Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?
The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacter...
Saved in:
Published in | Microbiome Vol. 8; no. 1; pp. 38 - 20 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
16.03.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.
The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.
The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria. |
---|---|
AbstractList | The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.
The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.
The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria. The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria. Abstract Background The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. Results The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. Conclusion The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria. Background The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. Results The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. Conclusion The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria. Keywords: Poplar-and-willow borer, Anal secretion, Intestine bacterial community, Multiple factor analysis, Community pathway maps Background The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. Results The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented. Conclusion The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria. The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.BACKGROUNDThe insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However, there is poor information about the ranking of these roles. Most of these results were obtained with cultivable bacteria, whereas the bacterial physiology may be different between free-living and midgut-colonizing bacteria. In this study, we provided both proteomic and genomic evidence on the ranking of the roles of gut bacteria by investigating the anal droplets from a weevil, Cryptorhynchus lapathi.The gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.RESULTSThe gut lumen and the anal droplets showed qualitatively and quantitatively different subsets of bacterial communities. The results of 16S rRNA sequencing showed that the gut lumen is dominated by Proteobacteria and Bacteroidetes, whereas the anal droplets are dominated by Proteobacteria. From the anal droplets, enzymes involved in 31 basic roles that belong to 7 super roles were identified by Q-TOF MS. The cooperation between the weevil and its gut bacteria was determined by reconstructing community pathway maps, which are defined in this study. A score was used to rank the gut bacterial roles. The results from the proteomic data indicate that the most dominant role of gut bacteria is amino acid biosynthesis, followed by protein digestion, energy metabolism, vitamin biosynthesis, lipid digestion, plant secondary metabolite (PSM) degradation, and carbohydrate digestion, while the order from the genomic data is amino acid biosynthesis, vitamin biosynthesis, lipid digestion, energy metabolism, protein digestion, PSM degradation, and carbohydrate digestion. The PCA results showed that the gut bacteria form functional groups from the point of view of either the basic role or super role, and the MFA results showed that there are functional variations among gut bacteria. In addition, the variations between the proteomic and genomic data, analyzed with the HMFA method from the point of view of either the bacterial community or individual bacterial species, are presented.The most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria.CONCLUSIONThe most dominant role of gut bacteria is essential nutrient provisioning, followed by digestion and detoxification. The weevil plays a pioneering role in diet digestion and mainly digests macromolecules into smaller molecules which are then mainly digested by gut bacteria. |
ArticleNumber | 38 |
Audience | Academic |
Author | Wang, Zhi-Ying Jing, Tian-Zhong Qi, Feng-Hui |
Author_xml | – sequence: 1 givenname: Tian-Zhong surname: Jing fullname: Jing, Tian-Zhong – sequence: 2 givenname: Feng-Hui surname: Qi fullname: Qi, Feng-Hui – sequence: 3 givenname: Zhi-Ying surname: Wang fullname: Wang, Zhi-Ying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32178739$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv3CAUha0qVfNo_kAXFVI3rVSngBnAXbSKoj5GSlWpjzW6xuAy8sAUcJT592FmkjYTVbUXvobvHOByjqsDH7ypqmcEnxEi-ZvEMOGyxhTXGEva1OtH1RHFrK0pJ_LgXn1Ynaa0wOVpCRNMPqkOG0qEFE17VA1fQsqoD0vnwWcUw2gSChY5n4zOaJgy6kBnEx28Rb0bTMou-NeoNzlcO-s07P5DRCYl47ODEfkpR1dqtIrhyqUCvH9aPbYwJnN6-z2pfn788OPic3359dP84vyy1pw3uW7BWknAttLwzvSaG2J1YztNZtgA00y0WFDAArS2hArecZB9KXTPOsBNc1LNd759gIVaRbeEuFYBnNoOhDgoiNnp0SjRmpZSro3AmEnedcxYrik0lFmQeFa83u28VlO3LJspJ4ow7pnuz3j3Sw3hSgksBJmxYvDy1iCG31NpnVq6pM04gjdhSoo2QrQtI4IU9MUDdBGm6EurNpTkVDZS_qUGKAdw3oayrt6YqvNy06IR7ZY6-wdV3t4snS4xsq6M7wle7QkKk811HmBKSc2_f9tnn99vyp9u3EWqAHIH6BhSisYq7fI2JWUXblQEq02A1S7AqgRYbQOs1kVKH0jv3P8jugHB1PL5 |
CitedBy_id | crossref_primary_10_1080_12298093_2023_2203973 crossref_primary_10_1093_jme_tjae071 crossref_primary_10_1186_s42523_021_00135_y crossref_primary_10_3389_fmicb_2020_01357 crossref_primary_10_1016_j_animal_2025_101483 crossref_primary_10_1016_j_jenvman_2024_123038 crossref_primary_10_1128_msystems_00529_22 crossref_primary_10_1360_SSV_2022_0126 crossref_primary_10_3389_fphys_2023_1304915 crossref_primary_10_3390_insects16030283 crossref_primary_10_1007_s00248_023_02232_8 crossref_primary_10_3389_fmicb_2022_1035644 crossref_primary_10_1128_spectrum_02073_23 crossref_primary_10_1007_s13205_022_03137_y crossref_primary_10_1017_S0021859623000400 crossref_primary_10_1007_s10482_024_01970_0 crossref_primary_10_3389_fvets_2024_1462772 crossref_primary_10_1016_j_napere_2024_100110 crossref_primary_10_1186_s40168_022_01290_3 crossref_primary_10_3390_insects14060506 crossref_primary_10_1111_1462_2920_16436 crossref_primary_10_55446_IJE_2024_856 crossref_primary_10_1007_s11356_023_31561_x crossref_primary_10_3389_fmicb_2023_1172601 crossref_primary_10_1186_s40793_020_00371_w crossref_primary_10_1007_s11274_022_03387_1 crossref_primary_10_1128_spectrum_01208_24 crossref_primary_10_3390_insects15050369 crossref_primary_10_1007_s42690_022_00789_4 crossref_primary_10_1007_s00248_024_02393_0 crossref_primary_10_1016_j_biortech_2021_125464 crossref_primary_10_3390_insects13040361 crossref_primary_10_3390_insects13100872 crossref_primary_10_20517_mrr_2023_66 crossref_primary_10_1016_j_asd_2022_101213 crossref_primary_10_1007_s10340_023_01598_5 crossref_primary_10_1016_j_micres_2024_127863 crossref_primary_10_3390_ani11020542 crossref_primary_10_1186_s12866_024_03421_2 crossref_primary_10_3390_insects12070594 crossref_primary_10_1007_s12600_023_01077_8 crossref_primary_10_1016_j_biocontrol_2023_105283 crossref_primary_10_1186_s12866_025_03805_y crossref_primary_10_3389_fmicb_2021_670383 crossref_primary_10_3390_agronomy14122945 crossref_primary_10_1016_j_scitotenv_2025_178812 crossref_primary_10_1093_femsec_fiac087 crossref_primary_10_1139_gen_2020_0018 crossref_primary_10_1080_07388551_2021_1942777 crossref_primary_10_1007_s10340_023_01685_7 crossref_primary_10_1038_s41467_023_37525_6 crossref_primary_10_1007_s10340_023_01682_w crossref_primary_10_3389_fmicb_2020_587979 crossref_primary_10_1016_j_cois_2024_101278 crossref_primary_10_3920_JIFF2021_0131 crossref_primary_10_1016_j_envadv_2021_100091 crossref_primary_10_3390_insects13030308 crossref_primary_10_1080_24750263_2020_1844322 crossref_primary_10_1098_rspb_2021_1819 crossref_primary_10_1021_acs_jafc_3c02779 crossref_primary_10_1098_rstb_2023_0120 crossref_primary_10_1038_s41598_020_68448_7 crossref_primary_10_1099_acmi_0_000832_v4 crossref_primary_10_1073_pnas_2315540121 crossref_primary_10_1016_j_bcab_2024_103208 crossref_primary_10_1073_pnas_2215990119 crossref_primary_10_3389_fmicb_2022_824224 crossref_primary_10_3389_fphys_2022_1001032 crossref_primary_10_1111_1462_2920_15952 crossref_primary_10_1021_acs_est_3c01827 crossref_primary_10_3390_insects16020146 crossref_primary_10_1021_acsomega_2c04462 crossref_primary_10_3389_fmicb_2022_909863 crossref_primary_10_1111_eea_13457 crossref_primary_10_3390_microorganisms11020440 crossref_primary_10_3389_fmicb_2023_1185661 crossref_primary_10_3390_microbiolres15030092 crossref_primary_10_1002_arch_21881 crossref_primary_10_3389_fmicb_2024_1343265 crossref_primary_10_1016_j_jspr_2024_102496 crossref_primary_10_1186_s12866_022_02476_3 crossref_primary_10_14411_eje_2024_007 crossref_primary_10_3390_microorganisms10091828 crossref_primary_10_1111_2041_210X_14279 crossref_primary_10_3389_fmicb_2022_1095025 crossref_primary_10_1016_j_scitotenv_2022_157735 crossref_primary_10_1111_1748_5967_12684 crossref_primary_10_3390_life11060493 crossref_primary_10_1002_ece3_11699 crossref_primary_10_1002_ps_8261 crossref_primary_10_1111_lam_13549 crossref_primary_10_3390_pathogens10040396 crossref_primary_10_1007_s11686_022_00519_3 crossref_primary_10_1016_j_ecoenv_2023_115467 crossref_primary_10_1007_s11104_023_06437_1 crossref_primary_10_1093_femsle_fnab121 crossref_primary_10_1128_spectrum_01035_24 crossref_primary_10_1186_s40168_022_01240_z crossref_primary_10_1093_jee_toac142 crossref_primary_10_1186_s40168_023_01649_0 crossref_primary_10_1007_s00726_023_03247_8 crossref_primary_10_1038_s41598_025_91621_9 crossref_primary_10_1007_s10340_022_01524_1 crossref_primary_10_1007_s42690_024_01201_z crossref_primary_10_3389_fmicb_2021_685937 crossref_primary_10_1016_j_micres_2024_127835 crossref_primary_10_1007_s11274_025_04288_9 crossref_primary_10_3389_fmicb_2024_1392586 crossref_primary_10_1002_imt2_57 crossref_primary_10_1134_S106235902360352X crossref_primary_10_3389_fphys_2022_1112278 crossref_primary_10_1039_D4NA00604F crossref_primary_10_1128_spectrum_02272_22 crossref_primary_10_1007_s10646_025_02865_0 crossref_primary_10_3390_microorganisms11051208 crossref_primary_10_1007_s00239_023_10101_8 crossref_primary_10_1016_j_aspen_2024_102229 crossref_primary_10_3390_cells10030701 crossref_primary_10_1128_spectrum_02370_22 crossref_primary_10_3389_fphys_2021_739800 crossref_primary_10_1016_j_jinsphys_2021_104308 crossref_primary_10_1038_s43705_023_00323_8 crossref_primary_10_31083_j_fbe1602015 crossref_primary_10_1038_s41522_024_00531_7 crossref_primary_10_1093_gbe_evab189 crossref_primary_10_1080_17429145_2022_2120212 crossref_primary_10_3390_ani14243634 crossref_primary_10_1016_j_cbpa_2024_111764 crossref_primary_10_1111_1744_7917_13210 crossref_primary_10_1021_acscatal_4c02178 crossref_primary_10_3389_fmicb_2023_1199994 crossref_primary_10_3389_fmicb_2020_547031 crossref_primary_10_3390_microorganisms9122422 crossref_primary_10_1016_j_wasman_2023_11_019 crossref_primary_10_3390_foods11152299 crossref_primary_10_3390_microorganisms11030610 crossref_primary_10_1007_s11427_023_2398_y crossref_primary_10_1073_pnas_2101080118 crossref_primary_10_1080_09583157_2020_1842327 crossref_primary_10_1093_femsec_fiac147 crossref_primary_10_3389_fmicb_2022_979383 crossref_primary_10_1002_ece3_70408 crossref_primary_10_1186_s13071_022_05643_7 crossref_primary_10_1007_s42690_023_01133_0 crossref_primary_10_1038_s41598_023_38992_z crossref_primary_10_3389_fmicb_2022_875930 crossref_primary_10_1016_j_wasman_2024_02_007 crossref_primary_10_3390_applmicrobiol4040105 crossref_primary_10_3389_fmicb_2021_601253 crossref_primary_10_1128_msystems_01342_20 crossref_primary_10_1186_s13071_021_05053_1 crossref_primary_10_3389_fmicb_2024_1469140 crossref_primary_10_1007_s00248_024_02379_y crossref_primary_10_1016_j_pestbp_2024_106060 crossref_primary_10_1016_j_jclepro_2023_139901 crossref_primary_10_1111_1744_7917_13340 crossref_primary_10_3390_insects11080497 crossref_primary_10_3920_JIFF2021_0045 crossref_primary_10_1016_j_jinsphys_2022_104396 crossref_primary_10_1016_j_renene_2023_119233 crossref_primary_10_1186_s12866_024_03428_9 crossref_primary_10_1186_s12866_023_03155_7 crossref_primary_10_1111_een_13424 crossref_primary_10_3390_horticulturae9091004 crossref_primary_10_3390_ijms251810130 crossref_primary_10_3390_insects15050304 crossref_primary_10_1016_j_scitotenv_2024_170145 crossref_primary_10_1016_j_scitotenv_2024_176005 crossref_primary_10_3390_microorganisms11010040 crossref_primary_10_1007_s00248_024_02431_x crossref_primary_10_1016_j_scitotenv_2021_146115 crossref_primary_10_3389_fmicb_2020_570960 crossref_primary_10_1007_s10682_020_10073_x crossref_primary_10_1186_s12862_022_02077_8 crossref_primary_10_3389_fmicb_2022_868575 crossref_primary_10_3390_d15040533 crossref_primary_10_1007_s10340_023_01597_6 crossref_primary_10_1007_s10841_023_00474_y crossref_primary_10_1126_sciadv_add5051 crossref_primary_10_1111_1365_2435_14286 crossref_primary_10_1007_s00344_022_10767_2 crossref_primary_10_1111_1744_7917_13351 crossref_primary_10_1186_s12866_020_02015_y crossref_primary_10_1021_acs_est_2c07733 crossref_primary_10_3390_insects15080611 crossref_primary_10_1016_j_envpol_2022_120915 crossref_primary_10_1016_j_ese_2023_100287 |
Cites_doi | 10.1186/s40168-017-0236-z 10.1056/NEJMra1600266 10.1016/j.bioorg.2015.05.002 10.1007/s00248-011-9999-0 10.1007/BF00225228 10.1111/imb.12495 10.1146/annurev-ento-010814-020822 10.1093/jee/60.4.918 10.1371/journal.pone.0200512 10.1002/arch.21407 10.1371/journal.pone.0225711 10.1038/nbt.2676 10.1111/bph.14085 10.1038/s41396-019-0361-8 10.1128/AEM.02820-17 10.1146/annurev-ento-112408-085319 10.1038/nrmicro3182 10.1186/1754-6834-7-1 10.1016/j.jbiotec.2016.08.011 10.1093/bioinformatics/bth092 10.1023/B:JOEC.0000028427.53141.41 10.1186/1471-2180-14-136 10.1016/j.copbio.2012.08.005 10.1093/molbev/mst197 10.3389/fmicb.2018.01717 10.1242/jeb.101725 10.1098/rspb.2014.1838 10.1186/s40168-018-0470-z 10.1128/MMBR.68.4.745-770.2004 10.1038/nbt.1883 10.1073/pnas.1200231109 10.3390/ijms19092578 10.1128/AEM.01882-18 10.1186/s12864-018-5182-z 10.7150/ijbs.13537 10.4014/jmb.1901.01058 10.1371/journal.pone.0176573 10.1038/srep29505 10.3389/fmicb.2018.00025 10.1073/pnas.0907504106 10.1038/nmeth.f.303 10.1101/gr.092759.109 10.1002/wics.1246 10.1007/s10886-013-0308-x 10.1016/j.chemosphere.2019.06.048 10.1371/journal.pone.0074656 10.1016/j.ibmb.2014.03.013 10.1111/1574-6976.12025 10.1186/s13068-018-1148-2 10.1603/EN10137 10.3389/fmicb.2017.00663 10.3389/fchem.2017.00004 10.1007/BF00378598 10.1128/AEM.01226-14 10.1016/j.cell.2017.10.029 10.1128/mBio.00155-18 10.1186/s13071-016-1660-9 10.1080/00222938600770751 10.1093/nar/gks1219 10.1093/ee/nvv153 10.1146/annurev.ento.43.1.595 10.1007/s12223-016-0469-4 10.1007/s00248-013-0206-3 10.1673/031.010.10701 10.1038/srep16823 10.1128/AEM.04206-13 10.1016/j.tree.2016.03.006 10.1155/1982/41643 10.1371/journal.pone.0061126 10.1111/1365-2745.12170 10.1038/ismej.2010.97 10.1016/j.chemosphere.2018.08.078 10.1371/journal.pone.0163099 10.3389/fgene.2014.00027 10.1007/s11693-013-9127-1 10.1603/0046-225X-34.3.541 10.1007/s11356-018-3292-4 10.1038/ncomms15186 10.1111/1751-7915.12055 10.7717/peerj.2584 10.1111/mec.14728 10.1038/s41396-018-0255-1 10.1021/acs.biochem.7b00849 10.1128/JB.67.2.182-190.1954 10.1603/EN09221 10.1016/j.phytochem.2011.03.019 10.1002/pmic.201400571 10.1099/mic.0.077826-0 10.1603/EN13111 10.1146/annurev.en.39.010194.002321 10.1016/j.anifeedsci.2016.05.004 10.1111/j.1365-2095.2012.00943.x 10.1016/j.jinsphys.2006.02.007 10.1603/0046-225X(2006)35[1710:COGBIL]2.0.CO;2 10.1146/annurev-micro-092412-155618 10.3389/fgene.2015.00148 10.1128/AEM.02742-13 10.1007/s00775-012-0965-1 10.1111/mec.14186 10.1038/s41396-017-0021-9 10.1007/s40011-016-0762-7 10.1016/j.ijfoodmicro.2009.04.012 10.1038/nature06269 10.1038/ismej.2013.134 10.1016/j.cell.2012.10.052 10.1038/s41598-017-14724-y 10.1016/j.jinsphys.2008.10.017 10.1186/s40168-018-0510-8 10.1007/s10482-011-9614-x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40168-020-00823-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_79e9226ce700486bb4ef6c2a324fa805 PMC7077154 A618737988 32178739 10_1186_s40168_020_00823_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: DL13CA07 – fundername: ; grantid: 31370591 – fundername: ; grantid: LBH-Q14012 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c663t-9aff81af98e6bedc6e1fc3fbc150ea4c479072a07accf1276b6a8d127cd4ba033 |
IEDL.DBID | M48 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:29:29 EDT 2025 Thu Aug 21 17:37:08 EDT 2025 Fri Jul 11 15:06:14 EDT 2025 Fri Jul 25 12:08:29 EDT 2025 Tue Jun 17 21:02:10 EDT 2025 Tue Jun 10 20:33:01 EDT 2025 Fri Jun 27 03:45:24 EDT 2025 Thu Jan 02 22:57:52 EST 2025 Tue Jul 01 04:16:37 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Anal secretion Poplar-and-willow borer Multiple factor analysis Community pathway maps Intestine bacterial community |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c663t-9aff81af98e6bedc6e1fc3fbc150ea4c479072a07accf1276b6a8d127cd4ba033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2378628388?pq-origsite=%requestingapplication% |
PMID | 32178739 |
PQID | 2378628388 |
PQPubID | 2040205 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_79e9226ce700486bb4ef6c2a324fa805 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7077154 proquest_miscellaneous_2377994171 proquest_journals_2378628388 gale_infotracmisc_A618737988 gale_infotracacademiconefile_A618737988 gale_incontextgauss_ISR_A618737988 pubmed_primary_32178739 crossref_citationtrail_10_1186_s40168_020_00823_y crossref_primary_10_1186_s40168_020_00823_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-16 |
PublicationDateYYYYMMDD | 2020-03-16 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | CM Burgess (823_CR97) 2009; 133 A Vasanthakumar (823_CR40) 2006; 35 AS Kameshwar (823_CR58) 2016; 12 H Itoh (823_CR102) 2018; 12 J Morales-Jiménez (823_CR82) 2013; 66 TM Amorim Franco (823_CR91) 2017; 56 Y Kikuchi (823_CR73) 2012; 109 AS Adams (823_CR39) 2010; 39 CSL Vicente (823_CR84) 2018; 13 CJ Miller (823_CR33) 2019; 14 J Apajalahti (823_CR6) 2016; 221 CF Maurice (823_CR53) 2013; 152 M Le Roes-Hill (823_CR65) 2011; 100 K Wu (823_CR67) 2015; 5 AE Douglas (823_CR57) 2013; 39 AAP Anand (823_CR9) 2010; 10 EM Bik (823_CR4) 2018; 175 Y Fridmann-Sirkis (823_CR86) 2014; 5 I Delalibera Jr (823_CR101) 2005; 34 S Just (823_CR20) 2018; 6 PD Newell (823_CR49) 2014; 80 SS Yang (823_CR69) 2018; 212 P Engel (823_CR1) 2013; 37 JG LeBlanc (823_CR45) 2013; 24 M Kumar (823_CR64) 2018; 11 CI Briones-Roblero (823_CR7) 2017; 62 BA Daisley (823_CR75) 2018; 84 823_CR110 C Dietrich (823_CR43) 2014; 2014/01/31 V Lynch (823_CR3) 2016; 375 Q Sun (823_CR54) 2014; 7 K Fiedler (823_CR28) 1988; 75 S Magnúsdóttir (823_CR47) 2015; 6 CL Hall (823_CR30) 2011; 40 A Bost (823_CR100) 2018; 27 ZL Sabree (823_CR79) 2009; 106 823_CR11 T Huang (823_CR78) 2011; 72 H Salem (823_CR10) 2017; 171 X Xia (823_CR15) 2018; 9 S Gandotra (823_CR59) 2018; 27 MG Grabherr (823_CR111) 2011; 29 DR Sannino (823_CR87) 2018; 9 BA Petriz (823_CR21) 2017; 5 U Maschwitz (823_CR27) 1986; 20 AJ Sommer (823_CR48) 2019; 85 JA Breznak (823_CR80) 1994; 39 823_CR23 M Shapira (823_CR17) 2016; 31 H Vogel (823_CR34) 2017; 8 BA White (823_CR46) 2014; 68 S Yang (823_CR19) 2018; 9 T Eisner (823_CR24) 1982; 89 X Xia (823_CR18) 2017; 8 A Berasategui (823_CR70) 2017; 26 GN Cohen (823_CR95) 1954; 67 A Das (823_CR71) 2016; 11 KL Coon (823_CR14) 2016; 9 MG Boush (823_CR72) 1967; 60 F Warnecke (823_CR66) 2007; 450 T Mukherjee (823_CR98) 1814; 2011 JG Caporaso (823_CR104) 2010; 7 LE Visotto (823_CR12) 2009; 55 VK Priya (823_CR94) 2014; 8 AK Ray (823_CR5) 2012; 18 JA Hernández-García (823_CR37) 2018; 19 J Wang (823_CR38) 2017; 7 A Sabri (823_CR29) 2013; 8 E Zientz (823_CR83) 2004; 68 ACN Wong (823_CR85) 2014; 217 FA Genta (823_CR13) 2006; 52 KE Burnum (823_CR50) 2011; 5 NA Bokulich (823_CR106) 2018; 6 T Jing (823_CR31) 2018; 19 N Liu (823_CR42) 2019; 13 M Herde (823_CR60) 2014; 50 MGI Langille (823_CR52) 2013; 31 J Wu (823_CR96) 2019; 29 PD Sainsbury (823_CR63) 2015; 60 A Hatakka (823_CR62) 2005 B Chen (823_CR89) 2016; 6 DM Gillner (823_CR92) 2013; 18 M Krzywinski (823_CR109) 2009; 19 JA Ceja-Navarro (823_CR81) 2014; 8 H Abdi (823_CR113) 2013; 5 M Degli Esposti (823_CR99) 2017; 12 S Van Dexter (823_CR103) 2019; 26 S Gandotra (823_CR8) 2018; 88 AE Douglas (823_CR2) 2015; 60 MP Scott (823_CR25) 1998; 43 G de Gonzalo (823_CR32) 2016; 236 W Xiong (823_CR22) 2015; 15 C Quast (823_CR107) 2013; 41 A Brune (823_CR68) 2014; 12 MP Ferla (823_CR93) 2014; 160 LL Botina (823_CR76) 2019; 234 T Rognes (823_CR105) 2016; 4 R Craig (823_CR112) 2004; 20 RK Kulis-Horn (823_CR90) 2014; 7 D Cheng (823_CR74) 2017; 5 M Tagliavia (823_CR35) 2014; 14 H Salem (823_CR56) 2014; 281 M Nepi (823_CR77) 2014; 102 WW Hoback (823_CR26) 2004; 30 F Lu (823_CR41) 2013; 42 S He (823_CR51) 2013; 8 PA Ayayee (823_CR88) 2016; 45 JH Yun (823_CR44) 2014; 80 K Tamura (823_CR108) 2013; 30 FM Pilon (823_CR61) 2017; 96 H Watanabe (823_CR16) 2010; 55 JJ Sauter (823_CR55) 1992; 7 J Morales-Jiménez (823_CR36) 2012; 64 |
References_xml | – volume: 5 start-page: 13 year: 2017 ident: 823_CR74 publication-title: Microbiome. doi: 10.1186/s40168-017-0236-z – volume: 375 start-page: 2369 year: 2016 ident: 823_CR3 publication-title: New Engl J Med. doi: 10.1056/NEJMra1600266 – volume: 60 start-page: 102 year: 2015 ident: 823_CR63 publication-title: Bioorg Chem. doi: 10.1016/j.bioorg.2015.05.002 – volume: 64 start-page: 268 year: 2012 ident: 823_CR36 publication-title: Microb Ecol. doi: 10.1007/s00248-011-9999-0 – volume: 7 start-page: 26 year: 1992 ident: 823_CR55 publication-title: Trees. doi: 10.1007/BF00225228 – volume: 27 start-page: 603 year: 2018 ident: 823_CR59 publication-title: Insect Mol Biol. doi: 10.1111/imb.12495 – volume: 60 start-page: 17 year: 2015 ident: 823_CR2 publication-title: Annu Rev Entomol. doi: 10.1146/annurev-ento-010814-020822 – volume: 60 start-page: 918 year: 1967 ident: 823_CR72 publication-title: J Econ Entomol. doi: 10.1093/jee/60.4.918 – volume: 13 start-page: e0200512 year: 2018 ident: 823_CR84 publication-title: PLoS One. doi: 10.1371/journal.pone.0200512 – volume: 96 start-page: e21407 year: 2017 ident: 823_CR61 publication-title: Arch Insect Biochem Physiol. doi: 10.1002/arch.21407 – ident: 823_CR23 – volume: 14 start-page: e0225711 year: 2019 ident: 823_CR33 publication-title: PLoS One. doi: 10.1371/journal.pone.0225711 – volume: 31 start-page: 814 year: 2013 ident: 823_CR52 publication-title: Nat Biotechnol. doi: 10.1038/nbt.2676 – volume: 175 start-page: 4404 year: 2018 ident: 823_CR4 publication-title: Brit J Pharmacol. doi: 10.1111/bph.14085 – ident: 823_CR11 doi: 10.1038/s41396-019-0361-8 – volume: 84 start-page: e02820 year: 2018 ident: 823_CR75 publication-title: Appl Environ Microbiol. doi: 10.1128/AEM.02820-17 – volume: 55 start-page: 609 year: 2010 ident: 823_CR16 publication-title: Annu Rev Entomol. doi: 10.1146/annurev-ento-112408-085319 – volume: 12 start-page: 168 year: 2014 ident: 823_CR68 publication-title: Nat Rev Microbiol. doi: 10.1038/nrmicro3182 – volume: 7 start-page: 1 year: 2014 ident: 823_CR54 publication-title: Biotechnol Biofuels. doi: 10.1186/1754-6834-7-1 – volume: 236 start-page: 110 year: 2016 ident: 823_CR32 publication-title: J Biotech. doi: 10.1016/j.jbiotec.2016.08.011 – start-page: 129 volume-title: Biopolymers Online year: 2005 ident: 823_CR62 – volume: 20 start-page: 1466 year: 2004 ident: 823_CR112 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bth092 – volume: 30 start-page: 719 year: 2004 ident: 823_CR26 publication-title: J Chem Ecol. doi: 10.1023/B:JOEC.0000028427.53141.41 – volume: 14 start-page: 136 year: 2014 ident: 823_CR35 publication-title: BMC Microbiol. doi: 10.1186/1471-2180-14-136 – volume: 24 start-page: 160 year: 2013 ident: 823_CR45 publication-title: Curr Opin Biotech. doi: 10.1016/j.copbio.2012.08.005 – volume: 30 start-page: 2725 year: 2013 ident: 823_CR108 publication-title: Mol Biol Evol. doi: 10.1093/molbev/mst197 – volume: 9 start-page: 1717 year: 2018 ident: 823_CR19 publication-title: Front Microbiol. doi: 10.3389/fmicb.2018.01717 – volume: 217 start-page: 1894 year: 2014 ident: 823_CR85 publication-title: J Exp Biol. doi: 10.1242/jeb.101725 – volume: 281 start-page: 20141838 year: 2014 ident: 823_CR56 publication-title: Proc Biol Sci B Biol Sci. doi: 10.1098/rspb.2014.1838 – volume: 6 start-page: 90 year: 2018 ident: 823_CR106 publication-title: Microbiome. doi: 10.1186/s40168-018-0470-z – volume: 68 start-page: 745 year: 2004 ident: 823_CR83 publication-title: Microbiol Mol Biol R. doi: 10.1128/MMBR.68.4.745-770.2004 – volume: 29 start-page: 644 year: 2011 ident: 823_CR111 publication-title: Nat Biotechnol. doi: 10.1038/nbt.1883 – volume: 109 start-page: 8618 year: 2012 ident: 823_CR73 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1200231109 – volume: 19 start-page: 2578 year: 2018 ident: 823_CR37 publication-title: Int J Mol Sci. doi: 10.3390/ijms19092578 – volume: 85 start-page: e01882 year: 2019 ident: 823_CR48 publication-title: Appl Environ Microbiol. doi: 10.1128/AEM.01882-18 – volume: 19 start-page: 784 year: 2018 ident: 823_CR31 publication-title: BMC Genomics. doi: 10.1186/s12864-018-5182-z – volume: 12 start-page: 156 year: 2016 ident: 823_CR58 publication-title: Int J Biol Sci doi: 10.7150/ijbs.13537 – volume: 29 start-page: 923 year: 2019 ident: 823_CR96 publication-title: J Microbiol Biotechnol. doi: 10.4014/jmb.1901.01058 – volume: 12 start-page: e0176573 year: 2017 ident: 823_CR99 publication-title: PLoS One. doi: 10.1371/journal.pone.0176573 – volume: 6 start-page: 29505 year: 2016 ident: 823_CR89 publication-title: Sci Rep. doi: 10.1038/srep29505 – volume: 9 start-page: 25 year: 2018 ident: 823_CR15 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00025 – volume: 106 start-page: 19521 year: 2009 ident: 823_CR79 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0907504106 – volume: 7 start-page: 335 year: 2010 ident: 823_CR104 publication-title: Nat Meth. doi: 10.1038/nmeth.f.303 – volume: 19 start-page: 1639 year: 2009 ident: 823_CR109 publication-title: Genome Res. doi: 10.1101/gr.092759.109 – volume: 5 start-page: 149 year: 2013 ident: 823_CR113 publication-title: WIREs Comp Stat. doi: 10.1002/wics.1246 – volume: 39 start-page: 952 year: 2013 ident: 823_CR57 publication-title: J Chem Ecol. doi: 10.1007/s10886-013-0308-x – volume: 234 start-page: 187 year: 2019 ident: 823_CR76 publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2019.06.048 – volume: 8 start-page: e74656 year: 2013 ident: 823_CR29 publication-title: PLoS One. doi: 10.1371/journal.pone.0074656 – volume: 2011 start-page: 1585 year: 1814 ident: 823_CR98 publication-title: BBA Proteins Proteomics. – volume: 50 start-page: 58 year: 2014 ident: 823_CR60 publication-title: Insect Biochem Mol Biol. doi: 10.1016/j.ibmb.2014.03.013 – volume: 37 start-page: 699 year: 2013 ident: 823_CR1 publication-title: FEMS Microbiol Rev. doi: 10.1111/1574-6976.12025 – volume: 11 start-page: 154 year: 2018 ident: 823_CR64 publication-title: ISTKB. Biotechnol Biofuels. doi: 10.1186/s13068-018-1148-2 – volume: 40 start-page: 669 year: 2011 ident: 823_CR30 publication-title: Environ Entomol. doi: 10.1603/EN10137 – volume: 8 start-page: 663 year: 2017 ident: 823_CR18 publication-title: Front Microbiol. doi: 10.3389/fmicb.2017.00663 – volume: 5 start-page: 4 year: 2017 ident: 823_CR21 publication-title: Front Chem doi: 10.3389/fchem.2017.00004 – volume: 75 start-page: 204 year: 1988 ident: 823_CR28 publication-title: Oecologia. doi: 10.1007/BF00378598 – volume: 80 start-page: 5254 year: 2014 ident: 823_CR44 publication-title: Appl Environ Microbiol. doi: 10.1128/AEM.01226-14 – volume: 171 start-page: 1520 year: 2017 ident: 823_CR10 publication-title: Cell. doi: 10.1016/j.cell.2017.10.029 – volume: 9 start-page: e00155 year: 2018 ident: 823_CR87 publication-title: MBio. doi: 10.1128/mBio.00155-18 – volume: 9 start-page: 375 year: 2016 ident: 823_CR14 publication-title: Parasite Vector. doi: 10.1186/s13071-016-1660-9 – volume: 20 start-page: 1041 year: 1986 ident: 823_CR27 publication-title: J Nat Hist. doi: 10.1080/00222938600770751 – volume: 41 start-page: D590 year: 2013 ident: 823_CR107 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 45 start-page: 66 year: 2016 ident: 823_CR88 publication-title: Environ Entomol. doi: 10.1093/ee/nvv153 – volume: 43 start-page: 595 year: 1998 ident: 823_CR25 publication-title: Annu Rev Entomol. doi: 10.1146/annurev.ento.43.1.595 – volume: 62 start-page: 1 year: 2017 ident: 823_CR7 publication-title: Folia Microbiol. doi: 10.1007/s12223-016-0469-4 – volume: 66 start-page: 200 year: 2013 ident: 823_CR82 publication-title: Microb Ecol doi: 10.1007/s00248-013-0206-3 – volume: 10 start-page: 107 year: 2010 ident: 823_CR9 publication-title: J Insect Sci. doi: 10.1673/031.010.10701 – volume: 5 start-page: 16823 year: 2015 ident: 823_CR67 publication-title: Sci Rep. doi: 10.1038/srep16823 – volume: 2014/01/31 start-page: 2261 year: 2014 ident: 823_CR43 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.04206-13 – volume: 31 start-page: 539 year: 2016 ident: 823_CR17 publication-title: Trends Ecol Evol. doi: 10.1016/j.tree.2016.03.006 – volume: 89 start-page: 357 year: 1982 ident: 823_CR24 publication-title: Psyche. doi: 10.1155/1982/41643 – volume: 8 start-page: e61126 year: 2013 ident: 823_CR51 publication-title: PLoS One. doi: 10.1371/journal.pone.0061126 – volume: 102 start-page: 108 year: 2014 ident: 823_CR77 publication-title: J Ecol. doi: 10.1111/1365-2745.12170 – volume: 5 start-page: 161 year: 2011 ident: 823_CR50 publication-title: ISME J. doi: 10.1038/ismej.2010.97 – volume: 212 start-page: 262 year: 2018 ident: 823_CR69 publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2018.08.078 – volume: 11 start-page: e0163099 year: 2016 ident: 823_CR71 publication-title: PLoS One. doi: 10.1371/journal.pone.0163099 – volume: 5 start-page: 27 year: 2014 ident: 823_CR86 publication-title: Frontiers in genetics. doi: 10.3389/fgene.2014.00027 – volume: 8 start-page: 59 year: 2014 ident: 823_CR94 publication-title: Syst Synth Biol. doi: 10.1007/s11693-013-9127-1 – volume: 34 start-page: 541 year: 2005 ident: 823_CR101 publication-title: Environ Entomol. doi: 10.1603/0046-225X-34.3.541 – volume: 26 start-page: 34067 year: 2019 ident: 823_CR103 publication-title: Environ Sci Pollut Res. doi: 10.1007/s11356-018-3292-4 – volume: 8 start-page: 15186 year: 2017 ident: 823_CR34 publication-title: Nat Commun. doi: 10.1038/ncomms15186 – volume: 7 start-page: 5 year: 2014 ident: 823_CR90 publication-title: Microb biotechnol. doi: 10.1111/1751-7915.12055 – volume: 4 start-page: e2584 year: 2016 ident: 823_CR105 publication-title: Peer J doi: 10.7717/peerj.2584 – ident: 823_CR110 – volume: 27 start-page: 2834 year: 2018 ident: 823_CR100 publication-title: Mol Ecol. doi: 10.1111/mec.14728 – volume: 13 start-page: 104 year: 2019 ident: 823_CR42 publication-title: ISME J. doi: 10.1038/s41396-018-0255-1 – volume: 56 start-page: 5849 year: 2017 ident: 823_CR91 publication-title: Biochemistry. doi: 10.1021/acs.biochem.7b00849 – volume: 67 start-page: 182 year: 1954 ident: 823_CR95 publication-title: J Bacteriol. doi: 10.1128/JB.67.2.182-190.1954 – volume: 39 start-page: 406 year: 2010 ident: 823_CR39 publication-title: Environ Entomol. doi: 10.1603/EN09221 – volume: 72 start-page: 1531 year: 2011 ident: 823_CR78 publication-title: Phytochemistry. doi: 10.1016/j.phytochem.2011.03.019 – volume: 15 start-page: 3424 year: 2015 ident: 823_CR22 publication-title: Proteomics. doi: 10.1002/pmic.201400571 – volume: 160 start-page: 1571 year: 2014 ident: 823_CR93 publication-title: Microbiology. doi: 10.1099/mic.0.077826-0 – volume: 42 start-page: 874 year: 2013 ident: 823_CR41 publication-title: Environ Entomol. doi: 10.1603/EN13111 – volume: 39 start-page: 453 year: 1994 ident: 823_CR80 publication-title: Annu Rev Entomol. doi: 10.1146/annurev.en.39.010194.002321 – volume: 221 start-page: 323 year: 2016 ident: 823_CR6 publication-title: Anim Feed Sci Tech. doi: 10.1016/j.anifeedsci.2016.05.004 – volume: 18 start-page: 465 year: 2012 ident: 823_CR5 publication-title: Aquacult Nutr doi: 10.1111/j.1365-2095.2012.00943.x – volume: 52 start-page: 593 year: 2006 ident: 823_CR13 publication-title: J Insect Physiol. doi: 10.1016/j.jinsphys.2006.02.007 – volume: 35 start-page: 1710 year: 2006 ident: 823_CR40 publication-title: Environ Entomol. doi: 10.1603/0046-225X(2006)35[1710:COGBIL]2.0.CO;2 – volume: 68 start-page: 279 year: 2014 ident: 823_CR46 publication-title: Annu Rev Microbiol. doi: 10.1146/annurev-micro-092412-155618 – volume: 6 start-page: 148 year: 2015 ident: 823_CR47 publication-title: Front Genet. doi: 10.3389/fgene.2015.00148 – volume: 80 start-page: 788 year: 2014 ident: 823_CR49 publication-title: Appl Environ Microbiol. doi: 10.1128/AEM.02742-13 – volume: 18 start-page: 155 year: 2013 ident: 823_CR92 publication-title: J Biol Inorg Chem. doi: 10.1007/s00775-012-0965-1 – volume: 26 start-page: 4099 year: 2017 ident: 823_CR70 publication-title: Mol Ecol. doi: 10.1111/mec.14186 – volume: 12 start-page: 909 year: 2018 ident: 823_CR102 publication-title: ISME J. doi: 10.1038/s41396-017-0021-9 – volume: 88 start-page: 329 year: 2018 ident: 823_CR8 publication-title: P Natl A Sci India B. doi: 10.1007/s40011-016-0762-7 – volume: 133 start-page: 1 year: 2009 ident: 823_CR97 publication-title: Int J of Food Microbiol. doi: 10.1016/j.ijfoodmicro.2009.04.012 – volume: 450 start-page: 560 year: 2007 ident: 823_CR66 publication-title: Nature doi: 10.1038/nature06269 – volume: 8 start-page: 6 year: 2014 ident: 823_CR81 publication-title: ISME J. doi: 10.1038/ismej.2013.134 – volume: 152 start-page: 39 year: 2013 ident: 823_CR53 publication-title: Cell. doi: 10.1016/j.cell.2012.10.052 – volume: 7 start-page: 14242 year: 2017 ident: 823_CR38 publication-title: Sci Rep. doi: 10.1038/s41598-017-14724-y – volume: 55 start-page: 185 year: 2009 ident: 823_CR12 publication-title: J Insect Physiol doi: 10.1016/j.jinsphys.2008.10.017 – volume: 6 start-page: 134 year: 2018 ident: 823_CR20 publication-title: Microbiome. doi: 10.1186/s40168-018-0510-8 – volume: 100 start-page: 589 year: 2011 ident: 823_CR65 publication-title: Antonie van Leeuwenhoek. doi: 10.1007/s10482-011-9614-x |
SSID | ssj0000914748 |
Score | 2.5825565 |
Snippet | The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology. However,... Background The insect gut microbiota has been shown to contribute to the host's digestion, detoxification, development, pathogen resistance, and physiology.... Background The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and physiology.... Abstract Background The insect gut microbiota has been shown to contribute to the host’s digestion, detoxification, development, pathogen resistance, and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 38 |
SubjectTerms | Amino acids Anal secretion Analysis Animals Bacteria Bacteria - classification Bacteria - metabolism Bacteroidetes - classification Beetles Cellulose Community pathway maps Detoxification Digestion Enzymes Feces Feces - microbiology Gastrointestinal Microbiome Gastrointestinal Tract - microbiology Genetic research Genomes Genomics Insects Intestinal microflora Intestine bacterial community Metabolites Microbial drug resistance Microbiota Microbiota (Symbiotic organisms) Multiple factor analysis Nutrients - metabolism Phylogeny Physiological aspects Physiology Poplar-and-willow borer Proteins Proteobacteria Proteobacteria - classification Proteomics RNA RNA, Ribosomal, 16S - genetics Sequence Analysis, DNA Studies Weevils Weevils - microbiology Weevils - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv62uEkXwoGVfmmySepFVXFZhPagLewv5fLuwtLLtA99_70zS93hF0Iu3tpmWZmaSzC-d_oaQVyFgVB5k7RsHAMVJVmOlo9rLQ5sa7iAowK2B06_y5Ex8OT883yn1hTlhhR64KO5AtbGFEMFHldnhnBMxSd9YCASS1YW9FNa8HTCV5-CWCSX05i8ZLQ8GABJS14iW8telej1biTJh_5_T8s66NM-Z3FmEju-Q21P0SI_KW98lN2J3j9ws9STX98nytB9GGvqS3kIxc3CgfaKX3QDzGl2uRuoKO7N9R0P-tARmeUtDHPtfmDNky3l_TZFSvIPRf0U75OuHY5p3H3Bz7f0Dcnb86cfHk3qqpAA6l3ysW5uSZja1OkoHfZCRJc-T8xAORiu8UICRG7tQ1vvEGiWdtDrAgQ_C2QXnD8le13fxMaHCJml9YFZaZNKPgKCRU62JCmzrgqgI22jV-IlmHKtdXJkMN7Q0xRIGLGGyJcy6Im-29_wsJBt_lf6AxtpKIkF2vgBuYya3Mf9ym4q8RFMbpMDoMMdmaVfDYD5__2aOJNOKI49bRV5PQqmHPng7_bIAmkDWrJnk_kwSxqifN288ykxzxGAargBOao7NL7bNeCfmvXWxX2UZ1baCKVaRR8UBt_3mgCbh-W1F1Mw1Z4qZt3SXF5lBXC2Ugtj5yf_Q5FNyq8mjitdM7pO98XoVn0GgNrrneUz-Bl-QOtg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYrgg5bbttkk9eU4xeMUzgf1YN9CPteDozm3XXD_e2fS7HpFuLe2mZYkM5nMTKa_IeSNc2iVO17a2oCDYnhVYqWj0vK5DnVjwCjA0MDpN35yxr4u5osccOtzWuVWJyZF7aLFGPlB3QgwvmUj5eHl7xKrRuHpai6hcZPcQugylGqxELsYC-yFTDC5_VdG8oMe3AkuS_SZ0hlTuZnsRwm2_3_lfGV3mmZOXtmKju-Ru9mGpEcj0--TG757QG6PVSU3D8nyNPYDdXFMcqGYP9jTGOh514N2o8v1QM2I0aw_UJcOmIA576nzQ_yDmUN6vI8risDiHeiAC9ohaj9c0xSDwBDb4SNydvz556eTMtdTgJnnzVC2OgRZ6dBKzw2Mgfsq2CYYC0ah18wyAZ5yrWdCWxuqWnDDtXRwYR0zetY0j8leFzv_lFCmA9fWVZprxNP34EcjslrtBXDYOFaQajurymawcax5caGS0yG5GjmhgBMqcUJtCvJu987lCLVxLfVHZNaOEmGy04O4Wqq86pRoPXSKWy8StKAxzAduaw1WZNByNi_Ia2S1QiCMDjNtlnrd9-rLj-_qiFdSNIjmVpC3mShEGIPV-ccFmAnEzppQ7k8oYaXaafNWolTWFL36J9cFebVrxjcx-63zcZ1oRNuySlQFeTIK4G7cDfiU8P22IGIimpOJmbZ0578SjriYCQEW9LPru_Wc3KnTemnKiu-TvWG19i_AEBvMy7Ta_gI6RDK4 priority: 102 providerName: ProQuest |
Title | Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32178739 https://www.proquest.com/docview/2378628388 https://www.proquest.com/docview/2377994171 https://pubmed.ncbi.nlm.nih.gov/PMC7077154 https://doaj.org/article/79e9226ce700486bb4ef6c2a324fa805 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9IL4JjMogJB4g0HzUTpDQtKGNgdQJDSr1zbIdu0yqEmhSaf3vuXPSqhGDlyqtz1Htu7N_51x-B_CqKAiVFzw0scYARfMopEpHoeEj5eJEIyigo4HxBT-fpF-no-kOrMsddRNY3xjaUT2pyWL-7vr36ggd_qN3-Iy_rzFG4FlIgZB_cBSudmEfdyZBFQ3GHdz3K3MepSLN1u_O3Nj1AG4nCNMzQeXDt7Yqz-j_97q9tXH1kyq3dqmzu3Cng5fsuLWHe7Bjy_twqy04uXoAs3FVN6yo2vwXRqmFNascuyprXPjYbNkw3dI3qw-s8M-eUG9vWWGb6pqSilT7vVow4hwvcXmYs5II_fGa-eMJOn07egiTs9Mfn87DrtQCKoUnTZgr57JIuTyzXOMYuI2cSZw2iBetSk0qMIiO1VAoY1wUC665ygq8MEWq1TBJHsFeWZX2CbBUOa5MESmuiGrfYohNpGuxFah8XaQBROtZlabjIadyGHPp45GMy1YpEpUivVLkKoA3mz6_WhaO_0qfkLI2ksSg7X-oFjPZOaQUucU_xY0VnnVQ69Q6bmKFANOpbDgK4CWpWhJHRklJODO1rGv55fulPOYRmgcRvQXwuhNyFY7BqO6dBpwJotXqSR72JNGJTb95bVFy7QMyTgTGm1lCzS82zdSTEuNKWy29jMhztPUogMetAW7GvbbjAETPNHsT028pr356inExFALB9dN_3vMZHMTea5Iw4oew1yyW9jnCs0YPYFdMxQD2T04vvl0O_CEHfn6eRgPvjX8AvTc6TQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiDeGAgsCcQCrfmV3jYSq8qgS2vQArZTbdl8OlSq7xI4gf4rfyMzaDrWQeuvNyY4Te2d2Xjv7DSGvrEWv3LLQJBoCFM3iEDsdhYaNVJGkGpwCTA1MD9n4OPs6G802yJ_-LAyWVfY60StqWxnMkW8nKQfnW6RC7Jz_DLFrFO6u9i00WrHYd6tfELLVHyafgb-vk2Tvy9Gncdh1FYD_Z2kT5qooRKyKXDimnTXMxYVJC23ANXIqMxmHeDFREVfGFHHCmWZKWLgwNtMqwgQoqPxrYHgjDPb4jK9zOmB7M56J_myOYNs1hC9MhBij-T2tcDWwf75NwP_G4II1HFZqXjB9e7fJrc5npbutkN0hG668S663XSxX98h8WtUNtVVbVEOxXrGmVUFPyxq0KZ0vG6pbTGj1nlq_oQXC8I5a11S_sVJJtZ-rBUUg8xJ0zhktsUsAXFOf88CU3s59cnwlM_2AbJZV6R4RmqmCKWNjxRTi9zuI2xHJLXEcJErbLCBxP6vSdODm2GPjTPogRzDZckICJ6TnhFwF5O36nvMW2uNS6o_IrDUlwnL7L6rFXHarXPLcwUMx47iHMtQ6cwUziQKvtVAiGgXkJbJaIvBGiZU9c7Wsazn5_k3usljwFNHjAvKmIyoqeAejuoMSMBOI1TWg3BpQgmYww-FeomSnmWr5bx0F5MV6GO_EarvSVUtPw_M8i3kckIetAK7fO4UYFn4_DwgfiOZgYoYj5ekPj1vOI87BY398-WM9JzfGR9MDeTA53H9CbiZ-7aRhJLbIZrNYuqfgBDb6mV95lJxc9VL_C6erceQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Most+dominant+roles+of+insect+gut+bacteria%3A+digestion%2C+detoxification%2C+or+essential+nutrient+provision%3F&rft.jtitle=Microbiome&rft.au=Jing%2C+Tian-Zhong&rft.au=Qi%2C+Feng-Hui&rft.au=Wang%2C+Zhi-Ying&rft.date=2020-03-16&rft.eissn=2049-2618&rft.volume=8&rft.issue=1&rft.spage=38&rft_id=info:doi/10.1186%2Fs40168-020-00823-y&rft_id=info%3Apmid%2F32178739&rft.externalDocID=32178739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |