Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?

The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacter...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 8; no. 1; pp. 38 - 20
Main Authors Jing, Tian-Zhong, Qi, Feng-Hui, Wang, Zhi-Ying
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 16.03.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.
AbstractList The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.
The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.
Abstract Background The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. Results The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. Conclusion The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.
Background The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. Results The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. Conclusion The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria. Keywords: Poplar-and-willow borer, Anal secretion, Intestine bacterial community, Multiple factor analysis, Community pathway maps
Background The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. Results The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. Conclusion The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.
The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.BACKGROUNDThe insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.RESULTSThe gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.CONCLUSIONThe most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.
ArticleNumber 38
Audience Academic
Author Wang, Zhi-Ying
Jing, Tian-Zhong
Qi, Feng-Hui
Author_xml – sequence: 1
  givenname: Tian-Zhong
  surname: Jing
  fullname: Jing, Tian-Zhong
– sequence: 2
  givenname: Feng-Hui
  surname: Qi
  fullname: Qi, Feng-Hui
– sequence: 3
  givenname: Zhi-Ying
  surname: Wang
  fullname: Wang, Zhi-Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32178739$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUha0qVfNo_kAXFVI3rVSngBnAXbSKoj5GSlWpjzW6xuAy8sAUcJT592FmkjYTVbUXvobvHOByjqsDH7ypqmcEnxEi-ZvEMOGyxhTXGEva1OtH1RHFrK0pJ_LgXn1Ynaa0wOVpCRNMPqkOG0qEFE17VA1fQsqoD0vnwWcUw2gSChY5n4zOaJgy6kBnEx28Rb0bTMou-NeoNzlcO-s07P5DRCYl47ODEfkpR1dqtIrhyqUCvH9aPbYwJnN6-z2pfn788OPic3359dP84vyy1pw3uW7BWknAttLwzvSaG2J1YztNZtgA00y0WFDAArS2hArecZB9KXTPOsBNc1LNd759gIVaRbeEuFYBnNoOhDgoiNnp0SjRmpZSro3AmEnedcxYrik0lFmQeFa83u28VlO3LJspJ4ow7pnuz3j3Sw3hSgksBJmxYvDy1iCG31NpnVq6pM04gjdhSoo2QrQtI4IU9MUDdBGm6EurNpTkVDZS_qUGKAdw3oayrt6YqvNy06IR7ZY6-wdV3t4snS4xsq6M7wle7QkKk811HmBKSc2_f9tnn99vyp9u3EWqAHIH6BhSisYq7fI2JWUXblQEq02A1S7AqgRYbQOs1kVKH0jv3P8jugHB1PL5
CitedBy_id crossref_primary_10_1080_12298093_2023_2203973
crossref_primary_10_1093_jme_tjae071
crossref_primary_10_1186_s42523_021_00135_y
crossref_primary_10_3389_fmicb_2020_01357
crossref_primary_10_1016_j_animal_2025_101483
crossref_primary_10_1016_j_jenvman_2024_123038
crossref_primary_10_1128_msystems_00529_22
crossref_primary_10_1360_SSV_2022_0126
crossref_primary_10_3389_fphys_2023_1304915
crossref_primary_10_3390_insects16030283
crossref_primary_10_1007_s00248_023_02232_8
crossref_primary_10_3389_fmicb_2022_1035644
crossref_primary_10_1128_spectrum_02073_23
crossref_primary_10_1007_s13205_022_03137_y
crossref_primary_10_1017_S0021859623000400
crossref_primary_10_1007_s10482_024_01970_0
crossref_primary_10_3389_fvets_2024_1462772
crossref_primary_10_1016_j_napere_2024_100110
crossref_primary_10_1186_s40168_022_01290_3
crossref_primary_10_3390_insects14060506
crossref_primary_10_1111_1462_2920_16436
crossref_primary_10_55446_IJE_2024_856
crossref_primary_10_1007_s11356_023_31561_x
crossref_primary_10_3389_fmicb_2023_1172601
crossref_primary_10_1186_s40793_020_00371_w
crossref_primary_10_1007_s11274_022_03387_1
crossref_primary_10_1128_spectrum_01208_24
crossref_primary_10_3390_insects15050369
crossref_primary_10_1007_s42690_022_00789_4
crossref_primary_10_1007_s00248_024_02393_0
crossref_primary_10_1016_j_biortech_2021_125464
crossref_primary_10_3390_insects13040361
crossref_primary_10_3390_insects13100872
crossref_primary_10_20517_mrr_2023_66
crossref_primary_10_1016_j_asd_2022_101213
crossref_primary_10_1007_s10340_023_01598_5
crossref_primary_10_1016_j_micres_2024_127863
crossref_primary_10_3390_ani11020542
crossref_primary_10_1186_s12866_024_03421_2
crossref_primary_10_3390_insects12070594
crossref_primary_10_1007_s12600_023_01077_8
crossref_primary_10_1016_j_biocontrol_2023_105283
crossref_primary_10_1186_s12866_025_03805_y
crossref_primary_10_3389_fmicb_2021_670383
crossref_primary_10_3390_agronomy14122945
crossref_primary_10_1016_j_scitotenv_2025_178812
crossref_primary_10_1093_femsec_fiac087
crossref_primary_10_1139_gen_2020_0018
crossref_primary_10_1080_07388551_2021_1942777
crossref_primary_10_1007_s10340_023_01685_7
crossref_primary_10_1038_s41467_023_37525_6
crossref_primary_10_1007_s10340_023_01682_w
crossref_primary_10_3389_fmicb_2020_587979
crossref_primary_10_1016_j_cois_2024_101278
crossref_primary_10_3920_JIFF2021_0131
crossref_primary_10_1016_j_envadv_2021_100091
crossref_primary_10_3390_insects13030308
crossref_primary_10_1080_24750263_2020_1844322
crossref_primary_10_1098_rspb_2021_1819
crossref_primary_10_1021_acs_jafc_3c02779
crossref_primary_10_1098_rstb_2023_0120
crossref_primary_10_1038_s41598_020_68448_7
crossref_primary_10_1099_acmi_0_000832_v4
crossref_primary_10_1073_pnas_2315540121
crossref_primary_10_1016_j_bcab_2024_103208
crossref_primary_10_1073_pnas_2215990119
crossref_primary_10_3389_fmicb_2022_824224
crossref_primary_10_3389_fphys_2022_1001032
crossref_primary_10_1111_1462_2920_15952
crossref_primary_10_1021_acs_est_3c01827
crossref_primary_10_3390_insects16020146
crossref_primary_10_1021_acsomega_2c04462
crossref_primary_10_3389_fmicb_2022_909863
crossref_primary_10_1111_eea_13457
crossref_primary_10_3390_microorganisms11020440
crossref_primary_10_3389_fmicb_2023_1185661
crossref_primary_10_3390_microbiolres15030092
crossref_primary_10_1002_arch_21881
crossref_primary_10_3389_fmicb_2024_1343265
crossref_primary_10_1016_j_jspr_2024_102496
crossref_primary_10_1186_s12866_022_02476_3
crossref_primary_10_14411_eje_2024_007
crossref_primary_10_3390_microorganisms10091828
crossref_primary_10_1111_2041_210X_14279
crossref_primary_10_3389_fmicb_2022_1095025
crossref_primary_10_1016_j_scitotenv_2022_157735
crossref_primary_10_1111_1748_5967_12684
crossref_primary_10_3390_life11060493
crossref_primary_10_1002_ece3_11699
crossref_primary_10_1002_ps_8261
crossref_primary_10_1111_lam_13549
crossref_primary_10_3390_pathogens10040396
crossref_primary_10_1007_s11686_022_00519_3
crossref_primary_10_1016_j_ecoenv_2023_115467
crossref_primary_10_1007_s11104_023_06437_1
crossref_primary_10_1093_femsle_fnab121
crossref_primary_10_1128_spectrum_01035_24
crossref_primary_10_1186_s40168_022_01240_z
crossref_primary_10_1093_jee_toac142
crossref_primary_10_1186_s40168_023_01649_0
crossref_primary_10_1007_s00726_023_03247_8
crossref_primary_10_1038_s41598_025_91621_9
crossref_primary_10_1007_s10340_022_01524_1
crossref_primary_10_1007_s42690_024_01201_z
crossref_primary_10_3389_fmicb_2021_685937
crossref_primary_10_1016_j_micres_2024_127835
crossref_primary_10_1007_s11274_025_04288_9
crossref_primary_10_3389_fmicb_2024_1392586
crossref_primary_10_1002_imt2_57
crossref_primary_10_1134_S106235902360352X
crossref_primary_10_3389_fphys_2022_1112278
crossref_primary_10_1039_D4NA00604F
crossref_primary_10_1128_spectrum_02272_22
crossref_primary_10_1007_s10646_025_02865_0
crossref_primary_10_3390_microorganisms11051208
crossref_primary_10_1007_s00239_023_10101_8
crossref_primary_10_1016_j_aspen_2024_102229
crossref_primary_10_3390_cells10030701
crossref_primary_10_1128_spectrum_02370_22
crossref_primary_10_3389_fphys_2021_739800
crossref_primary_10_1016_j_jinsphys_2021_104308
crossref_primary_10_1038_s43705_023_00323_8
crossref_primary_10_31083_j_fbe1602015
crossref_primary_10_1038_s41522_024_00531_7
crossref_primary_10_1093_gbe_evab189
crossref_primary_10_1080_17429145_2022_2120212
crossref_primary_10_3390_ani14243634
crossref_primary_10_1016_j_cbpa_2024_111764
crossref_primary_10_1111_1744_7917_13210
crossref_primary_10_1021_acscatal_4c02178
crossref_primary_10_3389_fmicb_2023_1199994
crossref_primary_10_3389_fmicb_2020_547031
crossref_primary_10_3390_microorganisms9122422
crossref_primary_10_1016_j_wasman_2023_11_019
crossref_primary_10_3390_foods11152299
crossref_primary_10_3390_microorganisms11030610
crossref_primary_10_1007_s11427_023_2398_y
crossref_primary_10_1073_pnas_2101080118
crossref_primary_10_1080_09583157_2020_1842327
crossref_primary_10_1093_femsec_fiac147
crossref_primary_10_3389_fmicb_2022_979383
crossref_primary_10_1002_ece3_70408
crossref_primary_10_1186_s13071_022_05643_7
crossref_primary_10_1007_s42690_023_01133_0
crossref_primary_10_1038_s41598_023_38992_z
crossref_primary_10_3389_fmicb_2022_875930
crossref_primary_10_1016_j_wasman_2024_02_007
crossref_primary_10_3390_applmicrobiol4040105
crossref_primary_10_3389_fmicb_2021_601253
crossref_primary_10_1128_msystems_01342_20
crossref_primary_10_1186_s13071_021_05053_1
crossref_primary_10_3389_fmicb_2024_1469140
crossref_primary_10_1007_s00248_024_02379_y
crossref_primary_10_1016_j_pestbp_2024_106060
crossref_primary_10_1016_j_jclepro_2023_139901
crossref_primary_10_1111_1744_7917_13340
crossref_primary_10_3390_insects11080497
crossref_primary_10_3920_JIFF2021_0045
crossref_primary_10_1016_j_jinsphys_2022_104396
crossref_primary_10_1016_j_renene_2023_119233
crossref_primary_10_1186_s12866_024_03428_9
crossref_primary_10_1186_s12866_023_03155_7
crossref_primary_10_1111_een_13424
crossref_primary_10_3390_horticulturae9091004
crossref_primary_10_3390_ijms251810130
crossref_primary_10_3390_insects15050304
crossref_primary_10_1016_j_scitotenv_2024_170145
crossref_primary_10_1016_j_scitotenv_2024_176005
crossref_primary_10_3390_microorganisms11010040
crossref_primary_10_1007_s00248_024_02431_x
crossref_primary_10_1016_j_scitotenv_2021_146115
crossref_primary_10_3389_fmicb_2020_570960
crossref_primary_10_1007_s10682_020_10073_x
crossref_primary_10_1186_s12862_022_02077_8
crossref_primary_10_3389_fmicb_2022_868575
crossref_primary_10_3390_d15040533
crossref_primary_10_1007_s10340_023_01597_6
crossref_primary_10_1007_s10841_023_00474_y
crossref_primary_10_1126_sciadv_add5051
crossref_primary_10_1111_1365_2435_14286
crossref_primary_10_1007_s00344_022_10767_2
crossref_primary_10_1111_1744_7917_13351
crossref_primary_10_1186_s12866_020_02015_y
crossref_primary_10_1021_acs_est_2c07733
crossref_primary_10_3390_insects15080611
crossref_primary_10_1016_j_envpol_2022_120915
crossref_primary_10_1016_j_ese_2023_100287
Cites_doi 10.1186/s40168-017-0236-z
10.1056/NEJMra1600266
10.1016/j.bioorg.2015.05.002
10.1007/s00248-011-9999-0
10.1007/BF00225228
10.1111/imb.12495
10.1146/annurev-ento-010814-020822
10.1093/jee/60.4.918
10.1371/journal.pone.0200512
10.1002/arch.21407
10.1371/journal.pone.0225711
10.1038/nbt.2676
10.1111/bph.14085
10.1038/s41396-019-0361-8
10.1128/AEM.02820-17
10.1146/annurev-ento-112408-085319
10.1038/nrmicro3182
10.1186/1754-6834-7-1
10.1016/j.jbiotec.2016.08.011
10.1093/bioinformatics/bth092
10.1023/B:JOEC.0000028427.53141.41
10.1186/1471-2180-14-136
10.1016/j.copbio.2012.08.005
10.1093/molbev/mst197
10.3389/fmicb.2018.01717
10.1242/jeb.101725
10.1098/rspb.2014.1838
10.1186/s40168-018-0470-z
10.1128/MMBR.68.4.745-770.2004
10.1038/nbt.1883
10.1073/pnas.1200231109
10.3390/ijms19092578
10.1128/AEM.01882-18
10.1186/s12864-018-5182-z
10.7150/ijbs.13537
10.4014/jmb.1901.01058
10.1371/journal.pone.0176573
10.1038/srep29505
10.3389/fmicb.2018.00025
10.1073/pnas.0907504106
10.1038/nmeth.f.303
10.1101/gr.092759.109
10.1002/wics.1246
10.1007/s10886-013-0308-x
10.1016/j.chemosphere.2019.06.048
10.1371/journal.pone.0074656
10.1016/j.ibmb.2014.03.013
10.1111/1574-6976.12025
10.1186/s13068-018-1148-2
10.1603/EN10137
10.3389/fmicb.2017.00663
10.3389/fchem.2017.00004
10.1007/BF00378598
10.1128/AEM.01226-14
10.1016/j.cell.2017.10.029
10.1128/mBio.00155-18
10.1186/s13071-016-1660-9
10.1080/00222938600770751
10.1093/nar/gks1219
10.1093/ee/nvv153
10.1146/annurev.ento.43.1.595
10.1007/s12223-016-0469-4
10.1007/s00248-013-0206-3
10.1673/031.010.10701
10.1038/srep16823
10.1128/AEM.04206-13
10.1016/j.tree.2016.03.006
10.1155/1982/41643
10.1371/journal.pone.0061126
10.1111/1365-2745.12170
10.1038/ismej.2010.97
10.1016/j.chemosphere.2018.08.078
10.1371/journal.pone.0163099
10.3389/fgene.2014.00027
10.1007/s11693-013-9127-1
10.1603/0046-225X-34.3.541
10.1007/s11356-018-3292-4
10.1038/ncomms15186
10.1111/1751-7915.12055
10.7717/peerj.2584
10.1111/mec.14728
10.1038/s41396-018-0255-1
10.1021/acs.biochem.7b00849
10.1128/JB.67.2.182-190.1954
10.1603/EN09221
10.1016/j.phytochem.2011.03.019
10.1002/pmic.201400571
10.1099/mic.0.077826-0
10.1603/EN13111
10.1146/annurev.en.39.010194.002321
10.1016/j.anifeedsci.2016.05.004
10.1111/j.1365-2095.2012.00943.x
10.1016/j.jinsphys.2006.02.007
10.1603/0046-225X(2006)35[1710:COGBIL]2.0.CO;2
10.1146/annurev-micro-092412-155618
10.3389/fgene.2015.00148
10.1128/AEM.02742-13
10.1007/s00775-012-0965-1
10.1111/mec.14186
10.1038/s41396-017-0021-9
10.1007/s40011-016-0762-7
10.1016/j.ijfoodmicro.2009.04.012
10.1038/nature06269
10.1038/ismej.2013.134
10.1016/j.cell.2012.10.052
10.1038/s41598-017-14724-y
10.1016/j.jinsphys.2008.10.017
10.1186/s40168-018-0510-8
10.1007/s10482-011-9614-x
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40168-020-00823-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE



Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 20
ExternalDocumentID oai_doaj_org_article_79e9226ce700486bb4ef6c2a324fa805
PMC7077154
A618737988
32178739
10_1186_s40168_020_00823_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: DL13CA07
– fundername: ;
  grantid: 31370591
– fundername: ;
  grantid: LBH-Q14012
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c663t-9aff81af98e6bedc6e1fc3fbc150ea4c479072a07accf1276b6a8d127cd4ba033
IEDL.DBID M48
ISSN 2049-2618
IngestDate Wed Aug 27 01:29:29 EDT 2025
Thu Aug 21 17:37:08 EDT 2025
Fri Jul 11 15:06:14 EDT 2025
Fri Jul 25 12:08:29 EDT 2025
Tue Jun 17 21:02:10 EDT 2025
Tue Jun 10 20:33:01 EDT 2025
Fri Jun 27 03:45:24 EDT 2025
Thu Jan 02 22:57:52 EST 2025
Tue Jul 01 04:16:37 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Anal secretion
Poplar-and-willow borer
Multiple factor analysis
Community pathway maps
Intestine bacterial community
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-9aff81af98e6bedc6e1fc3fbc150ea4c479072a07accf1276b6a8d127cd4ba033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2378628388?pq-origsite=%requestingapplication%
PMID 32178739
PQID 2378628388
PQPubID 2040205
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_79e9226ce700486bb4ef6c2a324fa805
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7077154
proquest_miscellaneous_2377994171
proquest_journals_2378628388
gale_infotracmisc_A618737988
gale_infotracacademiconefile_A618737988
gale_incontextgauss_ISR_A618737988
pubmed_primary_32178739
crossref_citationtrail_10_1186_s40168_020_00823_y
crossref_primary_10_1186_s40168_020_00823_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-16
PublicationDateYYYYMMDD 2020-03-16
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References CM Burgess (823_CR97) 2009; 133
A Vasanthakumar (823_CR40) 2006; 35
AS Kameshwar (823_CR58) 2016; 12
H Itoh (823_CR102) 2018; 12
J Morales-Jiménez (823_CR82) 2013; 66
TM Amorim Franco (823_CR91) 2017; 56
Y Kikuchi (823_CR73) 2012; 109
AS Adams (823_CR39) 2010; 39
CSL Vicente (823_CR84) 2018; 13
CJ Miller (823_CR33) 2019; 14
J Apajalahti (823_CR6) 2016; 221
CF Maurice (823_CR53) 2013; 152
M Le Roes-Hill (823_CR65) 2011; 100
K Wu (823_CR67) 2015; 5
AE Douglas (823_CR57) 2013; 39
AAP Anand (823_CR9) 2010; 10
EM Bik (823_CR4) 2018; 175
Y Fridmann-Sirkis (823_CR86) 2014; 5
I Delalibera Jr (823_CR101) 2005; 34
S Just (823_CR20) 2018; 6
PD Newell (823_CR49) 2014; 80
SS Yang (823_CR69) 2018; 212
P Engel (823_CR1) 2013; 37
JG LeBlanc (823_CR45) 2013; 24
M Kumar (823_CR64) 2018; 11
CI Briones-Roblero (823_CR7) 2017; 62
BA Daisley (823_CR75) 2018; 84
823_CR110
C Dietrich (823_CR43) 2014; 2014/01/31
V Lynch (823_CR3) 2016; 375
Q Sun (823_CR54) 2014; 7
K Fiedler (823_CR28) 1988; 75
S Magnúsdóttir (823_CR47) 2015; 6
CL Hall (823_CR30) 2011; 40
A Bost (823_CR100) 2018; 27
ZL Sabree (823_CR79) 2009; 106
823_CR11
T Huang (823_CR78) 2011; 72
H Salem (823_CR10) 2017; 171
X Xia (823_CR15) 2018; 9
S Gandotra (823_CR59) 2018; 27
MG Grabherr (823_CR111) 2011; 29
DR Sannino (823_CR87) 2018; 9
BA Petriz (823_CR21) 2017; 5
U Maschwitz (823_CR27) 1986; 20
AJ Sommer (823_CR48) 2019; 85
JA Breznak (823_CR80) 1994; 39
823_CR23
M Shapira (823_CR17) 2016; 31
H Vogel (823_CR34) 2017; 8
BA White (823_CR46) 2014; 68
S Yang (823_CR19) 2018; 9
T Eisner (823_CR24) 1982; 89
X Xia (823_CR18) 2017; 8
A Berasategui (823_CR70) 2017; 26
GN Cohen (823_CR95) 1954; 67
A Das (823_CR71) 2016; 11
KL Coon (823_CR14) 2016; 9
MG Boush (823_CR72) 1967; 60
F Warnecke (823_CR66) 2007; 450
T Mukherjee (823_CR98) 1814; 2011
JG Caporaso (823_CR104) 2010; 7
LE Visotto (823_CR12) 2009; 55
VK Priya (823_CR94) 2014; 8
AK Ray (823_CR5) 2012; 18
JA Hernández-García (823_CR37) 2018; 19
J Wang (823_CR38) 2017; 7
A Sabri (823_CR29) 2013; 8
E Zientz (823_CR83) 2004; 68
ACN Wong (823_CR85) 2014; 217
FA Genta (823_CR13) 2006; 52
KE Burnum (823_CR50) 2011; 5
NA Bokulich (823_CR106) 2018; 6
T Jing (823_CR31) 2018; 19
N Liu (823_CR42) 2019; 13
M Herde (823_CR60) 2014; 50
MGI Langille (823_CR52) 2013; 31
J Wu (823_CR96) 2019; 29
PD Sainsbury (823_CR63) 2015; 60
A Hatakka (823_CR62) 2005
B Chen (823_CR89) 2016; 6
DM Gillner (823_CR92) 2013; 18
M Krzywinski (823_CR109) 2009; 19
JA Ceja-Navarro (823_CR81) 2014; 8
H Abdi (823_CR113) 2013; 5
M Degli Esposti (823_CR99) 2017; 12
S Van Dexter (823_CR103) 2019; 26
S Gandotra (823_CR8) 2018; 88
AE Douglas (823_CR2) 2015; 60
MP Scott (823_CR25) 1998; 43
G de Gonzalo (823_CR32) 2016; 236
W Xiong (823_CR22) 2015; 15
C Quast (823_CR107) 2013; 41
A Brune (823_CR68) 2014; 12
MP Ferla (823_CR93) 2014; 160
LL Botina (823_CR76) 2019; 234
T Rognes (823_CR105) 2016; 4
R Craig (823_CR112) 2004; 20
RK Kulis-Horn (823_CR90) 2014; 7
D Cheng (823_CR74) 2017; 5
M Tagliavia (823_CR35) 2014; 14
H Salem (823_CR56) 2014; 281
M Nepi (823_CR77) 2014; 102
WW Hoback (823_CR26) 2004; 30
F Lu (823_CR41) 2013; 42
S He (823_CR51) 2013; 8
PA Ayayee (823_CR88) 2016; 45
JH Yun (823_CR44) 2014; 80
K Tamura (823_CR108) 2013; 30
FM Pilon (823_CR61) 2017; 96
H Watanabe (823_CR16) 2010; 55
JJ Sauter (823_CR55) 1992; 7
J Morales-Jiménez (823_CR36) 2012; 64
References_xml – volume: 5
  start-page: 13
  year: 2017
  ident: 823_CR74
  publication-title: Microbiome.
  doi: 10.1186/s40168-017-0236-z
– volume: 375
  start-page: 2369
  year: 2016
  ident: 823_CR3
  publication-title: New Engl J Med.
  doi: 10.1056/NEJMra1600266
– volume: 60
  start-page: 102
  year: 2015
  ident: 823_CR63
  publication-title: Bioorg Chem.
  doi: 10.1016/j.bioorg.2015.05.002
– volume: 64
  start-page: 268
  year: 2012
  ident: 823_CR36
  publication-title: Microb Ecol.
  doi: 10.1007/s00248-011-9999-0
– volume: 7
  start-page: 26
  year: 1992
  ident: 823_CR55
  publication-title: Trees.
  doi: 10.1007/BF00225228
– volume: 27
  start-page: 603
  year: 2018
  ident: 823_CR59
  publication-title: Insect Mol Biol.
  doi: 10.1111/imb.12495
– volume: 60
  start-page: 17
  year: 2015
  ident: 823_CR2
  publication-title: Annu Rev Entomol.
  doi: 10.1146/annurev-ento-010814-020822
– volume: 60
  start-page: 918
  year: 1967
  ident: 823_CR72
  publication-title: J Econ Entomol.
  doi: 10.1093/jee/60.4.918
– volume: 13
  start-page: e0200512
  year: 2018
  ident: 823_CR84
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0200512
– volume: 96
  start-page: e21407
  year: 2017
  ident: 823_CR61
  publication-title: Arch Insect Biochem Physiol.
  doi: 10.1002/arch.21407
– ident: 823_CR23
– volume: 14
  start-page: e0225711
  year: 2019
  ident: 823_CR33
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0225711
– volume: 31
  start-page: 814
  year: 2013
  ident: 823_CR52
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.2676
– volume: 175
  start-page: 4404
  year: 2018
  ident: 823_CR4
  publication-title: Brit J Pharmacol.
  doi: 10.1111/bph.14085
– ident: 823_CR11
  doi: 10.1038/s41396-019-0361-8
– volume: 84
  start-page: e02820
  year: 2018
  ident: 823_CR75
  publication-title: Appl Environ Microbiol.
  doi: 10.1128/AEM.02820-17
– volume: 55
  start-page: 609
  year: 2010
  ident: 823_CR16
  publication-title: Annu Rev Entomol.
  doi: 10.1146/annurev-ento-112408-085319
– volume: 12
  start-page: 168
  year: 2014
  ident: 823_CR68
  publication-title: Nat Rev Microbiol.
  doi: 10.1038/nrmicro3182
– volume: 7
  start-page: 1
  year: 2014
  ident: 823_CR54
  publication-title: Biotechnol Biofuels.
  doi: 10.1186/1754-6834-7-1
– volume: 236
  start-page: 110
  year: 2016
  ident: 823_CR32
  publication-title: J Biotech.
  doi: 10.1016/j.jbiotec.2016.08.011
– start-page: 129
  volume-title: Biopolymers Online
  year: 2005
  ident: 823_CR62
– volume: 20
  start-page: 1466
  year: 2004
  ident: 823_CR112
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bth092
– volume: 30
  start-page: 719
  year: 2004
  ident: 823_CR26
  publication-title: J Chem Ecol.
  doi: 10.1023/B:JOEC.0000028427.53141.41
– volume: 14
  start-page: 136
  year: 2014
  ident: 823_CR35
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-14-136
– volume: 24
  start-page: 160
  year: 2013
  ident: 823_CR45
  publication-title: Curr Opin Biotech.
  doi: 10.1016/j.copbio.2012.08.005
– volume: 30
  start-page: 2725
  year: 2013
  ident: 823_CR108
  publication-title: Mol Biol Evol.
  doi: 10.1093/molbev/mst197
– volume: 9
  start-page: 1717
  year: 2018
  ident: 823_CR19
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2018.01717
– volume: 217
  start-page: 1894
  year: 2014
  ident: 823_CR85
  publication-title: J Exp Biol.
  doi: 10.1242/jeb.101725
– volume: 281
  start-page: 20141838
  year: 2014
  ident: 823_CR56
  publication-title: Proc Biol Sci B Biol Sci.
  doi: 10.1098/rspb.2014.1838
– volume: 6
  start-page: 90
  year: 2018
  ident: 823_CR106
  publication-title: Microbiome.
  doi: 10.1186/s40168-018-0470-z
– volume: 68
  start-page: 745
  year: 2004
  ident: 823_CR83
  publication-title: Microbiol Mol Biol R.
  doi: 10.1128/MMBR.68.4.745-770.2004
– volume: 29
  start-page: 644
  year: 2011
  ident: 823_CR111
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.1883
– volume: 109
  start-page: 8618
  year: 2012
  ident: 823_CR73
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1200231109
– volume: 19
  start-page: 2578
  year: 2018
  ident: 823_CR37
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms19092578
– volume: 85
  start-page: e01882
  year: 2019
  ident: 823_CR48
  publication-title: Appl Environ Microbiol.
  doi: 10.1128/AEM.01882-18
– volume: 19
  start-page: 784
  year: 2018
  ident: 823_CR31
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-018-5182-z
– volume: 12
  start-page: 156
  year: 2016
  ident: 823_CR58
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.13537
– volume: 29
  start-page: 923
  year: 2019
  ident: 823_CR96
  publication-title: J Microbiol Biotechnol.
  doi: 10.4014/jmb.1901.01058
– volume: 12
  start-page: e0176573
  year: 2017
  ident: 823_CR99
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0176573
– volume: 6
  start-page: 29505
  year: 2016
  ident: 823_CR89
  publication-title: Sci Rep.
  doi: 10.1038/srep29505
– volume: 9
  start-page: 25
  year: 2018
  ident: 823_CR15
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00025
– volume: 106
  start-page: 19521
  year: 2009
  ident: 823_CR79
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0907504106
– volume: 7
  start-page: 335
  year: 2010
  ident: 823_CR104
  publication-title: Nat Meth.
  doi: 10.1038/nmeth.f.303
– volume: 19
  start-page: 1639
  year: 2009
  ident: 823_CR109
  publication-title: Genome Res.
  doi: 10.1101/gr.092759.109
– volume: 5
  start-page: 149
  year: 2013
  ident: 823_CR113
  publication-title: WIREs Comp Stat.
  doi: 10.1002/wics.1246
– volume: 39
  start-page: 952
  year: 2013
  ident: 823_CR57
  publication-title: J Chem Ecol.
  doi: 10.1007/s10886-013-0308-x
– volume: 234
  start-page: 187
  year: 2019
  ident: 823_CR76
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2019.06.048
– volume: 8
  start-page: e74656
  year: 2013
  ident: 823_CR29
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0074656
– volume: 2011
  start-page: 1585
  year: 1814
  ident: 823_CR98
  publication-title: BBA Proteins Proteomics.
– volume: 50
  start-page: 58
  year: 2014
  ident: 823_CR60
  publication-title: Insect Biochem Mol Biol.
  doi: 10.1016/j.ibmb.2014.03.013
– volume: 37
  start-page: 699
  year: 2013
  ident: 823_CR1
  publication-title: FEMS Microbiol Rev.
  doi: 10.1111/1574-6976.12025
– volume: 11
  start-page: 154
  year: 2018
  ident: 823_CR64
  publication-title: ISTKB. Biotechnol Biofuels.
  doi: 10.1186/s13068-018-1148-2
– volume: 40
  start-page: 669
  year: 2011
  ident: 823_CR30
  publication-title: Environ Entomol.
  doi: 10.1603/EN10137
– volume: 8
  start-page: 663
  year: 2017
  ident: 823_CR18
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2017.00663
– volume: 5
  start-page: 4
  year: 2017
  ident: 823_CR21
  publication-title: Front Chem
  doi: 10.3389/fchem.2017.00004
– volume: 75
  start-page: 204
  year: 1988
  ident: 823_CR28
  publication-title: Oecologia.
  doi: 10.1007/BF00378598
– volume: 80
  start-page: 5254
  year: 2014
  ident: 823_CR44
  publication-title: Appl Environ Microbiol.
  doi: 10.1128/AEM.01226-14
– volume: 171
  start-page: 1520
  year: 2017
  ident: 823_CR10
  publication-title: Cell.
  doi: 10.1016/j.cell.2017.10.029
– volume: 9
  start-page: e00155
  year: 2018
  ident: 823_CR87
  publication-title: MBio.
  doi: 10.1128/mBio.00155-18
– volume: 9
  start-page: 375
  year: 2016
  ident: 823_CR14
  publication-title: Parasite Vector.
  doi: 10.1186/s13071-016-1660-9
– volume: 20
  start-page: 1041
  year: 1986
  ident: 823_CR27
  publication-title: J Nat Hist.
  doi: 10.1080/00222938600770751
– volume: 41
  start-page: D590
  year: 2013
  ident: 823_CR107
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 45
  start-page: 66
  year: 2016
  ident: 823_CR88
  publication-title: Environ Entomol.
  doi: 10.1093/ee/nvv153
– volume: 43
  start-page: 595
  year: 1998
  ident: 823_CR25
  publication-title: Annu Rev Entomol.
  doi: 10.1146/annurev.ento.43.1.595
– volume: 62
  start-page: 1
  year: 2017
  ident: 823_CR7
  publication-title: Folia Microbiol.
  doi: 10.1007/s12223-016-0469-4
– volume: 66
  start-page: 200
  year: 2013
  ident: 823_CR82
  publication-title: Microb Ecol
  doi: 10.1007/s00248-013-0206-3
– volume: 10
  start-page: 107
  year: 2010
  ident: 823_CR9
  publication-title: J Insect Sci.
  doi: 10.1673/031.010.10701
– volume: 5
  start-page: 16823
  year: 2015
  ident: 823_CR67
  publication-title: Sci Rep.
  doi: 10.1038/srep16823
– volume: 2014/01/31
  start-page: 2261
  year: 2014
  ident: 823_CR43
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.04206-13
– volume: 31
  start-page: 539
  year: 2016
  ident: 823_CR17
  publication-title: Trends Ecol Evol.
  doi: 10.1016/j.tree.2016.03.006
– volume: 89
  start-page: 357
  year: 1982
  ident: 823_CR24
  publication-title: Psyche.
  doi: 10.1155/1982/41643
– volume: 8
  start-page: e61126
  year: 2013
  ident: 823_CR51
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0061126
– volume: 102
  start-page: 108
  year: 2014
  ident: 823_CR77
  publication-title: J Ecol.
  doi: 10.1111/1365-2745.12170
– volume: 5
  start-page: 161
  year: 2011
  ident: 823_CR50
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.97
– volume: 212
  start-page: 262
  year: 2018
  ident: 823_CR69
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2018.08.078
– volume: 11
  start-page: e0163099
  year: 2016
  ident: 823_CR71
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0163099
– volume: 5
  start-page: 27
  year: 2014
  ident: 823_CR86
  publication-title: Frontiers in genetics.
  doi: 10.3389/fgene.2014.00027
– volume: 8
  start-page: 59
  year: 2014
  ident: 823_CR94
  publication-title: Syst Synth Biol.
  doi: 10.1007/s11693-013-9127-1
– volume: 34
  start-page: 541
  year: 2005
  ident: 823_CR101
  publication-title: Environ Entomol.
  doi: 10.1603/0046-225X-34.3.541
– volume: 26
  start-page: 34067
  year: 2019
  ident: 823_CR103
  publication-title: Environ Sci Pollut Res.
  doi: 10.1007/s11356-018-3292-4
– volume: 8
  start-page: 15186
  year: 2017
  ident: 823_CR34
  publication-title: Nat Commun.
  doi: 10.1038/ncomms15186
– volume: 7
  start-page: 5
  year: 2014
  ident: 823_CR90
  publication-title: Microb biotechnol.
  doi: 10.1111/1751-7915.12055
– volume: 4
  start-page: e2584
  year: 2016
  ident: 823_CR105
  publication-title: Peer J
  doi: 10.7717/peerj.2584
– ident: 823_CR110
– volume: 27
  start-page: 2834
  year: 2018
  ident: 823_CR100
  publication-title: Mol Ecol.
  doi: 10.1111/mec.14728
– volume: 13
  start-page: 104
  year: 2019
  ident: 823_CR42
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0255-1
– volume: 56
  start-page: 5849
  year: 2017
  ident: 823_CR91
  publication-title: Biochemistry.
  doi: 10.1021/acs.biochem.7b00849
– volume: 67
  start-page: 182
  year: 1954
  ident: 823_CR95
  publication-title: J Bacteriol.
  doi: 10.1128/JB.67.2.182-190.1954
– volume: 39
  start-page: 406
  year: 2010
  ident: 823_CR39
  publication-title: Environ Entomol.
  doi: 10.1603/EN09221
– volume: 72
  start-page: 1531
  year: 2011
  ident: 823_CR78
  publication-title: Phytochemistry.
  doi: 10.1016/j.phytochem.2011.03.019
– volume: 15
  start-page: 3424
  year: 2015
  ident: 823_CR22
  publication-title: Proteomics.
  doi: 10.1002/pmic.201400571
– volume: 160
  start-page: 1571
  year: 2014
  ident: 823_CR93
  publication-title: Microbiology.
  doi: 10.1099/mic.0.077826-0
– volume: 42
  start-page: 874
  year: 2013
  ident: 823_CR41
  publication-title: Environ Entomol.
  doi: 10.1603/EN13111
– volume: 39
  start-page: 453
  year: 1994
  ident: 823_CR80
  publication-title: Annu Rev Entomol.
  doi: 10.1146/annurev.en.39.010194.002321
– volume: 221
  start-page: 323
  year: 2016
  ident: 823_CR6
  publication-title: Anim Feed Sci Tech.
  doi: 10.1016/j.anifeedsci.2016.05.004
– volume: 18
  start-page: 465
  year: 2012
  ident: 823_CR5
  publication-title: Aquacult Nutr
  doi: 10.1111/j.1365-2095.2012.00943.x
– volume: 52
  start-page: 593
  year: 2006
  ident: 823_CR13
  publication-title: J Insect Physiol.
  doi: 10.1016/j.jinsphys.2006.02.007
– volume: 35
  start-page: 1710
  year: 2006
  ident: 823_CR40
  publication-title: Environ Entomol.
  doi: 10.1603/0046-225X(2006)35[1710:COGBIL]2.0.CO;2
– volume: 68
  start-page: 279
  year: 2014
  ident: 823_CR46
  publication-title: Annu Rev Microbiol.
  doi: 10.1146/annurev-micro-092412-155618
– volume: 6
  start-page: 148
  year: 2015
  ident: 823_CR47
  publication-title: Front Genet.
  doi: 10.3389/fgene.2015.00148
– volume: 80
  start-page: 788
  year: 2014
  ident: 823_CR49
  publication-title: Appl Environ Microbiol.
  doi: 10.1128/AEM.02742-13
– volume: 18
  start-page: 155
  year: 2013
  ident: 823_CR92
  publication-title: J Biol Inorg Chem.
  doi: 10.1007/s00775-012-0965-1
– volume: 26
  start-page: 4099
  year: 2017
  ident: 823_CR70
  publication-title: Mol Ecol.
  doi: 10.1111/mec.14186
– volume: 12
  start-page: 909
  year: 2018
  ident: 823_CR102
  publication-title: ISME J.
  doi: 10.1038/s41396-017-0021-9
– volume: 88
  start-page: 329
  year: 2018
  ident: 823_CR8
  publication-title: P Natl A Sci India B.
  doi: 10.1007/s40011-016-0762-7
– volume: 133
  start-page: 1
  year: 2009
  ident: 823_CR97
  publication-title: Int J of Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2009.04.012
– volume: 450
  start-page: 560
  year: 2007
  ident: 823_CR66
  publication-title: Nature
  doi: 10.1038/nature06269
– volume: 8
  start-page: 6
  year: 2014
  ident: 823_CR81
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.134
– volume: 152
  start-page: 39
  year: 2013
  ident: 823_CR53
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.10.052
– volume: 7
  start-page: 14242
  year: 2017
  ident: 823_CR38
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-14724-y
– volume: 55
  start-page: 185
  year: 2009
  ident: 823_CR12
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2008.10.017
– volume: 6
  start-page: 134
  year: 2018
  ident: 823_CR20
  publication-title: Microbiome.
  doi: 10.1186/s40168-018-0510-8
– volume: 100
  start-page: 589
  year: 2011
  ident: 823_CR65
  publication-title: Antonie van Leeuwenhoek.
  doi: 10.1007/s10482-011-9614-x
SSID ssj0000914748
Score 2.5825565
Snippet The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However,...
Background The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology....
Background The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and physiology....
Abstract Background The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 38
SubjectTerms Amino acids
Anal secretion
Analysis
Animals
Bacteria
Bacteria - classification
Bacteria - metabolism
Bacteroidetes - classification
Beetles
Cellulose
Community pathway maps
Detoxification
Digestion
Enzymes
Feces
Feces - microbiology
Gastrointestinal Microbiome
Gastrointestinal Tract - microbiology
Genetic research
Genomes
Genomics
Insects
Intestinal microflora
Intestine bacterial community
Metabolites
Microbial drug resistance
Microbiota
Microbiota (Symbiotic organisms)
Multiple factor analysis
Nutrients - metabolism
Phylogeny
Physiological aspects
Physiology
Poplar-and-willow borer
Proteins
Proteobacteria
Proteobacteria - classification
Proteomics
RNA
RNA, Ribosomal, 16S - genetics
Sequence Analysis, DNA
Studies
Weevils
Weevils - microbiology
Weevils - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv62uEkXwoGVfmmySepFVXFZhPagLewv5fLuwtLLtA99_70zS93hF0Iu3tpmWZmaSzC-d_oaQVyFgVB5k7RsHAMVJVmOlo9rLQ5sa7iAowK2B06_y5Ex8OT883yn1hTlhhR64KO5AtbGFEMFHldnhnBMxSd9YCASS1YW9FNa8HTCV5-CWCSX05i8ZLQ8GABJS14iW8telej1biTJh_5_T8s66NM-Z3FmEju-Q21P0SI_KW98lN2J3j9ws9STX98nytB9GGvqS3kIxc3CgfaKX3QDzGl2uRuoKO7N9R0P-tARmeUtDHPtfmDNky3l_TZFSvIPRf0U75OuHY5p3H3Bz7f0Dcnb86cfHk3qqpAA6l3ysW5uSZja1OkoHfZCRJc-T8xAORiu8UICRG7tQ1vvEGiWdtDrAgQ_C2QXnD8le13fxMaHCJml9YFZaZNKPgKCRU62JCmzrgqgI22jV-IlmHKtdXJkMN7Q0xRIGLGGyJcy6Im-29_wsJBt_lf6AxtpKIkF2vgBuYya3Mf9ym4q8RFMbpMDoMMdmaVfDYD5__2aOJNOKI49bRV5PQqmHPng7_bIAmkDWrJnk_kwSxqifN288ykxzxGAargBOao7NL7bNeCfmvXWxX2UZ1baCKVaRR8UBt_3mgCbh-W1F1Mw1Z4qZt3SXF5lBXC2Ugtj5yf_Q5FNyq8mjitdM7pO98XoVn0GgNrrneUz-Bl-QOtg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYrgg5bbttkk9eU4xeMUzgf1YN9CPteDozm3XXD_e2fS7HpFuLe2mZYkM5nMTKa_IeSNc2iVO17a2oCDYnhVYqWj0vK5DnVjwCjA0MDpN35yxr4u5osccOtzWuVWJyZF7aLFGPlB3QgwvmUj5eHl7xKrRuHpai6hcZPcQugylGqxELsYC-yFTDC5_VdG8oMe3AkuS_SZ0hlTuZnsRwm2_3_lfGV3mmZOXtmKju-Ru9mGpEcj0--TG757QG6PVSU3D8nyNPYDdXFMcqGYP9jTGOh514N2o8v1QM2I0aw_UJcOmIA576nzQ_yDmUN6vI8risDiHeiAC9ohaj9c0xSDwBDb4SNydvz556eTMtdTgJnnzVC2OgRZ6dBKzw2Mgfsq2CYYC0ah18wyAZ5yrWdCWxuqWnDDtXRwYR0zetY0j8leFzv_lFCmA9fWVZprxNP34EcjslrtBXDYOFaQajurymawcax5caGS0yG5GjmhgBMqcUJtCvJu987lCLVxLfVHZNaOEmGy04O4Wqq86pRoPXSKWy8StKAxzAduaw1WZNByNi_Ia2S1QiCMDjNtlnrd9-rLj-_qiFdSNIjmVpC3mShEGIPV-ccFmAnEzppQ7k8oYaXaafNWolTWFL36J9cFebVrxjcx-63zcZ1oRNuySlQFeTIK4G7cDfiU8P22IGIimpOJmbZ0578SjriYCQEW9LPru_Wc3KnTemnKiu-TvWG19i_AEBvMy7Ta_gI6RDK4
  priority: 102
  providerName: ProQuest
Title Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?
URI https://www.ncbi.nlm.nih.gov/pubmed/32178739
https://www.proquest.com/docview/2378628388
https://www.proquest.com/docview/2377994171
https://pubmed.ncbi.nlm.nih.gov/PMC7077154
https://doaj.org/article/79e9226ce700486bb4ef6c2a324fa805
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9IL4JjMogJB4g0HzUTpDQtKGNgdQJDSr1zbIdu0yqEmhSaf3vuXPSqhGDlyqtz1Htu7N_51x-B_CqKAiVFzw0scYARfMopEpHoeEj5eJEIyigo4HxBT-fpF-no-kOrMsddRNY3xjaUT2pyWL-7vr36ggd_qN3-Iy_rzFG4FlIgZB_cBSudmEfdyZBFQ3GHdz3K3MepSLN1u_O3Nj1AG4nCNMzQeXDt7Yqz-j_97q9tXH1kyq3dqmzu3Cng5fsuLWHe7Bjy_twqy04uXoAs3FVN6yo2vwXRqmFNascuyprXPjYbNkw3dI3qw-s8M-eUG9vWWGb6pqSilT7vVow4hwvcXmYs5II_fGa-eMJOn07egiTs9Mfn87DrtQCKoUnTZgr57JIuTyzXOMYuI2cSZw2iBetSk0qMIiO1VAoY1wUC665ygq8MEWq1TBJHsFeWZX2CbBUOa5MESmuiGrfYohNpGuxFah8XaQBROtZlabjIadyGHPp45GMy1YpEpUivVLkKoA3mz6_WhaO_0qfkLI2ksSg7X-oFjPZOaQUucU_xY0VnnVQ69Q6bmKFANOpbDgK4CWpWhJHRklJODO1rGv55fulPOYRmgcRvQXwuhNyFY7BqO6dBpwJotXqSR72JNGJTb95bVFy7QMyTgTGm1lCzS82zdSTEuNKWy29jMhztPUogMetAW7GvbbjAETPNHsT028pr356inExFALB9dN_3vMZHMTea5Iw4oew1yyW9jnCs0YPYFdMxQD2T04vvl0O_CEHfn6eRgPvjX8AvTc6TQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiDeGAgsCcQCrfmV3jYSq8qgS2vQArZTbdl8OlSq7xI4gf4rfyMzaDrWQeuvNyY4Te2d2Xjv7DSGvrEWv3LLQJBoCFM3iEDsdhYaNVJGkGpwCTA1MD9n4OPs6G802yJ_-LAyWVfY60StqWxnMkW8nKQfnW6RC7Jz_DLFrFO6u9i00WrHYd6tfELLVHyafgb-vk2Tvy9Gncdh1FYD_Z2kT5qooRKyKXDimnTXMxYVJC23ANXIqMxmHeDFREVfGFHHCmWZKWLgwNtMqwgQoqPxrYHgjDPb4jK9zOmB7M56J_myOYNs1hC9MhBij-T2tcDWwf75NwP_G4II1HFZqXjB9e7fJrc5npbutkN0hG668S663XSxX98h8WtUNtVVbVEOxXrGmVUFPyxq0KZ0vG6pbTGj1nlq_oQXC8I5a11S_sVJJtZ-rBUUg8xJ0zhktsUsAXFOf88CU3s59cnwlM_2AbJZV6R4RmqmCKWNjxRTi9zuI2xHJLXEcJErbLCBxP6vSdODm2GPjTPogRzDZckICJ6TnhFwF5O36nvMW2uNS6o_IrDUlwnL7L6rFXHarXPLcwUMx47iHMtQ6cwUziQKvtVAiGgXkJbJaIvBGiZU9c7Wsazn5_k3usljwFNHjAvKmIyoqeAejuoMSMBOI1TWg3BpQgmYww-FeomSnmWr5bx0F5MV6GO_EarvSVUtPw_M8i3kckIetAK7fO4UYFn4_DwgfiOZgYoYj5ekPj1vOI87BY398-WM9JzfGR9MDeTA53H9CbiZ-7aRhJLbIZrNYuqfgBDb6mV95lJxc9VL_C6erceQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Most+dominant+roles+of+insect+gut+bacteria%3A+digestion%2C+detoxification%2C+or+essential+nutrient+provision%3F&rft.jtitle=Microbiome&rft.au=Jing%2C+Tian-Zhong&rft.au=Qi%2C+Feng-Hui&rft.au=Wang%2C+Zhi-Ying&rft.date=2020-03-16&rft.eissn=2049-2618&rft.volume=8&rft.issue=1&rft.spage=38&rft_id=info:doi/10.1186%2Fs40168-020-00823-y&rft_id=info%3Apmid%2F32178739&rft.externalDocID=32178739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon