De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis
Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gam...
Saved in:
Published in | BMC genomics Vol. 21; no. 1; pp. 732 - 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
21.10.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization.
1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes.
Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies. |
---|---|
AbstractList | Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. Results 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Conclusions Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies. Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies. Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies. Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. Results 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Conclusions Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies. Keywords: Scleractinian corals, Euphyllia ancora, Ovary, Testis, Gonads, RNA-seq, Transcriptome assembly, Sex-specific, Phase-specific, Oogenesis, Spermatogenesis Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization.BACKGROUNDSexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization.1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes.RESULTS1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes.Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.CONCLUSIONSOur findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies. Abstract Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. Results 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Conclusions Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies. |
ArticleNumber | 732 |
Audience | Academic |
Author | Chang, Ching-Fong Chiu, Yi-Ling Shinzato, Chuya Yoshioka, Yuki Shikina, Shinya |
Author_xml | – sequence: 1 givenname: Yi-Ling surname: Chiu fullname: Chiu, Yi-Ling – sequence: 2 givenname: Shinya surname: Shikina fullname: Shikina, Shinya – sequence: 3 givenname: Yuki surname: Yoshioka fullname: Yoshioka, Yuki – sequence: 4 givenname: Chuya surname: Shinzato fullname: Shinzato, Chuya – sequence: 5 givenname: Ching-Fong surname: Chang fullname: Chang, Ching-Fong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33087060$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wB1ggS2xAIsWOHSdhgVSVAiNVQuKxtm78yLhy7KmdVMwf4ffi6ZTSGSGURaKb7xz7Hp3j4sAHr4viOcGnhLT8bSJVy1mJK1zihhBado-KI8IaUlaEs4MH34fFcUpXGJOmreonxSGluG0wx0fFrw8a-XAT0BTBJxntagqjRpCSHnu3RiaGEU1LjYbgQSUUDAKUpNMR5GS9BY9kiODeoIt5tVw7ZwGB34zeoTE4LWcHEY1aLsHbNCY0e6WjW1s_7NkMMOopDNrrZNPT4rEBl_Szu_dJ8ePjxffzz-Xll0-L87PLUnJOp7KXVHUEQ1VjwEZ2jIChnTQNZRiznjKujKGspr3kBoPO815LpSrVkloRTk-KxdZXBbgSq2hHiGsRwIrbQYiDgDjZfFFheM0kVrKvMGeM0b6GrsZEa9xI1RvIXu-3Xqu5H7WS2udM3Y7p7h9vl2IIN6Kpm66tSDZ4dWcQw_Ws0yRGm6R2DrwOcxJVXoS3jLZtRl_uoVdhjj5HlSlOuq7hlP2lBsgLWG9CPlduTMUZp11dVbyhmTr9B5UfpUcrc-WMzfMdwesdQWYm_XMaYE5JLL593WVfPAzlPo0_DcxAtQVkDClFbe4RgsWm5mJbc5FrLm5rLrosavdE0k4w2bAJ1rr_SX8DMBADRg |
CitedBy_id | crossref_primary_10_1111_1758_2229_13310 crossref_primary_10_1007_s00338_025_02616_x crossref_primary_10_1134_S0006297922030075 crossref_primary_10_2331_suisan_WA2850 crossref_primary_10_1177_07487304221135916 crossref_primary_10_3389_fmars_2022_889866 crossref_primary_10_1038_s41598_021_92601_5 crossref_primary_10_31857_S0320972522020075 crossref_primary_10_1038_s41598_021_03810_x crossref_primary_10_3389_fmars_2021_685876 crossref_primary_10_7717_peerj_17182 crossref_primary_10_1007_s00338_024_02580_y crossref_primary_10_3389_fmars_2023_1278022 crossref_primary_10_1038_s42003_024_06544_4 crossref_primary_10_1038_s41598_022_06822_3 crossref_primary_10_1016_j_ecoenv_2022_113396 crossref_primary_10_3390_md21120614 crossref_primary_10_1093_g3journal_jkab030 |
Cites_doi | 10.1101/140160 10.1242/jeb.040881 10.14806/ej.17.1.200 10.1038/nprot.2008.211 10.1095/biolreprod.115.129643 10.1186/1471-2164-14-704 10.1146/annurev.ecolsys.110308.120220 10.1002/mrd.22927 10.1007/s00239-005-0129-9 10.6090/jarq.38.49 10.3382/ps/pez212 10.1007/BF00291932 10.1091/mbc.e04-09-0771 10.1002/mrd.23157 10.1186/1471-2164-12-552 10.1210/en.2013-1086 10.1016/j.ajhg.2018.03.007 10.1038/s41598-018-34459-8 10.1007/BF00302104 10.1186/1471-213X-10-67 10.1111/1755-0998.12360 10.1007/s00338-015-1270-6 10.1242/dev.00804 10.1371/journal.pone.0104441 10.1016/j.marpolbul.2008.08.014 10.1016/j.aquatox.2006.05.011 10.1002/jcp.22962 10.1101/gad.1656508 10.1093/bioinformatics/btp616 10.1016/0014-4827(70)90448-9 10.1006/dbio.1999.9598 10.1016/j.cub.2008.12.054 10.1016/j.ydbio.2008.11.003 10.1210/jcem.87.2.8271 10.1016/j.margen.2017.08.010 10.1002/aqc.558 10.1038/srep18211 10.1038/srep25089 10.1016/j.ydbio.2011.06.030 10.1007/s003380050158 10.1073/pnas.87.13.5203 10.3755/galaxea.20.1_1 10.1371/journal.pone.0041569 10.1016/j.gene.2007.07.006 10.1128/MCB.12.10.4400 10.1007/s00338-005-0485-3 10.2108/zsj.24.277 10.1073/pnas.1424648112 10.1038/ismej.2014.182 10.1038/nmeth.4197 10.1038/s41598-017-05572-x 10.1371/journal.pgen.1000882 10.7717/peerj.1982 10.1371/journal.pone.0007680 10.1002/bies.201000001 10.1016/j.cbpa.2006.01.011 10.1095/biolreprod.115.137497 10.1007/978-3-319-31305-4_16 10.1007/s00412-015-0517-x 10.1074/jbc.M106941200 10.1371/journal.pone.0085182 10.1016/j.cub.2008.03.045 10.1016/j.bbagen.2006.08.014 10.1038/srep39711 10.1016/j.cbpb.2005.12.017 10.1126/science.223.4641.1186 10.1016/j.ydbio.2008.03.047 10.1002/jcp.20669 10.1023/A:1022529918810 10.1016/0300-9629(94)90323-9 10.1038/s41598-018-34575-5 10.1101/cshperspect.a019364 10.1038/srep02649 10.1007/s10750-014-2063-6 10.1095/biolreprod.115.133173 10.1371/journal.pone.0156424 10.1073/pnas.0900243106 10.1210/me.2005-0494 10.1096/fj.99-0851com 10.1016/j.cub.2013.05.062 10.1371/journal.pgen.1008585 10.1093/nar/gks042 10.1093/hmg/11.15.1697 10.1093/bioinformatics/btl158 10.7554/eLife.09991 10.1093/molbev/mst109 10.1073/pnas.062552299 10.1073/pnas.95.25.14863 10.1016/j.ygcen.2016.02.006 10.1073/pnas.1220018110 10.1007/s10126-008-9127-4 10.1038/nbt.1883 10.2307/1540935 10.1038/s41598-020-66438-3 10.1007/BF00428562 10.1371/journal.pone.0046542 10.1038/13657 10.1371/journal.pgen.1004540 10.1038/srep25868 10.1038/s41598-019-51224-7 10.1038/35048564 10.1093/oxfordjournals.humrep.a138086 10.1095/biolreprod.102.012450 10.1093/molehr/gah123 10.1007/s11033-018-4383-5 10.1111/j.1440-169X.2008.01019.x 10.1016/j.bbrc.2014.08.006 10.1016/j.bbrc.2006.03.116 10.1007/s00427-019-00630-y 10.1371/journal.pone.0007298 10.1038/s41598-017-17484-x 10.1111/mec.14062 10.1007/978-94-007-0114-4_6 10.1016/S1097-2765(00)80404-9 10.1038/75556 10.1186/s12864-019-6157-4 10.2741/A895 10.1242/jcs.00947 10.1016/S1095-6433(98)10155-1 10.1073/pnas.1301419110 10.1186/s13072-016-0085-1 10.1016/0092-8674(92)90427-E 10.2108/zsj.24.249 10.1002/mrd.22579 10.1194/jlr.M050286 10.1093/bioinformatics/bth078 10.1016/j.cbpc.2003.09.011 10.1007/s00338-010-0700-8 10.1016/S0960-9822(06)00218-1 10.1371/journal.pbio.3000614 10.1371/journal.pone.0002680 10.1186/s40851-019-0141-3 10.1007/BF00175501 10.1387/ijdb.072524pw 10.1038/ncb1345 10.1093/bioinformatics/btv351 10.1038/s41598-018-26718-5 10.1093/nar/gkn923 10.1038/nrm.2017.94 10.1186/1471-2105-12-323 10.15252/embr.201540749 10.1093/nar/gkj149 10.3354/meps060185 10.1016/j.cub.2004.01.023 10.1093/molehr/gah052 10.1093/molbev/msx319 10.1016/j.cub.2003.11.030 10.1080/17451000.2019.1662050 10.1111/mec.14043 10.1093/nar/gky995 10.1038/nature10249 10.1111/j.0022-1112.2005.00639.x 10.1073/pnas.0808363106 10.1242/jcs.221648 10.1371/journal.pone.0098053 10.1242/jeb.02500 10.1083/jcb.142.2.473 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-020-07113-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_f654c0dcb2064443b5a9501ee07cdbfa PMC7579821 A639522673 33087060 10_1186_s12864_020_07113_9 |
Genre | Journal Article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: 104-2313-B019-MY3 – fundername: Ministry of Science and Technology, Taiwan grantid: 103-2621-B-019-006-MY3 – fundername: Ministry of Science and Technology, Taiwan grantid: 108-2628-B-019-001- – fundername: Japan Society for the Promotion of Science grantid: 17KT0027 – fundername: Japan Society for the Promotion of Science grantid: 17K07949 – fundername: ; grantid: 17KT0027; 17K07949 – fundername: ; grantid: 104-2313-B019-MY3; 103-2621-B-019-006-MY3; 108-2628-B-019-001- |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c663t-bc3d910a250a0fc941af39cf734004b346dff3453bc6f0ae734becdd2d815d163 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:31:05 EDT 2025 Thu Aug 21 18:03:37 EDT 2025 Fri Jul 11 08:05:16 EDT 2025 Fri Jul 25 18:56:10 EDT 2025 Tue Jun 17 21:12:31 EDT 2025 Tue Jun 10 20:50:01 EDT 2025 Fri Jun 27 04:01:45 EDT 2025 Thu Apr 03 07:09:33 EDT 2025 Tue Jul 01 00:39:10 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Testis Oogenesis Ovary Phase-specific Transcriptome assembly RNA-seq Spermatogenesis Euphyllia ancora Scleractinian corals Gonads Sex-specific |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c663t-bc3d910a250a0fc941af39cf734004b346dff3453bc6f0ae734becdd2d815d163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-020-07113-9 |
PMID | 33087060 |
PQID | 2461997634 |
PQPubID | 44682 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f654c0dcb2064443b5a9501ee07cdbfa pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579821 proquest_miscellaneous_2453684388 proquest_journals_2461997634 gale_infotracmisc_A639522673 gale_infotracacademiconefile_A639522673 gale_incontextgauss_ISR_A639522673 pubmed_primary_33087060 crossref_primary_10_1186_s12864_020_07113_9 crossref_citationtrail_10_1186_s12864_020_07113_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-21 |
PublicationDateYYYYMMDD | 2020-10-21 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 7113_CR114 7113_CR115 7113_CR112 7113_CR113 7113_CR60 7113_CR118 7113_CR61 7113_CR119 7113_CR62 7113_CR116 7113_CR63 7113_CR117 7113_CR64 7113_CR65 7113_CR66 7113_CR67 7113_CR68 7113_CR121 7113_CR69 7113_CR122 7113_CR120 7113_CR125 7113_CR126 7113_CR123 7113_CR70 7113_CR124 7113_CR71 7113_CR129 7113_CR72 7113_CR73 7113_CR127 7113_CR74 7113_CR128 7113_CR75 7113_CR76 7113_CR77 7113_CR78 7113_CR79 7113_CR132 7113_CR133 7113_CR130 7113_CR131 7113_CR40 7113_CR41 7113_CR42 7113_CR43 7113_CR44 7113_CR45 7113_CR46 7113_CR1 7113_CR47 7113_CR100 7113_CR48 7113_CR49 7113_CR109 7113_CR4 7113_CR103 7113_CR5 7113_CR104 7113_CR2 7113_CR101 7113_CR3 7113_CR102 7113_CR8 7113_CR107 7113_CR9 7113_CR50 7113_CR108 7113_CR6 7113_CR51 7113_CR105 7113_CR7 7113_CR52 7113_CR106 7113_CR53 7113_CR54 7113_CR55 7113_CR56 7113_CR57 7113_CR110 7113_CR58 7113_CR111 7113_CR59 7113_CR158 7113_CR159 7113_CR156 7113_CR157 7113_CR20 7113_CR161 7113_CR21 7113_CR162 7113_CR22 7113_CR23 7113_CR160 7113_CR24 7113_CR25 7113_CR26 7113_CR27 7113_CR28 7113_CR29 7113_CR30 7113_CR31 7113_CR32 7113_CR33 7113_CR34 7113_CR35 7113_CR36 7113_CR37 7113_CR38 7113_CR39 7113_CR136 7113_CR137 7113_CR80 7113_CR134 7113_CR81 7113_CR135 7113_CR82 7113_CR83 7113_CR84 7113_CR138 7113_CR85 7113_CR139 7113_CR86 7113_CR87 7113_CR140 7113_CR88 7113_CR89 7113_CR143 7113_CR144 7113_CR141 7113_CR142 7113_CR147 7113_CR90 7113_CR148 7113_CR91 7113_CR145 7113_CR92 7113_CR146 7113_CR93 7113_CR94 7113_CR95 7113_CR149 7113_CR96 7113_CR97 7113_CR150 7113_CR10 7113_CR98 7113_CR151 7113_CR11 7113_CR99 7113_CR12 7113_CR13 7113_CR154 7113_CR14 7113_CR155 7113_CR15 7113_CR152 7113_CR16 7113_CR153 7113_CR17 7113_CR18 7113_CR19 |
References_xml | – ident: 7113_CR53 doi: 10.1101/140160 – ident: 7113_CR70 doi: 10.1242/jeb.040881 – ident: 7113_CR156 doi: 10.14806/ej.17.1.200 – ident: 7113_CR162 doi: 10.1038/nprot.2008.211 – ident: 7113_CR13 doi: 10.1095/biolreprod.115.129643 – ident: 7113_CR142 doi: 10.1186/1471-2164-14-704 – ident: 7113_CR6 doi: 10.1146/annurev.ecolsys.110308.120220 – ident: 7113_CR21 doi: 10.1002/mrd.22927 – ident: 7113_CR66 doi: 10.1007/s00239-005-0129-9 – ident: 7113_CR49 doi: 10.6090/jarq.38.49 – ident: 7113_CR89 doi: 10.3382/ps/pez212 – ident: 7113_CR96 doi: 10.1007/BF00291932 – ident: 7113_CR133 doi: 10.1091/mbc.e04-09-0771 – ident: 7113_CR72 doi: 10.1002/mrd.23157 – ident: 7113_CR30 doi: 10.1186/1471-2164-12-552 – ident: 7113_CR12 doi: 10.1210/en.2013-1086 – ident: 7113_CR77 doi: 10.1016/j.ajhg.2018.03.007 – ident: 7113_CR35 doi: 10.1038/s41598-018-34459-8 – ident: 7113_CR38 doi: 10.1007/BF00302104 – ident: 7113_CR80 doi: 10.1186/1471-213X-10-67 – ident: 7113_CR26 doi: 10.1111/1755-0998.12360 – ident: 7113_CR9 doi: 10.1007/s00338-015-1270-6 – ident: 7113_CR124 doi: 10.1242/dev.00804 – ident: 7113_CR58 doi: 10.1371/journal.pone.0104441 – ident: 7113_CR24 doi: 10.1016/j.marpolbul.2008.08.014 – ident: 7113_CR95 doi: 10.1016/j.aquatox.2006.05.011 – ident: 7113_CR113 doi: 10.1002/jcp.22962 – ident: 7113_CR11 – ident: 7113_CR108 doi: 10.1101/gad.1656508 – ident: 7113_CR158 doi: 10.1093/bioinformatics/btp616 – ident: 7113_CR47 doi: 10.1016/0014-4827(70)90448-9 – ident: 7113_CR111 doi: 10.1006/dbio.1999.9598 – ident: 7113_CR44 doi: 10.1016/j.cub.2008.12.054 – ident: 7113_CR52 doi: 10.1016/j.ydbio.2008.11.003 – ident: 7113_CR104 doi: 10.1210/jcem.87.2.8271 – ident: 7113_CR144 doi: 10.1016/j.margen.2017.08.010 – ident: 7113_CR23 doi: 10.1002/aqc.558 – ident: 7113_CR100 – ident: 7113_CR139 doi: 10.1038/srep18211 – ident: 7113_CR120 doi: 10.1038/srep25089 – ident: 7113_CR128 doi: 10.1016/j.ydbio.2011.06.030 – ident: 7113_CR98 doi: 10.1007/s003380050158 – ident: 7113_CR88 doi: 10.1073/pnas.87.13.5203 – ident: 7113_CR46 doi: 10.3755/galaxea.20.1_1 – ident: 7113_CR8 doi: 10.1371/journal.pone.0041569 – ident: 7113_CR140 doi: 10.1016/j.gene.2007.07.006 – ident: 7113_CR119 doi: 10.1128/MCB.12.10.4400 – ident: 7113_CR18 doi: 10.1007/s00338-005-0485-3 – ident: 7113_CR45 doi: 10.2108/zsj.24.277 – ident: 7113_CR76 doi: 10.1073/pnas.1424648112 – ident: 7113_CR143 doi: 10.1038/ismej.2014.182 – ident: 7113_CR157 doi: 10.1038/nmeth.4197 – ident: 7113_CR37 doi: 10.1038/s41598-017-05572-x – ident: 7113_CR107 doi: 10.1371/journal.pgen.1000882 – ident: 7113_CR60 doi: 10.7717/peerj.1982 – ident: 7113_CR109 doi: 10.1371/journal.pone.0007680 – ident: 7113_CR125 doi: 10.1002/bies.201000001 – ident: 7113_CR101 doi: 10.1016/j.cbpa.2006.01.011 – ident: 7113_CR129 doi: 10.1095/biolreprod.115.137497 – ident: 7113_CR14 doi: 10.1007/978-3-319-31305-4_16 – ident: 7113_CR118 doi: 10.1007/s00412-015-0517-x – ident: 7113_CR90 doi: 10.1074/jbc.M106941200 – ident: 7113_CR33 doi: 10.1371/journal.pone.0085182 – ident: 7113_CR106 doi: 10.1016/j.cub.2008.03.045 – ident: 7113_CR73 doi: 10.1016/j.bbagen.2006.08.014 – ident: 7113_CR114 doi: 10.1038/srep39711 – ident: 7113_CR102 doi: 10.1016/j.cbpb.2005.12.017 – ident: 7113_CR1 doi: 10.1126/science.223.4641.1186 – ident: 7113_CR78 doi: 10.1016/j.ydbio.2008.03.047 – ident: 7113_CR112 doi: 10.1002/jcp.20669 – ident: 7113_CR92 doi: 10.1023/A:1022529918810 – ident: 7113_CR91 doi: 10.1016/0300-9629(94)90323-9 – ident: 7113_CR145 doi: 10.1038/s41598-018-34575-5 – ident: 7113_CR117 doi: 10.1101/cshperspect.a019364 – ident: 7113_CR59 doi: 10.1038/srep02649 – ident: 7113_CR71 doi: 10.1007/s10750-014-2063-6 – ident: 7113_CR16 doi: 10.1095/biolreprod.115.133173 – ident: 7113_CR41 doi: 10.1371/journal.pone.0156424 – ident: 7113_CR51 doi: 10.1073/pnas.0900243106 – ident: 7113_CR81 doi: 10.1210/me.2005-0494 – ident: 7113_CR132 doi: 10.1096/fj.99-0851com – ident: 7113_CR32 doi: 10.1016/j.cub.2013.05.062 – ident: 7113_CR86 doi: 10.1371/journal.pgen.1008585 – ident: 7113_CR159 doi: 10.1093/nar/gks042 – ident: 7113_CR131 doi: 10.1093/hmg/11.15.1697 – ident: 7113_CR146 doi: 10.1093/bioinformatics/btl158 – ident: 7113_CR55 doi: 10.7554/eLife.09991 – ident: 7113_CR42 doi: 10.1093/molbev/mst109 – ident: 7113_CR65 doi: 10.1073/pnas.062552299 – ident: 7113_CR155 doi: 10.1073/pnas.95.25.14863 – ident: 7113_CR103 doi: 10.1016/j.ygcen.2016.02.006 – ident: 7113_CR57 doi: 10.1073/pnas.1220018110 – ident: 7113_CR85 doi: 10.1007/s10126-008-9127-4 – ident: 7113_CR137 doi: 10.1038/nbt.1883 – ident: 7113_CR10 doi: 10.2307/1540935 – ident: 7113_CR152 doi: 10.1038/s41598-020-66438-3 – ident: 7113_CR2 – ident: 7113_CR3 doi: 10.1007/BF00428562 – ident: 7113_CR63 doi: 10.1371/journal.pone.0046542 – ident: 7113_CR64 doi: 10.1038/13657 – ident: 7113_CR136 doi: 10.1371/journal.pgen.1004540 – ident: 7113_CR15 doi: 10.1038/srep25868 – ident: 7113_CR22 doi: 10.1038/s41598-019-51224-7 – ident: 7113_CR68 doi: 10.1038/35048564 – ident: 7113_CR48 doi: 10.1093/oxfordjournals.humrep.a138086 – ident: 7113_CR99 doi: 10.1095/biolreprod.102.012450 – ident: 7113_CR130 doi: 10.1093/molehr/gah123 – ident: 7113_CR27 doi: 10.1007/s11033-018-4383-5 – ident: 7113_CR50 doi: 10.1111/j.1440-169X.2008.01019.x – ident: 7113_CR110 doi: 10.1016/j.bbrc.2014.08.006 – ident: 7113_CR19 doi: 10.1016/j.bbrc.2006.03.116 – ident: 7113_CR29 doi: 10.1007/s00427-019-00630-y – ident: 7113_CR141 – ident: 7113_CR74 doi: 10.1371/journal.pone.0007298 – ident: 7113_CR34 doi: 10.1038/s41598-017-17484-x – ident: 7113_CR56 doi: 10.1111/mec.14062 – ident: 7113_CR7 doi: 10.1007/978-94-007-0114-4_6 – ident: 7113_CR134 doi: 10.1016/S1097-2765(00)80404-9 – ident: 7113_CR160 doi: 10.1038/75556 – ident: 7113_CR28 doi: 10.1186/s12864-019-6157-4 – ident: 7113_CR93 doi: 10.2741/A895 – ident: 7113_CR135 doi: 10.1242/jcs.00947 – ident: 7113_CR97 doi: 10.1016/S1095-6433(98)10155-1 – ident: 7113_CR43 doi: 10.1073/pnas.1301419110 – ident: 7113_CR123 doi: 10.1186/s13072-016-0085-1 – ident: 7113_CR126 doi: 10.1016/0092-8674(92)90427-E – ident: 7113_CR20 doi: 10.2108/zsj.24.249 – ident: 7113_CR40 doi: 10.1002/mrd.22579 – ident: 7113_CR39 doi: 10.1194/jlr.M050286 – ident: 7113_CR138 doi: 10.1093/bioinformatics/bth078 – ident: 7113_CR17 doi: 10.1016/j.cbpc.2003.09.011 – ident: 7113_CR75 doi: 10.1007/s00338-010-0700-8 – ident: 7113_CR127 doi: 10.1016/S0960-9822(06)00218-1 – ident: 7113_CR4 – ident: 7113_CR54 doi: 10.1371/journal.pbio.3000614 – ident: 7113_CR67 doi: 10.1371/journal.pone.0002680 – ident: 7113_CR87 doi: 10.1186/s40851-019-0141-3 – ident: 7113_CR121 doi: 10.1007/BF00175501 – ident: 7113_CR62 doi: 10.1387/ijdb.072524pw – ident: 7113_CR105 doi: 10.1038/ncb1345 – ident: 7113_CR148 doi: 10.1093/bioinformatics/btv351 – ident: 7113_CR36 doi: 10.1038/s41598-018-26718-5 – ident: 7113_CR161 doi: 10.1093/nar/gkn923 – ident: 7113_CR115 doi: 10.1038/nrm.2017.94 – ident: 7113_CR154 doi: 10.1186/1471-2105-12-323 – ident: 7113_CR116 doi: 10.15252/embr.201540749 – ident: 7113_CR150 doi: 10.1093/nar/gkj149 – ident: 7113_CR5 doi: 10.3354/meps060185 – ident: 7113_CR61 doi: 10.1016/j.cub.2004.01.023 – ident: 7113_CR79 doi: 10.1093/molehr/gah052 – ident: 7113_CR149 doi: 10.1093/molbev/msx319 – ident: 7113_CR147 doi: 10.1016/j.cub.2003.11.030 – ident: 7113_CR25 doi: 10.1080/17451000.2019.1662050 – ident: 7113_CR122 doi: 10.1111/mec.14043 – ident: 7113_CR151 doi: 10.1093/nar/gky995 – ident: 7113_CR31 doi: 10.1038/nature10249 – ident: 7113_CR94 doi: 10.1111/j.0022-1112.2005.00639.x – ident: 7113_CR69 doi: 10.1073/pnas.0808363106 – ident: 7113_CR82 doi: 10.1242/jcs.221648 – ident: 7113_CR83 doi: 10.1371/journal.pone.0098053 – ident: 7113_CR84 doi: 10.1242/jeb.02500 – ident: 7113_CR153 doi: 10.1083/jcb.142.2.473 |
SSID | ssj0017825 |
Score | 2.4378455 |
Snippet | Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been... Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological... Abstract Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 732 |
SubjectTerms | Animals Anthozoa - genetics Aquaculture Assembly Capacitation Coral reefs Data acquisition Dinoflagellates Ecological studies Euphyllia ancora Female Fertilization Gametocytes Gametogenesis Gametogenesis - genetics Gene expression Genes Genetic aspects Genomics Genotypes Gonads Homology Humans Identification and classification Male Maturation Molecular modelling Observations Oogenesis Ovaries Ovary Polyps Reproduction (biology) RNA-seq Scleractinian corals Sex Sexual development Sexual reproduction Sperm Sperm Motility Spermatogenesis Spermiogenesis Stony corals Testes Testis Transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivo2u0orgQcMm6UcSb6vusgp6UBf21vRzdmCSyCazsH_E37tVncwwUdCL13SlSaqqq75Our4i5BWAkGCE0CkvjEi581laSWZSSBeaSeNsGSnzv3yVJ6f885k422n1hWfCRnrgUXEHQQpuM2dNAcmTc2aErkWWe5-V1pkQoRHkvM1mavp_AHlPbEpkKnnQQxSWPMWtEqTUnKX1LA1Ftv4_Y_JOUpofmNzJQMd3yO0JOtLD8ZHvkhu-vUdujs0kr-6TXx89bbvLjg6YfmIw6BpPARz7xqyuKBaSUIB7dAHg2_W0C1TTHmaKdVItuAm1WK7_lh6tQff4GYZqZLnU72izaaJLG4-lwsu-6SmWn12ssEzqt2kWuvFDt8AouuwfkNPjox8fTtKp60JqAX0MqbHMAYbQgI10FmzNcx1YbUPJcLkbxqULgXHBjJUh0x6ugx84V7gqFw7g3UOy13atf0yoZobBLLArARBRc1tpmADpdsrgucl5QvKNEZSdKMmxM8ZKxa1JJdVoOAWGU9Fwqk7Im-09P0dCjr9Kv0fbbiWRTDteABdTk4upf7lYQl6iZyiky2jxPM5Cr_teffr-TR0CwEMEW7KEvJ6EQgfvYPVU3gCaQIatmeT-TBLWs50PbxxQTfGkV8j6VwNyZKCzF9thvBPPyLW-W6OMYLLirKoS8mj01-17MyR-zGSWkHLmyTPFzEfa5XlkGy9FWVdF_uR_aPIpuVXgIoTcX-T7ZG-4WPtnAOoG8zyu32vwiUt5 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj5RAEO7oGhMvxrfoalpj4kHJAv0AvJhVd7Oa6EHdZG6dfuIkA6zDjMn-EX-vVcDgosle6aID1OvrpusrQl4ACAlGCB3zzIiYO5_EhWQmhnShmTTO5j1l_ucv8uSUf1qIxbjh1o3HKncxsQ_UrrW4R36AvGcl5E7G3579jLFrFP5dHVtoXCXXkLoMrTpfTAuuFLKf2BXKFPKgg1gseYwLJkisKYvLWTLqOfv_j8wXUtP82OSFPHR8i9wcASQ9HDR-m1zxzR1yfWgpeX6X_P7gadP-aukGk1AfEtraU4DIvjarc4rlJBRAH60AgruOtoFq2sFMfbVUA8ZCLRbtv6ZHW9AAbsZQjVyX-g2td610ae2xYHjZ1R3FIrT1Coul_pmm0rXftBXG0mV3j5weH31_fxKPvRdiCxhkExvLHCAJDQhJJ8GWPNWBlTbkDJ3eMC5dCIwLZqwMifZwHazBucwVqXAA8u6TvaZt_ENCNTMMZoG1CUCJkttCwwRIupMHz03KI5LulKDsSEyO_TFWql-gFFINilOgONUrTpUReTXdczbQclwq_Q51O0kipXZ_oV1XavRQFaTgNnHWZIDSOGdG6FIkqfdJbp0JOiLP0TIUkmY0eCqn0tuuUx-_fVWHAPMQx-YsIi9HodDCO1g9FjnAl0CerZnk_kwSvNrOh3cGqMao0qm_PhCRZ9Mw3okn5RrfblFGMFlwVhQReTDY6_TeDOkfE5lEJJ9Z8uzDzEea5Y-eczwXeVlk6aPLH-sxuZGhe0Fuz9J9srdZb_0TAG0b87T3zD9QD0Jb priority: 102 providerName: ProQuest |
Title | De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33087060 https://www.proquest.com/docview/2461997634 https://www.proquest.com/docview/2453684388 https://pubmed.ncbi.nlm.nih.gov/PMC7579821 https://doaj.org/article/f654c0dcb2064443b5a9501ee07cdbfa |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEA73guAX8d3Vc4ki-EGrbZM0rSByp3ucwh1yurDfQpIm68K21e2uuH_E3-tMt12veohfm-mUZmYyT9rMM4Q8ARDijRA64LERAc9dGKQJMwGkC80Sk1vZUOafniUnY_5hIiY7pGt31E5gfenWDvtJjRfzFz--rd9AwL9uAj5NXtawxiY8wI0QJMyIBdku2YfMJLGjwSn__VcBsqFoqo1kFMSwT-iKaC7V0UtUDZ__36v2hbTVP1J5IUcdXyfXWnBJDzfecIPsuPImubJpN7m-RX6-c7Ssvld0iQmqWS6qwlGAz64w8zXFUhMKgJBOAZ7nNa081bQGTU0lVQmORC0W9D-noxVYBz_UUI08mPoVLbo2u7RwWEw8q4uaYoHaYo6FVH-omerCLasprrOz-jYZH48-vz0J2r4MgQV8sgyMZTmgDA3oSYfeZjzSnmXWS4YLgmE8yb1nXDBjEx9qB9fBU_I8ztNI5AAA75C9sirdPUI1Mwy0wL4FYEbGbapBARLySO-4ifiARJ0RlG1Jy7F3xlw1m5c0URvDKTCcagynsgF5tr3n64ay45_SR2jbrSTSbTcXqsVUtdGrfCK4DXNrYkBwnDMjdCbCyLlQ2tx4PSCP0TMUEmqUeGJnqld1rd5_OleHAAER40o2IE9bIV_BO1jdFkDATCAHV0_yoCcJEW_7w50Dqi5gFPICZoAtGczZo-0w3omn6EpXrVBGsCTlLE0H5O7GX7fvzZAaMkzCAZE9T-5NTH-knH1p-MilkFkaR_f_47kPyNUYYwySfxwdkL3lYuUeAqpbmiHZlRM5JPtHo7OP58Pm28iwCd9fW9dMzw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIgQviDuGAgsC8UCt2t71DQmhQlsl9PIArZS3Za8hUmyXOgHlR_gMvpEZxw41SH3rq3e8ij2zc846O2cIeQkkxKk4lj6PVOxzYwM_S5jyAS4kS5TRaSOZf3iUDE74p1E8WiO_u1oYPFbZ5cQmUZtK4zfyLdQ9ywE7GX9_-t3HrlH472rXQmMZFvt28RO2bPW74Q7491UU7e0efxz4bVcBXwO6znylmQGMlID9MnA656F0LNcuZRjOivHEOMd4zJROXCAtXIfnNCYyWRgboC8w7xVyFYA3wM1eOlpt8EJA27grzMmSrRpyf8J93KABkIfMz3vg1_QI-B8JzkFh_5jmOdzbu0VutoSVbi8j7DZZs-Udcm3ZwnJxl_zasbSsflR0hqDXpKCqsBQouS3UdEGxfIUCyaRjoPymppWjktYwU1OdVUJwUo0iAZt0dw4ex48_VKK2pnxLi651Ly0sFihP6qKmWPR2NsXirH-mGcvCzqox5u5JfY-cXIpX7pP1sirtQ0IlUwxmgb0QUJec60zCBCjykzrLVcg9EnZOELoVQsd-HFPRbIiyRCwdJ8BxonGcyD3yZnXP6VIG5ELrD-jblSVKeDcXqrOxaDOCcEnMdWC0ioAVcs5ULPM4CK0NUm2Ukx55gZEhUKSjxFNAYzmvazH88llsA61E3pwyj7xujVwFz6BlW1QBbwJ1vXqWGz1LyCK6P9wFoGizWC3-rjmPPF8N4514Mq-01RxtYpZknGWZRx4s43X13AzlJoMk8Ejai-Tei-mPlJNvjcZ5Gqd5FoWPLv5Zz8j1wfHhgTgYHu0_JjciXGrAK6Jwg6zPzub2CRDGmXrarFJKvl52WvgDjqR_5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+transcriptome+assembly+from+the+gonads+of+a+scleractinian+coral%2C+Euphyllia+ancora%3A+molecular+mechanisms+underlying+scleractinian+gametogenesis&rft.jtitle=BMC+genomics&rft.au=Chiu%2C+Yi-Ling&rft.au=Shikina%2C+Shinya&rft.au=Yoshioka%2C+Yuki&rft.au=Shinzato%2C+Chuya&rft.date=2020-10-21&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=21&rft.issue=1&rft.spage=732&rft_id=info:doi/10.1186%2Fs12864-020-07113-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |