Dynamic regulation and functions of mRNA m6A modification
N 6 -Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export,...
Saved in:
Published in | Cancer cell international Vol. 22; no. 1; pp. 48 - 12 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
29.01.2022
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | N
6
-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export, translation, and stability. Here, we review the general role of m6A, highlighting recent advances related to the three major types enzymes that determine the level of m6A modification (i.e., writers, erasers, and readers) and the regulatory mechanism by which m6A influences multiple stages of RNA metabolism. This review clarifies the close connection and interaction between m6A modification and nuclear gene expression, and provides key background information for further studies of its roles in numerous physiological and pathophysiological processes. Among them, perhaps the most eye-catching process is tumorigenesis. Clarifying the molecular mechanism of tumorigenesis, development and metastasis in various tissues of the human body is conducive to curbing out-of-control cell activities from the root and providing a new strategy for human beings to defeat tumors. |
---|---|
AbstractList | N
6
-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export, translation, and stability. Here, we review the general role of m6A, highlighting recent advances related to the three major types enzymes that determine the level of m6A modification (i.e., writers, erasers, and readers) and the regulatory mechanism by which m6A influences multiple stages of RNA metabolism. This review clarifies the close connection and interaction between m6A modification and nuclear gene expression, and provides key background information for further studies of its roles in numerous physiological and pathophysiological processes. Among them, perhaps the most eye-catching process is tumorigenesis. Clarifying the molecular mechanism of tumorigenesis, development and metastasis in various tissues of the human body is conducive to curbing out-of-control cell activities from the root and providing a new strategy for human beings to defeat tumors. N6-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export, translation, and stability. Here, we review the general role of m6A, highlighting recent advances related to the three major types enzymes that determine the level of m6A modification (i.e., writers, erasers, and readers) and the regulatory mechanism by which m6A influences multiple stages of RNA metabolism. This review clarifies the close connection and interaction between m6A modification and nuclear gene expression, and provides key background information for further studies of its roles in numerous physiological and pathophysiological processes. Among them, perhaps the most eye-catching process is tumorigenesis. Clarifying the molecular mechanism of tumorigenesis, development and metastasis in various tissues of the human body is conducive to curbing out-of-control cell activities from the root and providing a new strategy for human beings to defeat tumors.N6-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export, translation, and stability. Here, we review the general role of m6A, highlighting recent advances related to the three major types enzymes that determine the level of m6A modification (i.e., writers, erasers, and readers) and the regulatory mechanism by which m6A influences multiple stages of RNA metabolism. This review clarifies the close connection and interaction between m6A modification and nuclear gene expression, and provides key background information for further studies of its roles in numerous physiological and pathophysiological processes. Among them, perhaps the most eye-catching process is tumorigenesis. Clarifying the molecular mechanism of tumorigenesis, development and metastasis in various tissues of the human body is conducive to curbing out-of-control cell activities from the root and providing a new strategy for human beings to defeat tumors. Abstract N 6-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export, translation, and stability. Here, we review the general role of m6A, highlighting recent advances related to the three major types enzymes that determine the level of m6A modification (i.e., writers, erasers, and readers) and the regulatory mechanism by which m6A influences multiple stages of RNA metabolism. This review clarifies the close connection and interaction between m6A modification and nuclear gene expression, and provides key background information for further studies of its roles in numerous physiological and pathophysiological processes. Among them, perhaps the most eye-catching process is tumorigenesis. Clarifying the molecular mechanism of tumorigenesis, development and metastasis in various tissues of the human body is conducive to curbing out-of-control cell activities from the root and providing a new strategy for human beings to defeat tumors. N6-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export, translation, and stability. Here, we review the general role of m6A, highlighting recent advances related to the three major types enzymes that determine the level of m6A modification (i.e., writers, erasers, and readers) and the regulatory mechanism by which m6A influences multiple stages of RNA metabolism. This review clarifies the close connection and interaction between m6A modification and nuclear gene expression, and provides key background information for further studies of its roles in numerous physiological and pathophysiological processes. Among them, perhaps the most eye-catching process is tumorigenesis. Clarifying the molecular mechanism of tumorigenesis, development and metastasis in various tissues of the human body is conducive to curbing out-of-control cell activities from the root and providing a new strategy for human beings to defeat tumors. N -Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export, translation, and stability. Here, we review the general role of m6A, highlighting recent advances related to the three major types enzymes that determine the level of m6A modification (i.e., writers, erasers, and readers) and the regulatory mechanism by which m6A influences multiple stages of RNA metabolism. This review clarifies the close connection and interaction between m6A modification and nuclear gene expression, and provides key background information for further studies of its roles in numerous physiological and pathophysiological processes. Among them, perhaps the most eye-catching process is tumorigenesis. Clarifying the molecular mechanism of tumorigenesis, development and metastasis in various tissues of the human body is conducive to curbing out-of-control cell activities from the root and providing a new strategy for human beings to defeat tumors. |
ArticleNumber | 48 |
Author | Xu, Yuanhong Li, Tao Shen, Jilong Wang, Shanshan Wei, Wei Zhang, Shubing Ma, Dongyue Lv, Wei Li, Xuemei Wang, Huihui Wang, Lianzi Zang, Yan |
Author_xml | – sequence: 1 givenname: Shanshan surname: Wang fullname: Wang, Shanshan – sequence: 2 givenname: Wei surname: Lv fullname: Lv, Wei – sequence: 3 givenname: Tao orcidid: 0000-0003-3822-1856 surname: Li fullname: Li, Tao – sequence: 4 givenname: Shubing surname: Zhang fullname: Zhang, Shubing – sequence: 5 givenname: Huihui surname: Wang fullname: Wang, Huihui – sequence: 6 givenname: Xuemei surname: Li fullname: Li, Xuemei – sequence: 7 givenname: Lianzi surname: Wang fullname: Wang, Lianzi – sequence: 8 givenname: Dongyue surname: Ma fullname: Ma, Dongyue – sequence: 9 givenname: Yan surname: Zang fullname: Zang, Yan – sequence: 10 givenname: Jilong surname: Shen fullname: Shen, Jilong – sequence: 11 givenname: Yuanhong surname: Xu fullname: Xu, Yuanhong – sequence: 12 givenname: Wei surname: Wei fullname: Wei, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35093087$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstrFTEUxoNU7EP_ARcy4MbNaN6PjVDqq1AURNfhTCa55jKT1GRG2v_e9N5W2i5cHPL6vh-HnO8YHaScPEIvCX5LiJbvKqGGiR5T2ooL2l89QUeEK9FTLdXBvf0hOq51izFRWuJn6JAJbBjW6giZD9cJ5ui64jfrBEvMqYM0dmFN7uZQuxy6-fvX026WrfIYQ3Q72XP0NMBU_Yvb9QT9_PTxx9mX_uLb5_Oz04veScmWXnmhATMPNCiglHIsgA6ee0XECByCMVhK6YkcAhsgKM-U4FxJ6QYnwshO0PmeO2bY2ssSZyjXNkO0u4tcNhbKEt3kLR1U4xClBgmcKmH4OCgeqGAaDA28sd7vWZfrMPvR-bQUmB5AH76k-Mtu8h-rNcYcqwZ4cwso-ffq62LnWJ2fJkg-r9VSSTkxQnLdpK8fSbd5Lal9VVMxLDiWhjTVq_sd_WvlbkJNoPcCV3KtxQfr4rIbQGswTpZgexMGuw-DbWGwuzDYq2alj6x39P-Y_gKCFbWd |
CitedBy_id | crossref_primary_10_3390_jcdd11030088 crossref_primary_10_1093_bib_bbae001 crossref_primary_10_1016_j_biochi_2022_10_005 crossref_primary_10_1016_j_mad_2023_111807 crossref_primary_10_1002_tox_24139 crossref_primary_10_1080_15592294_2025_2456418 crossref_primary_10_1165_rcmb_2022_0243OC crossref_primary_10_3389_fcell_2024_1372330 crossref_primary_10_1016_j_ijbiomac_2025_140425 crossref_primary_10_3390_ijms24021403 crossref_primary_10_1016_j_cellsig_2023_110751 crossref_primary_10_1007_s00018_024_05299_9 crossref_primary_10_1038_s41417_024_00789_1 crossref_primary_10_1096_fj_202301292R crossref_primary_10_1016_j_biopha_2023_115104 crossref_primary_10_1038_s41698_025_00862_4 crossref_primary_10_1186_s13578_024_01293_7 crossref_primary_10_1007_s00702_024_02740_y crossref_primary_10_1093_ijnp_pyac068 crossref_primary_10_3389_fcvm_2022_892113 crossref_primary_10_1002_mco2_331 crossref_primary_10_1016_j_omtn_2024_102286 crossref_primary_10_1016_j_gendis_2023_02_054 crossref_primary_10_1016_j_celrep_2024_114309 crossref_primary_10_3390_ijms242216477 crossref_primary_10_1089_aid_2024_0003 crossref_primary_10_1515_med_2023_0856 crossref_primary_10_1016_j_jhazmat_2025_137432 crossref_primary_10_1186_s12885_023_11741_1 crossref_primary_10_1016_j_biopha_2024_116704 crossref_primary_10_1016_j_fochms_2024_100222 crossref_primary_10_1038_s41420_024_01810_0 crossref_primary_10_1172_JCI175703 crossref_primary_10_1016_j_gendis_2024_101493 crossref_primary_10_3389_fcell_2023_1136096 crossref_primary_10_1016_j_ymthe_2024_12_003 crossref_primary_10_1016_j_intimp_2024_113780 crossref_primary_10_1002_hem3_116 crossref_primary_10_1080_15592294_2024_2348840 crossref_primary_10_1093_nar_gkae322 crossref_primary_10_1002_advs_202305142 crossref_primary_10_3390_ijms26051979 crossref_primary_10_1016_j_ejmech_2024_116526 crossref_primary_10_1016_j_amjms_2025_03_002 crossref_primary_10_1093_hr_uhad284 crossref_primary_10_1016_j_nantod_2022_101624 crossref_primary_10_3390_ijms252011118 crossref_primary_10_1016_j_cbd_2024_101307 crossref_primary_10_1002_jcp_31040 crossref_primary_10_1186_s12935_024_03277_6 crossref_primary_10_1007_s10048_024_00793_5 crossref_primary_10_1186_s12967_023_04173_9 crossref_primary_10_1186_s40164_022_00281_2 crossref_primary_10_1016_j_ejphar_2025_177397 crossref_primary_10_1016_j_biopha_2023_114298 crossref_primary_10_3390_ani14223288 crossref_primary_10_1080_15384047_2023_2249173 crossref_primary_10_1016_j_jbior_2024_101043 crossref_primary_10_1093_bfgp_elae020 crossref_primary_10_1038_s44319_024_00283_7 crossref_primary_10_1186_s12957_024_03568_2 crossref_primary_10_1016_j_tem_2023_09_003 crossref_primary_10_1038_s41388_023_02617_6 crossref_primary_10_1002_jgm_3454 crossref_primary_10_1016_j_chemosphere_2023_137877 crossref_primary_10_3390_plants12051198 crossref_primary_10_1016_j_cbi_2023_110376 crossref_primary_10_3389_fphar_2022_973116 crossref_primary_10_1111_tpj_16173 crossref_primary_10_1002_ibra_12183 crossref_primary_10_1038_s41417_024_00734_2 crossref_primary_10_34133_research_0340 crossref_primary_10_1016_j_lfs_2024_123355 crossref_primary_10_2147_CMAR_S391067 crossref_primary_10_1016_j_tranon_2022_101518 crossref_primary_10_1016_j_omtn_2024_102391 crossref_primary_10_1016_j_cellsig_2025_111745 crossref_primary_10_1016_j_cellsig_2025_111623 crossref_primary_10_1038_s41420_024_02043_x crossref_primary_10_3390_ijms241512004 crossref_primary_10_1042_BST20230422 crossref_primary_10_1186_s12866_025_03898_5 crossref_primary_10_1093_plphys_kiae373 crossref_primary_10_1007_s00441_022_03725_7 crossref_primary_10_3390_ijms25063098 crossref_primary_10_3389_fimmu_2024_1448489 crossref_primary_10_1016_j_envres_2022_114686 crossref_primary_10_3389_fpls_2022_1064131 crossref_primary_10_1016_j_exer_2023_109473 crossref_primary_10_1093_bioinformatics_btad696 crossref_primary_10_1002_wrna_1837 crossref_primary_10_1007_s13205_024_04161_w crossref_primary_10_3390_dynamics4010001 crossref_primary_10_3390_ijms24010773 crossref_primary_10_3390_ijms24032387 crossref_primary_10_3389_fonc_2022_970833 crossref_primary_10_3389_fgene_2024_1449144 crossref_primary_10_1186_s13059_025_03498_6 crossref_primary_10_1186_s12864_023_09411_4 |
Cites_doi | 10.1016/j.celrep.2014.05.048 10.1093/nar/gkx778 10.1038/cr.2014.152 10.1093/nar/gkaa227 10.1038/cr.2017.100 10.1111/nph.14586 10.1101/gad.309146.117 10.1101/gad.301036.117 10.1126/science.1082320 10.1158/2159-8290.CD-20-0331 10.1016/j.molcel.2012.10.015 10.1016/j.ccell.2020.10.004 10.1016/j.molcel.2018.08.011 10.1038/s41419-020-02795-1 10.1038/s41467-019-09865-9 10.1126/science.aax4468 10.1042/BJ20090500 10.1038/nature19342 10.1038/ni.3830 10.1016/j.ccell.2016.05.005 10.1083/jcb.200801196 10.1074/jbc.M113.500397 10.1016/j.gene.2013.03.063 10.1016/j.ccell.2019.03.006 10.1021/jacs.5b06690 10.1038/s41422-018-0113-8 10.1038/s41467-018-05243-z 10.1016/j.cell.2015.10.012 10.1021/acschembio.5b00781 10.1016/j.molcel.2019.11.007 10.1016/j.cell.2017.11.031 10.1186/s12943-020-01158-w 10.1038/nchembio.687 10.1038/s41467-019-13317-9 10.1038/s41556-018-0045-z 10.1021/cn500042t 10.1038/nchembio.1432 10.1016/j.molcel.2017.10.002 10.1016/j.celrep.2019.06.072 10.1016/j.cell.2017.05.003 10.1038/ncomms12626 10.1038/257251a0 10.1038/cr.2014.3 10.1016/j.stem.2020.04.009 10.1038/s41467-017-02770-z 10.1126/science.1261417 10.1038/nsmb.3462 10.1038/s41594-019-0200-7 10.1182/blood.V98.8.2563 10.1038/nature18298 10.1016/j.molcel.2019.07.005 10.1186/s12943-020-01239-w 10.1182/blood-2004-03-1074 10.7554/eLife.18434 10.1038/nature21022 10.1038/nature24678 10.1074/jbc.M108476200 10.1038/s41588-020-0644-z 10.1126/science.aay6018 10.1016/j.molcel.2019.06.001 10.1038/bcj.2014.25 10.1016/j.ccell.2017.02.013 10.7554/eLife.31311 10.1038/nrm.2016.50 10.1186/s13059-018-1435-z 10.1016/j.molcel.2016.01.012 10.1016/j.molcel.2018.02.015 10.1016/j.cell.2017.03.031 10.1016/j.molcel.2019.02.034 10.1093/nar/gku1276 10.1021/ja3064149 10.1007/s00018-008-8532-1 10.1021/acs.biochem.7b01162 10.1016/j.molcel.2020.03.022 10.1038/s41421-018-0019-0 10.1093/nar/gkx1182 10.1186/s12943-020-01161-1 10.1038/nature14234 10.1016/j.cell.2020.05.012 10.1016/j.cell.2015.10.044 10.1016/j.molcel.2016.05.041 10.1038/s41467-020-15403-9 10.1016/j.ccell.2020.04.017 10.1182/blood-2011-06-362079 10.1080/15476286.2019.1589360 10.1016/j.ccell.2016.11.017 10.1038/s41586-018-0538-8 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022 |
DBID | AAYXX CITATION NPM 3V. 7TM 7TO 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12935-022-02452-x |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1475-2867 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_2b7e16177b6a427594db74f2538a92f4 PMC8800407 35093087 10_1186_s12935_022_02452_x |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: the Scientific Research Project of Anhui Province for the Academic and technical leaders and candidates grantid: 2019H214 – fundername: National Natural Science Foundation of China grantid: 30801088 – fundername: Open research fund of "Key Laboratory of anti-inflammatory and immune drugs of the Ministry of education" of Anhui Medical University grantid: KFJJ-2021-04 – fundername: the Scientific Research Project of Anhui Province for the Prevention and Control of New Coronavirus Pneumonia grantid: 202004a07020015 – fundername: University Natural Science Research Project of Anhui Province grantid: KJ2020ZD24 – fundername: ; grantid: KJ2020ZD24 – fundername: ; grantid: KFJJ-2021-04 – fundername: ; grantid: 30801088 – fundername: ; grantid: 202004a07020015 – fundername: ; grantid: 2019H214 |
GroupedDBID | --- 0R~ 29B 2WC 53G 5GY 5VS 6J9 7X7 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR ISR ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP W2D WOQ WOW XSB ~8M -56 -5G -A0 -BR 3V. ACRMQ ADINQ C24 FRP NPM 7TM 7TO 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c663t-7e58a03ea2f7a222405a2be4e715da4af990666e16bf3baf7e37544766cbc5fd3 |
IEDL.DBID | 7X7 |
ISSN | 1475-2867 |
IngestDate | Wed Aug 27 01:32:00 EDT 2025 Thu Aug 21 14:12:37 EDT 2025 Fri Jul 11 11:50:30 EDT 2025 Mon Jun 30 07:16:30 EDT 2025 Thu Jan 02 22:56:24 EST 2025 Tue Jul 01 02:41:53 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | m6A Gene expression mRNA metabolism Mechanism |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c663t-7e58a03ea2f7a222405a2be4e715da4af990666e16bf3baf7e37544766cbc5fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3822-1856 |
OpenAccessLink | https://www.proquest.com/docview/2630540691?pq-origsite=%requestingapplication% |
PMID | 35093087 |
PQID | 2630540691 |
PQPubID | 42567 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2b7e16177b6a427594db74f2538a92f4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8800407 proquest_miscellaneous_2624195648 proquest_journals_2630540691 pubmed_primary_35093087 crossref_citationtrail_10_1186_s12935_022_02452_x crossref_primary_10_1186_s12935_022_02452_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-29 |
PublicationDateYYYYMMDD | 2022-01-29 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Cancer cell international |
PublicationTitleAlternate | Cancer Cell Int |
PublicationYear | 2022 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | A Glasow (2452_CR22) 2005; 105 W Xiao (2452_CR63) 2016; 61 Y Luo (2452_CR80) 2018; 57 Y Huang (2452_CR32) 2019; 35 J Wen (2452_CR12) 2018; 69 L Sun (2452_CR50) 2019; 26 J Wei (2452_CR20) 2018; 71 J Choe (2452_CR43) 2018; 561 T Wang (2452_CR30) 2015; 137 K Sakamoto (2452_CR24) 2014; 4 DP Patil (2452_CR10) 2016; 537 BM Edens (2452_CR68) 2019; 28 N Liu (2452_CR48) 2015; 518 J Yu (2452_CR77) 2018; 46 F Zanconato (2452_CR37) 2016; 29 XL Ping (2452_CR7) 2014; 24 Y He (2452_CR47) 2009; 66 KI Zhou (2452_CR64) 2019; 76 P Wang (2452_CR3) 2016; 63 M Schapira (2452_CR5) 2016; 11 CF Bourgeois (2452_CR69) 2016; 17 H Du (2452_CR79) 2016; 7 C Shen (2452_CR41) 2020; 27 S Zhu (2452_CR55) 2020; 11 J Zhu (2452_CR26) 2001; 98 NS Gokhale (2452_CR58) 2020; 77 M Tarique (2452_CR70) 2013; 522 T Zhu (2452_CR42) 2014; 24 X Wang (2452_CR4) 2016; 534 NC Lau (2452_CR83) 2009; 422 K Růžička (2452_CR13) 2017; 215 B Slobodin (2452_CR74) 2017; 169 C Wei (2452_CR19) 1975; 257 S Schwartz (2452_CR60) 2014; 8 Y Mao (2452_CR45) 2019; 10 R Wu (2452_CR46) 2019; 29 Q Zheng (2452_CR65) 2017; 18 Y Huang (2452_CR28) 2015; 43 F Zhang (2452_CR51) 2018; 27 S Oerum (2452_CR6) 2019; 16 Z Li (2452_CR21) 2017; 31 H Huang (2452_CR52) 2018; 20 T Aoyama (2452_CR15) 2020; 48 J Liu (2452_CR84) 2020; 367 I Barbieri (2452_CR75) 2017; 552 KD Meyer (2452_CR44) 2015; 163 P Knuckles (2452_CR11) 2018; 32 M Bartosovic (2452_CR62) 2017; 45 J Mauer (2452_CR18) 2017; 541 G Zheng (2452_CR29) 2014; 5 S Geula (2452_CR56) 2015; 347 D Dixit (2452_CR86) 2021; 11 RR Edupuganti (2452_CR53) 2017; 24 S Zaccara (2452_CR85) 2020; 181 Y Chen (2452_CR39) 2020; 19 J Liu (2452_CR1) 2014; 10 FX Yu (2452_CR38) 2015; 163 R Su (2452_CR33) 2020; 38 K Xu (2452_CR61) 2017; 27 B Wu (2452_CR49) 2018; 9 S Zhang (2452_CR54) 2017; 31 Y Liu (2452_CR35) 2019; 365 L Fish (2452_CR59) 2019; 75 IA Roundtree (2452_CR67) 2017; 6 Z Zhang (2452_CR76) 2020; 52 B Slobodin (2452_CR88) 2020; 78 P Śledź (2452_CR2) 2016; 5 R Su (2452_CR31) 2018; 172 OH Park (2452_CR78) 2019; 74 B Chen (2452_CR27) 2012; 134 KE Pendleton (2452_CR14) 2017; 169 U Sheth (2452_CR81) 2003; 300 D Jin (2452_CR36) 2020; 19 X Lin (2452_CR72) 2019; 10 S Ke (2452_CR57) 2017; 31 G Jia (2452_CR16) 2011; 7 B Liu (2452_CR87) 2018; 9 C Ma (2452_CR34) 2018; 19 ZH Chen (2452_CR66) 2020; 11 J Wang (2452_CR25) 2012; 119 D Zheng (2452_CR82) 2008; 182 X Guo (2452_CR40) 2020; 19 G Chang (2452_CR73) 2020; 38 FC Guibal (2452_CR23) 2002; 277 RA Coots (2452_CR71) 2017; 68 Y Yue (2452_CR9) 2018; 4 K Horiuchi (2452_CR8) 2013; 288 G Zheng (2452_CR17) 2013; 49 |
References_xml | – volume: 8 start-page: 284 issue: 1 year: 2014 ident: 2452_CR60 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.05.048 – volume: 45 start-page: 11356 issue: 19 year: 2017 ident: 2452_CR62 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx778 – volume: 24 start-page: 1493 issue: 12 year: 2014 ident: 2452_CR42 publication-title: Cell Res doi: 10.1038/cr.2014.152 – volume: 48 start-page: 5157 issue: 9 year: 2020 ident: 2452_CR15 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa227 – volume: 27 start-page: 1100 issue: 9 year: 2017 ident: 2452_CR61 publication-title: Cell Res doi: 10.1038/cr.2017.100 – volume: 215 start-page: 157 issue: 1 year: 2017 ident: 2452_CR13 publication-title: New Phytol doi: 10.1111/nph.14586 – volume: 32 start-page: 415 issue: 5–6 year: 2018 ident: 2452_CR11 publication-title: Genes Dev doi: 10.1101/gad.309146.117 – volume: 31 start-page: 990 issue: 10 year: 2017 ident: 2452_CR57 publication-title: Genes Dev doi: 10.1101/gad.301036.117 – volume: 300 start-page: 805 issue: 5620 year: 2003 ident: 2452_CR81 publication-title: Science doi: 10.1126/science.1082320 – volume: 11 start-page: 480 issue: 2 year: 2021 ident: 2452_CR86 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-20-0331 – volume: 49 start-page: 18 issue: 1 year: 2013 ident: 2452_CR17 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 38 start-page: 857 issue: 6 year: 2020 ident: 2452_CR73 publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.10.004 – volume: 71 start-page: 973 issue: 6 year: 2018 ident: 2452_CR20 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.08.011 – volume: 11 start-page: 566 issue: 7 year: 2020 ident: 2452_CR66 publication-title: Cell Death Dis doi: 10.1038/s41419-020-02795-1 – volume: 10 start-page: 2065 issue: 1 year: 2019 ident: 2452_CR72 publication-title: Nat Commun doi: 10.1038/s41467-019-09865-9 – volume: 365 start-page: 1171 issue: 6458 year: 2019 ident: 2452_CR35 publication-title: Science doi: 10.1126/science.aax4468 – volume: 422 start-page: 443 issue: 3 year: 2009 ident: 2452_CR83 publication-title: Biochem J. doi: 10.1042/BJ20090500 – volume: 537 start-page: 369 issue: 7620 year: 2016 ident: 2452_CR10 publication-title: Nature doi: 10.1038/nature19342 – volume: 18 start-page: 1094 issue: 10 year: 2017 ident: 2452_CR65 publication-title: Nat Immunol doi: 10.1038/ni.3830 – volume: 29 start-page: 783 issue: 6 year: 2016 ident: 2452_CR37 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.05.005 – volume: 182 start-page: 89 issue: 1 year: 2008 ident: 2452_CR82 publication-title: J Cell Biol doi: 10.1083/jcb.200801196 – volume: 288 start-page: 33292 issue: 46 year: 2013 ident: 2452_CR8 publication-title: J Biol Chem doi: 10.1074/jbc.M113.500397 – volume: 522 start-page: 46 issue: 1 year: 2013 ident: 2452_CR70 publication-title: Gene. doi: 10.1016/j.gene.2013.03.063 – volume: 35 start-page: 677 issue: 4 year: 2019 ident: 2452_CR32 publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.03.006 – volume: 137 start-page: 13736 issue: 43 year: 2015 ident: 2452_CR30 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b06690 – volume: 29 start-page: 23 issue: 1 year: 2019 ident: 2452_CR46 publication-title: Cell Res doi: 10.1038/s41422-018-0113-8 – volume: 9 start-page: 2761 issue: 1 year: 2018 ident: 2452_CR87 publication-title: Nat Commun doi: 10.1038/s41467-018-05243-z – volume: 163 start-page: 999 issue: 4 year: 2015 ident: 2452_CR44 publication-title: Cell doi: 10.1016/j.cell.2015.10.012 – volume: 11 start-page: 575 issue: 3 year: 2016 ident: 2452_CR5 publication-title: ACS Chem Biol. doi: 10.1021/acschembio.5b00781 – volume: 77 start-page: 542 issue: 3 year: 2020 ident: 2452_CR58 publication-title: Mol Cell doi: 10.1016/j.molcel.2019.11.007 – volume: 172 start-page: 90 issue: 1–2 year: 2018 ident: 2452_CR31 publication-title: Cell doi: 10.1016/j.cell.2017.11.031 – volume: 19 start-page: 91 issue: 1 year: 2020 ident: 2452_CR40 publication-title: Mol Cancer doi: 10.1186/s12943-020-01158-w – volume: 7 start-page: 885 issue: 12 year: 2011 ident: 2452_CR16 publication-title: Nat Chem Biol doi: 10.1038/nchembio.687 – volume: 10 start-page: 5332 issue: 1 year: 2019 ident: 2452_CR45 publication-title: Nat Commun doi: 10.1038/s41467-019-13317-9 – volume: 20 start-page: 285 issue: 3 year: 2018 ident: 2452_CR52 publication-title: Nat Cell Biol doi: 10.1038/s41556-018-0045-z – volume: 5 start-page: 658 issue: 8 year: 2014 ident: 2452_CR29 publication-title: ACS Chem Neurosci doi: 10.1021/cn500042t – volume: 10 start-page: 93 issue: 2 year: 2014 ident: 2452_CR1 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1432 – volume: 68 start-page: 504 issue: 3 year: 2017 ident: 2452_CR71 publication-title: Mol Cell doi: 10.1016/j.molcel.2017.10.002 – volume: 28 start-page: 845 issue: 4 year: 2019 ident: 2452_CR68 publication-title: Cell Rep doi: 10.1016/j.celrep.2019.06.072 – volume: 169 start-page: 824 issue: 5 year: 2017 ident: 2452_CR14 publication-title: Cell doi: 10.1016/j.cell.2017.05.003 – volume: 7 start-page: 12626 year: 2016 ident: 2452_CR79 publication-title: Nat Commun doi: 10.1038/ncomms12626 – volume: 257 start-page: 251 issue: 5523 year: 1975 ident: 2452_CR19 publication-title: Nature doi: 10.1038/257251a0 – volume: 24 start-page: 177 issue: 2 year: 2014 ident: 2452_CR7 publication-title: Cell Res doi: 10.1038/cr.2014.3 – volume: 27 start-page: 64 issue: 1 year: 2020 ident: 2452_CR41 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.04.009 – volume: 9 start-page: 420 issue: 1 year: 2018 ident: 2452_CR49 publication-title: Nat Commun doi: 10.1038/s41467-017-02770-z – volume: 347 start-page: 1002 issue: 6225 year: 2015 ident: 2452_CR56 publication-title: Science doi: 10.1126/science.1261417 – volume: 24 start-page: 870 issue: 10 year: 2017 ident: 2452_CR53 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.3462 – volume: 26 start-page: 322 issue: 4 year: 2019 ident: 2452_CR50 publication-title: Nat Struct Mol Biol doi: 10.1038/s41594-019-0200-7 – volume: 98 start-page: 2563 issue: 8 year: 2001 ident: 2452_CR26 publication-title: Blood doi: 10.1182/blood.V98.8.2563 – volume: 534 start-page: 575 issue: 7608 year: 2016 ident: 2452_CR4 publication-title: Nature doi: 10.1038/nature18298 – volume: 76 start-page: 70 issue: 1 year: 2019 ident: 2452_CR64 publication-title: Mol Cell doi: 10.1016/j.molcel.2019.07.005 – volume: 19 start-page: 123 issue: 1 year: 2020 ident: 2452_CR39 publication-title: Mol Cancer doi: 10.1186/s12943-020-01239-w – volume: 105 start-page: 341 issue: 1 year: 2005 ident: 2452_CR22 publication-title: Blood doi: 10.1182/blood-2004-03-1074 – volume: 5 start-page: e18434 year: 2016 ident: 2452_CR2 publication-title: Elife doi: 10.7554/eLife.18434 – volume: 541 start-page: 371 issue: 7637 year: 2017 ident: 2452_CR18 publication-title: Nature doi: 10.1038/nature21022 – volume: 552 start-page: 126 issue: 7683 year: 2017 ident: 2452_CR75 publication-title: Nature doi: 10.1038/nature24678 – volume: 277 start-page: 218 issue: 1 year: 2002 ident: 2452_CR23 publication-title: J Biol Chem doi: 10.1074/jbc.M108476200 – volume: 52 start-page: 939 issue: 9 year: 2020 ident: 2452_CR76 publication-title: Nat Genet doi: 10.1038/s41588-020-0644-z – volume: 367 start-page: 580 issue: 6477 year: 2020 ident: 2452_CR84 publication-title: Science doi: 10.1126/science.aay6018 – volume: 75 start-page: 967 issue: 5 year: 2019 ident: 2452_CR59 publication-title: Mol Cell doi: 10.1016/j.molcel.2019.06.001 – volume: 4 start-page: e205 issue: 4 year: 2014 ident: 2452_CR24 publication-title: Blood Cancer J doi: 10.1038/bcj.2014.25 – volume: 31 start-page: 591 issue: 4 year: 2017 ident: 2452_CR54 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.013 – volume: 6 start-page: e31311 year: 2017 ident: 2452_CR67 publication-title: Elife doi: 10.7554/eLife.31311 – volume: 17 start-page: 426 issue: 7 year: 2016 ident: 2452_CR69 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2016.50 – volume: 19 start-page: 68 issue: 1 year: 2018 ident: 2452_CR34 publication-title: Genome Biol doi: 10.1186/s13059-018-1435-z – volume: 27 start-page: 3936 issue: 22 year: 2018 ident: 2452_CR51 publication-title: Hum Mol Genet – volume: 61 start-page: 507 issue: 4 year: 2016 ident: 2452_CR63 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.01.012 – volume: 69 start-page: 1028 issue: 6 year: 2018 ident: 2452_CR12 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.02.015 – volume: 169 start-page: 326 issue: 2 year: 2017 ident: 2452_CR74 publication-title: Cell doi: 10.1016/j.cell.2017.03.031 – volume: 74 start-page: 494 issue: 3 year: 2019 ident: 2452_CR78 publication-title: Mol Cell doi: 10.1016/j.molcel.2019.02.034 – volume: 43 start-page: 373 issue: 1 year: 2015 ident: 2452_CR28 publication-title: Nucleic Acids doi: 10.1093/nar/gku1276 – volume: 134 start-page: 17963 issue: 43 year: 2012 ident: 2452_CR27 publication-title: J Am Chem Soc doi: 10.1021/ja3064149 – volume: 66 start-page: 1239 issue: 7 year: 2009 ident: 2452_CR47 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-008-8532-1 – volume: 57 start-page: 2424 issue: 17 year: 2018 ident: 2452_CR80 publication-title: Biochemistry doi: 10.1021/acs.biochem.7b01162 – volume: 78 start-page: 434 issue: 3 year: 2020 ident: 2452_CR88 publication-title: Mol Cell doi: 10.1016/j.molcel.2020.03.022 – volume: 4 start-page: 10 year: 2018 ident: 2452_CR9 publication-title: Cell Discov doi: 10.1038/s41421-018-0019-0 – volume: 46 start-page: 1412 issue: 3 year: 2018 ident: 2452_CR77 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1182 – volume: 19 start-page: 40 issue: 1 year: 2020 ident: 2452_CR36 publication-title: Mol Cancer doi: 10.1186/s12943-020-01161-1 – volume: 518 start-page: 560 issue: 7540 year: 2015 ident: 2452_CR48 publication-title: Nature doi: 10.1038/nature14234 – volume: 181 start-page: 1582 issue: 7 year: 2020 ident: 2452_CR85 publication-title: Cell doi: 10.1016/j.cell.2020.05.012 – volume: 163 start-page: 811 issue: 4 year: 2015 ident: 2452_CR38 publication-title: Cell doi: 10.1016/j.cell.2015.10.044 – volume: 63 start-page: 306 issue: 2 year: 2016 ident: 2452_CR3 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.05.041 – volume: 11 start-page: 1685 issue: 1 year: 2020 ident: 2452_CR55 publication-title: Nat Commun doi: 10.1038/s41467-020-15403-9 – volume: 38 start-page: 79 issue: 1 year: 2020 ident: 2452_CR33 publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.04.017 – volume: 119 start-page: 1151 issue: 5 year: 2012 ident: 2452_CR25 publication-title: Blood doi: 10.1182/blood-2011-06-362079 – volume: 16 start-page: 798 issue: 6 year: 2019 ident: 2452_CR6 publication-title: RNA Biol doi: 10.1080/15476286.2019.1589360 – volume: 31 start-page: 127 issue: 1 year: 2017 ident: 2452_CR21 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.11.017 – volume: 561 start-page: 556 issue: 7724 year: 2018 ident: 2452_CR43 publication-title: Nature doi: 10.1038/s41586-018-0538-8 |
SSID | ssj0017860 |
Score | 2.6054583 |
SecondaryResourceType | review_article |
Snippet | N
6
-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling... N -Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling... N6-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling... Abstract N 6-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 48 |
SubjectTerms | Binding sites Cancer Cell growth Enzymes Gene expression Homeostasis Leukemia Localization m6A Mechanism Metabolism Metastases Metastasis mRNA metabolism N6-methyladenosine Proteins Review RNA modification Tumorigenesis Tumors Writers |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et9VVKniTYJvm0R7XF4vgHkTBW0iaBAXtyrrC-u-dJN1lK6IXD700U0hmMvm-aZIZhE6UA_fLcoM5rQymvM4woKLBVuV14ThXrPa_Bm6HfPBAbx7Z40KpL38mLKYHjoo7I1pYz8GF5ooSwSpqtKCOgKOqiriQCRQwbxZMtfsHouTZ7IpMyc_ePar5m8gEh61GPO3AUMjW_xPF_H5ScgF6rtfRWssZ037s6wZass0mWolVJD-3UHUZq8qn41hXHjSdqsakHrLCrEpHLn29G_bTVw7PyPjTQUFsGz1cX91fDHBbEQHXwAwmWFhWqqywijihiEdjpoi21IqcGUWVA2yBeAQUpl2hlRPWV7ilgvNa18yZYgctN6PG7qEUaKEumWNcC00pxD0GPN0UgFWGEWHyBOUzBcm6TRfuq1a8yBA2lFxGpUpQqgxKldMEnc6_eYvJMn6VPvd6n0v6RNfhBZhftuaXf5k_Qb2Z1WTrfe-S8MIzUV7BKI7nzeA3fjNENXb04WWAu0BwSMsE7UYjz3tSAIvymRITJDrm73S129I8P4Xc3LAcwrIo9v9jbAdolYQpm2NS9dDyZPxhD4ECTfRRmO1fIFb_1Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PSx0xEB7EIvRSWrXttlq24K2kfZvNj91DKVorIuih-MBbSDZJK-iuPp-g_31nsruvfeXhYS-bCWQnM_lmNsl8AHs2ovtNCs-UqD0TqpkwREXPgi2aMiplZUO_Bk7P1PFUnFzIizUY6Y4GBd6tTO2IT2o6u_r8cPv4DR3-a3L4Sn25I8yie8acpY1EhjHlM0QmTYwGp-LvroKu1GS8OLOy3xI4pRr-qwLP_89P_gNIRy_hxRBJ5vv91L-CtdBuwkbPLfm4BfVhzzWfz3q2edR_blufE5AlW8u7mF__PNvPrxU-naczQ0lsG6ZHP86_H7OBJ4E1GC_MmQ6yspMyWB615YTR0nIXRNCF9FbYiIiDWUoolIuls1EH4r0VWqnGNTL68jWst10b3kKOwaKrZJTKaScEZkMe_d-XiGBecu2LDIpRQaYZiogTl8WVSclEpUyvVINKNUmp5iGDT4s-N30JjSelD0jvC0kqf51edLNfZvAmw50OlJhpp6zgWtbCOy0ix9Xb1jyKDHbGWTOjSRmuSopPVY1f8XHRjN5EWyS2Dd09yaDdYMooqgze9JO8GEmJsRXVT8xAL03_0lCXW9rL36liNy6SuFjqd08P6z0858kYC8brHVifz-7DLoY8c_ch2fEfxwH7rA priority: 102 providerName: Scholars Portal |
Title | Dynamic regulation and functions of mRNA m6A modification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35093087 https://www.proquest.com/docview/2630540691 https://www.proquest.com/docview/2624195648 https://pubmed.ncbi.nlm.nih.gov/PMC8800407 https://doaj.org/article/2b7e16177b6a427594db74f2538a92f4 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0DsEX8dvquVTwTcJt03y0T3KrdxzCLbJ4sPgSkibxBK89d_fg_O-dSbvVFbmH9qFJIczXb2aSzAC8tRHVb1p4pkTtmVDNlCEqehZs0ZRRKSsbSg2czdXpufi0lMsh4bYejlVubWIy1L5rKEd-yFVJ3oWqi_dXPxl1jaLd1aGFxl3Yp9JlJNV6OQZcha7UdHtRplKHa8I2uo_MWdpwZDc7YJRq9v_P0fz3vORfAHTyEB4MnmN-1LP6EdwJ7WO41_eS_PUE6o99b_l81XeXR3rntvU5AVeSrbyL-eVifpRfKnw6T2eE0rSncH5y_OXDKRv6IrAG_YMN00FWdloGy6O2nDBZWu6CCLqQ3gobEWEwKgmFcrF0NupAfW6FVqpxjYy-fAZ7bdeGF5Cjc-gqGaVy2gmB0Y9HffclIpaXXPsig2JLINMMRcOpd8UPk4KHSpmeqAaJahJRzU0G78Z_rvqSGbfOnhHdx5lU7jp96FbfzKA9hjsdKBDTTlnBtayFd1pEjtba1jyKDA62XDODDq7NH4nJ4M04jNpDWyK2Dd01zUEPBkNEUWXwvGfyuJISfSmql5iB3mH_zlJ3R9rvF6lCNxpFNI765e3LegX3eRLGgvH6APY2q-vwGl2cjZskOZ7A_ux4_nkxSYkCfJ-JCt-L2dff4Hb8tw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMECgQJTshq4viRHBAqlGpL2z2gVtqbsWMbkGhSdrei_VP8RsbOAxah3nrIJXEia17fTGzPB_BSe3S_LLdEsMoSJuqMICpa4nReF14Izevwa-BwKibH7OOMz9bg13AWJmyrHGJiDNS2rcM_8i0qipBdiCp_e_qDBNaosLo6UGh0ZrHvLn5iybZ4s7eD-n1F6e6Ho_cT0rMKkBrRdUmk46XOCqepl5oGROOaGseczLnVTHuMz5jTu1wYXxjtpQsssUwKUZuae1vgd6_BdQTeLBR7cjYWeLksRTYczCnF1iJgaTj_TElc4CTnK-AXOQL-l9j-uz_zL8DbvQO3-0w13e5M6y6sueYe3Oi4Ky_uQ7XTcdmn847NHvWb6samASijLaetT08-TbfTE4FXa8OepDjsARxficQewnrTNu4RpJiMmpJ7Low0jGG1ZTG-2AIR0nIqbZ5APghI1X2T8sCV8V3FYqUUqhOqQqGqKFR1nsDr8Z3TrkXHpaPfBbmPI0N77XijnX9RvbcqaqQLhZ80QjMqecWskcxTRAddUc8S2By0pnqfX6g_FprAi_ExemtYgtGNa8_CGMyYsCRlZQIbnZLHmRSYu4X-jAnIFfWvTHX1SfPta-wIjkEYg7F8fPm0nsPNydHhgTrYm-4_gVs0GmZOaLUJ68v5mXuK6dXSPIs2ncLnq3ai38G7Na8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+regulation+and+functions+of+mRNA+m6A+modification&rft.jtitle=Cancer+cell+international&rft.au=Wang%2C+Shanshan&rft.au=Lv%2C+Wei&rft.au=Li%2C+Tao&rft.au=Zhang%2C+Shubing&rft.date=2022-01-29&rft.pub=BioMed+Central&rft.eissn=1475-2867&rft.volume=22&rft.spage=1&rft_id=info:doi/10.1186%2Fs12935-022-02452-x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2867&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2867&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2867&client=summon |