 1991;60:39-71 – reference: 3682063 - J Virol. 1987 Dec;61(12):3983-91 – reference: 15745453 - BMC Cell Biol. 2005;6(1):10 – reference: 15066038 - Mol Microbiol. 2004 Apr;52(2):529-40 – reference: 12799455 - Nucleic Acids Res. 2003 Jun 15;31(12):3274-86 – reference: 9364919 - Mol Microbiol. 1997 Sep;25(5):945-54 – reference: 16888621 - EMBO J. 2006 Aug 23;25(16):3890-9 – reference: 17412384 - Virology. 2007 Jul 20;364(1):237-43 – reference: 10822496 - Genet Eng (N Y). 1999;21:159-71 – reference: 2602154 - Nucleic Acids Res. 1989 Dec 25;17(24):10353-66 – reference: 15707892 - Cell. 2005 Feb 11;120(3):329-41 – reference: 14517265 - EMBO J. 2003 Oct 1;22(19):5283-92 – reference: 2516118 - J Gen Microbiol. 1989 May;135(5):1335-45 – reference: 17913744 - Nucleic Acids Res. 2007;35(21):7061-73 – reference: 16511564 - EMBO J. 2006 Mar 22;25(6):1335-43 – reference: 16530800 - Virology. 2006 Jun 20;350(1):228-39 – reference: 16391237 - Genes Dev. 2006 Jan 1;20(1):113-24 |
SSID | ssj0009580 |
Score | 2.1693668 |
Snippet | The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the... |
SourceID | pubmedcentral hal proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16548 |
SubjectTerms | Adenoviruses Bacillus Phages - genetics Bacillus Phages - physiology Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacillus subtilis - virology Bacterial proteins Bacteriophage PRD1 - genetics Bacteriophage PRD1 - physiology Bacteriophages Binding sites Biological Sciences Cytoskeleton Data processing Deoxyribonucleic acid DNA DNA biosynthesis DNA polymerase DNA replication DNA Replication - genetics DNA Replication - physiology DNA, Viral - biosynthesis DNA, Viral - genetics DNA-directed DNA polymerase DNA-Directed DNA Polymerase - metabolism E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli - virology Genes, Bacterial Genes, Viral Genomes Infections Life Sciences Models, Biological Models, Molecular Molecular structure Mutation Nucleoids Phages Protein Structure, Tertiary Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Replication Terminal protein Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism Virus Replication - genetics Virus Replication - physiology Viruses |
Title | Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid |
URI | https://www.jstor.org/stable/20779704 http://www.pnas.org/content/107/38/16548.abstract https://www.ncbi.nlm.nih.gov/pubmed/20823229 https://www.proquest.com/docview/755041415 https://www.proquest.com/docview/1825419082 https://www.proquest.com/docview/755198771 https://www.proquest.com/docview/762271176 https://www.proquest.com/docview/815543050 https://hal.science/hal-01204301 https://pubmed.ncbi.nlm.nih.gov/PMC2944753 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF615cIFUaBgCmhBHIoiFz937WNKWwJKQ4USlJu16weJFNlRnXDIX-JPMrNeP1KlvC5RtJ6sH_NlPLM78w0hbzmy30LkYGZu6pienUpThHFi-plwrJgFoRVjoHg1YoOJ93nqT_f2fnayltYreRpvdtaV_I9WYQz0ilWy_6DZZlIYgO-gX_gEDcPnX-n42xzL63U-y6KnOBcwu1WZsbKXKvLiolNtqfKbZ5imcz7q435BvWSnaxp7siJvhslyJDou5lt9PK-bt11Z5xaM6sXEfluaou1F2TN716O20fHVGnflz-xiY16US7VDf563Ze4NwIrF93Wq2h_1PpVCtkfOsO8LEjsUmMMvNuJWUj7upNxIEJonhTlUJ3OX1Qr51_Wqu76BW_OhWRVNa5MMHo3JvKqp6Gm6Y6y241X7XA3YijNGm2Us2Qp2vjDAwmGX41yUuI4BFsmqp9mi5h59iS4nw2E0vpiO98k9B2ISbJfxcWp3GJ6DivpCX1rNI8Xd97em33KB9meYgFvlwiLBLojuCnZu5-x2nKDxQ_JARy-0X0HxkOyl-SNyWOubnmgS83ePSaKwSWtsUo1NqrFJFTZpF5u0yKjCJgVs0g42qVhRgBptsElrbD4hk8uL8YeBqTt6mDF4tiszE4JJ3wGn27NEFoM5YHEmAbkykVYgIPZPGNxiIMDpTOxMsNSXWZJwK4xDO2Ope0QO8iJPnxEaOzLJhGQB82MPtIumxfdFwOwUgmxfGuS0fshRrOnusevKIlJpF9yN8FFHrVYMctL8YFkxvdwt-ga01kghQ_ugP4xwDGvRPRD6YRvkSCm1EXMszkNueQYx1HztSXjkBpHCqEGOa9VH2tCUEfd9y7PB0zbI6-YovAVwa0_kabGGa8OFHvDtA8cg9A4ZmAZXGLn9GxHmONy2ObtbJMAABJwEyyBPK0R2bjCA-MwJDcK3sLr1oLaP5POZorR3QiQedZ__-eKPyf3WSrwgB6ubdfoS4oKVfKX-j78AYs8O8Q |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+terminal+protein+directs+early+organization+of+phage+DNA+replication+at+the+bacterial+nucleoid&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mu%C3%B1oz-Esp%C3%ADn%2C+Daniel&rft.au=Holguera%2C+Isabel&rft.au=Ballesteros-Plaza%2C+David&rft.au=Carballido-L%C3%B3pez%2C+Rut&rft.date=2010-09-21&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=107&rft.issue=38&rft.spage=16548&rft_id=info:doi/10.1073%2Fpnas.1010530107&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F38.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F38.cover.gif |