Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis

The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have be...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanobiotechnology Vol. 19; no. 1; pp. 209 - 19
Main Authors Wu, Di, Chang, Xiao, Tian, Jingjing, Kang, Lin, Wu, Yuanhao, Liu, Jieying, Wu, Xiangdong, Huang, Yue, Gao, Bo, Wang, Hai, Qiu, Guixing, Wu, Zhihong
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 13.07.2021
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1477-3155
1477-3155
DOI10.1186/s12951-021-00958-6

Cover

Loading…
Abstract The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe O , γ-Fe O ) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe O nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. 50 µg/mL Fe O nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe O -Exos and BMSC-Fe O -SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe O -SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe O -SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. These results suggest that low doses of Fe O nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future.
AbstractList Background The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe.sub.3O.sub.4, [gamma]-Fe.sub.2O.sub.3) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe.sub.3O.sub.4 nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. Methods Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. Results 50 [micro]g/mL Fe.sub.3O.sub.4 nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe.sub.3O.sub.4-Exos and BMSC-Fe.sub.3O.sub.4-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe.sub.3O.sub.4-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe.sub.3O.sub.4-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. Conclusion These results suggest that low doses of Fe.sub.3O.sub.4 nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future. Graphical abstract Keywords: Magnetic nanoparticles, Static magnetic field, miR-1260a, Exosomes, Bone regeneration
The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe.sub.3O.sub.4, [gamma]-Fe.sub.2O.sub.3) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe.sub.3O.sub.4 nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. 50 [micro]g/mL Fe.sub.3O.sub.4 nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe.sub.3O.sub.4-Exos and BMSC-Fe.sub.3O.sub.4-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe.sub.3O.sub.4-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe.sub.3O.sub.4-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. These results suggest that low doses of Fe.sub.3O.sub.4 nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future.
The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe3O4, γ-Fe2O3) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe3O4 nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved.BACKGROUNDThe therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe3O4, γ-Fe2O3) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe3O4 nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved.Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro.METHODSTwo novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro.50 µg/mL Fe3O4 nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe3O4-Exos and BMSC-Fe3O4-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe3O4-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe3O4-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively.RESULTS50 µg/mL Fe3O4 nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe3O4-Exos and BMSC-Fe3O4-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe3O4-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe3O4-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively.These results suggest that low doses of Fe3O4 nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future.CONCLUSIONThese results suggest that low doses of Fe3O4 nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future.
The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe O , γ-Fe O ) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe O nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. 50 µg/mL Fe O nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe O -Exos and BMSC-Fe O -SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe O -SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe O -SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. These results suggest that low doses of Fe O nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future.
Background The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe3O4, γ-Fe2O3) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe3O4 nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. Methods Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. Results 50 µg/mL Fe3O4 nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe3O4-Exos and BMSC-Fe3O4-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe3O4-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe3O4-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. Conclusion These results suggest that low doses of Fe3O4 nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future.
Abstract Background The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe3O4, γ-Fe2O3) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe3O4 nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. Methods Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. Results 50 µg/mL Fe3O4 nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe3O4-Exos and BMSC-Fe3O4-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe3O4-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe3O4-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. Conclusion These results suggest that low doses of Fe3O4 nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future. Graphical abstract
ArticleNumber 209
Audience Academic
Author Kang, Lin
Wu, Yuanhao
Huang, Yue
Liu, Jieying
Gao, Bo
Wu, Xiangdong
Wang, Hai
Qiu, Guixing
Wu, Zhihong
Chang, Xiao
Tian, Jingjing
Wu, Di
Author_xml – sequence: 1
  givenname: Di
  surname: Wu
  fullname: Wu, Di
– sequence: 2
  givenname: Xiao
  surname: Chang
  fullname: Chang, Xiao
– sequence: 3
  givenname: Jingjing
  surname: Tian
  fullname: Tian, Jingjing
– sequence: 4
  givenname: Lin
  surname: Kang
  fullname: Kang, Lin
– sequence: 5
  givenname: Yuanhao
  surname: Wu
  fullname: Wu, Yuanhao
– sequence: 6
  givenname: Jieying
  surname: Liu
  fullname: Liu, Jieying
– sequence: 7
  givenname: Xiangdong
  surname: Wu
  fullname: Wu, Xiangdong
– sequence: 8
  givenname: Yue
  surname: Huang
  fullname: Huang, Yue
– sequence: 9
  givenname: Bo
  surname: Gao
  fullname: Gao, Bo
– sequence: 10
  givenname: Hai
  surname: Wang
  fullname: Wang, Hai
– sequence: 11
  givenname: Guixing
  surname: Qiu
  fullname: Qiu, Guixing
– sequence: 12
  givenname: Zhihong
  surname: Wu
  fullname: Wu, Zhihong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34256779$$D View this record in MEDLINE/PubMed
BookMark eNp9kttu1DAQhiNURA_wAlwgS9zARYpPsb1cIJWKw0qVkApcW44zTr1K7CXOVt3n4UVxdrdLt0IoijIaf_OPZ_KfFkchBiiKlwSfE6LEu0TorCIlpvnFs0qV4klxQriUJSNVdfQgPi5OU1pgTCmn_FlxzDithJSzk-L3x6yJekgQ7M26Nx1KI_TIQtelHPp-1ZnRx4DqNepNG2D0FgUT4tIMOewgIRMaZDJrpqM94zx0zXs0QAcmAYoOwV1McerQ--uSUIEN8v1yiLdZI-ausYUAye8EQ-vvE8-Lp850CV7svmfFz8-fflx-La--fZlfXlyVVgg2lmDqvATquFG1czWwvBTWOEcawcEZJ6pGQWUNNJwoZhQmDvOGOsA1pphJdlbMt7pNNAu9HHxvhrWOxutNIg6t3g2tKZUVaxhXknIOXCkFTnEraW4147XNWh-2WstV3UNjIYyD6Q5ED0-Cv9FtvNWKSiXELAu82QkM8dcK0qh7n6bfYgLEVdK0qkglJSUio68foYu4GkJe1UQxRjFh5C_VmjyADy7mvnYS1RdCUpYXQKe25_-g8tNA7232ivM5f1Dw9qAgMyPcja1ZpaTn368P2VcPl7Lfxr0dM0C3gB1iSgO4PUKwnjyvt57X2fN643k9ja8eFVk_bkybr-67_5X-AZbPBrc
CitedBy_id crossref_primary_10_3389_fbioe_2023_1050916
crossref_primary_10_3390_biomedicines11020558
crossref_primary_10_1007_s11033_023_08709_6
crossref_primary_10_1002_adfm_202402861
crossref_primary_10_1063_5_0191803
crossref_primary_10_1016_j_matdes_2024_113516
crossref_primary_10_1002_smll_202408350
crossref_primary_10_1016_j_jcyt_2022_08_008
crossref_primary_10_3390_ijms24032028
crossref_primary_10_1016_j_jddst_2024_106172
crossref_primary_10_1038_s41467_023_39744_3
crossref_primary_10_1016_j_jcis_2024_05_209
crossref_primary_10_2147_IJN_S480288
crossref_primary_10_1016_j_bone_2024_117363
crossref_primary_10_3390_jpm11121326
crossref_primary_10_1002_smll_202306721
crossref_primary_10_1177_22808000221111875
crossref_primary_10_1016_j_lfs_2024_123066
crossref_primary_10_1016_j_heliyon_2024_e34203
crossref_primary_10_1080_09205063_2023_2170675
crossref_primary_10_1016_j_biopha_2024_117386
crossref_primary_10_1039_D3TB02617E
crossref_primary_10_1152_ajpcell_00186_2024
crossref_primary_10_1063_5_0200551
crossref_primary_10_3389_fcell_2024_1344705
crossref_primary_10_3390_jcm12134385
crossref_primary_10_1002_adhm_202404345
crossref_primary_10_1007_s11010_023_04874_1
crossref_primary_10_1016_j_ijbiomac_2023_128959
crossref_primary_10_1016_j_ijbiomac_2024_132116
crossref_primary_10_1016_j_jare_2023_11_011
crossref_primary_10_1089_ten_teb_2022_0127
crossref_primary_10_1021_acsnano_2c10995
crossref_primary_10_1038_s42003_024_06866_3
crossref_primary_10_1002_adfm_202302442
crossref_primary_10_1016_j_bioactmat_2024_05_018
crossref_primary_10_61186_umj_34_12_742
crossref_primary_10_1021_acsami_4c04199
crossref_primary_10_1016_j_matdes_2025_113645
crossref_primary_10_1021_acsami_3c01539
crossref_primary_10_18019_1028_4427_2024_30_1_124_133
crossref_primary_10_1016_j_mtbio_2023_100831
crossref_primary_10_18632_aging_205792
crossref_primary_10_1021_acsbiomaterials_3c00178
crossref_primary_10_1002_advs_202300414
crossref_primary_10_2147_IJN_S372042
crossref_primary_10_1016_j_reth_2024_11_003
crossref_primary_10_3389_fbioe_2022_920378
crossref_primary_10_3390_md21020085
crossref_primary_10_1016_j_nantod_2022_101487
crossref_primary_10_1016_j_jconrel_2022_04_049
crossref_primary_10_3390_biom13071109
crossref_primary_10_4252_wjsc_v16_i12_1106
crossref_primary_10_1016_j_addr_2023_115176
crossref_primary_10_1186_s12967_023_04729_9
crossref_primary_10_1002_app_54913
crossref_primary_10_1186_s13287_022_02808_0
crossref_primary_10_1002_advs_202403227
crossref_primary_10_3390_ijms241713333
crossref_primary_10_1021_acsbiomaterials_4c00106
crossref_primary_10_1021_acsbiomaterials_4c00622
crossref_primary_10_1096_fj_202302665R
crossref_primary_10_1016_j_bioactmat_2024_02_014
crossref_primary_10_1016_j_drudis_2022_07_008
crossref_primary_10_2147_IJN_S409664
crossref_primary_10_3389_fcell_2022_903278
crossref_primary_10_1016_j_jconrel_2023_01_057
crossref_primary_10_1016_j_expneurol_2024_114685
crossref_primary_10_1039_D3NA00851G
crossref_primary_10_1021_acsbiomaterials_2c00368
crossref_primary_10_1186_s13287_024_04014_6
crossref_primary_10_1002_adhm_202400293
crossref_primary_10_1155_2022_3273077
crossref_primary_10_1002_sstr_202400466
crossref_primary_10_3389_fimmu_2023_1256687
crossref_primary_10_3389_fbioe_2022_1091360
crossref_primary_10_1007_s00403_024_03055_4
crossref_primary_10_3390_jfb14020058
crossref_primary_10_2478_aoas_2023_0054
crossref_primary_10_3389_fbioe_2023_1249860
crossref_primary_10_1186_s12951_023_02201_w
crossref_primary_10_1002_adfm_202401856
crossref_primary_10_2147_IJN_S394366
crossref_primary_10_1016_j_tice_2021_101676
crossref_primary_10_1016_j_biomaterials_2025_123215
crossref_primary_10_1016_j_matdes_2023_112621
crossref_primary_10_3390_magnetochemistry10080052
crossref_primary_10_1186_s12951_021_00991_5
crossref_primary_10_3390_pharmaceutics15020321
crossref_primary_10_1002_adhm_202202210
crossref_primary_10_2217_rme_2022_0065
crossref_primary_10_3389_fbioe_2022_1038261
crossref_primary_10_1016_j_bioactmat_2024_06_010
crossref_primary_10_1111_jcmm_70040
crossref_primary_10_1186_s13287_024_04024_4
crossref_primary_10_1016_j_compositesb_2025_112165
crossref_primary_10_1007_s11814_022_1363_1
crossref_primary_10_3390_jpm13020180
crossref_primary_10_1186_s12951_023_01978_0
crossref_primary_10_34133_research_0601
crossref_primary_10_1002_adfm_202410714
crossref_primary_10_3390_ph15070879
crossref_primary_10_1016_j_apmt_2024_102382
crossref_primary_10_1016_j_matdes_2024_112969
crossref_primary_10_22363_2313_0245_2024_28_1_9_22
crossref_primary_10_1007_s12015_024_10762_y
crossref_primary_10_1021_acsami_2c02278
crossref_primary_10_1186_s13018_024_04839_0
crossref_primary_10_3389_fbioe_2021_829136
crossref_primary_10_1016_j_eurpolymj_2024_113057
crossref_primary_10_1039_D2NR05889H
crossref_primary_10_2147_IJN_S441467
crossref_primary_10_1186_s12951_024_02728_6
crossref_primary_10_1016_j_cclet_2023_109197
crossref_primary_10_1016_j_engreg_2022_09_004
crossref_primary_10_1159_000534041
crossref_primary_10_3389_fchem_2022_984131
crossref_primary_10_3390_medicina59030587
crossref_primary_10_3389_fphar_2023_1131001
crossref_primary_10_1016_j_ygeno_2023_110719
crossref_primary_10_1016_j_mtbio_2023_100885
crossref_primary_10_1186_s12951_024_02977_5
crossref_primary_10_3389_fendo_2023_1126787
crossref_primary_10_3390_pharmaceutics15041045
crossref_primary_10_3390_ijms23147986
crossref_primary_10_1016_j_reth_2024_01_009
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2022043413
crossref_primary_10_1080_03008207_2023_2212052
crossref_primary_10_3390_membranes12070716
crossref_primary_10_1002_jev2_12202
crossref_primary_10_1038_s41420_024_01973_w
crossref_primary_10_1186_s11671_024_04164_9
crossref_primary_10_1186_s13018_024_04653_8
crossref_primary_10_1007_s40259_022_00555_5
crossref_primary_10_3389_fcell_2023_1029671
crossref_primary_10_1002_anbr_202300042
crossref_primary_10_1038_s41420_023_01490_2
crossref_primary_10_2147_IJN_S506456
crossref_primary_10_32604_biocell_2022_018378
crossref_primary_10_3390_ijms24010250
crossref_primary_10_3390_pharmaceutics14040770
crossref_primary_10_1038_s41378_024_00735_z
crossref_primary_10_3389_fncel_2022_949939
crossref_primary_10_1016_j_jmrt_2024_02_065
crossref_primary_10_1111_cpr_13630
crossref_primary_10_1186_s12951_021_01171_1
crossref_primary_10_1016_j_cej_2024_153749
crossref_primary_10_1021_acsbiomaterials_3c01485
crossref_primary_10_1155_2022_5772509
crossref_primary_10_1039_D3TB02069J
Cites_doi 10.1016/j.biomaterials.2018.11.007
10.1016/j.biomaterials.2018.09.028
10.1002/adhm.202000318
10.1007/s11033-018-4399-x
10.1126/science.aau6977
10.1016/j.bioactmat.2021.04.014
10.1039/D0NR00867B
10.3402/jev.v4.26238
10.1002/bem.21903
10.1126/sciadv.aax2476
10.1016/j.biomaterials.2016.01.035
10.1126/science.1222454
10.1172/JCI30269
10.1016/j.pmatsci.2020.100768
10.1021/acsnano.5b00042
10.1038/s41419-020-2377-4
10.1371/journal.pone.0225472
10.1038/nature02871
10.1016/j.biomaterials.2016.02.004
10.3390/cells8080784
10.1016/S1470-2045(19)30787-9
10.1080/17474086.2018.1518712
10.1016/j.scr.2015.04.009
10.7150/thno.21945
10.1073/pnas.1717363115
10.1152/ajpheart.00635.2015
10.1038/s41598-020-63230-1
10.1016/j.biomaterials.2020.119942
10.1002/cbin.11124
10.1359/jbmr.071104
10.1042/CS20181064
10.1096/fj.201802195R
10.1016/j.biomaterials.2018.08.040
10.1016/j.mtbio.2020.100067
10.1016/j.cell.2009.01.035
10.1016/j.matdes.2019.108275
10.1016/j.cell.2004.12.035
10.1101/cshperspect.a031559
10.1186/s13287-019-1410-y
10.1021/acsami.7b17620
10.1111/ijac.12907
10.1016/S0140-6736(15)01036-3
10.1021/acsabm.9b01063
10.1126/sciadv.aaz0952
10.2147/IJN.S275650
10.1038/nprot.2016.123
10.1002/term.229
10.1166/jbn.2019.2701
10.1038/srep02655
10.1007/s13204-018-0877-7
10.1016/j.jphs.2018.12.001
10.1172/JCI66517
10.1111/clr.12812
10.1021/acsami.0c13768
10.3390/biom8040181
10.3390/ijms17050712
10.1016/j.actbio.2018.03.009
10.1007/s00774-019-01013-z
10.1083/jcb.201211138
ContentType Journal Article
Copyright 2021. The Author(s).
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7TB
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12951-021-00958-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection‎ (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-3155
EndPage 19
ExternalDocumentID oai_doaj_org_article_22753d3487244e4888ef84c7264e94bc
PMC8278669
A672337329
34256779
10_1186_s12951_021_00958_6
Genre Journal Article
GeographicLocations China
United States--US
Japan
Germany
GeographicLocations_xml – name: China
– name: Germany
– name: United States--US
– name: Japan
GrantInformation_xml – fundername: Natural Science Foundation of Beijing Municipality
  grantid: 7202167
– fundername: Chinese Academy of Medical Sciences
  grantid: 2020-I2M-C&T-B-025
– fundername: ;
  grantid: 7202167
– fundername: ;
  grantid: 2020-I2M-C&T-B-025
GroupedDBID ---
0R~
29L
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IHR
INH
INR
ISR
ITC
ITG
ITH
KB.
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QO
7TB
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c663t-eab9582f4a8bffbe30093dff1d64efaf65d8e5caed4183a801f04d2fe0b020373
IEDL.DBID M48
ISSN 1477-3155
IngestDate Wed Aug 27 01:31:08 EDT 2025
Thu Aug 21 18:30:22 EDT 2025
Tue Aug 05 10:44:20 EDT 2025
Fri Jul 25 19:27:38 EDT 2025
Tue Jun 17 21:29:47 EDT 2025
Tue Jun 10 20:38:14 EDT 2025
Fri Jun 27 03:49:59 EDT 2025
Mon Jul 21 06:00:35 EDT 2025
Tue Jul 01 01:26:46 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Static magnetic field
Exosomes
Bone regeneration
miR-1260a
Magnetic nanoparticles
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-eab9582f4a8bffbe30093dff1d64efaf65d8e5caed4183a801f04d2fe0b020373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-021-00958-6
PMID 34256779
PQID 2553320131
PQPubID 44676
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_22753d3487244e4888ef84c7264e94bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8278669
proquest_miscellaneous_2551577216
proquest_journals_2553320131
gale_infotracmisc_A672337329
gale_infotracacademiconefile_A672337329
gale_incontextgauss_ISR_A672337329
pubmed_primary_34256779
crossref_primary_10_1186_s12951_021_00958_6
crossref_citationtrail_10_1186_s12951_021_00958_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-13
PublicationDateYYYYMMDD 2021-07-13
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of nanobiotechnology
PublicationTitleAlternate J Nanobiotechnology
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References JP Beier (958_CR4) 2010; 4
Z Li (958_CR47) 2021; 6
C Magnon (958_CR63) 2007; 117
K Marycz (958_CR25) 2019; 8
EC Watson (958_CR8) 2018; 8
B Liang (958_CR5) 2019; 10
D Wu (958_CR37) 2020; 15
M Naudot (958_CR6) 2020; 5
J Zhuang (958_CR24) 2018; 71
T Imai (958_CR39) 2015; 4
DJ Huey (958_CR1) 2012; 338
F Bambini (958_CR26) 2017; 31
R Takeuchi (958_CR35) 2019; 14
XY Wang (958_CR50) 2020; 3
AM Roccaro (958_CR16) 2013; 123
L Liu (958_CR18) 2019; 192
L Jin (958_CR51) 2018; 8
V Ambros (958_CR59) 2004; 431
A Khademhosseini (958_CR10) 2016; 11
JR Lee (958_CR31) 2020; 6
P Feng (958_CR54) 2020; 12
J Kolosnjaj-Tabi (958_CR29) 2015; 9
DE Connor (958_CR34) 2019; 37
K Hashimoto (958_CR42) 2018; 115
BP Lewis (958_CR60) 2005; 120
W Liao (958_CR17) 2019; 133
Q Wang (958_CR22) 2016; 86
TM Sissung (958_CR12) 2020; 21
M Farshadi (958_CR43) 2019; 43
HM Yun (958_CR23) 2016; 85
EC Kim (958_CR27) 2017; 28
X Fu (958_CR11) 2019; 8
SHS Tan (958_CR46) 2020; 7
D Lopes (958_CR3) 2018; 185
Y Xia (958_CR19) 2018; 183
W Liao (958_CR52) 2018; 8
S Herberg (958_CR2) 2019; 5
G Raposo (958_CR38) 2013; 200
M Kazemi (958_CR44) 2018; 15
Y Qin (958_CR36) 2016; 17
R Said (958_CR41) 2018; 45
IM Olfert (958_CR9) 2016; 310
Z Huang (958_CR21) 2020; 9
EC Kim (958_CR55) 2015; 36
CL Ross (958_CR56) 2015; 15
CJ Shuai (958_CR57) 2020; 185
M Okada (958_CR64) 2019; 139
J Li (958_CR49) 2019; 15
HY Kim (958_CR33) 2020; 243
R Wang (958_CR62) 2020; 11
W Li (958_CR15) 2018; 10
J Meng (958_CR20) 2013; 3
ED Jensen (958_CR61) 2008; 23
Y Zhu (958_CR32) 2020; 12
RW Carthew (958_CR58) 2009; 136
JL Yang (958_CR48) 2021; 118
MA Mohammad Moradi (958_CR53) 2019; 19
R Kalluri (958_CR14) 2020; 367
KS Dua (958_CR7) 2016; 388
L Liu (958_CR45) 2020; 3
C He (958_CR13) 2018; 8
M Auerbach (958_CR30) 2018; 11
Y He (958_CR28) 2019; 33
B Kim (958_CR40) 2020; 10
37424024 - J Nanobiotechnology. 2023 Jul 10;21(1):217
References_xml – volume: 192
  start-page: 523
  year: 2019
  ident: 958_CR18
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.11.007
– volume: 185
  start-page: 240
  year: 2018
  ident: 958_CR3
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.09.028
– volume: 9
  start-page: e2000318
  year: 2020
  ident: 958_CR21
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202000318
– volume: 45
  start-page: 2345
  year: 2018
  ident: 958_CR41
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-018-4399-x
– volume: 367
  start-page: 552
  year: 2020
  ident: 958_CR14
  publication-title: Science
  doi: 10.1126/science.aau6977
– volume: 6
  start-page: 4053
  year: 2021
  ident: 958_CR47
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2021.04.014
– volume: 12
  start-page: 8720
  year: 2020
  ident: 958_CR32
  publication-title: Nanoscale
  doi: 10.1039/D0NR00867B
– volume: 4
  start-page: 26238
  year: 2015
  ident: 958_CR39
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v4.26238
– volume: 36
  start-page: 267
  year: 2015
  ident: 958_CR55
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.21903
– volume: 5
  start-page: 2476
  year: 2019
  ident: 958_CR2
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aax2476
– volume: 85
  start-page: 88
  year: 2016
  ident: 958_CR23
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.035
– volume: 338
  start-page: 917
  year: 2012
  ident: 958_CR1
  publication-title: Science
  doi: 10.1126/science.1222454
– volume: 117
  start-page: 1844
  year: 2007
  ident: 958_CR63
  publication-title: J Clin Invest
  doi: 10.1172/JCI30269
– volume: 118
  start-page: 25
  year: 2021
  ident: 958_CR48
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2020.100768
– volume: 9
  start-page: 7925
  year: 2015
  ident: 958_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00042
– volume: 11
  start-page: 179
  year: 2020
  ident: 958_CR62
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-020-2377-4
– volume: 14
  start-page: 225472
  year: 2019
  ident: 958_CR35
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0225472
– volume: 431
  start-page: 350
  year: 2004
  ident: 958_CR59
  publication-title: Nature
  doi: 10.1038/nature02871
– volume: 86
  start-page: 11
  year: 2016
  ident: 958_CR22
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.02.004
– volume: 8
  start-page: 214
  year: 2019
  ident: 958_CR11
  publication-title: Cells
  doi: 10.3390/cells8080784
– volume: 21
  start-page: 205
  year: 2020
  ident: 958_CR12
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30787-9
– volume: 11
  start-page: 829
  year: 2018
  ident: 958_CR30
  publication-title: Expert Rev Hematol
  doi: 10.1080/17474086.2018.1518712
– volume: 15
  start-page: 96
  year: 2015
  ident: 958_CR56
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2015.04.009
– volume: 8
  start-page: 237
  year: 2018
  ident: 958_CR13
  publication-title: Theranostics
  doi: 10.7150/thno.21945
– volume: 5
  start-page: 954
  year: 2020
  ident: 958_CR6
  publication-title: J Tissue Eng Regen Med
– volume: 115
  start-page: 2204
  year: 2018
  ident: 958_CR42
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1717363115
– volume: 310
  start-page: H326
  year: 2016
  ident: 958_CR9
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00635.2015
– volume: 10
  start-page: 6600
  year: 2020
  ident: 958_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63230-1
– volume: 243
  start-page: 119942
  year: 2020
  ident: 958_CR33
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119942
– volume: 43
  start-page: 1379
  year: 2019
  ident: 958_CR43
  publication-title: Cell Biol Int
  doi: 10.1002/cbin.11124
– volume: 23
  start-page: 361
  year: 2008
  ident: 958_CR61
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.071104
– volume: 133
  start-page: 1955
  year: 2019
  ident: 958_CR17
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20181064
– volume: 33
  start-page: 6069
  year: 2019
  ident: 958_CR28
  publication-title: FASEB J
  doi: 10.1096/fj.201802195R
– volume: 183
  start-page: 151
  year: 2018
  ident: 958_CR19
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.08.040
– volume: 7
  start-page: 100067
  year: 2020
  ident: 958_CR46
  publication-title: Mater Today Bio
  doi: 10.1016/j.mtbio.2020.100067
– volume: 136
  start-page: 642
  year: 2009
  ident: 958_CR58
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.035
– volume: 185
  start-page: 24
  year: 2020
  ident: 958_CR57
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2019.108275
– volume: 120
  start-page: 15
  year: 2005
  ident: 958_CR60
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.035
– volume: 8
  start-page: 664
  year: 2018
  ident: 958_CR8
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a031559
– volume: 10
  start-page: 335
  year: 2019
  ident: 958_CR5
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-019-1410-y
– volume: 10
  start-page: 5240
  year: 2018
  ident: 958_CR15
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b17620
– volume: 15
  start-page: 1427
  year: 2018
  ident: 958_CR44
  publication-title: Int J Appl Ceram Technol
  doi: 10.1111/ijac.12907
– volume: 388
  start-page: 55
  year: 2016
  ident: 958_CR7
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)01036-3
– volume: 31
  start-page: 481
  year: 2017
  ident: 958_CR26
  publication-title: J Biol Regul Homeost Agents
– volume: 3
  start-page: 735
  year: 2020
  ident: 958_CR50
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.9b01063
– volume: 6
  start-page: 952
  year: 2020
  ident: 958_CR31
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz0952
– volume: 15
  start-page: 7979
  year: 2020
  ident: 958_CR37
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S275650
– volume: 11
  start-page: 1775
  year: 2016
  ident: 958_CR10
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.123
– volume: 4
  start-page: 216
  year: 2010
  ident: 958_CR4
  publication-title: J Tissue Eng Regen Med
  doi: 10.1002/term.229
– volume: 15
  start-page: 500
  year: 2019
  ident: 958_CR49
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2019.2701
– volume: 19
  start-page: 5247
  year: 2019
  ident: 958_CR53
  publication-title: Nano-Struct Nano-Objects
– volume: 3
  start-page: 2655
  year: 2013
  ident: 958_CR20
  publication-title: Sci Rep
  doi: 10.1038/srep02655
– volume: 8
  start-page: 1915
  year: 2018
  ident: 958_CR51
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-018-0877-7
– volume: 8
  start-page: 47
  year: 2019
  ident: 958_CR25
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 139
  start-page: 59
  year: 2019
  ident: 958_CR64
  publication-title: J Pharmacol Sci
  doi: 10.1016/j.jphs.2018.12.001
– volume: 123
  start-page: 1542
  year: 2013
  ident: 958_CR16
  publication-title: J Clin Invest
  doi: 10.1172/JCI66517
– volume: 28
  start-page: 396
  year: 2017
  ident: 958_CR27
  publication-title: Clin Oral Implants Res
  doi: 10.1111/clr.12812
– volume: 12
  start-page: 46743
  year: 2020
  ident: 958_CR54
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c13768
– volume: 8
  start-page: 35
  year: 2018
  ident: 958_CR52
  publication-title: Biomolecules
  doi: 10.3390/biom8040181
– volume: 17
  start-page: 2347
  year: 2016
  ident: 958_CR36
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17050712
– volume: 71
  start-page: 49
  year: 2018
  ident: 958_CR24
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.03.009
– volume: 37
  start-page: 759
  year: 2019
  ident: 958_CR34
  publication-title: J Bone Miner Metab
  doi: 10.1007/s00774-019-01013-z
– volume: 200
  start-page: 373
  year: 2013
  ident: 958_CR38
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201211138
– volume: 3
  start-page: 821
  year: 2020
  ident: 958_CR45
  publication-title: Acta Biomater
– reference: 37424024 - J Nanobiotechnology. 2023 Jul 10;21(1):217
SSID ssj0022424
Score 2.612324
Snippet The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of...
Background The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine...
Abstract Background The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 209
SubjectTerms Analysis
Angiogenesis
Angiogenesis Inducing Agents - pharmacology
Animals
Biomedical materials
Bone and Bones - drug effects
Bone growth
Bone healing
Bone regeneration
Bone Regeneration - drug effects
Bones
Cell Differentiation
Cell migration
Cell Movement
Cell Proliferation
Chemical properties
Collagen Type IV - metabolism
Computational Biology
Dental implants
Differentiation (biology)
Dosage
Exosomes
Ferric oxide
Growth
Health aspects
Histone Deacetylases - metabolism
Humans
Iron
Iron oxides
Magnetic Fields
Magnetic nanoparticles
Magnetic properties
Magnetite Nanoparticles - chemistry
Male
Mesenchymal stem cells
Mesenchymal Stem Cells - drug effects
MicroRNA
MicroRNAs - metabolism
Microscopy
miR-1260a
miRNA
Morphology
Nanoparticles
Neovascularization
Osteogenesis
Osteogenesis - drug effects
Paracrine signalling
Rats
Regeneration
Regeneration (physiology)
Static magnetic field
Stem cell transplantation
Stem cells
Stimulation
Testing
Tissue engineering
Transplantation
Ultracentrifugation
Wound Healing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGdoQQYhcUBRG9uxHW4toipIcChU6s2yY3sbiU0Q2ZXo7-GPMuN4VxshwYXDSqt4ko1nxvPwznwm5JVgyje8jqWKrC2FZbFsvHOliBbiCc2amND1P32W55fi41V9tXPUF9aETfDAE-OOGIOA2nOIq8ERBVA3HaIWrQJHHhrhWrS-4PM2yVROtbDpYdMio-XRCF6thrSZwQdiCl3KmRtKaP1_2uQdpzQvmNzxQGf3yN0cOtKT6ZX3ya3Q3yd3dgAFH5Bfp0Mf6BI7itrrmyVQI04zxd35Eb52y3xYF3U3dGkXPXYw0t72kDnnAjlqe08txT4jGNrSpEK3txRPWAG3R4dIw89hHPAXlt1FWUG-YmmXNijgGdg4MizQinb5gfCSmwsPyeXZ-6_vzst8DEPZQjiyKoN1wDIWhdUuRhc47oL4GCsPIog2ytrrULc2eAH2wYLLi8fCsxiOHf7NqfgjstfD7J8QKmXgzkfJhYtCQ2TGlY-uqdrYOAfWpiDVRiqmzRjleFTGN5NyFS3NJEkDkjRJkkYW5M32nu8TQsdfqU9R2FtKRNdOF0DnTGa1-ZfOFeQlqopB_IweC3QWdj2O5sOXC3MiFeMwZ9YU5HUmigPMobW53wE4gZBbM8rDGSUs8HY-vNFIkw3MaCAT5JwhWFJBXmyH8U4smuvDsE40Va0QnakgjycF3s6bg62WSsHD1Uy1Z4yZj_TddYIf10xpKZun_4OTB-Q2S6tSlRU_JHurH-vwDKK8lXueFvRvqZRPvg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeDdQkEFIHFDUxnZshwtqEVVBgkOh0t4sO7a3K7FJaXYl-nv4o8x4vduNkHpYaRVPnNhjz8OZ-YaQt4Ip3_A6liqythSWxbLxzpUiWrAnNGtiQtf_9l2enImvk3qSD9yGHFa5lolJUPu-xTPyfTB9OWeIDvPx4neJVaPw62ouoXGb3EHoMgzpUpNrhwtTH9aJMlruD6DbanCeGfzAstClHCmjhNn_v2TeUk3jsMktPXT8gNzPBiQ9XHH8IbkVukfk3has4GPy96jvAp1jXlF7fjUHakRrpnhGP8Df2TyX7KLuis7ttMM8RtrZDvznHCZHbeeppZhtBE0bmhTu9oFinRVQfrSPNPzphx6fMJ-dlhV4LZbO0jEF9IHpI_0UZeksdwgvub7whJwdf_756aTMxRjKFoySRRmsgyljUVjtYnSB41mIj7HyUoRoo6y9DnVrgxcgJSwovnggPIvhwOHHTsWfkp0ORr9LqJSBOx8lFy4KDfYZVz66pmpj4xzInIJUa66YNiOVY8GMXyZ5LFqaFScNcNIkThpZkPebey5WOB03Uh8hszeUiLGdLvSXU5On2jAGrpzn4NGBCRRA0OkQtWgVmJChEa4tyBtcKgZRNDoM05na5TCYLz9OzaFUjMOYWVOQd5ko9jCG1uasB5gJBN4aUe6NKGGbt-Pm9Yo0WcwM5npTFOT1phnvxNC5LvTLRFPVCjGaCvJstYA34-YgsaVS0LkaLe3RxIxbutl5AiHXTGkpm-c3v9YLcpel_abKiu-RncXlMrwEK27hXqWt-g_wv0hT
  priority: 102
  providerName: ProQuest
Title Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/34256779
https://www.proquest.com/docview/2553320131
https://www.proquest.com/docview/2551577216
https://pubmed.ncbi.nlm.nih.gov/PMC8278669
https://doaj.org/article/22753d3487244e4888ef84c7264e94bc
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2eYEHxH2BURmExAMKLI5jJ0gIrWhjIG1ChUoVL5ad2F2lNYGmldbfwx_lHDeJGjEhHhpV8YlbX87NOec7hLzkTBZZnLhQOpaHXDMXZoUxIXca7ImUZc6j659fiLMx_zJJJjukLXfUTGB9o2uH9aTGi6s317_WH4Dh33uGT8XbGnRWAk4xgw9YDGkodsk-aCaJjHrOu7cKDFMhfLaRxLO5JGmTaG7so6eoPJ7_31J7S231Qyq3dNTpXXKnMS7p8WY33CM7trxPbm9BDj4gv4dVaekcc47yy_UcqBHJmeL5fQ1fZ_OmnBc1azrX0xJzHGmpS_CtmxA6qsuCaoqZSNDU0fhQuHcUa7CAYqSVo_a6qiv8hflsFEbg0Wg680cY0AemllRTlLOzpkP4k-2Nh2R8evL941nYFGoIczBYlqHVBqaMOa5T45yxMZ6TFM5FheDWaSeSIrVJrm3BQYJoUIruiBfM2SODL0Jl_IjslTD6A0KFsLEpnIi5cTwF2y2WhTNZlLvMGJBHAYnaVVF5g2KOxTSulPdmUqE2K6lgJZVfSSUC8rp75ucGw-Of1ENc7I4S8bf9jWoxVc1UK8bAzSti8PbAPLIgBFPrUp5LMC9txk0ekBe4VRQibJQYwjPVq7pWn7-N1LGQLIYxsywgrxoiV8EYct1kRMBMIChXj_KwRwkiIO83tztStRykwFeMY4ZwSgF53jXjkxhWV9pq5WmiRCJ-U0AebzZwN-4YpLmQEjqXva3dm5h-Szm79ADlKZOpENmT_x7fU3KLedaTYRQfkr3lYmWfgbG3NAOyKycSrunppwHZH55cfB0N_MHJwPM2XEfDH38AujJXCw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOAAHxDeBAQaBOKBorZ3YDhJCGzC17OMwNqk3Yyd2V4kmY2kF_Xu48zfynpt0i5B226FSFb84sd_z-4j9fo-Q1wmTRcZTH0vP8jgxzMdZYW2ceAP-hGKZD-j6-wdicJx8HaWjNfK3zYXBY5WtTgyKuqhy_Ea-Ca4v5wzRYT6e_oyxahTurrYlNJZisesWvyBkqz8MPwN_3zC28-Xo0yBuqgrEOVjXWeyMzVLFfGKU9d46jkF94X2_EInzxou0UC7NjSsSEHcDGtz3koJ517O4ayc59HuNXAfD28MVJUfnAR6mWrSJOUps1mBLUwjWGfzAk1Gx6Bi_UCPgf0twwRR2j2lesHs7d8jtxmGlW0sJu0vWXHmP3LoAY3if_NmuSkenmMeUnyymQI3o0BT3BGr4O5k2JcKoXdCpGZeYN0lLU0K83hzLo6YsqKGY3QRNK5pwvO49xbouYGxp5an7XdUVPmE6OYz7ECUZOgmfRaAPTFepxqi7J02H8JLthQfk-ErY9JCslzD6x4QK4bgtvOCJ9YkCf5DLwtusn_vMWtBxEem3XNF5g4yOBTp-6BAhKaGXnNTASR04qUVE3q3uOV3iglxKvY3MXlEipne4UJ2NdTPVmjEIHQsOESS4XA4Uq3JeJbkEl9Vlic0j8gpFRSNqR4nHgsZmXtd6-O1QbwnJOIyZZRF52xD5CsaQmybLAmYCgb46lBsdSlArebe5lUjdqLVany_CiLxcNeOdeFSvdNU80PRTiZhQEXm0FODVuDlYCCEldC47ot2ZmG5LOTkJoOeKSSVE9uTy13pBbgyO9vf03vBg9ym5ycLak3Gfb5D12dncPQMPcmafh2VLyfer1hP_AAcvhyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+mesenchymal+stem+cells+stimulation+by+magnetic+nanoparticles+and+a+static+magnetic+field%3A+release+of+exosomal+miR-1260a+improves+osteogenesis+and+angiogenesis&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Wu%2C+Di&rft.au=Chang%2C+Xiao&rft.au=Tian%2C+Jingjing&rft.au=Kang%2C+Lin&rft.date=2021-07-13&rft.pub=BioMed+Central+Ltd&rft.issn=1477-3155&rft.eissn=1477-3155&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12951-021-00958-6&rft.externalDocID=A672337329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon