De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis

Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gam...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 21; no. 1; pp. 732 - 20
Main Authors Chiu, Yi-Ling, Shikina, Shinya, Yoshioka, Yuki, Shinzato, Chuya, Chang, Ching-Fong
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.10.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
AbstractList Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. Results 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Conclusions Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. Results 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Conclusions Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies. Keywords: Scleractinian corals, Euphyllia ancora, Ovary, Testis, Gonads, RNA-seq, Transcriptome assembly, Sex-specific, Phase-specific, Oogenesis, Spermatogenesis
Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization.BACKGROUNDSexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization.1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes.RESULTS1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes.Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.CONCLUSIONSOur findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Abstract Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. Results 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. Conclusions Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
ArticleNumber 732
Audience Academic
Author Chang, Ching-Fong
Chiu, Yi-Ling
Shinzato, Chuya
Yoshioka, Yuki
Shikina, Shinya
Author_xml – sequence: 1
  givenname: Yi-Ling
  surname: Chiu
  fullname: Chiu, Yi-Ling
– sequence: 2
  givenname: Shinya
  surname: Shikina
  fullname: Shikina, Shinya
– sequence: 3
  givenname: Yuki
  surname: Yoshioka
  fullname: Yoshioka, Yuki
– sequence: 4
  givenname: Chuya
  surname: Shinzato
  fullname: Shinzato, Chuya
– sequence: 5
  givenname: Ching-Fong
  surname: Chang
  fullname: Chang, Ching-Fong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33087060$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1ggS2xAIsWOHSdhgVSVAiNVQuKxtm78yLhy7KmdVMwf4ffi6ZTSGSGURaKb7xz7Hp3j4sAHr4viOcGnhLT8bSJVy1mJK1zihhBado-KI8IaUlaEs4MH34fFcUpXGJOmreonxSGluG0wx0fFrw8a-XAT0BTBJxntagqjRpCSHnu3RiaGEU1LjYbgQSUUDAKUpNMR5GS9BY9kiODeoIt5tVw7ZwGB34zeoTE4LWcHEY1aLsHbNCY0e6WjW1s_7NkMMOopDNrrZNPT4rEBl_Szu_dJ8ePjxffzz-Xll0-L87PLUnJOp7KXVHUEQ1VjwEZ2jIChnTQNZRiznjKujKGspr3kBoPO815LpSrVkloRTk-KxdZXBbgSq2hHiGsRwIrbQYiDgDjZfFFheM0kVrKvMGeM0b6GrsZEa9xI1RvIXu-3Xqu5H7WS2udM3Y7p7h9vl2IIN6Kpm66tSDZ4dWcQw_Ws0yRGm6R2DrwOcxJVXoS3jLZtRl_uoVdhjj5HlSlOuq7hlP2lBsgLWG9CPlduTMUZp11dVbyhmTr9B5UfpUcrc-WMzfMdwesdQWYm_XMaYE5JLL593WVfPAzlPo0_DcxAtQVkDClFbe4RgsWm5mJbc5FrLm5rLrosavdE0k4w2bAJ1rr_SX8DMBADRg
CitedBy_id crossref_primary_10_1111_1758_2229_13310
crossref_primary_10_1007_s00338_025_02616_x
crossref_primary_10_1134_S0006297922030075
crossref_primary_10_2331_suisan_WA2850
crossref_primary_10_1177_07487304221135916
crossref_primary_10_3389_fmars_2022_889866
crossref_primary_10_1038_s41598_021_92601_5
crossref_primary_10_31857_S0320972522020075
crossref_primary_10_1038_s41598_021_03810_x
crossref_primary_10_3389_fmars_2021_685876
crossref_primary_10_7717_peerj_17182
crossref_primary_10_1007_s00338_024_02580_y
crossref_primary_10_3389_fmars_2023_1278022
crossref_primary_10_1038_s42003_024_06544_4
crossref_primary_10_1038_s41598_022_06822_3
crossref_primary_10_1016_j_ecoenv_2022_113396
crossref_primary_10_3390_md21120614
crossref_primary_10_1093_g3journal_jkab030
Cites_doi 10.1101/140160
10.1242/jeb.040881
10.14806/ej.17.1.200
10.1038/nprot.2008.211
10.1095/biolreprod.115.129643
10.1186/1471-2164-14-704
10.1146/annurev.ecolsys.110308.120220
10.1002/mrd.22927
10.1007/s00239-005-0129-9
10.6090/jarq.38.49
10.3382/ps/pez212
10.1007/BF00291932
10.1091/mbc.e04-09-0771
10.1002/mrd.23157
10.1186/1471-2164-12-552
10.1210/en.2013-1086
10.1016/j.ajhg.2018.03.007
10.1038/s41598-018-34459-8
10.1007/BF00302104
10.1186/1471-213X-10-67
10.1111/1755-0998.12360
10.1007/s00338-015-1270-6
10.1242/dev.00804
10.1371/journal.pone.0104441
10.1016/j.marpolbul.2008.08.014
10.1016/j.aquatox.2006.05.011
10.1002/jcp.22962
10.1101/gad.1656508
10.1093/bioinformatics/btp616
10.1016/0014-4827(70)90448-9
10.1006/dbio.1999.9598
10.1016/j.cub.2008.12.054
10.1016/j.ydbio.2008.11.003
10.1210/jcem.87.2.8271
10.1016/j.margen.2017.08.010
10.1002/aqc.558
10.1038/srep18211
10.1038/srep25089
10.1016/j.ydbio.2011.06.030
10.1007/s003380050158
10.1073/pnas.87.13.5203
10.3755/galaxea.20.1_1
10.1371/journal.pone.0041569
10.1016/j.gene.2007.07.006
10.1128/MCB.12.10.4400
10.1007/s00338-005-0485-3
10.2108/zsj.24.277
10.1073/pnas.1424648112
10.1038/ismej.2014.182
10.1038/nmeth.4197
10.1038/s41598-017-05572-x
10.1371/journal.pgen.1000882
10.7717/peerj.1982
10.1371/journal.pone.0007680
10.1002/bies.201000001
10.1016/j.cbpa.2006.01.011
10.1095/biolreprod.115.137497
10.1007/978-3-319-31305-4_16
10.1007/s00412-015-0517-x
10.1074/jbc.M106941200
10.1371/journal.pone.0085182
10.1016/j.cub.2008.03.045
10.1016/j.bbagen.2006.08.014
10.1038/srep39711
10.1016/j.cbpb.2005.12.017
10.1126/science.223.4641.1186
10.1016/j.ydbio.2008.03.047
10.1002/jcp.20669
10.1023/A:1022529918810
10.1016/0300-9629(94)90323-9
10.1038/s41598-018-34575-5
10.1101/cshperspect.a019364
10.1038/srep02649
10.1007/s10750-014-2063-6
10.1095/biolreprod.115.133173
10.1371/journal.pone.0156424
10.1073/pnas.0900243106
10.1210/me.2005-0494
10.1096/fj.99-0851com
10.1016/j.cub.2013.05.062
10.1371/journal.pgen.1008585
10.1093/nar/gks042
10.1093/hmg/11.15.1697
10.1093/bioinformatics/btl158
10.7554/eLife.09991
10.1093/molbev/mst109
10.1073/pnas.062552299
10.1073/pnas.95.25.14863
10.1016/j.ygcen.2016.02.006
10.1073/pnas.1220018110
10.1007/s10126-008-9127-4
10.1038/nbt.1883
10.2307/1540935
10.1038/s41598-020-66438-3
10.1007/BF00428562
10.1371/journal.pone.0046542
10.1038/13657
10.1371/journal.pgen.1004540
10.1038/srep25868
10.1038/s41598-019-51224-7
10.1038/35048564
10.1093/oxfordjournals.humrep.a138086
10.1095/biolreprod.102.012450
10.1093/molehr/gah123
10.1007/s11033-018-4383-5
10.1111/j.1440-169X.2008.01019.x
10.1016/j.bbrc.2014.08.006
10.1016/j.bbrc.2006.03.116
10.1007/s00427-019-00630-y
10.1371/journal.pone.0007298
10.1038/s41598-017-17484-x
10.1111/mec.14062
10.1007/978-94-007-0114-4_6
10.1016/S1097-2765(00)80404-9
10.1038/75556
10.1186/s12864-019-6157-4
10.2741/A895
10.1242/jcs.00947
10.1016/S1095-6433(98)10155-1
10.1073/pnas.1301419110
10.1186/s13072-016-0085-1
10.1016/0092-8674(92)90427-E
10.2108/zsj.24.249
10.1002/mrd.22579
10.1194/jlr.M050286
10.1093/bioinformatics/bth078
10.1016/j.cbpc.2003.09.011
10.1007/s00338-010-0700-8
10.1016/S0960-9822(06)00218-1
10.1371/journal.pbio.3000614
10.1371/journal.pone.0002680
10.1186/s40851-019-0141-3
10.1007/BF00175501
10.1387/ijdb.072524pw
10.1038/ncb1345
10.1093/bioinformatics/btv351
10.1038/s41598-018-26718-5
10.1093/nar/gkn923
10.1038/nrm.2017.94
10.1186/1471-2105-12-323
10.15252/embr.201540749
10.1093/nar/gkj149
10.3354/meps060185
10.1016/j.cub.2004.01.023
10.1093/molehr/gah052
10.1093/molbev/msx319
10.1016/j.cub.2003.11.030
10.1080/17451000.2019.1662050
10.1111/mec.14043
10.1093/nar/gky995
10.1038/nature10249
10.1111/j.0022-1112.2005.00639.x
10.1073/pnas.0808363106
10.1242/jcs.221648
10.1371/journal.pone.0098053
10.1242/jeb.02500
10.1083/jcb.142.2.473
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-020-07113-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 20
ExternalDocumentID oai_doaj_org_article_f654c0dcb2064443b5a9501ee07cdbfa
PMC7579821
A639522673
33087060
10_1186_s12864_020_07113_9
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: 104-2313-B019-MY3
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 103-2621-B-019-006-MY3
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 108-2628-B-019-001-
– fundername: Japan Society for the Promotion of Science
  grantid: 17KT0027
– fundername: Japan Society for the Promotion of Science
  grantid: 17K07949
– fundername: ;
  grantid: 17KT0027; 17K07949
– fundername: ;
  grantid: 104-2313-B019-MY3; 103-2621-B-019-006-MY3; 108-2628-B-019-001-
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c663t-bc3d910a250a0fc941af39cf734004b346dff3453bc6f0ae734becdd2d815d163
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:31:05 EDT 2025
Thu Aug 21 18:03:37 EDT 2025
Fri Jul 11 08:05:16 EDT 2025
Fri Jul 25 18:56:10 EDT 2025
Tue Jun 17 21:12:31 EDT 2025
Tue Jun 10 20:50:01 EDT 2025
Fri Jun 27 04:01:45 EDT 2025
Thu Apr 03 07:09:33 EDT 2025
Tue Jul 01 00:39:10 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Testis
Oogenesis
Ovary
Phase-specific
Transcriptome assembly
RNA-seq
Spermatogenesis
Euphyllia ancora
Scleractinian corals
Gonads
Sex-specific
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-bc3d910a250a0fc941af39cf734004b346dff3453bc6f0ae734becdd2d815d163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-020-07113-9
PMID 33087060
PQID 2461997634
PQPubID 44682
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_f654c0dcb2064443b5a9501ee07cdbfa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579821
proquest_miscellaneous_2453684388
proquest_journals_2461997634
gale_infotracmisc_A639522673
gale_infotracacademiconefile_A639522673
gale_incontextgauss_ISR_A639522673
pubmed_primary_33087060
crossref_primary_10_1186_s12864_020_07113_9
crossref_citationtrail_10_1186_s12864_020_07113_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-21
PublicationDateYYYYMMDD 2020-10-21
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 7113_CR114
7113_CR115
7113_CR112
7113_CR113
7113_CR60
7113_CR118
7113_CR61
7113_CR119
7113_CR62
7113_CR116
7113_CR63
7113_CR117
7113_CR64
7113_CR65
7113_CR66
7113_CR67
7113_CR68
7113_CR121
7113_CR69
7113_CR122
7113_CR120
7113_CR125
7113_CR126
7113_CR123
7113_CR70
7113_CR124
7113_CR71
7113_CR129
7113_CR72
7113_CR73
7113_CR127
7113_CR74
7113_CR128
7113_CR75
7113_CR76
7113_CR77
7113_CR78
7113_CR79
7113_CR132
7113_CR133
7113_CR130
7113_CR131
7113_CR40
7113_CR41
7113_CR42
7113_CR43
7113_CR44
7113_CR45
7113_CR46
7113_CR1
7113_CR47
7113_CR100
7113_CR48
7113_CR49
7113_CR109
7113_CR4
7113_CR103
7113_CR5
7113_CR104
7113_CR2
7113_CR101
7113_CR3
7113_CR102
7113_CR8
7113_CR107
7113_CR9
7113_CR50
7113_CR108
7113_CR6
7113_CR51
7113_CR105
7113_CR7
7113_CR52
7113_CR106
7113_CR53
7113_CR54
7113_CR55
7113_CR56
7113_CR57
7113_CR110
7113_CR58
7113_CR111
7113_CR59
7113_CR158
7113_CR159
7113_CR156
7113_CR157
7113_CR20
7113_CR161
7113_CR21
7113_CR162
7113_CR22
7113_CR23
7113_CR160
7113_CR24
7113_CR25
7113_CR26
7113_CR27
7113_CR28
7113_CR29
7113_CR30
7113_CR31
7113_CR32
7113_CR33
7113_CR34
7113_CR35
7113_CR36
7113_CR37
7113_CR38
7113_CR39
7113_CR136
7113_CR137
7113_CR80
7113_CR134
7113_CR81
7113_CR135
7113_CR82
7113_CR83
7113_CR84
7113_CR138
7113_CR85
7113_CR139
7113_CR86
7113_CR87
7113_CR140
7113_CR88
7113_CR89
7113_CR143
7113_CR144
7113_CR141
7113_CR142
7113_CR147
7113_CR90
7113_CR148
7113_CR91
7113_CR145
7113_CR92
7113_CR146
7113_CR93
7113_CR94
7113_CR95
7113_CR149
7113_CR96
7113_CR97
7113_CR150
7113_CR10
7113_CR98
7113_CR151
7113_CR11
7113_CR99
7113_CR12
7113_CR13
7113_CR154
7113_CR14
7113_CR155
7113_CR15
7113_CR152
7113_CR16
7113_CR153
7113_CR17
7113_CR18
7113_CR19
References_xml – ident: 7113_CR53
  doi: 10.1101/140160
– ident: 7113_CR70
  doi: 10.1242/jeb.040881
– ident: 7113_CR156
  doi: 10.14806/ej.17.1.200
– ident: 7113_CR162
  doi: 10.1038/nprot.2008.211
– ident: 7113_CR13
  doi: 10.1095/biolreprod.115.129643
– ident: 7113_CR142
  doi: 10.1186/1471-2164-14-704
– ident: 7113_CR6
  doi: 10.1146/annurev.ecolsys.110308.120220
– ident: 7113_CR21
  doi: 10.1002/mrd.22927
– ident: 7113_CR66
  doi: 10.1007/s00239-005-0129-9
– ident: 7113_CR49
  doi: 10.6090/jarq.38.49
– ident: 7113_CR89
  doi: 10.3382/ps/pez212
– ident: 7113_CR96
  doi: 10.1007/BF00291932
– ident: 7113_CR133
  doi: 10.1091/mbc.e04-09-0771
– ident: 7113_CR72
  doi: 10.1002/mrd.23157
– ident: 7113_CR30
  doi: 10.1186/1471-2164-12-552
– ident: 7113_CR12
  doi: 10.1210/en.2013-1086
– ident: 7113_CR77
  doi: 10.1016/j.ajhg.2018.03.007
– ident: 7113_CR35
  doi: 10.1038/s41598-018-34459-8
– ident: 7113_CR38
  doi: 10.1007/BF00302104
– ident: 7113_CR80
  doi: 10.1186/1471-213X-10-67
– ident: 7113_CR26
  doi: 10.1111/1755-0998.12360
– ident: 7113_CR9
  doi: 10.1007/s00338-015-1270-6
– ident: 7113_CR124
  doi: 10.1242/dev.00804
– ident: 7113_CR58
  doi: 10.1371/journal.pone.0104441
– ident: 7113_CR24
  doi: 10.1016/j.marpolbul.2008.08.014
– ident: 7113_CR95
  doi: 10.1016/j.aquatox.2006.05.011
– ident: 7113_CR113
  doi: 10.1002/jcp.22962
– ident: 7113_CR11
– ident: 7113_CR108
  doi: 10.1101/gad.1656508
– ident: 7113_CR158
  doi: 10.1093/bioinformatics/btp616
– ident: 7113_CR47
  doi: 10.1016/0014-4827(70)90448-9
– ident: 7113_CR111
  doi: 10.1006/dbio.1999.9598
– ident: 7113_CR44
  doi: 10.1016/j.cub.2008.12.054
– ident: 7113_CR52
  doi: 10.1016/j.ydbio.2008.11.003
– ident: 7113_CR104
  doi: 10.1210/jcem.87.2.8271
– ident: 7113_CR144
  doi: 10.1016/j.margen.2017.08.010
– ident: 7113_CR23
  doi: 10.1002/aqc.558
– ident: 7113_CR100
– ident: 7113_CR139
  doi: 10.1038/srep18211
– ident: 7113_CR120
  doi: 10.1038/srep25089
– ident: 7113_CR128
  doi: 10.1016/j.ydbio.2011.06.030
– ident: 7113_CR98
  doi: 10.1007/s003380050158
– ident: 7113_CR88
  doi: 10.1073/pnas.87.13.5203
– ident: 7113_CR46
  doi: 10.3755/galaxea.20.1_1
– ident: 7113_CR8
  doi: 10.1371/journal.pone.0041569
– ident: 7113_CR140
  doi: 10.1016/j.gene.2007.07.006
– ident: 7113_CR119
  doi: 10.1128/MCB.12.10.4400
– ident: 7113_CR18
  doi: 10.1007/s00338-005-0485-3
– ident: 7113_CR45
  doi: 10.2108/zsj.24.277
– ident: 7113_CR76
  doi: 10.1073/pnas.1424648112
– ident: 7113_CR143
  doi: 10.1038/ismej.2014.182
– ident: 7113_CR157
  doi: 10.1038/nmeth.4197
– ident: 7113_CR37
  doi: 10.1038/s41598-017-05572-x
– ident: 7113_CR107
  doi: 10.1371/journal.pgen.1000882
– ident: 7113_CR60
  doi: 10.7717/peerj.1982
– ident: 7113_CR109
  doi: 10.1371/journal.pone.0007680
– ident: 7113_CR125
  doi: 10.1002/bies.201000001
– ident: 7113_CR101
  doi: 10.1016/j.cbpa.2006.01.011
– ident: 7113_CR129
  doi: 10.1095/biolreprod.115.137497
– ident: 7113_CR14
  doi: 10.1007/978-3-319-31305-4_16
– ident: 7113_CR118
  doi: 10.1007/s00412-015-0517-x
– ident: 7113_CR90
  doi: 10.1074/jbc.M106941200
– ident: 7113_CR33
  doi: 10.1371/journal.pone.0085182
– ident: 7113_CR106
  doi: 10.1016/j.cub.2008.03.045
– ident: 7113_CR73
  doi: 10.1016/j.bbagen.2006.08.014
– ident: 7113_CR114
  doi: 10.1038/srep39711
– ident: 7113_CR102
  doi: 10.1016/j.cbpb.2005.12.017
– ident: 7113_CR1
  doi: 10.1126/science.223.4641.1186
– ident: 7113_CR78
  doi: 10.1016/j.ydbio.2008.03.047
– ident: 7113_CR112
  doi: 10.1002/jcp.20669
– ident: 7113_CR92
  doi: 10.1023/A:1022529918810
– ident: 7113_CR91
  doi: 10.1016/0300-9629(94)90323-9
– ident: 7113_CR145
  doi: 10.1038/s41598-018-34575-5
– ident: 7113_CR117
  doi: 10.1101/cshperspect.a019364
– ident: 7113_CR59
  doi: 10.1038/srep02649
– ident: 7113_CR71
  doi: 10.1007/s10750-014-2063-6
– ident: 7113_CR16
  doi: 10.1095/biolreprod.115.133173
– ident: 7113_CR41
  doi: 10.1371/journal.pone.0156424
– ident: 7113_CR51
  doi: 10.1073/pnas.0900243106
– ident: 7113_CR81
  doi: 10.1210/me.2005-0494
– ident: 7113_CR132
  doi: 10.1096/fj.99-0851com
– ident: 7113_CR32
  doi: 10.1016/j.cub.2013.05.062
– ident: 7113_CR86
  doi: 10.1371/journal.pgen.1008585
– ident: 7113_CR159
  doi: 10.1093/nar/gks042
– ident: 7113_CR131
  doi: 10.1093/hmg/11.15.1697
– ident: 7113_CR146
  doi: 10.1093/bioinformatics/btl158
– ident: 7113_CR55
  doi: 10.7554/eLife.09991
– ident: 7113_CR42
  doi: 10.1093/molbev/mst109
– ident: 7113_CR65
  doi: 10.1073/pnas.062552299
– ident: 7113_CR155
  doi: 10.1073/pnas.95.25.14863
– ident: 7113_CR103
  doi: 10.1016/j.ygcen.2016.02.006
– ident: 7113_CR57
  doi: 10.1073/pnas.1220018110
– ident: 7113_CR85
  doi: 10.1007/s10126-008-9127-4
– ident: 7113_CR137
  doi: 10.1038/nbt.1883
– ident: 7113_CR10
  doi: 10.2307/1540935
– ident: 7113_CR152
  doi: 10.1038/s41598-020-66438-3
– ident: 7113_CR2
– ident: 7113_CR3
  doi: 10.1007/BF00428562
– ident: 7113_CR63
  doi: 10.1371/journal.pone.0046542
– ident: 7113_CR64
  doi: 10.1038/13657
– ident: 7113_CR136
  doi: 10.1371/journal.pgen.1004540
– ident: 7113_CR15
  doi: 10.1038/srep25868
– ident: 7113_CR22
  doi: 10.1038/s41598-019-51224-7
– ident: 7113_CR68
  doi: 10.1038/35048564
– ident: 7113_CR48
  doi: 10.1093/oxfordjournals.humrep.a138086
– ident: 7113_CR99
  doi: 10.1095/biolreprod.102.012450
– ident: 7113_CR130
  doi: 10.1093/molehr/gah123
– ident: 7113_CR27
  doi: 10.1007/s11033-018-4383-5
– ident: 7113_CR50
  doi: 10.1111/j.1440-169X.2008.01019.x
– ident: 7113_CR110
  doi: 10.1016/j.bbrc.2014.08.006
– ident: 7113_CR19
  doi: 10.1016/j.bbrc.2006.03.116
– ident: 7113_CR29
  doi: 10.1007/s00427-019-00630-y
– ident: 7113_CR141
– ident: 7113_CR74
  doi: 10.1371/journal.pone.0007298
– ident: 7113_CR34
  doi: 10.1038/s41598-017-17484-x
– ident: 7113_CR56
  doi: 10.1111/mec.14062
– ident: 7113_CR7
  doi: 10.1007/978-94-007-0114-4_6
– ident: 7113_CR134
  doi: 10.1016/S1097-2765(00)80404-9
– ident: 7113_CR160
  doi: 10.1038/75556
– ident: 7113_CR28
  doi: 10.1186/s12864-019-6157-4
– ident: 7113_CR93
  doi: 10.2741/A895
– ident: 7113_CR135
  doi: 10.1242/jcs.00947
– ident: 7113_CR97
  doi: 10.1016/S1095-6433(98)10155-1
– ident: 7113_CR43
  doi: 10.1073/pnas.1301419110
– ident: 7113_CR123
  doi: 10.1186/s13072-016-0085-1
– ident: 7113_CR126
  doi: 10.1016/0092-8674(92)90427-E
– ident: 7113_CR20
  doi: 10.2108/zsj.24.249
– ident: 7113_CR40
  doi: 10.1002/mrd.22579
– ident: 7113_CR39
  doi: 10.1194/jlr.M050286
– ident: 7113_CR138
  doi: 10.1093/bioinformatics/bth078
– ident: 7113_CR17
  doi: 10.1016/j.cbpc.2003.09.011
– ident: 7113_CR75
  doi: 10.1007/s00338-010-0700-8
– ident: 7113_CR127
  doi: 10.1016/S0960-9822(06)00218-1
– ident: 7113_CR4
– ident: 7113_CR54
  doi: 10.1371/journal.pbio.3000614
– ident: 7113_CR67
  doi: 10.1371/journal.pone.0002680
– ident: 7113_CR87
  doi: 10.1186/s40851-019-0141-3
– ident: 7113_CR121
  doi: 10.1007/BF00175501
– ident: 7113_CR62
  doi: 10.1387/ijdb.072524pw
– ident: 7113_CR105
  doi: 10.1038/ncb1345
– ident: 7113_CR148
  doi: 10.1093/bioinformatics/btv351
– ident: 7113_CR36
  doi: 10.1038/s41598-018-26718-5
– ident: 7113_CR161
  doi: 10.1093/nar/gkn923
– ident: 7113_CR115
  doi: 10.1038/nrm.2017.94
– ident: 7113_CR154
  doi: 10.1186/1471-2105-12-323
– ident: 7113_CR116
  doi: 10.15252/embr.201540749
– ident: 7113_CR150
  doi: 10.1093/nar/gkj149
– ident: 7113_CR5
  doi: 10.3354/meps060185
– ident: 7113_CR61
  doi: 10.1016/j.cub.2004.01.023
– ident: 7113_CR79
  doi: 10.1093/molehr/gah052
– ident: 7113_CR149
  doi: 10.1093/molbev/msx319
– ident: 7113_CR147
  doi: 10.1016/j.cub.2003.11.030
– ident: 7113_CR25
  doi: 10.1080/17451000.2019.1662050
– ident: 7113_CR122
  doi: 10.1111/mec.14043
– ident: 7113_CR151
  doi: 10.1093/nar/gky995
– ident: 7113_CR31
  doi: 10.1038/nature10249
– ident: 7113_CR94
  doi: 10.1111/j.0022-1112.2005.00639.x
– ident: 7113_CR69
  doi: 10.1073/pnas.0808363106
– ident: 7113_CR82
  doi: 10.1242/jcs.221648
– ident: 7113_CR83
  doi: 10.1371/journal.pone.0098053
– ident: 7113_CR84
  doi: 10.1242/jeb.02500
– ident: 7113_CR153
  doi: 10.1083/jcb.142.2.473
SSID ssj0017825
Score 2.4378455
Snippet Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been...
Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological...
Abstract Background Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 732
SubjectTerms Animals
Anthozoa - genetics
Aquaculture
Assembly
Capacitation
Coral reefs
Data acquisition
Dinoflagellates
Ecological studies
Euphyllia ancora
Female
Fertilization
Gametocytes
Gametogenesis
Gametogenesis - genetics
Gene expression
Genes
Genetic aspects
Genomics
Genotypes
Gonads
Homology
Humans
Identification and classification
Male
Maturation
Molecular modelling
Observations
Oogenesis
Ovaries
Ovary
Polyps
Reproduction (biology)
RNA-seq
Scleractinian corals
Sex
Sexual development
Sexual reproduction
Sperm
Sperm Motility
Spermatogenesis
Spermiogenesis
Stony corals
Testes
Testis
Transcriptome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivo2u0orgQcMm6UcSb6vusgp6UBf21vRzdmCSyCazsH_E37tVncwwUdCL13SlSaqqq75Our4i5BWAkGCE0CkvjEi581laSWZSSBeaSeNsGSnzv3yVJ6f885k422n1hWfCRnrgUXEHQQpuM2dNAcmTc2aErkWWe5-V1pkQoRHkvM1mavp_AHlPbEpkKnnQQxSWPMWtEqTUnKX1LA1Ftv4_Y_JOUpofmNzJQMd3yO0JOtLD8ZHvkhu-vUdujs0kr-6TXx89bbvLjg6YfmIw6BpPARz7xqyuKBaSUIB7dAHg2_W0C1TTHmaKdVItuAm1WK7_lh6tQff4GYZqZLnU72izaaJLG4-lwsu-6SmWn12ssEzqt2kWuvFDt8AouuwfkNPjox8fTtKp60JqAX0MqbHMAYbQgI10FmzNcx1YbUPJcLkbxqULgXHBjJUh0x6ugx84V7gqFw7g3UOy13atf0yoZobBLLArARBRc1tpmADpdsrgucl5QvKNEZSdKMmxM8ZKxa1JJdVoOAWGU9Fwqk7Im-09P0dCjr9Kv0fbbiWRTDteABdTk4upf7lYQl6iZyiky2jxPM5Cr_teffr-TR0CwEMEW7KEvJ6EQgfvYPVU3gCaQIatmeT-TBLWs50PbxxQTfGkV8j6VwNyZKCzF9thvBPPyLW-W6OMYLLirKoS8mj01-17MyR-zGSWkHLmyTPFzEfa5XlkGy9FWVdF_uR_aPIpuVXgIoTcX-T7ZG-4WPtnAOoG8zyu32vwiUt5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj5RAEO7oGhMvxrfoalpj4kHJAv0AvJhVd7Oa6EHdZG6dfuIkA6zDjMn-EX-vVcDgosle6aID1OvrpusrQl4ACAlGCB3zzIiYO5_EhWQmhnShmTTO5j1l_ucv8uSUf1qIxbjh1o3HKncxsQ_UrrW4R36AvGcl5E7G3579jLFrFP5dHVtoXCXXkLoMrTpfTAuuFLKf2BXKFPKgg1gseYwLJkisKYvLWTLqOfv_j8wXUtP82OSFPHR8i9wcASQ9HDR-m1zxzR1yfWgpeX6X_P7gadP-aukGk1AfEtraU4DIvjarc4rlJBRAH60AgruOtoFq2sFMfbVUA8ZCLRbtv6ZHW9AAbsZQjVyX-g2td610ae2xYHjZ1R3FIrT1Coul_pmm0rXftBXG0mV3j5weH31_fxKPvRdiCxhkExvLHCAJDQhJJ8GWPNWBlTbkDJ3eMC5dCIwLZqwMifZwHazBucwVqXAA8u6TvaZt_ENCNTMMZoG1CUCJkttCwwRIupMHz03KI5LulKDsSEyO_TFWql-gFFINilOgONUrTpUReTXdczbQclwq_Q51O0kipXZ_oV1XavRQFaTgNnHWZIDSOGdG6FIkqfdJbp0JOiLP0TIUkmY0eCqn0tuuUx-_fVWHAPMQx-YsIi9HodDCO1g9FjnAl0CerZnk_kwSvNrOh3cGqMao0qm_PhCRZ9Mw3okn5RrfblFGMFlwVhQReTDY6_TeDOkfE5lEJJ9Z8uzDzEea5Y-eczwXeVlk6aPLH-sxuZGhe0Fuz9J9srdZb_0TAG0b87T3zD9QD0Jb
  priority: 102
  providerName: ProQuest
Title De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/33087060
https://www.proquest.com/docview/2461997634
https://www.proquest.com/docview/2453684388
https://pubmed.ncbi.nlm.nih.gov/PMC7579821
https://doaj.org/article/f654c0dcb2064443b5a9501ee07cdbfa
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEA73guAX8d3Vc4ki-EGrbZM0rSByp3ucwh1yurDfQpIm68K21e2uuH_E3-tMt12veohfm-mUZmYyT9rMM4Q8ARDijRA64LERAc9dGKQJMwGkC80Sk1vZUOafniUnY_5hIiY7pGt31E5gfenWDvtJjRfzFz--rd9AwL9uAj5NXtawxiY8wI0QJMyIBdku2YfMJLGjwSn__VcBsqFoqo1kFMSwT-iKaC7V0UtUDZ__36v2hbTVP1J5IUcdXyfXWnBJDzfecIPsuPImubJpN7m-RX6-c7Ssvld0iQmqWS6qwlGAz64w8zXFUhMKgJBOAZ7nNa081bQGTU0lVQmORC0W9D-noxVYBz_UUI08mPoVLbo2u7RwWEw8q4uaYoHaYo6FVH-omerCLasprrOz-jYZH48-vz0J2r4MgQV8sgyMZTmgDA3oSYfeZjzSnmXWS4YLgmE8yb1nXDBjEx9qB9fBU_I8ztNI5AAA75C9sirdPUI1Mwy0wL4FYEbGbapBARLySO-4ifiARJ0RlG1Jy7F3xlw1m5c0URvDKTCcagynsgF5tr3n64ay45_SR2jbrSTSbTcXqsVUtdGrfCK4DXNrYkBwnDMjdCbCyLlQ2tx4PSCP0TMUEmqUeGJnqld1rd5_OleHAAER40o2IE9bIV_BO1jdFkDATCAHV0_yoCcJEW_7w50Dqi5gFPICZoAtGczZo-0w3omn6EpXrVBGsCTlLE0H5O7GX7fvzZAaMkzCAZE9T-5NTH-knH1p-MilkFkaR_f_47kPyNUYYwySfxwdkL3lYuUeAqpbmiHZlRM5JPtHo7OP58Pm28iwCd9fW9dMzw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIgQviDuGAgsC8UCt2t71DQmhQlsl9PIArZS3Za8hUmyXOgHlR_gMvpEZxw41SH3rq3e8ij2zc846O2cIeQkkxKk4lj6PVOxzYwM_S5jyAS4kS5TRaSOZf3iUDE74p1E8WiO_u1oYPFbZ5cQmUZtK4zfyLdQ9ywE7GX9_-t3HrlH472rXQmMZFvt28RO2bPW74Q7491UU7e0efxz4bVcBXwO6znylmQGMlID9MnA656F0LNcuZRjOivHEOMd4zJROXCAtXIfnNCYyWRgboC8w7xVyFYA3wM1eOlpt8EJA27grzMmSrRpyf8J93KABkIfMz3vg1_QI-B8JzkFh_5jmOdzbu0VutoSVbi8j7DZZs-Udcm3ZwnJxl_zasbSsflR0hqDXpKCqsBQouS3UdEGxfIUCyaRjoPymppWjktYwU1OdVUJwUo0iAZt0dw4ex48_VKK2pnxLi651Ly0sFihP6qKmWPR2NsXirH-mGcvCzqox5u5JfY-cXIpX7pP1sirtQ0IlUwxmgb0QUJec60zCBCjykzrLVcg9EnZOELoVQsd-HFPRbIiyRCwdJ8BxonGcyD3yZnXP6VIG5ELrD-jblSVKeDcXqrOxaDOCcEnMdWC0ioAVcs5ULPM4CK0NUm2Ukx55gZEhUKSjxFNAYzmvazH88llsA61E3pwyj7xujVwFz6BlW1QBbwJ1vXqWGz1LyCK6P9wFoGizWC3-rjmPPF8N4514Mq-01RxtYpZknGWZRx4s43X13AzlJoMk8Ejai-Tei-mPlJNvjcZ5Gqd5FoWPLv5Zz8j1wfHhgTgYHu0_JjciXGrAK6Jwg6zPzub2CRDGmXrarFJKvl52WvgDjqR_5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+transcriptome+assembly+from+the+gonads+of+a+scleractinian+coral%2C+Euphyllia+ancora%3A+molecular+mechanisms+underlying+scleractinian+gametogenesis&rft.jtitle=BMC+genomics&rft.au=Chiu%2C+Yi-Ling&rft.au=Shikina%2C+Shinya&rft.au=Yoshioka%2C+Yuki&rft.au=Shinzato%2C+Chuya&rft.date=2020-10-21&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=21&rft.issue=1&rft.spage=732&rft_id=info:doi/10.1186%2Fs12864-020-07113-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon