Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines

•The application of low intensity TES in humans appears to be safe.•The profile of AEs in terms of frequency, magnitude and type is comparable in different populations.•Structured checklists and interviews as recommended procedures are provided in this paper. Low intensity transcranial electrical st...

Full description

Saved in:
Bibliographic Details
Published inClinical neurophysiology Vol. 128; no. 9; pp. 1774 - 1809
Main Authors Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A.R., Chen, R., Cohen, L.G., Dowthwaite, G., Ellrich, J., Flöel, A., Fregni, F., George, M.S., Hamilton, R., Haueisen, J., Herrmann, C.S., Hummel, F.C., Lefaucheur, J.P., Liebetanz, D., Loo, C.K., McCaig, C.D., Miniussi, C., Miranda, P.C., Moliadze, V., Nitsche, M.A., Nowak, R., Padberg, F., Pascual-Leone, A., Poppendieck, W., Priori, A., Rossi, S., Rossini, P.M., Rothwell, J., Rueger, M.A., Ruffini, G., Schellhorn, K., Siebner, H.R., Ugawa, Y., Wexler, A., Ziemann, U., Hallett, M., Paulus, W.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2017
Subjects
TES
FDA
PPC
RCT
TES
M1
CNS
IFG
MDD
PFC
CFR
MRS
TPJ
DBS
ONS
EC
EF
NSE
AC
AD
AE
EEG
MEG
ICH
MAE
AR
PD
DIY
SAE
ECT
MEP
TMS
DC
PLT
Online AccessGet full text

Cover

Loading…
Abstract •The application of low intensity TES in humans appears to be safe.•The profile of AEs in terms of frequency, magnitude and type is comparable in different populations.•Structured checklists and interviews as recommended procedures are provided in this paper. Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1–2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity ‘conventional’ TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3–13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6–7, 2016 and were refined thereafter by email correspondence.
AbstractList Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1–2 mA and during tACS at higher peak-to-peak intensities above 2 mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity ‘conventional’ TES defined as <4 mA, up to 60 min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3–13 A/m 2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10 mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6–7, 2016 and were refined thereafter by email correspondence.
Highlights • The application of low intensity TES in humans appears to be safe. • The profile of AEs in terms of frequency, magnitude and type is comparable in different populations. • Structured checklists and interviews as recommended procedures are provided in this paper.
•The application of low intensity TES in humans appears to be safe.•The profile of AEs in terms of frequency, magnitude and type is comparable in different populations.•Structured checklists and interviews as recommended procedures are provided in this paper. Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1–2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity ‘conventional’ TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3–13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6–7, 2016 and were refined thereafter by email correspondence.
Author McCaig, C.D.
Priori, A.
Rothwell, J.
Alekseichuk, I.
Dowthwaite, G.
Wexler, A.
Ellrich, J.
Paulus, W.
Chen, R.
Ziemann, U.
Hummel, F.C.
Loo, C.K.
Ruffini, G.
George, M.S.
Brunoni, A.R.
Pascual-Leone, A.
Cohen, L.G.
Liebetanz, D.
Brockmöller, J.
Padberg, F.
Moliadze, V.
Miniussi, C.
Nitsche, M.A.
Hallett, M.
Haueisen, J.
Ugawa, Y.
Flöel, A.
Schellhorn, K.
Rossini, P.M.
Poppendieck, W.
Rossi, S.
Nowak, R.
Siebner, H.R.
Antal, A.
Rueger, M.A.
Bikson, M.
Herrmann, C.S.
Miranda, P.C.
Lefaucheur, J.P.
Fregni, F.
Hamilton, R.
AuthorAffiliation r Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
z Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
n Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
o Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
ap Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
j EBS Technologies GmbH, Europarc Dreilinden, Germany
a Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
p Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
h Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
ab Neuroelectrics, Barcelona, Spain
c Department of Cli
AuthorAffiliation_xml – name: a Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
– name: f Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
– name: af Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
– name: t School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
– name: ah Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
– name: m Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
– name: u Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
– name: ak neuroCare Group GmbH, Munich, Germany
– name: k Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
– name: s Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
– name: ar Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
– name: n Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
– name: am Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
– name: ag Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
– name: e Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
– name: l Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
– name: x Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
– name: ab Neuroelectrics, Barcelona, Spain
– name: o Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
– name: aq Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
– name: i Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
– name: d Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
– name: b Department of Biomedical Engineering, The City College of New York, New York, USA
– name: g The Magstim Company, Whitland, UK
– name: q Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
– name: an Department of Neurology, Fukushima Medical University, Fukushima, Japan
– name: ap Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: z Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
– name: h Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
– name: ac Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
– name: p Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
– name: y Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
– name: ao Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
– name: j EBS Technologies GmbH, Europarc Dreilinden, Germany
– name: aa Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
– name: ai UCL Institute of Neurology, London, UK
– name: aj Department of Neurology, University Hospital of Cologne, Germany
– name: al Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
– name: ae Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
– name: v Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
– name: ad Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
– name: r Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
– name: c Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
– name: w Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
Author_xml – sequence: 1
  givenname: A.
  surname: Antal
  fullname: Antal, A.
  email: AAntal@gwdg.de
  organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
– sequence: 2
  givenname: I.
  surname: Alekseichuk
  fullname: Alekseichuk, I.
  organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
– sequence: 3
  givenname: M.
  surname: Bikson
  fullname: Bikson, M.
  organization: Department of Biomedical Engineering, The City College of New York, New York, USA
– sequence: 4
  givenname: J.
  surname: Brockmöller
  fullname: Brockmöller, J.
  organization: Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
– sequence: 5
  givenname: A.R.
  surname: Brunoni
  fullname: Brunoni, A.R.
  organization: Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
– sequence: 6
  givenname: R.
  surname: Chen
  fullname: Chen, R.
  organization: Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
– sequence: 7
  givenname: L.G.
  surname: Cohen
  fullname: Cohen, L.G.
  organization: Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
– sequence: 8
  givenname: G.
  surname: Dowthwaite
  fullname: Dowthwaite, G.
  organization: The Magstim Company, Whitland, UK
– sequence: 9
  givenname: J.
  surname: Ellrich
  fullname: Ellrich, J.
  organization: Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
– sequence: 10
  givenname: A.
  surname: Flöel
  fullname: Flöel, A.
  organization: Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
– sequence: 11
  givenname: F.
  surname: Fregni
  fullname: Fregni, F.
  organization: Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 12
  givenname: M.S.
  surname: George
  fullname: George, M.S.
  organization: Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
– sequence: 13
  givenname: R.
  surname: Hamilton
  fullname: Hamilton, R.
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 14
  givenname: J.
  surname: Haueisen
  fullname: Haueisen, J.
  organization: Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
– sequence: 15
  givenname: C.S.
  surname: Herrmann
  fullname: Herrmann, C.S.
  organization: Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
– sequence: 16
  givenname: F.C.
  surname: Hummel
  fullname: Hummel, F.C.
  organization: Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
– sequence: 17
  givenname: J.P.
  surname: Lefaucheur
  fullname: Lefaucheur, J.P.
  organization: Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
– sequence: 18
  givenname: D.
  surname: Liebetanz
  fullname: Liebetanz, D.
  organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
– sequence: 19
  givenname: C.K.
  surname: Loo
  fullname: Loo, C.K.
  organization: School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
– sequence: 20
  givenname: C.D.
  surname: McCaig
  fullname: McCaig, C.D.
  organization: Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
– sequence: 21
  givenname: C.
  surname: Miniussi
  fullname: Miniussi, C.
  organization: Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
– sequence: 22
  givenname: P.C.
  surname: Miranda
  fullname: Miranda, P.C.
  organization: Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
– sequence: 23
  givenname: V.
  surname: Moliadze
  fullname: Moliadze, V.
  organization: Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
– sequence: 24
  givenname: M.A.
  surname: Nitsche
  fullname: Nitsche, M.A.
  organization: Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
– sequence: 25
  givenname: R.
  surname: Nowak
  fullname: Nowak, R.
  organization: Neuroelectrics, Barcelona, Spain
– sequence: 26
  givenname: F.
  surname: Padberg
  fullname: Padberg, F.
  organization: Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
– sequence: 27
  givenname: A.
  surname: Pascual-Leone
  fullname: Pascual-Leone, A.
  organization: Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
– sequence: 28
  givenname: W.
  surname: Poppendieck
  fullname: Poppendieck, W.
  organization: Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
– sequence: 29
  givenname: A.
  surname: Priori
  fullname: Priori, A.
  organization: Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
– sequence: 30
  givenname: S.
  surname: Rossi
  fullname: Rossi, S.
  organization: Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
– sequence: 31
  givenname: P.M.
  surname: Rossini
  fullname: Rossini, P.M.
  organization: Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
– sequence: 32
  givenname: J.
  surname: Rothwell
  fullname: Rothwell, J.
  organization: UCL Institute of Neurology, London, UK
– sequence: 33
  givenname: M.A.
  surname: Rueger
  fullname: Rueger, M.A.
  organization: Department of Neurology, University Hospital of Cologne, Germany
– sequence: 34
  givenname: G.
  surname: Ruffini
  fullname: Ruffini, G.
  organization: Neuroelectrics, Barcelona, Spain
– sequence: 35
  givenname: K.
  surname: Schellhorn
  fullname: Schellhorn, K.
  organization: neuroCare Group GmbH, Munich, Germany
– sequence: 36
  givenname: H.R.
  surname: Siebner
  fullname: Siebner, H.R.
  organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
– sequence: 37
  givenname: Y.
  surname: Ugawa
  fullname: Ugawa, Y.
  organization: Department of Neurology, Fukushima Medical University, Fukushima, Japan
– sequence: 38
  givenname: A.
  surname: Wexler
  fullname: Wexler, A.
  organization: Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 39
  givenname: U.
  surname: Ziemann
  fullname: Ziemann, U.
  organization: Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
– sequence: 40
  givenname: M.
  surname: Hallett
  fullname: Hallett, M.
  organization: Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
– sequence: 41
  givenname: W.
  surname: Paulus
  fullname: Paulus, W.
  organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28709880$$D View this record in MEDLINE/PubMed
BookMark eNqVUluLEzEUHmTFveg_EJlHH7b1JDNNMossyOINCj6sPh_SzGmbmiY1yaz035uxXVFBFl-SwPkuyfflvDrxwVNVPWcwZcDEq83UOOt36ykHJqcgpgDsUXXGlOQT1c34STk3Sk14O5On1XlKGwCQ0PIn1SlXEjql4KzazsP32vpMPtm8r3PUPpmyWO1qcmRytKZO2W4Hp7MN_qq-1UvK-8ua8toa7S5rR6sCjrQaISHua-37Wu92roxHSr0abE_lrpSeVo-X2iV6dtwvqi_v3n6--TCZf3r_8ebNfGKEaPJEdJ3UUgAse2jlUjTEtVwYrXnDuwXji5bLRnDd9brjklTfAGsXoNqeWCtk01xU1wfd3bDYUm_Il4c53EW71XGPQVv8c-LtGlfhDmedmqkGisDLo0AM3wZKGbc2GXJOewpDQtaV1LuZkKxAX_zu9cvkPuMCuDoATAwpRVqisflnMsXaOmSAY6G4wUOhOBaKILAUWsjtX-R7_QdoxwCopHxnKWIylryh3sZSKvbB_q_ACBoL_0p7SpswRF8aRIaJI-Dt-NXGn8ZkA5xxXgRe_1vgYf8f0XToDg
CitedBy_id crossref_primary_10_1186_s12967_023_03989_9
crossref_primary_10_1590_1516_4446_2020_1169
crossref_primary_10_3389_fpain_2021_753464
crossref_primary_10_9758_cpn_2023_21_1_19
crossref_primary_10_3233_RNN_211230
crossref_primary_10_1016_j_clinph_2024_03_039
crossref_primary_10_3389_fnhum_2024_1477111
crossref_primary_10_1007_s11517_021_02338_6
crossref_primary_10_1038_s41398_021_01391_x
crossref_primary_10_1093_scan_nsaa099
crossref_primary_10_1016_j_bbr_2022_113805
crossref_primary_10_1016_j_brs_2017_12_008
crossref_primary_10_1097_ICU_0000000000000590
crossref_primary_10_1038_s41467_019_10581_7
crossref_primary_10_1136_bmjopen_2021_059943
crossref_primary_10_1186_s13063_024_08699_1
crossref_primary_10_1002_jnr_24849
crossref_primary_10_3389_fnins_2022_814003
crossref_primary_10_1016_j_cobme_2018_11_001
crossref_primary_10_1111_cns_70110
crossref_primary_10_3389_fnhum_2018_00317
crossref_primary_10_3390_jcm11092297
crossref_primary_10_1111_ejn_16041
crossref_primary_10_1016_j_neuropsychologia_2021_107751
crossref_primary_10_3389_fneur_2024_1278200
crossref_primary_10_1016_j_dscb_2024_100123
crossref_primary_10_1016_j_neucli_2020_02_006
crossref_primary_10_2174_1871527320666210809121922
crossref_primary_10_1186_s10194_018_0904_9
crossref_primary_10_1016_j_seizure_2021_01_020
crossref_primary_10_1038_s41598_022_18376_5
crossref_primary_10_3390_bs13060477
crossref_primary_10_3390_brainsci13050760
crossref_primary_10_1016_j_neuroimage_2023_120242
crossref_primary_10_1038_s41598_018_35879_2
crossref_primary_10_1176_appi_ajp_2019_19090957
crossref_primary_10_3389_fnhum_2021_637080
crossref_primary_10_1093_geronb_gby134
crossref_primary_10_3928_00485713_20221018_02
crossref_primary_10_3390_ijms22052541
crossref_primary_10_12786_bn_2021_14_e9
crossref_primary_10_1016_j_brs_2023_02_012
crossref_primary_10_1016_j_ebiom_2021_103514
crossref_primary_10_2147_NDT_S295945
crossref_primary_10_1002_bies_201800197
crossref_primary_10_1007_s11920_024_01540_1
crossref_primary_10_1016_j_brs_2017_12_007
crossref_primary_10_3389_fphar_2020_00125
crossref_primary_10_1016_j_brs_2017_12_002
crossref_primary_10_1155_2019_1971875
crossref_primary_10_1177_15459683221124116
crossref_primary_10_1016_j_bbr_2024_115201
crossref_primary_10_1016_j_clinph_2023_08_011
crossref_primary_10_1044_2020_AJSLP_19_00073
crossref_primary_10_1088_1741_2552_ad2d32
crossref_primary_10_1097_PR9_0000000000000723
crossref_primary_10_3389_fnhum_2024_1468538
crossref_primary_10_1093_braincomms_fcad191
crossref_primary_10_1007_s12152_020_09444_6
crossref_primary_10_1016_j_clinph_2024_11_011
crossref_primary_10_1016_j_neures_2020_01_002
crossref_primary_10_1016_j_nicl_2024_103582
crossref_primary_10_3389_fneur_2021_598135
crossref_primary_10_1016_j_clinph_2020_11_018
crossref_primary_10_1177_1545968319893286
crossref_primary_10_1038_s41598_022_16545_0
crossref_primary_10_1136_bmjopen_2020_045285
crossref_primary_10_1007_s00406_020_01209_9
crossref_primary_10_1016_j_jpain_2022_09_010
crossref_primary_10_1017_neu_2024_35
crossref_primary_10_1016_j_arr_2020_101065
crossref_primary_10_1177_1545968318792616
crossref_primary_10_20960_nh_04100
crossref_primary_10_3389_fneur_2023_1069434
crossref_primary_10_1016_j_neucli_2018_12_003
crossref_primary_10_1016_j_cortex_2022_05_015
crossref_primary_10_3389_fnins_2017_00464
crossref_primary_10_1016_j_brs_2021_05_006
crossref_primary_10_1080_02699052_2022_2145363
crossref_primary_10_1016_j_neubiorev_2022_104867
crossref_primary_10_1016_j_apmr_2021_06_029
crossref_primary_10_1016_j_brs_2019_07_010
crossref_primary_10_3390_jpm11090940
crossref_primary_10_1016_j_neubiorev_2022_104743
crossref_primary_10_1016_j_entcom_2021_100455
crossref_primary_10_1016_j_jocn_2019_03_045
crossref_primary_10_1016_j_neuroimage_2023_120145
crossref_primary_10_1038_s41598_023_29124_8
crossref_primary_10_1371_journal_pone_0203727
crossref_primary_10_1016_j_clinph_2024_09_011
crossref_primary_10_17267_2965_3738bis_2024_e5952
crossref_primary_10_1016_j_neurom_2024_05_002
crossref_primary_10_1186_s13063_023_07791_2
crossref_primary_10_2478_amns_2023_2_00320
crossref_primary_10_1212_WNL_0000000000013061
crossref_primary_10_3389_fphar_2021_624582
crossref_primary_10_1016_j_neucli_2017_09_002
crossref_primary_10_1038_s41598_020_63332_w
crossref_primary_10_1016_j_neuropsychologia_2021_107966
crossref_primary_10_3389_fpsyt_2024_1450351
crossref_primary_10_1080_17434440_2020_1813565
crossref_primary_10_1038_s41598_020_74072_2
crossref_primary_10_1016_j_neuroscience_2021_03_002
crossref_primary_10_1038_s41531_023_00610_0
crossref_primary_10_3389_fnhum_2021_661079
crossref_primary_10_3389_fnsys_2022_837979
crossref_primary_10_1016_j_humov_2019_06_003
crossref_primary_10_1177_10738584211054742
crossref_primary_10_1523_ENEURO_0481_18_2019
crossref_primary_10_3389_fnagi_2021_684689
crossref_primary_10_1007_s12311_020_01155_1
crossref_primary_10_1016_j_neuroimage_2024_120550
crossref_primary_10_1016_j_neucli_2023_102922
crossref_primary_10_3389_fnhum_2023_1270605
crossref_primary_10_1159_000542163
crossref_primary_10_1186_s40359_020_00454_w
crossref_primary_10_1016_j_ijpsycho_2025_112539
crossref_primary_10_1016_j_cortex_2020_08_002
crossref_primary_10_1097_j_pain_0000000000003338
crossref_primary_10_3390_ijerph18073678
crossref_primary_10_1002_trc2_12005
crossref_primary_10_1016_j_brs_2020_11_012
crossref_primary_10_1016_j_neubiorev_2020_09_005
crossref_primary_10_1038_s41598_021_87371_z
crossref_primary_10_3389_fnagi_2021_765370
crossref_primary_10_1016_j_cnp_2020_07_003
crossref_primary_10_1111_jnp_12425
crossref_primary_10_3389_fnagi_2024_1414593
crossref_primary_10_3389_fpsyg_2023_1104410
crossref_primary_10_1016_j_neuroimage_2024_120541
crossref_primary_10_1007_s40473_021_00238_5
crossref_primary_10_1016_j_jneumeth_2018_11_011
crossref_primary_10_1007_s12311_019_01014_8
crossref_primary_10_1016_j_neulet_2024_137849
crossref_primary_10_1016_j_clinph_2017_09_112
crossref_primary_10_1007_s00429_021_02451_0
crossref_primary_10_3389_fneur_2023_1327383
crossref_primary_10_1097_YCT_0000000000001074
crossref_primary_10_1162_jocn_a_01490
crossref_primary_10_1016_j_ebr_2021_100501
crossref_primary_10_1016_j_ijpsycho_2020_10_006
crossref_primary_10_3389_fnbeh_2021_820017
crossref_primary_10_1016_j_psychres_2021_114024
crossref_primary_10_1038_s41598_025_88256_1
crossref_primary_10_1159_000504609
crossref_primary_10_36290_psy_2021_005
crossref_primary_10_1038_s41598_022_26914_4
crossref_primary_10_1038_s41598_023_34724_5
crossref_primary_10_1007_s00221_019_05543_w
crossref_primary_10_3390_brainsci13010137
crossref_primary_10_3389_fneur_2021_729703
crossref_primary_10_1007_s12152_020_09435_7
crossref_primary_10_1016_j_drugalcdep_2018_08_018
crossref_primary_10_3390_neurosci5040043
crossref_primary_10_1177_17474930231203982
crossref_primary_10_1016_j_brs_2020_05_010
crossref_primary_10_1007_s11357_024_01206_z
crossref_primary_10_1016_j_brs_2023_11_002
crossref_primary_10_1016_j_clinph_2020_01_008
crossref_primary_10_1007_s12311_021_01362_4
crossref_primary_10_1111_dmcn_14104
crossref_primary_10_1016_j_clinph_2024_10_011
crossref_primary_10_1016_j_neuroscience_2019_05_041
crossref_primary_10_1523_JNEUROSCI_1372_23_2024
crossref_primary_10_1002_da_22878
crossref_primary_10_1016_j_brs_2019_08_004
crossref_primary_10_1097_PSY_0000000000001074
crossref_primary_10_1080_21507740_2021_1896601
crossref_primary_10_1002_trc2_12262
crossref_primary_10_1093_neuros_nyz096
crossref_primary_10_1016_j_conctc_2022_100945
crossref_primary_10_3389_fpsyt_2019_00334
crossref_primary_10_1002_hbm_24556
crossref_primary_10_1002_dneu_22949
crossref_primary_10_1016_j_cortex_2021_12_001
crossref_primary_10_3389_fnhum_2021_662016
crossref_primary_10_1038_s41596_023_00873_0
crossref_primary_10_3390_biom13081220
crossref_primary_10_1371_journal_pone_0300243
crossref_primary_10_3390_brainsci13071024
crossref_primary_10_1016_j_neuroscience_2021_02_013
crossref_primary_10_3758_s13423_024_02595_0
crossref_primary_10_3389_fnhum_2024_1500502
crossref_primary_10_1016_j_jsmc_2022_06_013
crossref_primary_10_1038_s41398_019_0439_0
crossref_primary_10_1186_s13063_023_07234_y
crossref_primary_10_1371_journal_pcbi_1011164
crossref_primary_10_1016_j_brainres_2021_147365
crossref_primary_10_1038_s41598_021_00933_z
crossref_primary_10_1016_j_brs_2019_08_014
crossref_primary_10_1016_j_msard_2022_103813
crossref_primary_10_4103_1673_5374_335796
crossref_primary_10_1016_j_brs_2018_06_004
crossref_primary_10_3390_jcm13113084
crossref_primary_10_1016_j_arr_2021_101555
crossref_primary_10_3389_fnagi_2017_00401
crossref_primary_10_1016_j_brs_2018_06_008
crossref_primary_10_1016_j_pnpbp_2023_110802
crossref_primary_10_1017_S1355617719000766
crossref_primary_10_3389_fneur_2022_962684
crossref_primary_10_1001_jamaneurol_2019_3523
crossref_primary_10_1038_s41467_023_38910_x
crossref_primary_10_1007_s00455_022_10528_z
crossref_primary_10_3389_fnhum_2018_00482
crossref_primary_10_3389_fnhum_2021_661396
crossref_primary_10_1016_j_brs_2018_07_049
crossref_primary_10_1097_j_pain_0000000000002493
crossref_primary_10_1097_WCO_0000000000000997
crossref_primary_10_3390_brainsci11081078
crossref_primary_10_3233_RNN_211198
crossref_primary_10_1016_j_clinph_2020_08_017
crossref_primary_10_1007_s13311_019_00780_x
crossref_primary_10_1016_j_brs_2019_02_005
crossref_primary_10_1016_j_clinph_2023_06_009
crossref_primary_10_1016_j_schres_2020_03_060
crossref_primary_10_1007_s00406_020_01121_2
crossref_primary_10_1007_s12311_023_01652_z
crossref_primary_10_3389_fpsyg_2024_1479887
crossref_primary_10_1016_j_ijchp_2023_100369
crossref_primary_10_1016_j_rehab_2024_101826
crossref_primary_10_1007_s00406_023_01620_y
crossref_primary_10_1038_s41598_021_84298_3
crossref_primary_10_3389_fnhum_2025_1501209
crossref_primary_10_1016_j_clinph_2024_12_004
crossref_primary_10_3389_fneur_2024_1338430
crossref_primary_10_3390_ijerph19127042
crossref_primary_10_1016_j_neurobiolaging_2019_07_009
crossref_primary_10_1186_s12938_020_00792_1
crossref_primary_10_1016_j_brs_2020_02_011
crossref_primary_10_1038_s41598_019_51792_8
crossref_primary_10_3389_fnins_2021_649459
crossref_primary_10_1155_2022_6197505
crossref_primary_10_1016_j_brs_2020_02_015
crossref_primary_10_3389_fnhum_2022_1049572
crossref_primary_10_1007_s00221_023_06624_7
crossref_primary_10_1093_braincomms_fcae468
crossref_primary_10_3389_fnhum_2024_1341707
crossref_primary_10_1016_j_bbr_2023_114581
crossref_primary_10_1016_j_clinph_2023_06_013
crossref_primary_10_3389_fpsyt_2022_837774
crossref_primary_10_1016_j_neuroscience_2021_05_001
crossref_primary_10_1016_j_cortex_2023_09_019
crossref_primary_10_3389_fnins_2020_00729
crossref_primary_10_3390_brainsci13111604
crossref_primary_10_1007_s00702_024_02853_4
crossref_primary_10_1016_j_jpsychires_2021_03_019
crossref_primary_10_1111_epi_17514
crossref_primary_10_3390_brainsci12020180
crossref_primary_10_1186_s40035_024_00423_y
crossref_primary_10_1117_1_NPh_5_1_015001
crossref_primary_10_1016_j_neulet_2023_137301
crossref_primary_10_1002_mrm_29780
crossref_primary_10_1016_j_brs_2020_10_002
crossref_primary_10_3389_frspt_2024_1422868
crossref_primary_10_2139_ssrn_4047883
crossref_primary_10_1088_1361_6560_ad5bb9
crossref_primary_10_1371_journal_pcbi_1009386
crossref_primary_10_1038_s41598_025_93631_z
crossref_primary_10_1097_MRR_0000000000000427
crossref_primary_10_3389_fnhum_2023_1168673
crossref_primary_10_3389_fnins_2023_1180454
crossref_primary_10_1007_s00115_023_01572_7
crossref_primary_10_3389_fnhum_2019_00371
crossref_primary_10_1186_s13195_020_00692_5
crossref_primary_10_1007_s12311_023_01650_1
crossref_primary_10_3233_JAD_230069
crossref_primary_10_29328_journal_jnpr_1001041
crossref_primary_10_1038_s41539_022_00152_9
crossref_primary_10_1002_pchj_544
crossref_primary_10_1007_s12152_022_09507_w
crossref_primary_10_1016_j_neurol_2018_09_014
crossref_primary_10_1088_1741_2552_ac55ae
crossref_primary_10_25692_ACEN_2020_2_1
crossref_primary_10_1063_5_0085850
crossref_primary_10_3389_fpsyt_2024_1427365
crossref_primary_10_1038_s41598_020_68992_2
crossref_primary_10_1016_j_ijchp_2023_100384
crossref_primary_10_1111_cns_13971
crossref_primary_10_3389_fpain_2024_1353987
crossref_primary_10_3389_fimmu_2022_935614
crossref_primary_10_1038_s41467_024_51633_x
crossref_primary_10_1097_PEP_0000000000000886
crossref_primary_10_1016_j_neubiorev_2021_10_040
crossref_primary_10_1016_j_clinph_2023_11_003
crossref_primary_10_1016_j_pnpbp_2019_109836
crossref_primary_10_1093_scan_nsae062
crossref_primary_10_1155_2021_6627507
crossref_primary_10_3389_fpsyt_2024_1441533
crossref_primary_10_54108_10074
crossref_primary_10_3390_brainsci12060738
crossref_primary_10_1016_j_enganabound_2021_10_026
crossref_primary_10_1016_j_clinph_2019_08_016
crossref_primary_10_1016_j_neucli_2019_01_002
crossref_primary_10_3390_clockssleep6020015
crossref_primary_10_58563_dkyad_2024_72_5
crossref_primary_10_1016_j_heliyon_2023_e14946
crossref_primary_10_1016_j_neuroimage_2021_118781
crossref_primary_10_1016_j_neuroscience_2025_01_013
crossref_primary_10_1097_YCO_0000000000000954
crossref_primary_10_3390_app14156698
crossref_primary_10_3390_life13051125
crossref_primary_10_1007_s12311_023_01578_6
crossref_primary_10_3390_app12115609
crossref_primary_10_1016_j_jad_2024_05_166
crossref_primary_10_1109_ACCESS_2022_3206047
crossref_primary_10_3389_fnagi_2023_1087749
crossref_primary_10_1016_j_neuroscience_2019_01_035
crossref_primary_10_1126_sciadv_aau9309
crossref_primary_10_1007_s10286_024_01055_y
crossref_primary_10_1080_02687038_2021_1959015
crossref_primary_10_1016_j_clinph_2024_05_007
crossref_primary_10_1016_j_jad_2019_06_020
crossref_primary_10_1016_j_burns_2020_06_005
crossref_primary_10_1016_j_nbd_2020_104865
crossref_primary_10_3389_fenrg_2022_860427
crossref_primary_10_1016_j_jpsychires_2023_12_037
crossref_primary_10_1016_j_afres_2024_100584
crossref_primary_10_3390_bioengineering11050467
crossref_primary_10_1016_j_brs_2025_01_025
crossref_primary_10_1186_s12888_025_06506_y
crossref_primary_10_3389_fnhum_2021_699473
crossref_primary_10_1177_00986283211060324
crossref_primary_10_1016_j_clinph_2021_02_391
crossref_primary_10_3390_brainsci12010058
crossref_primary_10_1016_j_bbr_2023_114383
crossref_primary_10_1007_s10072_025_08077_y
crossref_primary_10_1093_cercor_bhac540
crossref_primary_10_7554_eLife_56359
crossref_primary_10_1016_j_brs_2023_08_019
crossref_primary_10_3390_brainsci14010087
crossref_primary_10_4103_BNM_BNM_5_25
crossref_primary_10_1016_j_cca_2019_05_008
crossref_primary_10_1016_j_jad_2019_12_009
crossref_primary_10_3389_fnbeh_2023_1239463
crossref_primary_10_1016_j_brs_2018_12_977
crossref_primary_10_47456_rbps_v26i1_46477
crossref_primary_10_3390_brainsci10070467
crossref_primary_10_3389_fnhum_2021_652393
crossref_primary_10_1186_s13195_021_00844_1
crossref_primary_10_1186_s42466_020_0052_y
crossref_primary_10_1016_j_brs_2025_01_012
crossref_primary_10_3389_fnins_2024_1359446
crossref_primary_10_3389_fnagi_2019_00200
crossref_primary_10_1016_j_clinph_2022_02_023
crossref_primary_10_1080_00207144_2024_2394183
crossref_primary_10_1016_j_neucli_2025_103055
crossref_primary_10_3389_fneur_2021_732034
crossref_primary_10_3390_medicina59111957
crossref_primary_10_3389_fragi_2023_1171133
crossref_primary_10_1016_j_brainres_2022_147834
crossref_primary_10_1007_s00221_021_06243_0
crossref_primary_10_1111_ejn_14403
crossref_primary_10_1016_j_brs_2022_06_012
crossref_primary_10_1016_j_neuroimage_2019_03_044
crossref_primary_10_3389_fnbeh_2022_925122
crossref_primary_10_3389_fnins_2020_00735
crossref_primary_10_1016_j_brs_2022_12_006
crossref_primary_10_1038_s41598_021_81693_8
crossref_primary_10_1038_s41562_024_01901_z
crossref_primary_10_3389_fpsyt_2022_840836
crossref_primary_10_1126_sciadv_ado4103
crossref_primary_10_1093_ijnp_pyaa051
crossref_primary_10_3389_fcell_2020_00541
crossref_primary_10_3390_brainsci10100719
crossref_primary_10_1186_s12888_024_05567_9
crossref_primary_10_3390_brainsci11081104
crossref_primary_10_1002_eom2_12045
crossref_primary_10_1016_j_cortex_2021_10_005
crossref_primary_10_1016_j_neuropsychologia_2019_05_008
crossref_primary_10_1371_journal_pone_0269851
crossref_primary_10_1016_j_brainres_2020_147227
crossref_primary_10_1016_j_neulet_2022_136691
crossref_primary_10_3389_fcell_2021_731028
crossref_primary_10_1016_j_clinph_2021_01_032
crossref_primary_10_1088_1361_6560_abb7c1
crossref_primary_10_1016_j_brainres_2025_149550
crossref_primary_10_3390_jcm13154420
crossref_primary_10_1016_j_jocn_2020_05_024
crossref_primary_10_61186_shefa_11_2_20
crossref_primary_10_1007_s00702_023_02726_2
crossref_primary_10_3389_fneur_2018_00816
crossref_primary_10_1186_s13063_021_05172_1
crossref_primary_10_3390_clockssleep7010003
crossref_primary_10_1186_s12984_024_01498_4
crossref_primary_10_47529_2223_2524_2021_3_7
crossref_primary_10_2147_NDT_S371624
crossref_primary_10_25259_ABP_10_2024
crossref_primary_10_5265_jcogpsy_20_91
crossref_primary_10_3389_fnins_2023_1148336
crossref_primary_10_1016_j_apmr_2018_10_011
crossref_primary_10_1186_s13063_022_06234_8
crossref_primary_10_1016_j_neubiorev_2023_105300
crossref_primary_10_1007_s00701_021_04938_5
crossref_primary_10_1002_14651858_CD015067_pub2
crossref_primary_10_3390_brainsci14070695
crossref_primary_10_1016_j_clinph_2021_01_020
crossref_primary_10_1080_02687038_2020_1769987
crossref_primary_10_3389_fpsyt_2022_828773
crossref_primary_10_1016_j_brs_2019_12_019
crossref_primary_10_1016_j_brs_2021_02_018
crossref_primary_10_1016_j_jad_2025_01_017
crossref_primary_10_3389_fnimg_2024_1341732
crossref_primary_10_3390_brainsci12010095
crossref_primary_10_1007_s11062_020_09875_0
crossref_primary_10_1016_j_brs_2021_09_006
crossref_primary_10_1097_CM9_0000000000003581
crossref_primary_10_3390_jcm10132981
crossref_primary_10_1016_j_clinph_2023_12_129
crossref_primary_10_1016_j_scib_2024_10_001
crossref_primary_10_3389_fnbeh_2018_00133
crossref_primary_10_1176_appi_focus_17101
crossref_primary_10_3389_fneur_2024_1286856
crossref_primary_10_1136_bmjopen_2024_090523
crossref_primary_10_1016_j_bpsc_2022_09_014
crossref_primary_10_1016_j_neubiorev_2024_105831
crossref_primary_10_1038_s41598_021_87914_4
crossref_primary_10_3389_fnhum_2023_1056432
crossref_primary_10_1007_s00702_019_02092_y
crossref_primary_10_1186_s42234_020_00054_4
crossref_primary_10_1080_14737175_2020_1820324
crossref_primary_10_3389_fneur_2020_00701
crossref_primary_10_1097_WNP_0000000000000838
crossref_primary_10_1007_s00424_020_02428_8
crossref_primary_10_1002_gj_4862
crossref_primary_10_1038_s41598_020_64717_7
crossref_primary_10_1016_j_cortex_2024_05_004
crossref_primary_10_1038_s41598_024_62185_x
crossref_primary_10_1186_s12904_023_01129_0
crossref_primary_10_1016_j_clinph_2024_06_004
crossref_primary_10_1016_j_cortex_2019_10_001
crossref_primary_10_1111_ejn_16603
crossref_primary_10_1093_brain_awab257
crossref_primary_10_1016_j_clinph_2017_06_242
crossref_primary_10_1126_sciadv_adp3145
crossref_primary_10_1016_j_jpain_2021_03_150
crossref_primary_10_1016_j_rehab_2019_05_009
crossref_primary_10_3389_fnins_2024_1453839
crossref_primary_10_1038_s41598_024_55125_2
crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_496_22
crossref_primary_10_1016_j_wneu_2023_06_090
crossref_primary_10_1038_s41598_020_64378_6
crossref_primary_10_1097_PHM_0000000000001721
crossref_primary_10_1590_1516_4446_2019_0620
crossref_primary_10_1590_1516_4446_2019_0741
crossref_primary_10_3390_brainsci12091194
crossref_primary_10_1038_s41598_017_17279_0
crossref_primary_10_1111_head_13935
crossref_primary_10_3389_fcvm_2022_853427
crossref_primary_10_1177_1545968320962513
crossref_primary_10_1186_s13195_021_00922_4
crossref_primary_10_1016_j_bbr_2023_114600
crossref_primary_10_1126_sciadv_aaz2747
crossref_primary_10_3390_biomedicines10102333
crossref_primary_10_1177_15459683211019344
crossref_primary_10_1038_s41598_021_02177_3
crossref_primary_10_3389_fnhum_2024_1484593
crossref_primary_10_3389_fnbeh_2018_00132
crossref_primary_10_1007_s13311_019_00734_3
crossref_primary_10_1016_j_brs_2020_08_017
crossref_primary_10_1038_s41598_023_33057_7
crossref_primary_10_1073_pnas_2101273118
crossref_primary_10_1177_15500594221098285
crossref_primary_10_1016_j_jsmc_2019_11_002
crossref_primary_10_1038_s41598_019_39900_0
crossref_primary_10_1016_j_nbd_2023_106137
crossref_primary_10_3390_biomedicines10071681
crossref_primary_10_3389_fnmol_2022_1056966
crossref_primary_10_1016_j_ijpsycho_2019_04_002
crossref_primary_10_1007_s00221_022_06462_z
crossref_primary_10_1177_20406223241297397
crossref_primary_10_3390_life14050539
crossref_primary_10_1016_j_bjpt_2024_101088
crossref_primary_10_3390_brainsci11070947
crossref_primary_10_3390_brainsci12091179
crossref_primary_10_1002_hbm_24908
crossref_primary_10_3389_fnins_2022_984893
crossref_primary_10_3389_fnagi_2019_00144
crossref_primary_10_1016_j_bbr_2019_112232
crossref_primary_10_3390_brainsci9030069
crossref_primary_10_3390_life13051172
crossref_primary_10_1186_s13063_024_08045_5
crossref_primary_10_1002_ana_25151
crossref_primary_10_1016_j_jfludis_2025_106100
crossref_primary_10_1155_2022_9419154
crossref_primary_10_3389_fpsyg_2019_00213
crossref_primary_10_3389_fnins_2020_547069
crossref_primary_10_1016_j_pnpbp_2020_110119
crossref_primary_10_1186_s13195_024_01381_3
crossref_primary_10_1002_mds_29967
crossref_primary_10_1152_jn_00590_2018
crossref_primary_10_1017_neu_2021_14
crossref_primary_10_17749_2077_8333_epi_par_con_2021_043
crossref_primary_10_1016_j_neuroscience_2019_11_016
crossref_primary_10_1097_YCT_0000000000000523
crossref_primary_10_3389_fncel_2019_00400
crossref_primary_10_1007_s10072_021_05641_0
crossref_primary_10_1186_s12888_024_05650_1
crossref_primary_10_3389_fneur_2019_01089
crossref_primary_10_1007_s00702_020_02223_w
crossref_primary_10_1016_j_bbr_2023_114661
crossref_primary_10_1038_s41598_020_61626_7
crossref_primary_10_3390_brainsci13030395
crossref_primary_10_1016_j_bbr_2020_112801
crossref_primary_10_1016_j_neubiorev_2021_07_013
crossref_primary_10_1007_s00482_022_00684_4
crossref_primary_10_1111_add_15889
crossref_primary_10_3390_ijms26041754
crossref_primary_10_1016_j_cmpb_2023_107878
crossref_primary_10_1016_j_neuropsychologia_2018_07_037
crossref_primary_10_1016_j_yebeh_2022_108676
crossref_primary_10_1097_WNR_0000000000001413
crossref_primary_10_1111_ejn_15563
crossref_primary_10_1016_j_jpsychores_2024_111868
crossref_primary_10_1002_mds_29836
crossref_primary_10_1002_adma_202400346
crossref_primary_10_1097_YCT_0000000000000531
crossref_primary_10_12688_f1000research_21831_2
crossref_primary_10_1097_YCT_0000000000000534
crossref_primary_10_12688_f1000research_21831_1
crossref_primary_10_7717_peerj_19064
crossref_primary_10_1016_j_brs_2021_01_011
crossref_primary_10_1016_j_bbr_2023_114770
crossref_primary_10_1016_j_cnp_2022_05_002
crossref_primary_10_1016_j_arcmed_2024_103086
crossref_primary_10_1177_10538135241301692
crossref_primary_10_3389_fnsys_2022_827353
crossref_primary_10_1007_s12152_022_09508_9
crossref_primary_10_1089_jop_2022_0046
crossref_primary_10_1016_j_cortex_2019_08_009
crossref_primary_10_1016_j_psc_2023_02_005
crossref_primary_10_3389_fnhum_2020_595567
crossref_primary_10_3389_fnhum_2022_918470
crossref_primary_10_3390_brainsci14020133
crossref_primary_10_1016_j_neucli_2019_11_002
crossref_primary_10_1016_j_brs_2023_05_016
crossref_primary_10_1016_j_neuroscience_2019_04_032
crossref_primary_10_1016_j_pnpbp_2018_11_004
crossref_primary_10_3389_fneur_2022_913517
crossref_primary_10_12998_wjcc_v9_i31_9350
crossref_primary_10_1016_j_npep_2025_102501
crossref_primary_10_1097_YCT_0000000000000540
crossref_primary_10_1186_s12984_019_0581_1
crossref_primary_10_1002_bem_22542
crossref_primary_10_3928_00485713_20221025_01
crossref_primary_10_1038_s41596_021_00664_5
crossref_primary_10_1093_braincomms_fcab010
crossref_primary_10_1016_j_brs_2024_07_013
crossref_primary_10_1016_j_clinph_2019_04_004
crossref_primary_10_1055_a_2071_7668
crossref_primary_10_1007_s00221_023_06620_x
crossref_primary_10_1093_cercor_bhad127
crossref_primary_10_1016_j_neuroimage_2019_116451
crossref_primary_10_1038_s41562_020_00979_5
crossref_primary_10_1093_braincomms_fcaa045
crossref_primary_10_1287_mnsc_2022_4596
crossref_primary_10_1016_j_burns_2018_11_020
crossref_primary_10_2174_1567205020666230601095957
crossref_primary_10_1016_j_brs_2023_05_008
crossref_primary_10_52675_jhesp_1279591
crossref_primary_10_3233_RNN_231314
crossref_primary_10_1111_ejn_15584
crossref_primary_10_1016_j_neurol_2021_12_014
crossref_primary_10_1007_s11055_022_01258_8
crossref_primary_10_1016_j_pnpbp_2020_110149
crossref_primary_10_3389_fnins_2018_00421
crossref_primary_10_3389_fnins_2021_651253
crossref_primary_10_1093_brain_awab157
crossref_primary_10_1016_j_neuroimage_2021_118100
crossref_primary_10_1080_10749357_2023_2165260
crossref_primary_10_1007_s11724_017_0532_1
crossref_primary_10_3389_fpsyt_2023_1206805
crossref_primary_10_1016_j_clinph_2022_08_018
crossref_primary_10_3390_jcm14062083
crossref_primary_10_5812_ijpbs_124236
crossref_primary_10_1038_s41539_024_00222_0
crossref_primary_10_1016_j_neurom_2023_04_477
crossref_primary_10_1038_s41598_020_76533_0
crossref_primary_10_1038_s41598_024_79118_3
crossref_primary_10_1007_s00787_024_02635_z
crossref_primary_10_1007_s10608_019_10044_9
crossref_primary_10_1016_j_mri_2019_03_010
crossref_primary_10_3390_jcm12103407
crossref_primary_10_1007_s11357_024_01272_3
crossref_primary_10_1177_15459683231209136
crossref_primary_10_1161_STROKEAHA_120_029221
crossref_primary_10_3389_fnins_2018_00176
crossref_primary_10_3389_fpsyt_2021_567718
crossref_primary_10_12688_wellcomeopenres_16679_1
crossref_primary_10_3389_fnins_2021_779271
crossref_primary_10_12688_wellcomeopenres_16679_2
crossref_primary_10_1109_ACCESS_2022_3231729
crossref_primary_10_1016_j_neuroimage_2022_119351
crossref_primary_10_1016_j_neurot_2024_e00460
crossref_primary_10_1371_journal_pbio_3000833
crossref_primary_10_1016_S0140_6736_23_00640_2
crossref_primary_10_1093_schbul_sbac078
crossref_primary_10_1109_ACCESS_2021_3100851
crossref_primary_10_1111_ene_14451
crossref_primary_10_1016_j_jad_2019_02_039
crossref_primary_10_1016_j_neulet_2020_134775
crossref_primary_10_3390_brainsci14050457
crossref_primary_10_4306_jknpa_2018_57_2_119
crossref_primary_10_1038_s41598_022_13091_7
crossref_primary_10_1007_s00221_025_07009_8
crossref_primary_10_1007_s11357_024_01077_4
crossref_primary_10_1093_scan_nsaa125
crossref_primary_10_1186_s13063_022_06128_9
crossref_primary_10_5498_wjp_v11_i8_477
crossref_primary_10_1016_j_neuroscience_2024_07_022
crossref_primary_10_3389_fnins_2018_00284
crossref_primary_10_1097_MD_0000000000019671
crossref_primary_10_1002_bem_22417
crossref_primary_10_4103_ipj_ipj_56_24
crossref_primary_10_1002_bem_22536
crossref_primary_10_1093_texcom_tgaa069
crossref_primary_10_3390_brainsci13071037
crossref_primary_10_1111_nmo_14173
crossref_primary_10_1080_02687038_2024_2341462
crossref_primary_10_3389_fpsyg_2024_1405636
crossref_primary_10_1080_14737175_2021_1974841
crossref_primary_10_3389_fnins_2021_576526
crossref_primary_10_1017_cjn_2021_158
crossref_primary_10_1111_ejn_15018
crossref_primary_10_3389_fneur_2022_953939
crossref_primary_10_1111_ejn_15017
crossref_primary_10_3389_fpsyt_2021_680525
crossref_primary_10_3390_brainsci13040698
crossref_primary_10_1007_s41465_019_00136_5
crossref_primary_10_1162_jocn_a_02074
crossref_primary_10_1007_s10548_020_00752_x
crossref_primary_10_3390_ctn5020013
crossref_primary_10_1016_j_clinph_2021_10_016
crossref_primary_10_1088_1741_2552_abf00b
crossref_primary_10_1016_j_neulet_2023_137190
crossref_primary_10_3389_fnagi_2021_725013
crossref_primary_10_1136_bcr_2021_243212
crossref_primary_10_1007_s12152_021_09468_6
crossref_primary_10_1080_08164622_2024_2349565
crossref_primary_10_1007_s00429_021_02245_4
crossref_primary_10_1016_S2215_0366_18_30468_1
crossref_primary_10_9758_cpn_22_1042
crossref_primary_10_1080_2326263X_2024_2372863
crossref_primary_10_1176_appi_ajp_20230838
crossref_primary_10_3233_JAD_179932
crossref_primary_10_3389_fpsyt_2022_782144
crossref_primary_10_1016_j_nlm_2019_107037
crossref_primary_10_3389_fpsyg_2022_1005479
crossref_primary_10_1111_ejn_15148
crossref_primary_10_3389_fneur_2023_1269472
crossref_primary_10_3389_fphy_2020_00105
crossref_primary_10_1038_s41598_018_25562_x
crossref_primary_10_1038_s41593_023_01457_7
crossref_primary_10_1371_journal_pone_0217729
crossref_primary_10_1038_s41467_019_13417_6
crossref_primary_10_1136_bmjopen_2021_055038
crossref_primary_10_1097_YCT_0000000000000512
crossref_primary_10_3389_fnhum_2020_00366
crossref_primary_10_3390_brainsci12040472
crossref_primary_10_1016_j_dcn_2023_101312
crossref_primary_10_1371_journal_pone_0318593
crossref_primary_10_1007_s12311_024_01741_7
crossref_primary_10_1007_s40473_021_00227_8
crossref_primary_10_1002_trc2_12219
crossref_primary_10_1016_j_dcn_2023_101317
crossref_primary_10_1038_s41598_023_32779_y
crossref_primary_10_3344_kjp_2021_34_2_156
crossref_primary_10_3389_fncel_2022_945777
crossref_primary_10_3389_fneur_2020_605335
crossref_primary_10_1016_j_brs_2019_07_027
crossref_primary_10_3389_fnhum_2021_674851
crossref_primary_10_1093_cercor_bhae395
crossref_primary_10_1186_s42234_022_00089_9
crossref_primary_10_1007_s00221_023_06728_0
crossref_primary_10_1136_gpsych_2023_101261
crossref_primary_10_1007_s15202_019_2170_3
crossref_primary_10_1007_s12311_023_01590_w
crossref_primary_10_3389_fnhum_2020_00349
crossref_primary_10_3389_fnins_2022_1013691
crossref_primary_10_1016_j_clinph_2022_07_494
crossref_primary_10_1016_j_pnpbp_2018_06_003
crossref_primary_10_3389_fneur_2022_897124
crossref_primary_10_1038_s41598_020_75460_4
crossref_primary_10_3389_fnhum_2022_952602
crossref_primary_10_1002_mrm_28944
crossref_primary_10_3390_nano11081962
crossref_primary_10_1016_j_neuropsychologia_2020_107672
crossref_primary_10_1038_s41598_024_53507_0
crossref_primary_10_3390_brainsci11020207
crossref_primary_10_1038_s41598_024_57917_y
crossref_primary_10_61186_psj_21_2_113
crossref_primary_10_1186_s12984_024_01481_z
crossref_primary_10_1177_0276237418818637
crossref_primary_10_1016_j_cortex_2022_01_021
crossref_primary_10_1111_jsr_13927
crossref_primary_10_1016_j_msard_2023_105114
crossref_primary_10_1007_s00702_020_02166_2
crossref_primary_10_1111_ejn_15049
crossref_primary_10_1007_s12311_023_01649_8
crossref_primary_10_1155_2020_8896423
crossref_primary_10_3389_fpsyg_2019_02923
crossref_primary_10_3758_s13415_021_00885_x
crossref_primary_10_1007_s41465_018_0088_x
crossref_primary_10_1186_s12888_023_05112_0
crossref_primary_10_1007_s12311_021_01255_6
crossref_primary_10_1007_s41465_017_0062_z
crossref_primary_10_1038_s41539_024_00278_y
crossref_primary_10_1080_21641846_2024_2365107
crossref_primary_10_1590_1516_4446_2017_0018
crossref_primary_10_3390_brainsci8080155
crossref_primary_10_1016_j_brs_2019_11_004
crossref_primary_10_1016_j_brs_2019_05_015
crossref_primary_10_1038_s41598_020_80069_8
crossref_primary_10_1016_j_brs_2019_11_007
crossref_primary_10_1017_S0033291721001859
crossref_primary_10_3389_fneur_2023_1098831
crossref_primary_10_3389_fncel_2022_818703
crossref_primary_10_3389_fnins_2022_936975
crossref_primary_10_1111_cns_14109
crossref_primary_10_1001_jamaneurol_2018_1751
crossref_primary_10_1162_imag_a_00429
crossref_primary_10_1186_s13104_020_05421_7
crossref_primary_10_1016_j_neures_2019_12_005
crossref_primary_10_1016_j_cobeha_2019_02_003
crossref_primary_10_1016_j_neuroimage_2022_119109
crossref_primary_10_1016_j_psychres_2020_112744
crossref_primary_10_1016_j_neubiorev_2019_06_007
crossref_primary_10_3390_brainsci14090928
crossref_primary_10_3389_fnins_2022_903977
crossref_primary_10_1016_j_clinph_2021_06_031
crossref_primary_10_1186_s12984_019_0591_z
crossref_primary_10_1007_s41465_024_00304_2
crossref_primary_10_1186_s13063_023_07680_8
crossref_primary_10_3390_s18041136
crossref_primary_10_1136_bmjopen_2023_075373
crossref_primary_10_1007_s13311_023_01437_6
crossref_primary_10_3390_brainsci13030451
crossref_primary_10_1111_bdi_13283
crossref_primary_10_1146_annurev_med_060619_022857
crossref_primary_10_1212_WNL_0000000000006210
crossref_primary_10_5664_jcsm_10272
crossref_primary_10_1016_j_neucli_2019_07_013
crossref_primary_10_3389_fnins_2024_1389651
crossref_primary_10_1016_j_cortex_2023_03_011
crossref_primary_10_1016_j_jtos_2018_11_002
crossref_primary_10_1167_tvst_13_9_25
crossref_primary_10_1038_s41598_024_51690_8
crossref_primary_10_1155_np_7853199
crossref_primary_10_1016_j_physbeh_2023_114073
crossref_primary_10_1016_j_brs_2022_01_004
crossref_primary_10_1016_j_clinph_2021_05_015
crossref_primary_10_1038_s41598_024_52763_4
crossref_primary_10_3389_fnhum_2021_639640
crossref_primary_10_1155_2019_2184398
crossref_primary_10_1177_03000605241238066
crossref_primary_10_1016_j_brs_2023_01_1672
crossref_primary_10_1016_j_jad_2018_02_077
crossref_primary_10_1016_j_brs_2019_06_029
crossref_primary_10_3389_fnagi_2022_1009262
crossref_primary_10_3390_bs14121176
crossref_primary_10_1016_j_neulet_2018_11_015
crossref_primary_10_1016_j_neuron_2022_05_005
crossref_primary_10_1016_j_neurom_2022_10_049
crossref_primary_10_3389_fnhum_2021_661432
Cites_doi 10.1016/j.expneurol.2016.02.018
10.1523/JNEUROSCI.5743-12.2013
10.1016/j.neurobiolaging.2014.03.030
10.1016/j.neuron.2010.06.005
10.1016/j.neubiorev.2016.05.001
10.1017/S1461145710001197
10.3389/fnagi.2015.00107
10.1113/jphysiol.2007.137711
10.1111/j.1601-5215.2010.00480.x
10.1088/1741-2560/12/4/046030
10.1111/ejn.12899
10.1177/0883073813503710
10.1017/S1461145708009553
10.3389/fnagi.2014.00115
10.3389/fnhum.2015.00265
10.7554/eLife.18834
10.1038/ncomms11100
10.1093/ijnp/pyu047
10.1016/j.neuroimage.2013.07.038
10.1016/j.neuroimage.2010.11.085
10.1371/journal.pone.0121904
10.1152/physrev.00020.2004
10.1016/j.cortex.2012.11.002
10.1016/j.neuroimage.2013.02.049
10.1016/j.brs.2015.06.017
10.1016/j.brs.2014.06.008
10.1109/TBME.2011.2116019
10.1016/j.clinph.2010.05.020
10.1016/j.brs.2014.06.005
10.1016/j.clinph.2015.02.001
10.1016/j.jns.2015.05.009
10.1016/j.bandc.2009.01.008
10.1016/j.brs.2016.06.004
10.1017/S1461145710001690
10.1016/j.brs.2009.04.002
10.1016/j.neulet.2012.05.074
10.1016/S1474-4422(15)70016-5
10.1016/j.clinph.2014.09.026
10.1111/j.1601-5215.2010.00495.x
10.1016/j.brs.2014.06.006
10.1016/j.brs.2011.09.001
10.1016/S1388-2457(03)00235-9
10.1016/j.cmpb.2012.09.001
10.1016/j.neuroimage.2012.10.026
10.1186/1744-9081-4-33
10.1016/j.neuroimage.2010.03.052
10.1016/j.neuroimage.2015.11.034
10.1155/2015/928631
10.1016/j.brs.2011.08.005
10.1053/j.tvir.2013.08.010
10.1136/bmj.282.6268.974
10.3233/NRE-131019
10.2522/ptj.20130565
10.1007/s00108-012-3087-5
10.1016/j.ridd.2014.07.030
10.1002/nbm.3244
10.1016/j.neuropsychologia.2015.01.037
10.1152/jn.00210.2011
10.1177/0883073816630083
10.1523/JNEUROSCI.5348-06.2007
10.1097/j.pain.0000000000000386
10.1155/2014/173073
10.1016/j.neuron.2010.03.035
10.1016/j.brs.2014.10.012
10.1016/j.brs.2008.04.003
10.1177/1073858414526645
10.3389/fnagi.2014.00131
10.1093/cercor/bhp269
10.1097/PHM.0b013e3181a0e4cb
10.1016/j.brs.2015.01.001
10.1111/j.1365-2125.1994.tb05705.x
10.1007/s00702-016-1572-z
10.1016/j.jneumeth.2016.12.008
10.1007/s00702-013-1104-z
10.1177/0883073815575369
10.1016/j.jpain.2011.07.001
10.1016/j.clinph.2015.01.006
10.3389/fnagi.2011.00016
10.1109/TNSRE.2012.2200046
10.1088/1741-2560/11/1/016002
10.1016/j.neuroimage.2013.06.079
10.1088/1741-2560/11/3/036002
10.1016/j.biopsych.2004.07.017
10.1177/0333102411399349
10.1176/appi.ajp.2017.16090996
10.1016/j.neurobiolaging.2011.05.007
10.1098/rsta.2015.0187
10.1016/j.clinph.2010.04.020
10.1523/JNEUROSCI.0106-14.2014
10.1016/j.nicl.2013.05.011
10.1212/WNL.56.6.716
10.1038/nn.3719
10.1097/WNR.0000000000000536
10.1111/head.12249
10.1016/j.clinph.2004.05.001
10.3389/fnagi.2014.00253
10.1016/j.neuroimage.2015.01.033
10.1016/j.neulet.2014.03.011
10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1
10.1016/S1388-2457(01)00731-3
10.1176/jnp.23.3.jnpe4
10.1002/1531-8257(199901)14:1<157::AID-MDS1027>3.0.CO;2-U
10.1111/j.1460-9568.2010.07080.x
10.1016/j.brs.2017.01.132
10.1159/000375323
10.3389/fnagi.2013.00087
10.1097/PHM.0b013e3181f70aa7
10.1016/j.apmr.2014.10.013
10.1016/j.clinph.2015.03.015
10.1016/j.brs.2016.03.007
10.1007/s004210050431
10.1155/2016/4274127
10.1111/j.1526-4610.2012.02141.x
10.1589/jpts.27.763
10.1523/JNEUROSCI.23-19-07255.2003
10.1016/j.neuroimage.2015.06.026
10.3389/fnhum.2014.00739
10.4088/JCP.15lr10420
10.1016/j.yebeh.2012.06.027
10.1097/YCT.0b013e3181a2f87e
10.1016/j.brs.2013.08.004
10.1007/s00417-014-2889-7
10.1016/j.brainres.2016.08.034
10.1002/phy2.255
10.1016/j.brs.2016.03.018
10.1589/jpts.26.945
10.1093/ijnp/pyu090
10.1371/journal.pone.0013766
10.3389/fnhum.2016.00068
10.1093/jlb/lsv017
10.1016/j.brainresbull.2015.09.011
10.1007/s11517-015-1301-z
10.1109/TNSRE.2014.2308997
10.1111/joor.12300
10.1161/STROKEAHA.113.001687
10.3389/fnagi.2014.00275
10.1152/jn.00490.2014
10.3389/fncel.2016.00072
10.1161/STROKEAHA.110.583088
10.3389/fnins.2016.00262
10.1017/S0266462303000217
10.1016/j.clinph.2009.01.022
10.1016/j.jneumeth.2010.05.007
10.1016/j.brs.2014.08.005
10.1016/j.clinph.2005.12.003
10.1016/j.parkreldis.2011.05.007
10.1017/S1461145713000084
10.1523/JNEUROSCI.5316-03.2004
10.1152/jn.00319.2011
10.1088/1741-2560/8/6/066017
10.1016/j.brs.2015.08.003
10.1016/j.clinph.2008.07.249
10.1016/j.neuropsychologia.2015.04.014
10.1016/j.neuroimage.2015.10.003
10.1016/j.brs.2016.11.005
10.1080/17512433.2016.1200971
10.1155/2016/2715196
10.1016/j.jneumeth.2004.10.020
10.1016/j.cub.2013.12.041
10.1016/j.brs.2012.03.008
10.1016/j.cub.2013.02.026
10.1152/jn.2000.83.3.1394
10.1016/j.clinph.2015.11.012
10.1016/j.expneurol.2015.08.018
10.1016/j.brs.2011.01.001
10.1038/501167b
10.1111/j.0953-816X.2004.03450.x
10.1016/j.brs.2015.06.008
10.1109/10.102812
10.1177/1550059414540647
10.1111/nyas.12855
10.1016/j.brs.2009.03.005
10.1038/pcan.2015.47
10.1111/j.1460-9568.2011.07939.x
10.1167/iovs.04-1339
10.1016/j.brs.2009.03.007
10.1016/j.brainres.2012.10.009
10.1016/j.neuropsychologia.2013.03.013
10.5114/ninp.2013.38221
10.1016/j.clinph.2014.02.027
10.1371/journal.pone.0156134
10.1186/1743-0003-11-124
10.1007/s00702-016-1646-y
10.3233/NRE-2010-0617
10.3389/fnagi.2014.00146
10.1523/JNEUROSCI.3887-12.2013
10.3389/fnsys.2014.00127
10.1016/j.brs.2015.05.002
10.1016/j.brainres.2014.05.030
10.1016/j.brs.2014.10.013
10.1016/j.brs.2016.05.004
10.1016/j.brs.2011.07.007
10.3389/fnhum.2016.00361
10.1111/j.1460-9568.2005.04233.x
10.1097/YCT.0b013e318295e30f
10.1109/TBME.2015.2448555
10.1016/j.clinph.2009.08.016
10.1177/0883073813492385
10.1152/japplphysiol.01390.2010
10.3389/fnagi.2015.00230
10.1016/j.brs.2014.01.059
10.1162/jocn_a_00897
10.3791/51730
10.1089/cap.2015.0172
10.1016/j.cct.2015.06.005
10.1016/j.bandl.2011.05.002
10.1001/2013.jamapsychiatry.32
10.1016/j.jns.2016.07.065
10.1016/j.clinph.2007.01.010
10.1109/TBME.2016.2553177
10.1111/ner.12230
10.1371/journal.pone.0076112
10.1016/0005-7916(72)90029-8
10.1186/1745-6215-15-366
10.1017/S1461145709990411
10.3389/fncel.2015.00307
10.1016/j.jneumeth.2015.07.012
10.1146/annurev.bioeng.10.061807.160518
10.1093/brain/awh527
10.1038/nn.2727
10.1016/j.brs.2010.11.001
10.1016/j.apmr.2014.11.004
10.1007/BF02359800
10.1016/j.cub.2011.07.021
10.1016/j.parkreldis.2009.09.006
10.1371/journal.pone.0142740
10.1111/ner.12527
10.3389/fncel.2016.00188
10.1016/j.brs.2014.10.015
10.1016/j.clinph.2014.10.142
10.3389/fnagi.2013.00049
10.1177/0883073812460092
10.3389/fneur.2016.00066
10.1016/j.bbr.2015.07.037
10.3109/02699206.2011.570852
10.1002/hbm.23016
10.1523/JNEUROSCI.5407-13.2014
10.1007/s00221-015-4391-9
10.3791/50426
10.3389/fnhum.2017.00113
10.1016/j.scr.2013.01.004
10.1213/ANE.0b013e3181e3697e
10.1016/j.brs.2015.08.009
10.1177/1545968312474116
10.1007/s00221-015-4310-0
10.1016/j.neures.2011.07.1668
10.1016/j.neuroimage.2016.03.065
10.1097/WNR.0000000000000080
10.3389/fnsys.2015.00054
10.1212/01.WNL.0000152986.07469.E9
10.1016/j.clinph.2012.11.021
10.3389/fnsys.2013.00094
10.1093/brain/awp154
10.1523/JNEUROSCI.4432-08.2009
10.1371/journal.pone.0043776
10.1016/j.brs.2013.01.009
10.1007/s00417-012-2084-7
10.1097/HTR.0b013e318292a4c2
10.1016/j.brs.2014.07.036
10.1038/srep31236
10.1523/JNEUROSCI.4519-15.2016
10.1371/journal.pone.0149703
10.1016/j.clinph.2010.04.033
10.1016/j.pain.0000000000000006
10.1016/j.nbd.2009.05.027
10.1186/1471-2202-11-38
10.3109/09638288.2015.1055379
10.1007/s12015-014-9524-1
10.3389/fnagi.2014.00289
10.1016/j.neuron.2004.12.033
10.1007/s00103-010-1105-0
10.1111/ner.12298
10.1016/j.neucli.2016.10.002
10.1016/j.eplepsyres.2011.07.016
10.1016/j.neurobiolaging.2008.12.008
10.1016/j.neuroimage.2013.12.002
10.1111/ner.12574
10.1007/s10384-009-0657-8
10.5535/arm.2011.35.4.579
10.1152/jn.01312.2006
10.1016/j.brs.2011.06.001
10.1523/JNEUROSCI.0055-13.2013
10.1097/YCT.0000000000000074
10.3389/fneng.2014.00028
10.1038/srep21583
10.1097/YCT.0b013e318279c1a1
10.1016/j.brainresbull.2007.01.004
10.1002/mds.20951
10.1016/S0166-2236(99)01401-0
10.1016/j.neuroimage.2012.12.034
10.1243/09544110360729090
10.1016/j.neuroimage.2013.01.042
10.1007/s00406-014-0540-6
10.1016/j.biopsych.2015.11.008
10.1016/j.brs.2013.11.008
10.1137/15M1026481
10.1016/j.brs.2017.02.007
10.1016/j.brs.2016.03.001
10.1016/j.clinph.2009.03.023
10.1016/j.eurpsy.2012.09.001
10.1016/j.pain.2013.06.045
10.1097/YCT.0b013e3182012b89
10.1113/jphysiol.2013.270280
10.1177/0269215514566997
10.1097/YCT.0b013e3181e631a8
10.1523/JNEUROSCI.5308-13.2014
10.1016/j.jneumeth.2013.07.016
10.1371/journal.pone.0143533
10.1002/ana.23761
10.5392/JKCA.2012.12.07.261
10.1016/j.brs.2015.01.401
10.1016/j.clinph.2016.08.016
10.1016/j.brs.2011.02.007
10.1016/j.nbd.2009.11.004
10.1016/j.jpainsymman.2009.09.023
10.1016/j.neuroimage.2010.04.252
10.1016/j.neuron.2007.07.027
10.1088/1741-2560/8/4/046011
10.1177/1073858416631966
10.1016/j.clinph.2017.01.021
10.1212/WNL.0000000000001806
10.1113/jphysiol.1955.sp005248
10.1016/j.brs.2014.06.004
10.1177/0883073815615672
10.1016/j.brs.2007.10.001
10.1523/JNEUROSCI.4927-12.2013
10.1016/j.neuron.2016.02.031
10.1038/srep10289
10.1016/j.brs.2011.07.003
10.1016/j.neulet.2013.08.064
10.1167/iovs.07-0706
10.1113/JP270484
10.3233/NRE-151251
10.1523/JNEUROSCI.4248-08.2008
10.1016/j.brs.2008.06.004
10.1016/j.neuroimage.2017.03.001
10.1016/j.clinph.2005.10.014
10.3389/fnsys.2014.00132
10.1006/dbio.1995.1285
10.1016/j.brs.2011.08.008
10.1186/s13287-015-0042-0
10.1002/pri.1543
10.1093/cercor/bhn032
10.1192/bjp.bp.111.097634
10.1016/j.jbmt.2015.03.007
10.1155/2016/5068127
10.1016/j.neuroimage.2015.11.044
10.1016/j.clinph.2012.02.082
10.3389/fnsys.2015.00026
10.3389/fnhum.2017.00077
10.1016/j.neuroimage.2015.06.067
10.1016/j.brs.2010.05.002
10.1002/ana.24689
10.1016/j.brs.2011.10.001
10.1136/medethics-2015-102704
10.1016/j.neurobiolaging.2015.12.010
10.1088/0031-9155/61/12/4506
10.1097/YCT.0b013e3181a744bf
10.1523/JNEUROSCI.2499-15.2016
10.1167/iovs.06-1329
ContentType Journal Article
Copyright 2017 International Federation of Clinical Neurophysiology
International Federation of Clinical Neurophysiology
Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
Copyright_xml – notice: 2017 International Federation of Clinical Neurophysiology
– notice: International Federation of Clinical Neurophysiology
– notice: Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.clinph.2017.06.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage 1809
ExternalDocumentID PMC5985830
28709880
10_1016_j_clinph_2017_06_001
S1388245717302122
1_s2_0_S1388245717302122
Genre Research Support, N.I.H., Intramural
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH111896
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
VQA
AADPK
AAIAV
ABLVK
ABYKQ
AFMIJ
AHPSJ
AJBFU
EFLBG
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c663t-6997a7600fd047f63e2a7bcaa2329b12b427362a9da927e8d3014b084de146733
IEDL.DBID .~1
ISSN 1388-2457
1872-8952
IngestDate Thu Aug 21 18:26:41 EDT 2025
Fri Jul 11 06:55:51 EDT 2025
Wed Feb 19 02:43:02 EST 2025
Tue Jul 01 02:54:40 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Fri Feb 23 02:12:23 EST 2024
Sun Feb 23 10:20:02 EST 2025
Tue Aug 26 16:35:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords FDA
PPC
RCT
tsDCS
TES
M1
tACS
CNS
HD-tDCS
IFG
MDD
PFC
CFR
MRS
TPJ
DBS
Adverse events
ONS
MMSE
tRNS
Vmem
NMDA
Safety
EC
EF
NSE
AC
AD
AE
DLPFC
EEG
MEG
ICH
MAE
AR
fMRI
PD
DIY
tDCS
SAE
ECT
MEP
TMS
rTMS
DC
Repetitive Transcranial magnetic stimulation
Randomized clinical trial
Central nervous system
Code of Federal Regulations
Neuron specific enolase
Inferior frontal gyrus
transcranial direct current stimulation
Transcranial electrical stimulation
Temporoparietal junction
Magnetic resonance spectroscopy
N-Methyl-D-Aspartate
safety
Deep Brain Stimulation
Functional magnetic resonance imaging
Food and Drug Administration
High-Definition tDCS
Major Depressive Disorder
Alzheimer’s disease
Adverse event
Do it yourself
Primary motor cortex
Direct Current
Alternating Current
Mini Mental State Examination
International Council on Harmonisation (before 2015: International Conference on Harmonisation)
Probability Learning Task
transcutaneous spinal Direct Current Stimulation
Electroencephalography
Mild adverse event
transcranial alternating current stimulation
European Commission
Dorsolateral prefrontal cortex
Optic nerve stimulation
Serious adverse event
PLT
Transmembrane potential
Posterior Parietal Cortex
Adverse reaction
Electroconvulsive therapy
Transcranial magnetic stimulation
Magnetoencephalography
adverse events
Prefrontal Cortex
Motor Evoked Potential
Electric field
Parkinson’s disease
Transcranial random noise stimulation
Language English
License Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-6997a7600fd047f63e2a7bcaa2329b12b427362a9da927e8d3014b084de146733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Shared last authorship.
OpenAccessLink http://www.who.int/medical_devices/publications/en/MD_Regulations.pdf
PMID 28709880
PQID 1920195671
PQPubID 23479
PageCount 36
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985830
proquest_miscellaneous_1920195671
pubmed_primary_28709880
crossref_citationtrail_10_1016_j_clinph_2017_06_001
crossref_primary_10_1016_j_clinph_2017_06_001
elsevier_sciencedirect_doi_10_1016_j_clinph_2017_06_001
elsevier_clinicalkeyesjournals_1_s2_0_S1388245717302122
elsevier_clinicalkey_doi_10_1016_j_clinph_2017_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Clinical neurophysiology
PublicationTitleAlternate Clin Neurophysiol
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Palm, Keeser, Schiller, Fintescu, Reisinger, Mulert (b1375) 2008; 11
Manenti, Brambilla, Petesi, Ferrari, Cotelli (b1125) 2013; 5
Dmochowski, Datta, Bikson, Su, Parra (b0485) 2011; 8
Gbadeyan, Steinhauser, McMahon, Meinzer (b0680) 2016; 9
Parazzini, Fiocchi, Liorni, Ravazzani (b1400) 2015; 2015
Krishnan, Santos, Peterson, Ehinger (b0940) 2015; 8
Chaieb, Antal, Pisoni, Saiote, Opitz, Ambrus (b0355) 2014; 7
Charvet, Kasschau, Datta, Knotkova, Stevens, Alonzo (b0360) 2015; 9
Nitsche, Doemkes, Karakose, Antal, Liebetanz, Lang (b1315) 2007; 97
Floel, Suttorp, Kohl, Kurten, Lohmann, Breitenstein (b0590) 2012; 33
Bandeira, Guimaraes, Jagersbacher, Barretto, de Jesus-Silva, Santos (b0175) 2016; 31
Bennabi, Nicolier, Monnin, Tio, Pazart, Vandel (b0200) 2015; 26
Donnell, Nascimento, Lawrence, Gupta, Zieba, Truong (b0495) 2015; 8
Fagerlund, Hansen, Aslaksen (b0535) 2015; 156
Lefaucheur (b1035) 2016; 46
Gall, Schmidt, Schittkowski, Antal, Ambrus, Paulus (b0655) 2016; 11
Jwa (b0880) 2015; 2
Nitsche, Niehaus, Hoffmann, Hengst, Liebetanz, Paulus (b1325) 2004; 115
Shahid, Wen, Ahfock (b1715) 2013; 109
Tansey, Goldberg (b1820) 2010; 37
Floel, Cohen (b0585) 2010; 37
Wurzman, Hamilton, Pascual-Leone, Fox (b1980) 2016; 80
Huang, Hoffmann, Wheeler, Schiapparelli, Quinones-Hinojosa, Searson (b0835) 2016; 6
Monai, Ohkura, Tanaka, Oe, Konno, Hirai (b1245) 2016; 7
Palm, Keeser, Schiller, Fintescu, Nitsche, Reisinger (b1370) 2008; 1
Ezquerro, Moffa, Bikson, Khadka, Aparicio, de Sampaio-Junior (b0530) 2017; 20
McCreery, Agnew, Yuen, Bullara (b1155) 1990; 37
Spezia Adachi, Caumo, Laste, Fernandes Medeiros, Ripoll Rozisky, de Souza (b1765) 2012; 1489
Sadleir, Vannorsdall, Schretlen, Gordon (b1640) 2010; 51
Brindley (b0305) 1955; 127
Neuling, Ruhnau, Fusca, Demarchi, Herrmann, Weisz (b1295) 2015; 118
Antal, Polania, Schmidt-Samoa, Dechent, Paulus (b0100) 2011; 55
Anastassiou, Perin, Markram, Koch (b0060) 2011; 14
Dundas, Thickbroom, Mastaglia (b0505) 2007; 118
Rubio, Boes, Laganiere, Rotenberg, Jeurissen, Pascual-Leone (b1600) 2016; 31
Wallace, Cooper, Paulmann, Fitzgerald, Russo (b1935) 2016; 11
Shahid, Bikson, Salman, Wen, Ahfock (b1720) 2014; 11
Manor, Zhou, Jor'dan, Zhang, Fang, Pascual-Leone (b1130) 2016; 28
Parazzini, Fiocchi, Rossi, Paglialonga, Ravazzani (b1410) 2011; 58
Hidding, Baumer, Siebner, Demiralay, Buhmann, Weyh (b0795) 2006; 21
Grappengiesser C. Versuche den Galvanismus zur Heilung einiger Krankheiten. Berlin; 1801.
Laczo, Antal, Niebergall, Treue, Paulus (b0985) 2012; 5
Darby, Pascual-Leone (b0435) 2017; 11
Schneider, Hopp (b1695) 2011; 25
Wessel, Zimerman, Hummel (b1950) 2015; 9
Cogan (b0385) 2008; 10
Costanzo, Menghini, Casula, Amendola, Mazzone, Valeri (b0410) 2015; 8
Howell, Huynh, Grill (b0825) 2015; 12
Kim, Udupa, Ni, Moro, Gunraj, Mazzella (b0915) 2015; 85
Food, Drug Administration HHS. International conference on harmonisation; guidance on E2F development safety update report; availability. Notice Fed Regist 2011;76:52667–8.
Mattai, Miller, Weisinger, Greenstein, Bakalar, Tossell (b1140) 2011; 4
Thiem (b1830) 2012; 53
Faria, Leal, Miranda (b0550) 2009; 2009
Seibt, Brunoni, Huang, Bikson (b1710) 2015; 8
Dirnagl, Iadecola, Moskowitz (b0480) 1999; 22
McCaig, Rajnicek, Song, Zhao (b1150) 2005; 85
Paiella, Butturini, Frigerio, Salvia, Armatura, Bacchion (b1360) 2015; 32
Antal, Kriener, Lang, Boros, Paulus (b0090) 2011; 31
Bajbouj, Padberg (b0170) 2014; 264
Nitsche, Liebetanz, Lang, Antal, Tergau, Paulus (b1320) 2003; 114
Volz, Farmer, Siegmund (b1900) 2016; 157
Nilsson, Lebedev, Lovden (b1300) 2015; 7
Rossi, Santarnecchi, Valenza, Ulivelli (b1580) 2016; 374
Young, Bertucco, Sheehan-Stross, Sanger (b2005) 2013; 28
Faria, Fregni, Sebastiao, Dias, Leal (b0540) 2012; 25
Schambra, Abe, Luckenbaugh, Reis, Krakauer, Cohen (b1680) 2011; 106
Antal, Lang, Boros, Nitsche, Siebner, Paulus (b0095) 2008; 18
Le Thuc, Blondeau, Nahon, Rovere (b1020) 2015; 1351
Mathys, Loui, Zheng, Schlaug (b1135) 2010; 1
Rueger, Keuters, Walberer, Braun, Klein, Sparing (b1605) 2012; 7
Antal, Terney, Kuhnl, Paulus (b0105) 2010; 39
Walberer, Jantzen, Backes, Rueger, Keuters, Neumaier (b1930) 2014; 1581
Rossi, Hallett, Rossini, Pascual-Leone, Grp (b1575) 2009; 120
Sreeraj, Bose, Shanbhag, Narayanaswamy, Venkatasubramanian, Benegal (b1770) 2016; 9
Alam, Truong, Khadka, Bikson (b0020) 2016; 61
Brunoni, Valiengo, Zanao, de Oliveira, Bensenor, Fregni (b0330) 2011; 23
Schwiedrzik (b1705) 2009; 3
Heise, Niehoff, Feldheim, Liuzzi, Gerloff, Hummel (b0775) 2014; 6
Andrade, Magnavita, Allegro, Neto, Lucena Rde, Fregni (b0065) 2014; 29
Ekici (b0520) 2015; 46
Dymond, Coger, Serafetinides (b0510) 1975; 10
Laakso, Tanaka, Koyama, De Santis, Hirata (b0980) 2015; 8
Baudewig, Nitsche, Paulus, Frahm (b0190) 2001; 45
Fujiyama, Hyde, Hinder, Kim, McCormack, Vickers (b0630) 2014; 6
Mancini, Pellicciari, Brignani, Mauri, De Marchis, Miniussi (b1120) 2015; 2015
Amatachaya, Auvichayapat, Patjanasoontorn, Suphakunpinyo, Ngernyam, Aree-Uea (b0045) 2014; 2014
Udupa, Bahl, Ni, Gunraj, Mazzella, Moro (b1860) 2016; 36
Frohlich, McCormick (b0620) 2010; 67
Ridder, Vanneste (b1545) 2012; 3
Li, Wang, Lucas, Li, Yao (b1045) 2015; 6
Palm, Schiller, Fintescu, Obermeier, Keeser, Reisinger (b1380) 2012; 5
Al-Qudah, Yacoub, Souayah (b0015) 2015; 8
Kwon, Sajib, Sersa, Oh, Jeong, Kim (b0975) 2016; 63
Althaus (b0040) 1860
Hone-Blanchet, Edden, Fecteau (b0820) 2015; 80
Moliadze, Schmanke, Andreas, Lyzhko, Freitag, Siniatchkin (b1240) 2015; 126
Bocci, Caleo, Vannini, Vergari, Cogiamanian, Rossi (b0250) 2015; 254
Ang, Guan, Phua, Wang, Teh, Chen (b0075) 2012; 2012
Bikson, Datta (b0220) 2012; 5
Macher, Bohringer, Villringer, Pleger (b1105) 2014; 34
Goodwill, Daly, Kidgell (b0705) 2015; 126
Dmochowski, Datta, Huang, Richardson, Bikson, Fridriksson (b0490) 2013; 75
Phielipp, Saha, Sankar, Yugeta, Chen (b1460) 2017; 128
Miyake, Yoshida, Inoue, Hata (b1220) 2007; 48
Augustin F. Galvanismus und dessen Medizinischer Anwendung. Berlin; 1801.
Bae, Jeong, Lee, Kim (b0160) 2012; 12
Kunz, Antal, Hewitt, Neef, Opitz, Paulus (b0965) 2016; 10
Russo, Souza Carneiro, Bolognini, Fregni (b1630) 2017; 20
Datta, Baker, Bikson, Fridriksson (b0445) 2011; 4
Human Experimentation (b0005) 1964; 91
Opitz, Paulus, Will, Antunes, Thielscher (b1355) 2015; 109
Zimerman, Nitsch, Giraux, Gerloff, Cohen, Hummel (b2030) 2013; 73
Jones, Stephens, Alam, Bikson, Berryhill (b0875) 2015; 10
Triccas, Burridge, Hughes, Verheyden, Desikan, Rothwell (b1840) 2015; 37
Loo, Sachdev, Martin, Pigot, Alonzo, Malhi (b1085) 2010; 13
Nekhendzy, Lemmens, Tingle, Nekhendzy, Angst (b1285) 2010; 111
Giovannella, Mitjà, Gregori-Pla, Ibañez, Ruffini, Durduran (b0700) 2017
Morimoto, Miyoshi, Matsuda, Tano, Fujikado, Fukuda (b1250) 2005; 46
Pereira Junior Bde, Tortella, Lafer, Nunes, Bensenor, Lotufo (b1435) 2015; 2015
Smit, Schutter, Nijboer, Visser-Meily, Kappelle, Kant (b1750) 2015; 74
Plewnia, Zwissler, Langst, Maurer, Giel, Kruger (b1475) 2013; 49
Berryhill, Jones (b0205) 2012; 521
Aree-uea, Auvichayapat, Janyacharoen, Siritaratiwat, Amatachaya, Prasertnoo (b0120) 2014; 97
Stagg, Best, Stephenson, O'Shea, Wylezinska, Kincses (b1780) 2009; 29
Bortoletto, Rodella, Salvador, Miranda, Miniussi (b0280) 2016; 9
Logothetis, Kayser, Oeltermann (b1065) 2007; 55
Arumugham, Thirthalli, Andrade (b0130) 2016; 9
Kronberg, Bikson (b0945) 2012; 2012
Wexler (b1955) 2015; 2
Curado, Fritsch, Reis (b0430) 2016; 108
Ho, Taylor, Chew, Galvez, Alonzo, Bai (b0805) 2016; 9
Edwards, Cortes, Datta, Minhas, Wassermann, Bikson (b0515) 2013; 74
Moliadze, Antal, Paulus (b1235) 2010; 121
Vandermeeren, Jamart, Ossemann (b1870) 2010; 11
Vigod, Dennis, Daskalakis, Murphy, Ray, Oberlander (b1890) 2014; 15
Kim, Lim, Kang, You, Oh, Oh (b0910) 2010; 89
Borckardt, Bikson, Frohman, Reeves, Datta, Bansal (b0275) 2012; 13
Philip, Nelson, Frohlich, Lim, Widge, Carpenter (b1465) 2017
Kessler, Turkeltaub, Benson, Hamilton (b0895) 2012; 5
Machii, Cohen, Ramos-Estebanez, Pascual-Leone (b1110) 2006; 117
Saturnino, Antunes, Thielscher (b1675) 2015; 120
Kim, Ku, Cho, Kim, Cho, Lim (b0920) 2014; 11
Grecco LA, Mendonça ME, Duarte NA, Zanon N, Fregni F, Oliveira CS. Transcranial direct current stimulation combined with treadmill gait training in delayed neuro-psychomotor development. J Phys Ther Sci 2014b;26:945–50.
Antal, Boros, Poreisz, Chaieb, Terney, Paulus (b0085) 2008; 1
Pulgar (b1500) 2015; 9
Parikh, Cole (b1415) 2014; 20
Poreisz, Boros, Antal, Paulus (b1485) 2007; 72
Cosentino, Fierro, Paladino, Talamanca, Vigneri, Palermo (b0405) 2012; 35
Bocci, Marceglia, Vergari, Cognetto, Cogiamanian, Sartucci (b0255) 2015; 114
Minhas, Bansal, Patel, Ho, Diaz, Datta (b1205) 2010; 190
Shigematsu, Fujishima, Ohno (b1730) 2013; 27
Wagner, Eden, Rushmore, Russo, Dipietro, Fregni (b1925) 2014; 85
Ting, Tran, Bohm, Siriwardana, Van Leeuwen, Haynes (b1835) 2016; 19
Dumel, Bourassa, Desjardins, Voarino, Charlebois-Plante, Doyon (b0500) 2016; 2016
Nitsche, Cohen, Wassermann, Priori, Lang, Antal (b1310) 2008; 1
Palm, Segmiller, Epple, Freisleder, Koutsouleris, Schulte-Korne (b1385) 2016; 123
Kessler, Minhas, Woods, Rosen, Gorman, Bikson (b0890) 2013; 8
van der Groen, Wenderoth (b1865) 2016; 36
Mortensen, Figlewski, Andersen (b1255) 2016; 38
Parazzini, Fiocchi, Cancelli, Cottone, Liorni, Ravazzani (b1395) 2017; 64
Lang, Siebner, Ward, Lee, Nitsche, Paulus (b1005) 2005; 22
Vila-Rodriguez, McGirr, Tham, Hadjipavlou, Honey (b1895) 2014; 30
Murray, Edwards, Ruffini, Labar, Stampas, Pascual-Leone (b1275) 2015; 96
Pikhovych, Stolberg, Flitsch, Walter, Graf, Fink (b1470) 2016; 2016
Vernieri, Assenza, Maggio, Tibuzzi, Zappasodi, Altamura (b1880) 2010; 41
Datta, Bikson, Fregni (b0455) 2010; 52
Tadini, El-Nazer, Brunoni, Williams, Carvas, Boggio (b1810) 2011; 27
San-Juan, Morales-Quezada, Orozco Garduno, Alonso-Vanegas, Gonzalez-Aragon, Espinoza Lopez (b1655) 2015; 8
Carvalho Lima, Collange Grecco, Marques, Fregni, Brandao de Avila (b0345) 2016; 20
Cogiamanian, Vergari, Pulecchi, Marceglia, Priori (b0390) 2008; 119
Heide, Winkler, Helms, Nitsche, Trenkwalder, Paulus (b0770) 2014; 7
Ziemssen (b2025) 1864
Bocci, Barloscio, Vergari, Di Rollo, Rossi, Priori (b0240) 2015; 18
Fecteau, Boggio, Fregni, Pascu
Khedr (10.1016/j.clinph.2017.06.001_b0905) 2014; 6
Metwally (10.1016/j.clinph.2017.06.001_b1195) 2015; 53
Wrigley (10.1016/j.clinph.2017.06.001_b1975) 2013; 154
Brunoni (10.1016/j.clinph.2017.06.001_b0320) 2017; 10
Al-Qudah (10.1016/j.clinph.2017.06.001_b0015) 2015; 8
Ruffini (10.1016/j.clinph.2017.06.001_b1615) 2013; 21
Gall (10.1016/j.clinph.2017.06.001_b0655) 2016; 11
Tagami (10.1016/j.clinph.2017.06.001_b1815) 2009; 53
Kessler (10.1016/j.clinph.2017.06.001_b0890) 2013; 8
San-Juan (10.1016/j.clinph.2017.06.001_b1655) 2015; 8
Brambilla (10.1016/j.clinph.2017.06.001_b0285) 2015; 293
Arul-Anandam (10.1016/j.clinph.2017.06.001_b0125) 2010; 26
Antal (10.1016/j.clinph.2017.06.001_b0090) 2011; 31
Sparing (10.1016/j.clinph.2017.06.001_b1760) 2009; 132
Fusco (10.1016/j.clinph.2017.06.001_b0635) 2014; 32
Dundas (10.1016/j.clinph.2017.06.001_b0505) 2007; 118
Pelletier (10.1016/j.clinph.2017.06.001_b1425) 2014; 18
Cabral-Calderin (10.1016/j.clinph.2017.06.001_b0335) 2016; 37
Truong (10.1016/j.clinph.2017.06.001_b1845) 2013; 2
Baber (10.1016/j.clinph.2017.06.001_b0150) 1994; 37
Yin (10.1016/j.clinph.2017.06.001_b1985) 2016; 1650
Datta (10.1016/j.clinph.2017.06.001_b0460) 2009; 2009
Carvalho Lima (10.1016/j.clinph.2017.06.001_b0345) 2016; 20
Lang (10.1016/j.clinph.2017.06.001_b1005) 2005; 22
Spezia Adachi (10.1016/j.clinph.2017.06.001_b1765) 2012; 1489
Ang (10.1016/j.clinph.2017.06.001_b0075) 2012; 2012
Nelson (10.1016/j.clinph.2017.06.001_b1290) 1998; 78
Logothetis (10.1016/j.clinph.2017.06.001_b1065) 2007; 55
Rueger (10.1016/j.clinph.2017.06.001_b1605) 2012; 7
Galvez (10.1016/j.clinph.2017.06.001_b0670) 2011; 27
Peruzzotti-Jametti (10.1016/j.clinph.2017.06.001_b1445) 2013; 44
Nitsche (10.1016/j.clinph.2017.06.001_b1330) 2007; 27
Erskine (10.1016/j.clinph.2017.06.001_b0525) 1995; 171
Aparicio (10.1016/j.clinph.2017.06.001_b0115) 2016; 9
Brem (10.1016/j.clinph.2017.06.001_b0300) 2014; 85
Bennabi (10.1016/j.clinph.2017.06.001_b0200) 2015; 26
Young (10.1016/j.clinph.2017.06.001_b2000) 2014; 29
Schestatsky (10.1016/j.clinph.2017.06.001_b1685) 2013
Wagner (10.1016/j.clinph.2017.06.001_b1925) 2014; 85
Holland (10.1016/j.clinph.2017.06.001_b0815) 2011; 21
Shenoy (10.1016/j.clinph.2017.06.001_b1725) 2015; 8
Kronberg (10.1016/j.clinph.2017.06.001_b0945) 2012; 2012
Tadini (10.1016/j.clinph.2017.06.001_b1810) 2011; 27
Schmidt (10.1016/j.clinph.2017.06.001_b1690) 2013; 6
Nitsche (10.1016/j.clinph.2017.06.001_b1325) 2004; 115
Datta (10.1016/j.clinph.2017.06.001_b0445) 2011; 4
Palm (10.1016/j.clinph.2017.06.001_b1370) 2008; 1
Kunz (10.1016/j.clinph.2017.06.001_b0965) 2016; 10
Kessler (10.1016/j.clinph.2017.06.001_b0895) 2012; 5
Jwa (10.1016/j.clinph.2017.06.001_b0880) 2015; 2
Quartarone (10.1016/j.clinph.2017.06.001_b1510) 2005; 128
Faria (10.1016/j.clinph.2017.06.001_b0550) 2009; 2009
Miranda (10.1016/j.clinph.2017.06.001_b1210) 2009; 120
Lee (10.1016/j.clinph.2017.06.001_b1030) 2016; 277
Helfrich (10.1016/j.clinph.2017.06.001_b0780) 2014; 24
Panouillères (10.1016/j.clinph.2017.06.001_b1390) 2015; 593
Fertonani (10.1016/j.clinph.2017.06.001_b0575) 2015; 126
Plewnia (10.1016/j.clinph.2017.06.001_b1475) 2013; 49
Gillick (10.1016/j.clinph.2017.06.001_b0690) 2015; 95
Chhatbar (10.1016/j.clinph.2017.06.001_b0370) 2017; 10
Datta (10.1016/j.clinph.2017.06.001_b0465) 2012; 3
Lang (10.1016/j.clinph.2017.06.001_b1000) 2004; 56
Loo (10.1016/j.clinph.2017.06.001_b1080) 2011; 14
Fertonani (10.1016/j.clinph.2017.06.001_b0570) 2014; 6
Kim (10.1016/j.clinph.2017.06.001_b0915) 2015; 85
Merrill (10.1016/j.clinph.2017.06.001_b1185) 2005; 141
Ekici (10.1016/j.clinph.2017.06.001_b0520) 2015; 46
Harris (10.1016/j.clinph.2017.06.001_b0760) 2009; 70
Miyake (10.1016/j.clinph.2017.06.001_b1220) 2007; 48
Dmochowski (10.1016/j.clinph.2017.06.001_b0490) 2013; 75
Zaehle (10.1016/j.clinph.2017.06.001_b2015) 2010; 5
Fecteau (10.1016/j.clinph.2017.06.001_b0555) 2012; 3
Russo (10.1016/j.clinph.2017.06.001_b1630) 2017; 20
Rae (10.1016/j.clinph.2017.06.001_b1525) 2013; 16
Costanzo (10.1016/j.clinph.2017.06.001_b0410) 2015; 8
Laakso (10.1016/j.clinph.2017.06.001_b0980) 2015; 8
Giovannella (10.1016/j.clinph.2017.06.001_b0700) 2017
Vicario (10.1016/j.clinph.2017.06.001_b1885) 2013; 7
Human Experimentation (10.1016/j.clinph.2017.06.001_b0005) 1964; 91
Dmochowski (10.1016/j.clinph.2017.06.001_b0485) 2011; 8
McAllister (10.1016/j.clinph.2017.06.001_b1145) 2003; 217
Fagerlund (10.1016/j.clinph.2017.06.001_b0535) 2015; 156
Sunwoo (10.1016/j.clinph.2017.06.001_b1805) 2013; 554
Altenstetter (10.1016/j.clinph.2017.06.001_b0035) 2003; 19
Wang (10.1016/j.clinph.2017.06.001_b1945) 2014; 569
Krishnan (10.1016/j.clinph.2017.06.001_b0940) 2015; 8
Wallace (10.1016/j.clinph.2017.06.001_b1935) 2016; 11
Brunoni (10.1016/j.clinph.2017.06.001_b0325) 2013; 70
Kleymeyer (10.1016/j.clinph.2017.06.001_b0925) 1976; 42
Ahmed (10.1016/j.clinph.2017.06.001_b0010) 2011; 110
10.1016/j.clinph.2017.06.001_b0785
Palm (10.1016/j.clinph.2017.06.001_b1385) 2016; 123
Baer (10.1016/j.clinph.2017.06.001_b0165) 2015; 10
Breitling (10.1016/j.clinph.2017.06.001_b0295) 2016; 10
Rossi (10.1016/j.clinph.2017.06.001_b1580) 2016; 374
Dymond (10.1016/j.clinph.2017.06.001_b0510) 1975; 10
Goodwill (10.1016/j.clinph.2017.06.001_b0705) 2015; 126
Wurzman (10.1016/j.clinph.2017.06.001_b1980) 2016; 80
Smit (10.1016/j.clinph.2017.06.001_b1750) 2015; 74
Peters (10.1016/j.clinph.2017.06.001_b1455) 2013; 51
Voss (10.1016/j.clinph.2017.06.001_b1905) 2014; 17
Fu (10.1016/j.clinph.2017.06.001_b0625) 2015; 253
Santarnecchi (10.1016/j.clinph.2017.06.001_b1670) 2014; 5
Cao (10.1016/j.clinph.2017.06.001_b0340) 2015; 11
Shahid (10.1016/j.clinph.2017.06.001_b1715) 2013; 109
Amatachaya (10.1016/j.clinph.2017.06.001_b0050) 2015; 2015
Terney (10.1016/j.clinph.2017.06.001_b1825) 2008; 28
Mattai (10.1016/j.clinph.2017.06.001_b1140) 2011; 4
Costanzo (10.1016/j.clinph.2017.06.001_b0420) 2016; 27
Triccas (10.1016/j.clinph.2017.06.001_b1840) 2015; 37
Ross (10.1016/j.clinph.2017.06.001_b1570) 2011; 3
Gandiga (10.1016/j.clinph.2017.06.001_b0675) 2006; 117
Parikh (10.1016/j.clinph.2017.06.001_b1415) 2014; 20
Dumel (10.1016/j.clinph.2017.06.001_b0500) 2016; 2016
10.1016/j.clinph.2017.06.001_b0715
Nitsche (10.1016/j.clinph.2017.06.001_b1315) 2007; 97
Raco (10.1016/j.clinph.2017.06.001_b1515) 2014; 7
Vosskuhl (10.1016/j.clinph.2017.06.001_b1910) 2016; 140
Datta (10.1016/j.clinph.2017.06.001_b0455) 2010; 52
Norris (10.1016/j.clinph.2017.06.001_b1335) 2010; 22
Borckardt (10.1016/j.clinph.2017.06.001_b0275) 2012; 13
Andre (10.1016/j.clinph.2017.06.001_b0070) 2016; 369
Blumberger (10.1016/j.clinph.2017.06.001_b0235) 2012; 3
Alekseichuk (10.1016/j.clinph.2017.06.001_b0025) 2016; 140
Wang (10.1016/j.clinph.2017.06.001_b1940) 2015; 8
Heide (10.1016/j.clinph.2017.06.001_b0770) 2014; 7
Prehn-Kristensen (10.1016/j.clinph.2017.06.001_b1490) 2014; 7
Parazzini (10.1016/j.clinph.2017.06.001_b1405) 2014; 125
Turi (10.1016/j.clinph.2017.06.001_b1855) 2013; 31
Iyer (10.1016/j.clinph.2017.06.001_b0860) 2005; 64
10.1016/j.clinph.2017.06.001_b0725
Nitsche (10.1016/j.clinph.2017.06.001_b1320) 2003; 114
Franke (10.1016/j.clinph.2017.06.001_b0610) 2010; 53
Bikson (10.1016/j.clinph.2017.06.001_b0220) 2012; 5
Antal (10.1016/j.clinph.2017.06.001_b0105) 2010; 39
Salvador (10.1016/j.clinph.2017.06.001_b1650) 2010; 2010
Polanowska (10.1016/j.clinph.2017.06.001_b1480) 2013; 47
Ranieri (10.1016/j.clinph.2017.06.001_b1535) 2012; 107
Mathys (10.1016/j.clinph.2017.06.001_b1135) 2010; 1
Gahr (10.1016/j.clinph.2017.06.001_b0640) 2014; 30
Cosentino (10.1016/j.clinph.2017.06.001_b0405) 2012; 35
Walberer (10.1016/j.clinph.2017.06.001_b1930) 2014; 1581
Loo (10.1016/j.clinph.2017.06.001_b1075) 2012; 200
Jones (10.1016/j.clinph.2017.06.001_b0875) 2015; 10
Antal (10.1016/j.clinph.2017.06.001_b0080) 2014; 85
Meinzer (10.1016/j.clinph.2017.06.001_b1165) 2013; 33
Pulgar (10.1016/j.clinph.2017.06.001_b1500) 2015; 9
Lazzari (10.1016/j.clinph.2017.06.001_b1015) 2015; 27
Guarienti (10.1016/j.clinph.2017.06.001_b0735) 2015; 18
Bocci (10.1016/j.clinph.2017.06.001_b0250) 2015; 254
Bae (10.1016/j.clinph.2017.06.001_b0160) 2012; 12
Goodwill (10.1016/j.clinph.2017.06.001_b0710) 2013; 5
Sadleir (10.1016/j.clinph.2017.06.001_b1645) 2012; 3
Ziemssen (10.1016/j.clinph.2017.06.001_b2025) 1864
Riedel (10.1016/j.clinph.2017.06.001_b1550) 2012; 5
Sabel (10.1016/j.clinph.2017.06.001_b1635) 2011; 29
Sun (10.1016/j.clinph.2017.06.001_b1800) 2013; 23
Murray (10.1016/j.clinph.2017.06.001_b1275) 2015; 96
Stacey (10.1016/j.clinph.2017.06.001_b1775) 2000; 83
Palm (10.1016/j.clinph.2017.06.001_b1380) 2012; 5
Huang (10.1016/j.clinph.2017.06.001_b0835) 2016; 6
Philip (10.1016/j.clinph.2017.06.001_b1465) 2017
Turi (10.1016/j.clinph.2017.06.001_b1850) 2014; 7
Hubli (10.1016/j.clinph.2017.06.001_b0845) 2013; 124
Kuhn (10.1016/j.clinph.2017.06.001_b0955) 2002; 113
Kim (10.1016/j.clinph.2017.06.001_b0920) 2014; 11
Cogiamanian (10.1016/j.clinph.2017.06.001_b0390) 2008; 119
Deng (10.1016/j.clinph.2017.06.001_b0475) 2010; 2010
Fritsch (10.1016/j.clinph.2017.06.001_b0615) 2010; 66
Huang (10.1016/j.clinph.2017.06.001_b0840) 2005; 45
Brindley (10.1016/j.clinph.2017.06.001_b0305) 1955; 127
Paiella (10.1016/j.clinph.2017.06.001_b1360) 2015; 32
Jackson (10.1016/j.clinph.2017.06.001_b0865) 2016; 127
Park (10.1016/j.clinph.2017.06.001_b1420) 2014; 25
Shigematsu (10.1016/j.clinph.2017.06.001_b1730) 2013; 27
Auvichayapat (10.1016/j.clinph.2017.06.001_b0145) 2016; 7
Opitz (10.1016/j.clinph.2017.06.001_b1355) 2015; 109
Hill (10.1016/j.clinph.2017.06.001_b0800) 2017; 152
Shahid (10.1016/j.clinph.2017.06.001_b1720) 2014; 11
Hone-Blanchet (10.1016/j.clinph.2017.06.001_b0820) 2015; 80
Udupa (10.1016/j.clinph.2017.06.001_b1860) 2016; 36
Hoff (10.1016/j.clinph.2017.06.001_b0810) 2015; 41
Faria (10.1016/j.clinph.2017.06.001_b0540) 2012; 25
Bikson (10.1016/j.clinph.2017.06.001_b0225) 2010; 121
Guleyupoglu (10.1016/j.clinph.2017.06.001_b0740) 2014; 7
Moliadze (10.1016/j.clinph.2017.06.001_b1230) 2015; 119
Puri (10.1016/j.clinph.2017.06.001_b1505) 2015; 7
Munz (10.1016/j.clinph.2017.06.001_b1270) 2015; 9
Poreisz (10.1016/j.clinph.2017.06.001_b1485) 2007; 72
Vernieri (10.1016/j.clinph.2017.06.001_b1880) 2010; 41
Arumugham (10.1016/j.clinph.2
19386916 - J Neurosci. 2009 Apr 22;29(16):5202-6
20633432 - Brain Stimul. 2010 Jan;3(1):58-9
25792098 - Lancet Neurol. 2015 Apr;14(4):388-405
24284464 - NeuroRehabilitation. 2014;34(1):121-7
25499471 - Brain Stimul. 2015 Jan-Feb;8(1):76-87
26156511 - Neurology. 2015 Aug 4;85(5):425-32
19520165 - Neurobiol Dis. 2010 Feb;37(2):243-51
15753425 - Neurology. 2005 Mar 8;64(5):872-5
20671257 - Stroke. 2010 Sep;41(9):2087-90
27322602 - Expert Rev Clin Pharmacol. 2016 Sep;9(9):1245-52
16045502 - Eur J Neurosci. 2005 Jul;22(2):495-504
23473936 - Neuroimage. 2013 Jul 15;75:12-19
23850466 - Neuroimage. 2014 Jan 15;85 Pt 3:1048-57
22236710 - J Neurophysiol. 2012 Apr;107(7):1868-80
25501299 - Graefes Arch Clin Exp Ophthalmol. 2015 Feb;253(2):171-6
23541726 - Curr Biol. 2013 Apr 8;23 (7):569-74
19964238 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:670-3
25013302 - J Phys Ther Sci. 2014 Jun;26(6):945-50
25253645 - Eur Arch Psychiatry Clin Neurosci. 2014 Nov;264 Suppl 1:S27-33
26484510 - NeuroRehabilitation. 2015 ;37(2):181-91
1120172 - Biol Psychiatry. 1975 Feb;10(1):101-4
25461825 - Arch Phys Med Rehabil. 2015 Apr;96(4 Suppl):S114-21
24905627 - Brain Res. 2014 Sep 18;1581:80-8
26898606 - Sci Rep. 2016 Feb 22;6:21583
12701954 - Int J Technol Assess Health Care. 2003 Winter;19(1):228-48
22037128 - Brain Stimul. 2012 Apr;5(2):155-62
26503692 - Hum Brain Mapp. 2016 Jan;37(1):94-121
27147964 - Front Cell Neurosci. 2016 Mar 22;10:72
25071479 - Front Syst Neurosci. 2014 Jul 08;8:127
27166171 - Cereb Cortex. 2017 May 1;27(5):2758-2767
10712466 - J Neurophysiol. 2000 Mar;83(3):1394-402
23366036 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:891-5
25765775 - Dig Surg. 2015;32(2):90-7
23366836 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4128-31
21885255 - Epilepsy Res. 2011 Nov;97(1-2):142-5
22032743 - Brain Stimul. 2011 Oct;4(4):275-80
22104190 - J Pain. 2012 Feb;13(2):112-20
24737098 - J Neural Eng. 2014 Jun;11(3):036002
23097644 - Front Psychiatry. 2012 Oct 22;3:91
25637226 - Neuropsychologia. 2015 Jul;74:108-19
26652115 - Clin Neurophysiol. 2016 Feb;127(2):1031-1048
24553318 - J ECT. 2014 Mar;30(1):62-8
24631567 - Neurosci Lett. 2014 May 21;569:6-11
26608246 - Neuroimage. 2016 Oct 15;140:110-7
19484445 - Jpn J Ophthalmol. 2009 May;53(3):257-66
25126060 - Front Syst Neurosci. 2014 Jul 30;8:132
24310982 - J Neural Eng. 2014 Feb;11(1):016002
19423386 - Clin Neurophysiol. 2009 Jun;120(6):1183-7
26080310 - Neuroimage. 2015 Sep;118:406-13
21160123 - NeuroRehabilitation. 2010;27(4):335-41
27014012 - Front Hum Neurosci. 2016 Mar 10;10:68
25135003 - J Neuroeng Rehabil. 2014 Aug 18;11:124
24792908 - Neurobiol Aging. 2014 Oct;35(10):2217-21
27249078 - J Clin Psychiatry. 2016 May;77(5):689-90
24049057 - J Child Neurol. 2014 Oct;29(10):1360-5
21095946 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2073-6
15664172 - Neuron. 2005 Jan 20;45(2):201-6
18429704 - Annu Rev Biomed Eng. 2008;10:275-309
25870543 - Front Syst Neurosci. 2015 Mar 30;9:54
25234606 - Trials. 2014 Sep 18;15:366
20105234 - Eur J Neurosci. 2010 Feb;31(3):593-7
18680573 - Behav Brain Funct. 2008 Aug 04;4:33
27569587 - Brain Res. 2016 Nov 1;1650:10-20
19440158 - J ECT. 2009 Dec;25(4):256-60
23087654 - Front Psychiatry. 2012 Oct 17;3:90
25368577 - Front Aging Neurosci. 2014 Oct 20;6:289
24599463 - J Neurosci. 2014 Mar 5;34(10):3646-52
9918361 - Mov Disord. 1999 Jan;14(1):157-8
21981854 - Brain Stimul. 2011 Oct;4(4):189-201
24086698 - PLoS One. 2013 Sep 27;8(9):e76112
14580622 - Clin Neurophysiol. 2003 Nov;114(11):2220-2; author reply 2222-3
26280313 - Exp Brain Res. 2016 Mar;234(3):637-43
25295004 - Front Aging Neurosci. 2014 Sep 23;6:253
24760509 - Physiol Rep. 2014 Mar 20;2(3):e00255
20233439 - BMC Neurosci. 2010 Mar 16;11:38
22506177 - Ann Rehabil Med. 2011 Aug;35(4):579-82
23699528 - J Neurosci. 2013 May 22;33(21):9176-83
26097454 - Front Aging Neurosci. 2015 Jun 05;7:107
27039705 - Neuroimage. 2016 Oct 15;140:99-109
23562964 - Neuropsychologia. 2013 Jun;51(7):1234-9
23225625 - Ann Neurol. 2013 Jan;73(1):10-5
23303424 - J ECT. 2013 Jun;29(2):147-8
20161507 - Brain Stimul. 2009 Oct;2(4):215-28, 228.e1-3
25849358 - PLoS One. 2015 Apr 07;10(4):e0121904
23367178 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5514-7
26774968 - Biol Psychiatry. 2016 Sep 15;80(6):432-438
24176927 - Neuroreport. 2014 Jan 22;25(2):122-6
25792428 - J Child Neurol. 2015 Oct;30(12):1604-15
25890209 - Stem Cell Res Ther. 2015 Mar 21;6:41
25468071 - Brain Stimul. 2015 Jan-Feb;8(1):163-4
25855132 - Restor Neurol Neurosci. 2015;33(5):647-62
22912618 - Front Psychiatry. 2012 Aug 17;3:74
21948925 - J Neuropsychiatry Clin Neurosci. 2011 Summer;23(3):E4-5
26879095 - J Child Neurol. 2016 Jun;31(7):918-24
10441299 - Trends Neurosci. 1999 Sep;22(9):391-7
26079636 - Disabil Rehabil. 2016;38(7):637-43
26458959 - Prostate Cancer Prostatic Dis. 2016 Mar;19(1):46-52
26342753 - Exp Neurol. 2016 Jan;275 Pt 3:316-327
20350607 - Neuroimage. 2010 Jul 15;51(4):1310-8
21641021 - Brain Lang. 2011 Oct;119(1):1-5
25105567 - Res Dev Disabil. 2014 Nov;35(11):2840-8
26200716 - Behav Brain Res. 2015 Oct 15;293:125-33
25153776 - Brain Stimul. 2014 Nov-Dec;7(6):793-9
25613437 - Neuroimage. 2015 Apr 1;109:140-50
18925985 - Int J Neuropsychopharmacol. 2009 Jun;12(5):643-50
26170244 - J Neural Eng. 2015 Aug;12(4):046030
26226938 - Brain Stimul. 2015 Nov-Dec;8(6):1085-92
24324410 - Front Syst Neurosci. 2013 Nov 25;7:94
20938352 - J ECT. 2011 Jun;27(2):134-40
19528092 - Brain. 2009 Nov;132(Pt 11):3011-20
20434997 - Neuron. 2010 Apr 29;66(2):198-204
21206371 - J ECT. 2011 Sep;27(3):256-8
23392916 - Neurorehabil Neural Repair. 2013 May;27(4):363-9
22949089 - IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):333-45
23982710 - Stroke. 2013 Nov;44(11):3166-74
8054244 - Br J Clin Pharmacol. 1994 May;37(5):401-4
27216434 - Ann Neurol. 2016 Jul;80(1):1-4
25468234 - Clin Neurophysiol. 2015 Jul;126(7):1392-9
11897534 - Clin Neurophysiol. 2002 Mar;113(3):341-5
23123281 - Epilepsy Behav. 2012 Nov;25(3):417-25
28279641 - Brain Stimul. 2017 May - Jun;10 (3):553-559
26890096 - Restor Neurol Neurosci. 2016;34(2):215-26
25454337 - Clin Neurophysiol. 2015 Jun;126(6):1185-9
20624597 - Neuron. 2010 Jul 15;67(1):129-43
26142274 - Neuroimage. 2015 Oct 15;120:25-35
25101009 - Front Psychiatry. 2014 Jul 21;5:86
26449209 - Brain Res Bull. 2015 Oct;119(Pt A):25-33
15987799 - Physiol Rev. 2005 Jul;85(3):943-78
8154217 - Zh Nevrol Psikhiatr Im S S Korsakova. 1993;93(5):43-5
21095849 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6821-4
25988491 - Sci Rep. 2015 May 19;5:10289
27916405 - Brain Stimul. 2017 Mar - Apr;10 (2):260-262
26758832 - J Neurosci. 2016 Jan 13;36(2):396-404
24760939 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):441-52
22480602 - Clin Neurophysiol. 2012 Oct;123(10):2006-9
25925328 - J Neurophysiol. 2015 Jul;114(1):440-6
28259678 - Clin Neurophysiol. 2017 Jun;128(6):1109-1115
23389323 - JAMA Psychiatry. 2013 Apr;70(4):383-91
25912048 - Eur J Neurosci. 2015 May;41(11):1475-83
17409245 - J Neurosci. 2007 Apr 4;27(14):3807-12
21240273 - Nat Neurosci. 2011 Feb;14(2):217-23
20488204 - J Neurosci Methods. 2010 Jul 15;190(2):188-97
26576215 - J Vasc Interv Neurol. 2015 Oct;8(4):43-52
27774217 - J Law Biosci. 2015 Oct 12;2(3):669-696
28231716 - Am J Psychiatry. 2017 Jul 1;174(7):628-639
25604912 - Clin Rehabil. 2015 Dec;29(12):1212-23
2249872 - IEEE Trans Biomed Eng. 1990 Oct;37(10):996-1001
21641264 - Parkinsonism Relat Disord. 2011 Sep;17(8):647-8
15914636 - Invest Ophthalmol Vis Sci. 2005 Jun;46(6):2147-55
21072168 - PLoS One. 2010 Nov 01;5(11):e13766
25732105 - Clin Neurophysiol. 2015 Nov;126(11):2189-97
22211744 - Eur J Neurosci. 2012 Jan;35(1):119-24
27774197 - J Law Biosci. 2015 Jun 02;2(2):292-335
27199889 - Front Neurol. 2016 May 04;7:66
25862601 - Brain Stimul. 2015 May-Jun;8(3):590-602
25022472 - Brain Stimul. 2014 Sep-Oct;7(5):627-35
23550273 - Front Psychiatry. 2013 Feb 26;3:97
27044999 - Philos Trans A Math Phys Eng Sci. 2016 May 13;374(2067):null
23760989 - J Child Neurol. 2014 Feb;29(2):232-9
19483641 - J ECT. 2010 Mar;26(1):68-9
19671217 - Int J Neuropsychopharmacol. 2010 Feb;13(1):61-9
23034972 - J Child Neurol. 2013 Oct;28(10):1238-44
26003225 - J Neurol Sci. 2015 Jul 15;354(1-2):103-9
22684095 - Neurosci Lett. 2012 Jul 19;521(2):148-51
24025832 - Nature. 2013 Sep 12;501(7466):167
24907311 - J Physiol. 2014 Aug 15;592(16):3345-69
24822247 - Headache. 2014 Apr;54(4):663-74
28275345 - Front Hum Neurosci. 2017 Feb 22;11:77
25922128 - Clin Neurophysiol. 2015 Nov;126(11):2181-8
20327943 - Can Med Assoc J. 1964 Sep 12;91(11):619
24816141 - Nat Neurosci. 2014 Jun;17(6):810-2
9754976 - Eur J Appl Physiol Occup Physiol. 1998 Sep;78(4):353-9
22086257 - J Neural Eng. 2011 Dec;8(6):066017
25346688 - Front Aging Neurosci. 2014 Oct 09;6:275
16387549 - Clin Neurophysiol. 2006 Feb;117(2):455-71
26996082 - Neuron. 2016 Apr 6;90(1):191-203
27355577 - PLoS One. 2016 Jun 29;11(6):e0156134
29096212 - Clin Neurophysiol. 2017 Dec;128(12 ):2397-2399
18372292 - Cereb Cortex. 2008 Nov;18(11):2701-5
27210840 - J Bodyw Mov Ther. 2016 Apr;20(2):252-7
19201066 - Neurobiol Aging. 2010 Dec;31(12):2160-8
26350410 - Brain Stimul. 2016 Jan-Feb;9(1):1-7
14702983 - Proc Inst Mech Eng H. 2003;217(6):459-67
22124039 - Restor Neurol Neurosci. 2011;29(6):493-505
27173384 - J Neural Transm (Vienna). 2016 Oct;123(10 ):1219-34
15056717 - J Neurosci. 2004 Mar 31;24(13):3379-85
25536713 - J Med Assoc Thai. 2014 Sep;97(9):954-62
23831866 - Pain. 2013 Oct;154(10):2178-84
27403166 - Stem Cells Int. 2016;2016:2715196
20019146 - Cereb Cortex. 2010 Aug;20(8):1926-36
27375421 - Front Neurosci. 2016 Jun 07;10:262
20554472 - Clin Neurophysiol. 2010 Dec;121(12):2165-71
26029083 - Front Hum Neurosci. 2015 May 15;9:265
22928032 - PLoS One. 2012;7(8):e43776
26873962 - Neuroscientist. 2016 Feb 12;:null
20633396 - Brain Stimul. 2008 Oct;1(4):386-7
20648973 - Brain Stimul. 2009 Oct;2(4):201-7, 207.e1
28119589 - Front Hum Neurosci. 2017 Jan 10;10 :683
21986238 - Brain Stimul. 2012 Jul;5(3):432-4
24062685 - Front Aging Neurosci. 2013 Sep 11;5:49
23756431 - J Head Trauma Rehabil. 2014 May-Jun;29(3):E20-9
21613597 - J Neurophysiol. 2011 Aug;106(2):652-61
27027666 - J Child Adolesc Psychopharmacol. 2016
References_xml – volume: 95
  start-page: 337
  year: 2015
  end-page: 349
  ident: b0690
  article-title: Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study
  publication-title: Phys Ther
– volume: 34
  start-page: 215
  year: 2016
  end-page: 226
  ident: b0415
  article-title: Evidence for reading improvement following tDCS treatment in children and adolescents with dyslexia
  publication-title: Rest Neurol Neurosci
– volume: 190
  start-page: 188
  year: 2010
  end-page: 197
  ident: b1205
  article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS
  publication-title: J Neurosci Meth
– volume: 11
  start-page: 016002
  year: 2014
  ident: b1920
  article-title: Investigation of tDCS volume conduction effects in a highly realistic head model
  publication-title: J Neur Eng
– volume: 24
  start-page: 333
  year: 2014
  end-page: 339
  ident: b0780
  article-title: Entrainment of brain oscillations by transcranial alternating current stimulation
  publication-title: Curr Biol
– volume: 200
  start-page: 52
  year: 2012
  end-page: 59
  ident: b1075
  article-title: Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial
  publication-title: Br J Psych
– volume: 8
  start-page: 046011
  year: 2011
  ident: b0485
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J Neur Eng
– volume: 9
  start-page: 525
  year: 2016
  end-page: 528
  ident: b0280
  article-title: Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES)
  publication-title: Brain Stimul
– volume: 52
  start-page: 1268
  year: 2010
  end-page: 1278
  ident: b0455
  article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow
  publication-title: NeuroImage
– volume: 2016
  start-page: 2715196
  year: 2016
  ident: b1470
  article-title: Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain
  publication-title: Stem Cells Int
– volume: 61
  start-page: 4506
  year: 2016
  end-page: 4521
  ident: b0020
  article-title: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)
  publication-title: Phys Med Biol
– volume: 23
  start-page: 569
  year: 2013
  end-page: 574
  ident: b1800
  article-title: Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field
  publication-title: Curr Biol
– volume: 2
  start-page: 669
  year: 2015
  end-page: 696
  ident: b1955
  article-title: A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States
  publication-title: J Law Biosci
– volume: 6
  start-page: 131
  year: 2014
  ident: b0570
  article-title: The timing of cognitive plasticity in physiological aging: a tDCS study of naming
  publication-title: Front Aging Neurosci
– volume: 53
  start-page: 1125
  year: 2012
  end-page: 1130
  ident: b1830
  article-title: Potentially inappropriate medication: the quality of pharmacotherapy in the elderly
  publication-title: Der Internist
– volume: 88
  start-page: 404
  year: 2009
  ident: b0870
  article-title: Enhancing the working memory of stroke patients using tDCS
  publication-title: Am J Phys Med Rehab
– volume: 6
  start-page: 146
  year: 2014
  ident: b0775
  article-title: Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age
  publication-title: Front Aging Neurosci
– volume: 20
  start-page: 215
  year: 2017
  end-page: 222
  ident: b1630
  article-title: Safety review of transcranial direct current stimulation in stroke
  publication-title: Neuromodulation
– volume: 6
  start-page: 31236
  year: 2016
  ident: b1350
  article-title: Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
  publication-title: Sci Rep
– volume: 5
  start-page: 435
  year: 2012
  end-page: 453
  ident: b1450
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul
– volume: 12
  start-page: 261
  year: 2012
  end-page: 272
  ident: b0160
  article-title: Effect of tDCS stimulation for improving working memory on stroke patients' EEG variation
  publication-title: J Kor Cont Assoc
– volume: 27
  start-page: 363
  year: 2013
  end-page: 369
  ident: b1730
  article-title: Transcranial direct current stimulation improves swallowing function in stroke patients
  publication-title: Neurorehab Neur Rep
– volume: 74
  start-page: 108
  year: 2015
  end-page: 119
  ident: b1025
  article-title: The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance
  publication-title: Neuropsychology
– volume: 2016
  start-page: 4274127
  year: 2016
  ident: b0110
  article-title: Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults
  publication-title: Neural Plast
– reference: Wagner S, Burgen M, Wolters C. An optimization approach for well-targeted transcranial direct current stimulation. Soc Ind App Math 2016;76:2154–74.
– volume: 73
  start-page: 10
  year: 2013
  end-page: 15
  ident: b2030
  article-title: Neuroenhancement of the aging brain: restoring skill acquisition in old subjects
  publication-title: Ann Neurol
– volume: 3
  start-page: 90
  year: 2012
  ident: b1645
  article-title: Target optimization in transcranial direct current stimulation
  publication-title: Front Psych
– volume: 36
  start-page: 5289
  year: 2016
  end-page: 5298
  ident: b1865
  article-title: Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception
  publication-title: J Neurosci
– volume: 8
  start-page: 739
  year: 2014
  ident: b0695
  article-title: Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization
  publication-title: Front Hum Neurosci
– volume: 42
  start-page: 109
  year: 1976
  end-page: 110
  ident: b0925
  article-title: Group techniques for program planning – guide to nominal group and Delphi processes – Delbecq, Al, Vandeven, Ah and Gustafson, Dh
  publication-title: J Am Inst Plann
– volume: 23
  start-page: 7255
  year: 2003
  end-page: 7261
  ident: b0600
  article-title: Sensitivity of neurons to weak electric fields
  publication-title: J Neurosci
– volume: 29
  start-page: 493
  year: 2011
  end-page: 505
  ident: b1635
  article-title: Non-invasive alternating current stimulation improves vision in optic neuropathy
  publication-title: Rest Neurol Neurosci
– year: 1860
  ident: b0040
  article-title: Elektricität in der Medizin
– volume: 30
  start-page: 62
  year: 2014
  end-page: 68
  ident: b0640
  article-title: Safety of electroconvulsive therapy in the presence of cranial metallic objects
  publication-title: J ECT
– volume: 9
  start-page: 265
  year: 2015
  ident: b1950
  article-title: Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke
  publication-title: Front Hum Neurosci
– volume: 55
  start-page: 809
  year: 2007
  end-page: 823
  ident: b1065
  article-title: In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation
  publication-title: Neuron
– volume: 7
  start-page: 28
  year: 2014
  ident: b0740
  article-title: Reduced discomfort during high-definition transcutaneous stimulation using 6% benzocaine
  publication-title: Front Neuroeng
– volume: 42
  start-page: 211
  year: 2016
  end-page: 215
  ident: b1960
  article-title: The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals
  publication-title: J Med Ethics
– volume: 85
  start-page: 425
  year: 2015
  end-page: 432
  ident: b0915
  article-title: Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease
  publication-title: Neurology
– volume: 24
  start-page: 3379
  year: 2004
  end-page: 3385
  ident: b1745
  article-title: Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex
  publication-title: J Neurosci
– volume: 583
  start-page: 555
  year: 2007
  end-page: 565
  ident: b0470
  article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields
  publication-title: J Physiol
– volume: 128
  start-page: 1109
  year: 2017
  end-page: 1115
  ident: b1460
  article-title: Safety of repetitive transcranial magnetic stimulation in patients with implanted subdural cortical electrodes. An ex-vivo study and report of a case
  publication-title: Clin Neurophysiol
– volume: 35
  start-page: 2840
  year: 2014
  end-page: 2848
  ident: b0720
  article-title: Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial
  publication-title: Res Devel Disab
– volume: 28
  start-page: 1238
  year: 2013
  end-page: 1244
  ident: b2005
  article-title: Cathodal transcranial direct current stimulation in children with dystonia: a pilot open-label trial
  publication-title: J Child Neurol
– volume: 29
  start-page: 147
  year: 2013
  end-page: 148
  ident: b1740
  article-title: Safety of repeated transcranial direct current stimulation in impaired skin a case report
  publication-title: J ECT
– volume: 33
  start-page: 1682
  year: 2012
  end-page: 1689
  ident: b0590
  article-title: Non-invasive brain stimulation improves object-location learning in the elderly
  publication-title: Neurobiol Aging
– volume: 33
  start-page: 4482
  year: 2013
  end-page: 4486
  ident: b0855
  article-title: The mental cost of cognitive enhancement
  publication-title: J Neurosci
– volume: 126
  start-page: 1392
  year: 2015
  end-page: 1399
  ident: b1240
  article-title: Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents
  publication-title: Clin Neurophysiol
– volume: 31
  start-page: 820
  year: 2011
  end-page: 828
  ident: b0090
  article-title: Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine
  publication-title: Cephalalgia
– volume: 51
  start-page: 1234
  year: 2013
  end-page: 1239
  ident: b1455
  article-title: Anodal tDCS to V1 blocks visual perceptual learning consolidation
  publication-title: Neuropsychology
– volume: 18
  start-page: 261
  year: 2015
  end-page: 265
  ident: b0735
  article-title: Reducing transcranial direct current stimulation-induced erythema with skin pretreatment: considerations for sham-controlled clinical trials
  publication-title: Neuromodulation
– volume: 11
  start-page: 124
  year: 2014
  ident: b0920
  article-title: Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects
  publication-title: J Neuroeng Rehab
– volume: 7
  start-page: 334
  year: 2014
  end-page: 335
  ident: b1440
  article-title: Pain treatment using tDCS in a single patient: tele-medicine approach in non-invasive brain simulation
  publication-title: Brain Stimul
– volume: 8
  start-page: 1233
  year: 2015
  end-page: 1235
  ident: b0410
  article-title: Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia
  publication-title: Brain Stimul
– volume: 279
  start-page: 127
  year: 2016
  end-page: 136
  ident: b0290
  article-title: Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke
  publication-title: Exp Neurol
– volume: 26
  start-page: 1185
  year: 2015
  end-page: 1189
  ident: b0200
  article-title: Pilot study of feasibility of the effect of treatment with tDCS in patients suffering from treatment-resistant depression treated with escitalopram
  publication-title: Clin Neurophysiol
– volume: 1489
  start-page: 17
  year: 2012
  end-page: 26
  ident: b1765
  article-title: Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model
  publication-title: Brain Res
– volume: 31
  start-page: 918
  year: 2016
  end-page: 924
  ident: b0175
  article-title: Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a pilot study
  publication-title: J Child Neurol
– volume: 18
  start-page: 686
  year: 2015
  end-page: 693
  ident: b0240
  article-title: Spinal direct current stimulation modulates short intracortical inhibition
  publication-title: Neuromodulation
– volume: 1
  start-page: 97
  year: 2008
  end-page: 105
  ident: b0085
  article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans
  publication-title: Brain Stimul
– volume: 45
  start-page: 201
  year: 2005
  end-page: 206
  ident: b0840
  article-title: Theta burst stimulation of the human motor cortex
  publication-title: Neuron
– volume: 18
  start-page: 2701
  year: 2008
  end-page: 2705
  ident: b0095
  article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura
  publication-title: Cereb Cortex
– volume: 91
  start-page: 619
  year: 1964
  ident: b0005
  article-title: Code of ethics of the World Medical Association (Declaration of Helsinki)
  publication-title: Can Med Assoc J
– volume: 22
  start-page: 441
  year: 2014
  end-page: 452
  ident: b1530
  article-title: Simulating transcranial direct current stimulation with a detailed anisotropic human head model
  publication-title: IEEE Trans Neur Sys Rehab Eng
– volume: 127
  start-page: 1031
  year: 2016
  end-page: 1048
  ident: b1970
  article-title: A technical guide to tDCS, and related non-invasive brain stimulation tools
  publication-title: Clin Neurophysiol
– volume: 7
  start-page: e43776
  year: 2012
  ident: b1605
  article-title: Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain
  publication-title: PLoS ONE
– volume: 2
  start-page: 292
  year: 2015
  end-page: 335
  ident: b0880
  article-title: Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community
  publication-title: J Law Biosci
– volume: 70
  start-page: 92
  year: 2009
  end-page: 115
  ident: b0760
  article-title: Probing the human brain with stimulating electrodes: the story of Roberts Bartholow's (1874) experiment on Mary Rafferty
  publication-title: Brain Cogn
– volume: 10
  start-page: 553
  year: 2017
  end-page: 559
  ident: b0370
  article-title: Safety and tolerability of transcranial direct current stimulation to stroke patients – a phase I current escalation study
  publication-title: Brain Stimul
– volume: 32
  start-page: 90
  year: 2015
  end-page: 97
  ident: b1360
  article-title: Safety and feasibility of Irreversible Electroporation (IRE) in patients with locally advanced pancreatic cancer: results of a prospective study
  publication-title: Dig Surg
– volume: 37
  start-page: 94
  year: 2016
  end-page: 121
  ident: b0335
  article-title: Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner
  publication-title: Hum Brain Mapping
– volume: 109
  start-page: 140
  year: 2015
  end-page: 150
  ident: b1355
  article-title: Determinants of the electric field during transcranial direct current stimulation
  publication-title: NeuroImage
– volume: 127
  start-page: 189
  year: 1955
  end-page: 200
  ident: b0305
  article-title: The site of electrical excitation of the human eye
  publication-title: J Physiol
– volume: 14
  start-page: 217
  year: 2011
  end-page: 223
  ident: b0060
  article-title: Ephaptic coupling of cortical neurons
  publication-title: Nat Neurosci
– volume: 31
  start-page: 593
  year: 2010
  end-page: 597
  ident: b0270
  article-title: Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation
  publication-title: Eur J Neurosci
– volume: 37
  start-page: 510
  year: 2010
  end-page: 518
  ident: b1820
  article-title: Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention
  publication-title: Neurobiol Dis
– volume: 74
  start-page: 330
  year: 2016
  end-page: 341
  ident: b1115
  article-title: A meta-analysis of non-invasive brain stimulation and autonomic functioning: implications for brain-heart pathways to cardiovascular disease
  publication-title: Neurosci Biobehav Rev
– volume: 6
  start-page: 289
  year: 2014
  ident: b1660
  article-title: Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly
  publication-title: Front Aging Neurosci
– volume: 123
  start-page: 1219
  year: 2016
  end-page: 1234
  ident: b1385
  article-title: Transcranial direct current stimulation in children and adolescents: a comprehensive review
  publication-title: J Neural Transm
– volume: 5
  start-page: 86
  year: 2014
  ident: b1670
  article-title: Time course of corticospinal excitability and autonomic function interplay during and following monopolar tDCS
  publication-title: Front Psych
– volume: 2015
  start-page: 2729
  year: 2015
  end-page: 2732
  ident: b1120
  article-title: Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 277
  start-page: 56
  year: 2016
  end-page: 62
  ident: b1030
  article-title: COMETS2: an advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation
  publication-title: J Neurosci Meth
– volume: 41
  start-page: 1475
  year: 2015
  end-page: 1483
  ident: b0810
  article-title: Augmenting mirror visual feedback-induced performance improvements in older adults
  publication-title: Eur J Neurosci
– volume: 6
  start-page: 115
  year: 2014
  ident: b0630
  article-title: Delayed plastic responses to anodal tDCS in older adults
  publication-title: Front Aging Neurosci
– volume: 2
  start-page: 215
  year: 2009
  end-page: 228
  ident: b1520
  article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro
  publication-title: Brain Stimul
– volume: 32
  start-page: 301
  year: 2014
  end-page: 312
  ident: b0635
  article-title: After vs. priming effects of anodal transcranial direct current stimulation on upper extremity motor recovery in patients with subacute stroke
  publication-title: Rest Neurol Neurosci
– volume: 251
  start-page: 1041
  year: 2013
  end-page: 1043
  ident: b0645
  article-title: Non-invasive electrical brain stimulation induces vision restoration in patients with visual pathway damage
  publication-title: Graefe's Arch Clin Exp Ophthalmol
– volume: 29
  start-page: E20
  year: 2014
  end-page: E29
  ident: b1040
  article-title: Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial
  publication-title: J Head Trauma Rehab
– volume: 8
  start-page: 132
  year: 2014
  ident: b1100
  article-title: Best of both worlds: promise of combining brain stimulation and brain connectome
  publication-title: Front Syst Neurosci
– volume: 27
  start-page: 2758
  year: 2017
  end-page: 2767
  ident: b0380
  article-title: Transcranial direct-current stimulation can enhance motor learning in children
  publication-title: Cereb Cor
– volume: 128
  start-page: 1943
  year: 2005
  end-page: 1950
  ident: b1510
  article-title: Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia
  publication-title: Brain
– volume: 43
  start-page: 231
  year: 2015
  end-page: 236
  ident: b0665
  article-title: Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke
  publication-title: Contemp Clin Trials
– volume: 13
  start-page: 61
  year: 2010
  end-page: 69
  ident: b1085
  article-title: A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression
  publication-title: Int J Neuropsychopharmacol
– volume: 15
  start-page: 366
  year: 2014
  ident: b1890
  article-title: Transcranial direct current stimulation (tDCS) for treatment of major depression during pregnancy: study protocol for a pilot randomized controlled trial
  publication-title: Trials
– volume: 96
  start-page: S129
  year: 2015
  end-page: S137
  ident: b0375
  article-title: Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury
  publication-title: Arch Phys Med Rehabil
– volume: 6
  start-page: 21583
  year: 2016
  ident: b0835
  article-title: Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells
  publication-title: Sci Rep
– volume: 109
  start-page: 48
  year: 2013
  end-page: 64
  ident: b1715
  article-title: Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS
  publication-title: Comput Methods Prog Biomed
– volume: 124
  start-page: 133
  year: 2016
  end-page: 144
  ident: b1755
  article-title: Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder
  publication-title: J Neural Transm
– volume: 23
  start-page: 109
  year: 2017
  end-page: 123
  ident: b0580
  article-title: Transcranial electrical stimulation: what we know and do not know about mechanisms
  publication-title: Neuroscientist
– volume: 115
  start-page: 2419
  year: 2004
  end-page: 2423
  ident: b1325
  article-title: MRI study of human brain exposed to weak direct current stimulation of the frontal cortex
  publication-title: Clin Neurophysiol
– volume: 4
  start-page: 38
  year: 2011
  end-page: 42
  ident: b1160
  article-title: Reducing procedural pain and discomfort associated with transcranial direct current stimulation
  publication-title: Brain Stimul
– reference: Hellwag CF, Jacobi M. Erfahrungen über die Heilkräfte des Galvanismus. Hamburg; 1802.
– reference: Food, Drug Administration HHS. International conference on harmonisation; guidance on E2F development safety update report; availability. Notice Fed Regist 2011;76:52667–8.
– volume: 27
  start-page: 295
  year: 2016
  end-page: 300
  ident: b0420
  article-title: Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation
  publication-title: NeuroReport
– volume: 42
  start-page: 723
  year: 2015
  end-page: 732
  ident: b1345
  article-title: Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial
  publication-title: J Oral Rehab
– volume: 20
  start-page: 313
  year: 2004
  end-page: 316
  ident: b1560
  article-title: Transcranial direct current stimulation disrupts tactile perception
  publication-title: Eur J Neurosci
– volume: 89
  start-page: 879
  year: 2010
  ident: b0910
  article-title: Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke
  publication-title: Am J Phys Med Rehab
– volume: 36
  start-page: 396
  year: 2016
  end-page: 404
  ident: b1860
  article-title: Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson's disease
  publication-title: J Neurosci
– volume: 1581
  start-page: 80
  year: 2014
  end-page: 88
  ident: b1930
  article-title: In-vivo detection of inflammation and neurodegeneration in the chronic phase after permanent embolic stroke in rats
  publication-title: Brain Res
– volume: 140
  start-page: 66
  year: 2016
  end-page: 75
  ident: b0425
  article-title: The right inferior frontal cortex in response inhibition: a tDCS-ERP co-registration study
  publication-title: NeuroImage
– volume: 554
  start-page: 94
  year: 2013
  end-page: 98
  ident: b1805
  article-title: Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect
  publication-title: Neurosci Lett
– volume: 293
  start-page: 125
  year: 2015
  end-page: 133
  ident: b0285
  article-title: Better together: left and right hemisphere engagement to reduce age-related memory loss
  publication-title: Behav Brain Res
– volume: 10
  start-page: 72
  year: 2016
  ident: b0295
  article-title: Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS)
  publication-title: Front Cell Neurosci
– volume: 114
  start-page: 2220
  year: 2003
  end-page: 2222
  ident: b1320
  article-title: Safety criteria for transcranial direct current stimulation (tDCS) in humans
  publication-title: Clin Neurophysiol
– volume: 127
  start-page: 3425
  year: 2016
  end-page: 3454
  ident: b0865
  article-title: Animal models of transcranial direct current stimulation: methods and mechanisms
  publication-title: Clin Neurophysiol
– volume: 54
  start-page: 663
  year: 2014
  end-page: 674
  ident: b0400
  article-title: Reduced threshold for inhibitory homeostatic responses in migraine motor cortex? A tDCS/TMS study
  publication-title: Headache
– volume: 124
  start-page: 1187
  year: 2013
  end-page: 1195
  ident: b0845
  article-title: Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury
  publication-title: Clin Neurophysiol
– volume: 120
  start-page: 1161
  year: 2009
  end-page: 1167
  ident: b1050
  article-title: Safety limits of cathodal transcranial direct current stimulation in rats
  publication-title: Clin Neurophysiol
– volume: 11
  start-page: 1
  year: 2010
  end-page: 10
  ident: b1870
  article-title: Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions
  publication-title: BMC Neurosci
– volume: 21
  start-page: 185
  year: 2015
  end-page: 202
  ident: b1260
  article-title: Metaplasticity in human cortex
  publication-title: Neuroscience
– volume: 55
  start-page: 590
  year: 2011
  end-page: 596
  ident: b0100
  article-title: Transcranial direct current stimulation over the primary motor cortex during fMRI
  publication-title: NeuroImage
– volume: 97
  start-page: 954
  year: 2014
  end-page: 962
  ident: b0120
  article-title: Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation
  publication-title: J Med Assoc Thai
– volume: 217
  start-page: 459
  year: 2003
  end-page: 467
  ident: b1145
  article-title: Medical device regulation for manufacturers
  publication-title: P I Mech Eng H
– volume: 2012
  start-page: 4128
  year: 2012
  end-page: 4131
  ident: b0075
  article-title: Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation
  publication-title: Conf Proc: Ann Internat Conf IEEE Eng Med Biol Soc
– volume: 52
  start-page: 1283
  year: 2012
  end-page: 1295
  ident: b0440
  article-title: TDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine
  publication-title: Headache
– volume: 14
  start-page: 1133
  year: 2011
  end-page: 1145
  ident: b0310
  article-title: A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation
  publication-title: Int J Neuropsychopharmacol
– volume: 27
  start-page: 3807
  year: 2007
  end-page: 3812
  ident: b1330
  article-title: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex
  publication-title: J Neurosci
– volume: 6
  start-page: 41
  year: 2015
  ident: b1045
  article-title: ARP2/3 complex is required for directional migration of neural stem cell-derived oligodendrocyte precursors in electric fields
  publication-title: Stem Cell Res Ther
– volume: 2015
  start-page: 928631
  year: 2015
  ident: b0050
  article-title: The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: a randomized crossover controlled trial
  publication-title: Behav Neurol
– volume: 7
  start-page: 460
  year: 2014
  end-page: 467
  ident: b1850
  article-title: When size matters: large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density
  publication-title: Brain Stimul
– volume: 4
  start-page: 1
  year: 2008
  end-page: 7
  ident: b0195
  article-title: Modulating presence and impulsiveness by external stimulation of the brain
  publication-title: Behav Brain Func
– volume: 78
  start-page: 353
  year: 1998
  end-page: 359
  ident: b1290
  article-title: Brain temperature and limits on transcranial cooling in humans: quantitative modeling results
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 97
  start-page: 142
  year: 2011
  end-page: 145
  ident: b1875
  article-title: Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study
  publication-title: Epil Res
– volume: 66
  start-page: 198
  year: 2010
  end-page: 204
  ident: b0615
  article-title: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning
  publication-title: Neuron
– volume: 37
  start-page: 401
  year: 1994
  end-page: 404
  ident: b0150
  article-title: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH)
  publication-title: Br J Clin Pharmacol
– volume: 14
  start-page: 157
  year: 1999
  end-page: 158
  ident: b0960
  article-title: Safety of transcranial magnetic stimulation in patients with implanted deep brain stimulators
  publication-title: Mov Disord
– volume: 3
  start-page: 58
  year: 2010
  end-page: 59
  ident: b0605
  article-title: Anodal skin lesions after treatment with transcranial direct current stimulation
  publication-title: Brain Stimul
– volume: 72
  start-page: 208
  year: 2007
  end-page: 214
  ident: b1485
  article-title: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients
  publication-title: Brain Res Bull
– reference: Grappengiesser C. Versuche den Galvanismus zur Heilung einiger Krankheiten. Berlin; 1801.
– volume: 171
  start-page: 330
  year: 1995
  end-page: 339
  ident: b0525
  article-title: Growth cone neurotransmitter receptor activation modulates electric field-guided nerve growth
  publication-title: Devel Biol
– volume: 34
  start-page: 3646
  year: 2014
  end-page: 3652
  ident: b0765
  article-title: Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age
  publication-title: J Neurosci
– volume: 46
  start-page: 169
  year: 2015
  ident: b0520
  article-title: Transcranial direct current stimulation-induced seizure: analysis of a case
  publication-title: Clin EEG Neurosci
– volume: 369
  start-page: 185
  year: 2016
  end-page: 190
  ident: b0070
  article-title: At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia
  publication-title: J Neurol Sci
– volume: 16
  start-page: 277
  year: 2013
  end-page: 286
  ident: b1090
  article-title: Irreversible electroporation: ready for prime time?
  publication-title: Tech Vasc Intervent Rad
– volume: 8
  start-page: 127
  year: 2014
  ident: b1095
  article-title: Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition
  publication-title: Front Syst Neurosci
– volume: 11
  start-page: 188
  year: 2008
  end-page: 190
  ident: b1375
  article-title: Transcranial direct current stimulation (tDCS) in therapy-resistant depression: preliminary results from a double-blind, placebo-controlled study
  publication-title: Int J Neuropsychopharmacol
– volume: 140
  start-page: 118
  year: 2016
  end-page: 125
  ident: b1910
  article-title: BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: a concurrent tACS-fMRI study
  publication-title: NeuroImage
– volume: 18
  year: 2014
  ident: b1430
  article-title: The morphological and molecular changes of brain cells exposed to direct current electric field stimulation
  publication-title: Int J Neuropsychopharmacol
– volume: 8
  start-page: 1085
  year: 2015
  end-page: 1092
  ident: b0495
  article-title: High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD
  publication-title: Brain Stimul
– volume: 90
  start-page: 191
  year: 2016
  end-page: 203
  ident: b0180
  article-title: Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories
  publication-title: Neuron
– volume: 125
  start-page: 2260
  year: 2014
  end-page: 2270
  ident: b1405
  article-title: Modeling the current density generated by transcutaneous spinal direct current stimulation (tsDCS)
  publication-title: Clin Neurophysiol
– volume: 569
  start-page: 6
  year: 2014
  end-page: 11
  ident: b1945
  article-title: Combination of transcranial direct current stimulation and methylphenidate in subacute stroke
  publication-title: Neurosci Lett
– volume: 6
  start-page: 253
  year: 2014
  ident: b1175
  article-title: Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults
  publication-title: Front Aging Neurosci
– volume: 107
  start-page: 1868
  year: 2012
  end-page: 1880
  ident: b1535
  article-title: Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation
  publication-title: J Neurophys
– volume: 37
  start-page: 243
  year: 2010
  end-page: 251
  ident: b0585
  article-title: Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke
  publication-title: Neurobiol Dis
– volume: 46
  start-page: 2147
  year: 2005
  end-page: 2155
  ident: b1250
  article-title: Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system
  publication-title: Invest Ophthal Vis Sci
– volume: 11
  start-page: e0149703
  year: 2016
  ident: b1935
  article-title: Perceived comfort and blinding efficacy in randomised sham-controlled transcranial direct current stimulation (tDCS) trials at 2 mA in young and older healthy adults
  publication-title: PLoS ONE
– year: 2017
  ident: b1465
  article-title: Low-intensity transcranial current stimulation in psychiatry
  publication-title: Am J Psychiatry
– volume: 8
  start-page: 906
  year: 2015
  end-page: 913
  ident: b0980
  article-title: Inter-subject variability in electric fields of motor cortical tDCS
  publication-title: Brain Stimul
– year: 2014
  ident: b1170
  article-title: Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging
  publication-title: J Vis Exp
– volume: 106
  start-page: 652
  year: 2011
  end-page: 661
  ident: b1680
  article-title: Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study
  publication-title: J Neurophys
– volume: 2015
  start-page: 963293
  year: 2015
  ident: b1400
  article-title: Effect of the interindividual variability on computational modeling of transcranial direct current stimulation
  publication-title: Comp Int Neurosci
– volume: 4
  start-page: 169
  year: 2011
  end-page: 174
  ident: b0445
  article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient
  publication-title: Brain Stimul
– volume: 113
  start-page: 341
  year: 2002
  end-page: 345
  ident: b0955
  article-title: Pseudo-bilateral hand motor responses evoked by transcranial magnetic stimulation in patients with deep brain stimulators
  publication-title: Clin Neurophysiol
– volume: 34
  start-page: 121
  year: 2014
  end-page: 127
  ident: b0565
  article-title: Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis
  publication-title: NeuroRehabilitation
– volume: 48
  start-page: 5782
  year: 2007
  end-page: 5787
  ident: b0995
  article-title: Bidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study
  publication-title: Invest Ophthalmol Vis Sci
– volume: 3
  start-page: 91
  year: 2012
  ident: b0465
  article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
  publication-title: Front Psych
– volume: 121
  start-page: 2165
  year: 2010
  end-page: 2171
  ident: b1235
  article-title: Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes
  publication-title: Clin Neurophysiol
– volume: 7
  start-page: 94
  year: 2013
  ident: b1885
  article-title: Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges
  publication-title: Front Syst Neurosci
– volume: 29
  start-page: 1212
  year: 2015
  end-page: 1223
  ident: b0395
  article-title: Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial
  publication-title: Clin Rehabil
– volume: 18
  year: 2014
  ident: b1425
  article-title: Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models
  publication-title: Int J Neuropsychopharmacol
– volume: 9
  start-page: 54
  year: 2015
  ident: b1500
  article-title: Direct electric stimulation to increase cerebrovascular function
  publication-title: Front Syst Neurosci
– volume: 10
  start-page: 68
  year: 2016
  ident: b1180
  article-title: Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromyalgia: a randomized placebo-controlled clinical trial
  publication-title: Front Hum Neurosci
– volume: 30
  start-page: e16
  year: 2014
  end-page: e18
  ident: b1895
  article-title: Electroconvulsive therapy in patients with deep brain stimulators
  publication-title: J ECT
– volume: 30
  start-page: 1604
  year: 2015
  end-page: 1615
  ident: b0210
  article-title: Multiday transcranial direct current stimulation causes clinically insignificant changes in childhood dystonia: a pilot study
  publication-title: J Child Neurol
– volume: 140
  start-page: 110
  year: 2016
  end-page: 117
  ident: b0025
  article-title: Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: a combined tES-fMRI approach
  publication-title: NeuroImage
– volume: 26
  start-page: 68
  year: 2010
  end-page: 69
  ident: b0125
  article-title: Induction of hypomanic episode with transcranial direct current stimulation
  publication-title: J ECT
– volume: 33
  start-page: 12470
  year: 2013
  end-page: 12478
  ident: b1165
  article-title: Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes
  publication-title: J Neurosci
– volume: 27
  start-page: 763
  year: 2015
  end-page: 768
  ident: b1015
  article-title: Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial
  publication-title: J Phys Ther Sci
– volume: 10
  start-page: e0142740
  year: 2015
  ident: b0165
  article-title: Elucidating the role of injury-induced electric fields (EFs) in regulating the astrocytic response to injury in the mammalian central nervous system
  publication-title: PLoS ONE
– volume: 1
  start-page: 193
  year: 2010
  ident: b1135
  article-title: Non-invasive brain stimulation applied to Heschl's gyrus modulates pitch discrimination
  publication-title: Front Psych
– volume: 593
  start-page: 3645
  year: 2015
  end-page: 3655
  ident: b1390
  article-title: Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation
  publication-title: J Physiol
– volume: 7
  start-page: 765
  year: 2014
  end-page: 767
  ident: b1555
  article-title: Skin lesions induced by transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
– reference: Augustin F. Galvanismus und dessen Medizinischer Anwendung. Berlin; 1801.
– volume: 85
  start-page: 1040
  year: 2014
  end-page: 1047
  ident: b0080
  article-title: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain
  publication-title: NeuroImage
– volume: 22
  start-page: 495
  year: 2005
  end-page: 504
  ident: b1005
  article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?
  publication-title: Eur J Neurosci
– volume: 19
  start-page: 228
  year: 2003
  end-page: 248
  ident: b0035
  article-title: EU and member state medical devices regulation
  publication-title: Int J Technol Assess Health Care
– volume: 152
  start-page: 142
  year: 2017
  end-page: 157
  ident: b0800
  article-title: Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults
  publication-title: NeuroImage
– volume: 4
  start-page: 275
  year: 2011
  end-page: 280
  ident: b1140
  article-title: Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia
  publication-title: Brain Stimul
– volume: 20
  start-page: 248
  year: 2017
  end-page: 255
  ident: b0530
  article-title: The influence of skin redness on blinding in transcranial direct current stimulation studies: a crossover trial
  publication-title: Neuromodulation
– volume: 29
  start-page: 232
  year: 2014
  end-page: 239
  ident: b2000
  article-title: Cathodal transcranial direct current stimulation in children with dystonia: a sham-controlled study
  publication-title: J Child Neurol
– volume: 233
  start-page: 2401
  year: 2015
  end-page: 2409
  ident: b2020
  article-title: Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults
  publication-title: Exp Brain Res
– volume: 45
  start-page: 196
  year: 2001
  end-page: 201
  ident: b0190
  article-title: Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation
  publication-title: Magn Res Med
– volume: 4
  start-page: 175
  year: 2011
  end-page: 188
  ident: b0660
  article-title: Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy
  publication-title: Brain Stimul
– volume: 7
  start-page: 92
  year: 2014
  end-page: 96
  ident: b0355
  article-title: Safety of 5 kHz tACS
  publication-title: Brain Stimul
– volume: 23
  start-page: E4
  year: 2011
  end-page: E5
  ident: b0330
  article-title: Manic psychosis after sertraline and transcranial direct-current stimulation
  publication-title: J Neuropsych Clin Neurosci
– volume: 80
  start-page: 432
  year: 2015
  end-page: 438
  ident: b0820
  article-title: Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites
  publication-title: Biol Psych
– volume: 119
  start-page: 25
  year: 2015
  end-page: 33
  ident: b1230
  article-title: Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: self-reports and resting state EEG analysis
  publication-title: Brain Res Bull
– volume: 2009
  start-page: 1596
  year: 2009
  end-page: 1599
  ident: b0550
  article-title: Comparing different electrode configurations using the 10–10 international system in tDCS: a finite element model analysis
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 3
  start-page: 23
  year: 1972
  end-page: 30
  ident: b1225
  article-title: Septal stimulation for initiation of heterosexual behavior in a homosexual male
  publication-title: J Behav Ther Exp Psych
– volume: 71
  year: 2011
  ident: b0935
  article-title: Subliminal semantic processing in face stimuli: an EEG and tDCS study
  publication-title: Neurosci Res
– volume: 18
  start-page: 157
  year: 2013
  end-page: 166
  ident: b0030
  article-title: Short-term and long-term effects of electrical stimulation on skin properties
  publication-title: Physiother Res Int
– volume: 33
  start-page: 647
  year: 2015
  end-page: 662
  ident: b0990
  article-title: A-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect
  publication-title: Rest Neurol Neurosci
– volume: 1
  start-page: 386
  year: 2008
  end-page: 387
  ident: b1370
  article-title: Skin lesions after treatment with transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
– volume: 7
  start-page: 107
  year: 2015
  ident: b1505
  article-title: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective
  publication-title: Front Aging Neurosci
– volume: 121
  start-page: 1908
  year: 2010
  end-page: 1914
  ident: b0055
  article-title: Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS
  publication-title: Clin Neurophysiol
– volume: 6
  start-page: 87
  year: 2013
  end-page: 93
  ident: b1690
  article-title: Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study
  publication-title: Brain Stimul
– volume: 126
  start-page: 2181
  year: 2015
  end-page: 2188
  ident: b0575
  article-title: What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects
  publication-title: Clin Neurophysiol
– volume: 85
  start-page: 943
  year: 2005
  end-page: 978
  ident: b1150
  article-title: Controlling cell behavior electrically: current views and future potential
  publication-title: Physiol Rev
– volume: 97
  start-page: 3109
  year: 2007
  end-page: 3117
  ident: b1315
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
  publication-title: J Neurophys
– volume: 14
  start-page: 425
  year: 2011
  end-page: 426
  ident: b1080
  article-title: Avoiding skin burns with transcranial direct current stimulation: preliminary considerations
  publication-title: Int J Neuropsychopharmacol
– volume: 37
  start-page: 996
  year: 1990
  end-page: 1001
  ident: b1155
  article-title: Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation
  publication-title: IEEE Trans Biomed Eng
– volume: 9
  start-page: 457
  year: 2016
  end-page: 458
  ident: b1770
  article-title: Monotherapy with tDCS for treatment of depressive episode during pregnancy: a case report
  publication-title: Brain Stimul
– volume: 8
  start-page: 993
  year: 2015
  end-page: 1006
  ident: b0885
  article-title: Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation
  publication-title: Brain Stimul
– volume: 70
  start-page: 48
  year: 2013
  end-page: 58
  ident: b1215
  article-title: The electric field in the cortex during transcranial current stimulation
  publication-title: NeuroImage
– volume: 2012
  start-page: 5514
  year: 2012
  end-page: 5517
  ident: b1190
  article-title: Investigation of the electric field components of tDCS via anisotropically conductive gyri-specific finite element head models
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 29
  start-page: 5202
  year: 2009
  end-page: 5206
  ident: b1780
  article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation
  publication-title: J Neurosci
– volume: 117
  start-page: 845
  year: 2006
  end-page: 850
  ident: b0675
  article-title: Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation
  publication-title: Clin Neurophysiol
– volume: 118
  start-page: 406
  year: 2015
  end-page: 413
  ident: b1295
  article-title: Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation
  publication-title: NeuroImage
– volume: 35
  start-page: 579
  year: 2011
  end-page: 582
  ident: b1990
  article-title: Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient – a case report
  publication-title: Ann Rehab Med
– volume: 53
  start-page: 853
  year: 2010
  end-page: 859
  ident: b0610
  article-title: Pharmacological neuroenhancement and brain doping: chances and risks
  publication-title: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz
– volume: 25
  start-page: 256
  year: 2009
  end-page: 260
  ident: b1070
  article-title: Transcranial direct current stimulation priming of therapeutic repetitive transcranial magnetic stimulation: a pilot study
  publication-title: J ECT
– volume: 34
  start-page: 5029
  year: 2014
  end-page: 5037
  ident: b1105
  article-title: Cerebellar-parietal connections underpin phonological storage
  publication-title: J Neurosci
– volume: 1351
  start-page: 127
  year: 2015
  end-page: 140
  ident: b1020
  article-title: The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects
  publication-title: Ann NY Acad Sci
– volume: 2010
  start-page: 2073
  year: 2010
  end-page: 2076
  ident: b1650
  article-title: Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation
  publication-title: Ann Int Conf IEEE Eng Med Biol Soc
– volume: 10
  start-page: 361
  year: 2016
  ident: b0730
  article-title: Spared primary motor cortex and the presence of MEP in cerebral palsy dictate the responsiveness to tDCS during gait training
  publication-title: Front Hum Neurosci
– volume: 126
  start-page: 2189
  year: 2015
  end-page: 2197
  ident: b0705
  article-title: The effects of anodal-tDCS on cross-limb transfer in older adults
  publication-title: Clin Neurophysiol
– volume: 1
  start-page: 206
  year: 2008
  end-page: 223
  ident: b1310
  article-title: Transcranial direct current stimulation: state of the art 2008
  publication-title: Brain Stimul
– volume: 85
  start-page: 1058
  year: 2014
  end-page: 1068
  ident: b0300
  article-title: Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition?
  publication-title: NeuroImage
– volume: 7
  start-page: 823
  year: 2014
  end-page: 831
  ident: b1515
  article-title: Neurosensory effects of transcranial alternating current stimulation
  publication-title: Brain Stimul
– volume: 51
  start-page: 1310
  year: 2010
  end-page: 1318
  ident: b1640
  article-title: Transcranial direct current stimulation (tDCS) in a realistic head model
  publication-title: NeuroImage
– volume: 157
  start-page: 429
  year: 2016
  end-page: 437
  ident: b1900
  article-title: Reduction of chronic abdominal pain in patients with inflammatory bowel disease through transcranial direct current stimulation: a randomized controlled trial
  publication-title: Pain
– volume: 2016
  start-page: 5068127
  year: 2016
  ident: b1795
  article-title: TDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke
  publication-title: Biomed Res Int
– volume: 80
  start-page: 1
  year: 2016
  end-page: 4
  ident: b1980
  article-title: An open letter concerning do-it-yourself users of transcranial direct current stimulation
  publication-title: Ann Neurol
– volume: 96
  start-page: S114
  year: 2015
  end-page: S121
  ident: b1275
  article-title: Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury
  publication-title: Arch Phys Med Rehab
– volume: 24
  start-page: 442
  year: 1994
  end-page: 445
  ident: b0265
  article-title: The use of the method of transcranial micropolarization to decrease the severity hyperkineses in patients with infantile cerebral palsy
  publication-title: Neurosci Behav Physiol
– volume: 141
  start-page: 171
  year: 2005
  end-page: 198
  ident: b1185
  article-title: Electrical stimulation of excitable tissue: design of efficacious and safe protocols
  publication-title: J Neurosci Meth
– volume: 75
  start-page: 12
  year: 2013
  end-page: 19
  ident: b0490
  article-title: Targeted transcranial direct current stimulation for rehabilitation after stroke
  publication-title: NeuroImage
– volume: 13
  start-page: 112
  year: 2012
  end-page: 120
  ident: b0275
  article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception
  publication-title: J Pain
– volume: 140
  start-page: 99
  year: 2016
  end-page: 109
  ident: b1340
  article-title: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation
  publication-title: NeuroImage
– volume: 9
  start-page: 641
  year: 2016
  end-page: 661
  ident: b0230
  article-title: Safety of transcranial direct current stimulation: evidence based update 2016
  publication-title: Brain Stimul
– volume: 118
  start-page: 1166
  year: 2007
  end-page: 1170
  ident: b0505
  article-title: Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes
  publication-title: Clin Neurophysiol
– volume: 9
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0805
  article-title: The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions
  publication-title: Brain Stimul
– volume: 21
  start-page: 1471
  year: 2006
  end-page: 1476
  ident: b0795
  article-title: MEP latency shift after implantation of deep brain stimulation systems in the subthalamic nucleus in patients with advanced Parkinson's disease
  publication-title: Mov Dis
– volume: 31
  start-page: 784
  year: 2016
  end-page: 796
  ident: b1600
  article-title: Noninvasive brain stimulation in pediatric attention-deficit hyperactivity disorder (ADHD): a review
  publication-title: J Child Neurol
– volume: 123
  start-page: 2006
  year: 2012
  end-page: 2009
  ident: b1625
  article-title: TDCS possibly stimulates glial cells
  publication-title: Clin Neurophysiol
– volume: 282
  start-page: 974
  year: 1981
  end-page: 976
  ident: b1540
  article-title: Clinical pharmacology. Adverse reactions to drugs
  publication-title: BMJ
– year: 1811
  ident: b0930
  article-title: Versuch einer Darstellung des animalischen Magnetismus als Heilmittel
– volume: 8
  start-page: 76
  year: 2015
  end-page: 87
  ident: b0940
  article-title: Safety of noninvasive brain stimulation in children and adolescents
  publication-title: Brain Stimul
– volume: 121
  start-page: 221
  year: 2014
  end-page: 231
  ident: b0245
  article-title: Evidence for metaplasticity in the human visual cortex
  publication-title: J Neural Transm
– volume: 49
  start-page: 1801
  year: 2013
  end-page: 1807
  ident: b1475
  article-title: Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism
  publication-title: Cortex
– volume: 39
  start-page: 890
  year: 2010
  end-page: 903
  ident: b0105
  article-title: Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition
  publication-title: J Pain Symp Man
– volume: 3
  start-page: 6
  year: 2009
  ident: b1705
  article-title: Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation
  publication-title: Front Int Neurosci
– volume: 33
  start-page: 11425
  year: 2013
  end-page: 11431
  ident: b1785
  article-title: Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex
  publication-title: J Neurosci
– volume: 63
  start-page: 168
  year: 2016
  end-page: 175
  ident: b0975
  article-title: Current density imaging during transcranial direct current stimulation using DT-MRI and MREIT: algorithm development and numerical simulations
  publication-title: IEEE Trans Biomed Eng
– volume: 5
  start-page: 49
  year: 2013
  ident: b1125
  article-title: Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation
  publication-title: Front Aging Neurosci
– volume: 7
  start-page: 793
  year: 2014
  end-page: 799
  ident: b1490
  article-title: Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls
  publication-title: Brain Stimul
– volume: 120
  start-page: 2008
  year: 2009
  end-page: 2039
  ident: b1575
  article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clin Neurophysiol
– volume: 38
  start-page: 637
  year: 2016
  end-page: 643
  ident: b1255
  article-title: Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial
  publication-title: Disab Rehab
– volume: 14
  start-page: 388
  year: 2015
  end-page: 405
  ident: b0790
  article-title: Neuroinflammation in Alzheimer's disease
  publication-title: Lancet Neurol
– year: 2017
  ident: b0700
  article-title: Concurrent diffuse optical measurement of cerebral hemodynamics and EEG during transcranial direct current stimulation (tDCS) in humans
  publication-title: Brain Stimul
– volume: 11
  year: 2017
  ident: b0435
  article-title: Moral enhancement using non-invasive brain stimulation
  publication-title: Front Hum Neurosci
– volume: 47
  start-page: 414
  year: 2013
  end-page: 422
  ident: b1480
  article-title: No effects of anodal transcranial direct stimulation on language abilities in early rehabilitation of post-stroke aphasic patients
  publication-title: Neurol Neurochir Polska
– volume: 64
  start-page: 872
  year: 2005
  end-page: 875
  ident: b0860
  article-title: Safety and cognitive effect of frontal DC brain polarization in healthy individuals
  publication-title: Neurology
– volume: 39
  start-page: 210
  year: 2016
  end-page: 216
  ident: b1665
  article-title: Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning
  publication-title: Neurobiol Aging
– volume: 108
  start-page: e53367
  year: 2016
  ident: b0430
  article-title: Non-invasive electrical brain stimulation montages for modulation of human motor function
  publication-title: J Vis Exp
– volume: 89
  start-page: 216
  year: 2014
  end-page: 225
  ident: b1610
  article-title: Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields
  publication-title: NeuroImage
– volume: 64
  start-page: 184
  year: 2017
  end-page: 195
  ident: b1395
  article-title: A computational model of the electric field distribution due to regional personalized or non-personalized electrodes to select transcranial electric stimulation target
  publication-title: IEEE Trans Biomed Eng
– volume: 46
  start-page: 319
  year: 2016
  end-page: 398
  ident: b1035
  article-title: A comprehensive database of published tDCS clinical trials (2005–2016)
  publication-title: Neurophysiol Clinique
– volume: 85
  start-page: 1048
  year: 2014
  end-page: 1057
  ident: b1925
  article-title: Impact of brain tissue filtering on neurostimulation fields: a modeling study
  publication-title: NeuroImage
– volume: 5
  start-page: 155
  year: 2012
  end-page: 162
  ident: b0895
  article-title: Differences in the experience of active and sham transcranial direct current stimulation
  publication-title: Brain Stimul
– volume: 117
  start-page: 455
  year: 2006
  end-page: 471
  ident: b1110
  article-title: Safety of rTMS to non-motor cortical areas in healthy participants and patients
  publication-title: Clin Neurophysiol
– volume: 25
  start-page: 122
  year: 2014
  end-page: 126
  ident: b1420
  article-title: Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults
  publication-title: NeuroReport
– volume: 132
  start-page: 3011
  year: 2009
  end-page: 3020
  ident: b1760
  article-title: Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation
  publication-title: Brain
– volume: 110
  start-page: 1414
  year: 2011
  end-page: 1424
  ident: b0010
  article-title: Trans-spinal direct current stimulation modulates motor cortex-induced muscle contraction in mice
  publication-title: J Appl Physiol
– volume: 21
  start-page: 333
  year: 2013
  end-page: 345
  ident: b1620
  article-title: Transcranial current brain stimulation (tCS): models and technologies
  publication-title: IEEE Trans Neur Sys Reh
– volume: 83
  start-page: 1394
  year: 2000
  end-page: 1402
  ident: b1775
  article-title: Stochastic resonance improves signal detection in hippocampal CA1 neurons
  publication-title: J Neurophys
– volume: 74
  start-page: 152
  year: 2015
  end-page: 161
  ident: b1750
  article-title: Transcranial direct current stimulation to the parietal cortex in hemispatial neglect: a feasibility study
  publication-title: Neuropsychology
– volume: 11
  start-page: e0156134
  year: 2016
  ident: b0655
  article-title: Alternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial
  publication-title: PLoS ONE
– volume: 22
  start-page: 316
  year: 2010
  end-page: 318
  ident: b0155
  article-title: Hypomanic episode in unipolar depression during transcranial direct current stimulation
  publication-title: Acta Neuropsych
– volume: 3
  start-page: 97
  year: 2012
  ident: b0555
  article-title: Modulation of untruthful responses with non-invasive brain stimulation
  publication-title: Front Psych
– volume: 2010
  start-page: 6821
  year: 2010
  end-page: 6824
  ident: b0475
  article-title: Transcranial magnetic stimulation in the presence of deep brain stimulation implants: induced electrode currents
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 34
  start-page: 4022
  year: 2014
  end-page: 4026
  ident: b2035
  article-title: Shaping memory accuracy by left prefrontal transcranial direct current stimulation
  publication-title: J Neurosci
– volume: 10
  start-page: 683
  year: 2016
  ident: b0965
  article-title: 5 kHz transcranial alternating current stimulation: lack of cortical excitability changes when grouped in a theta burst pattern
  publication-title: Front Hum Neurosci
– volume: 253
  start-page: 171
  year: 2015
  end-page: 176
  ident: b0625
  article-title: The role of electrical stimulation therapy in ophthalmic diseases
  publication-title: Graefe's Arch Clin Exp Ophthalmol
– volume: 2015
  start-page: 684025
  year: 2015
  ident: b1435
  article-title: The bipolar depression electrical treatment trial (BETTER): design, rationale, and objectives of a randomized, sham-controlled trial and data from the pilot study phase
  publication-title: Neur Plast
– volume: 16
  start-page: 1695
  year: 2013
  end-page: 1706
  ident: b1525
  article-title: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics
  publication-title: Int J Neuropsychopharmacol
– volume: 10
  start-page: 188
  year: 2016
  ident: b0685
  article-title: Glia: a neglected player in non-invasive direct current brain stimulation
  publication-title: Front Cell Neurosci
– volume: 7
  start-page: 627
  year: 2014
  end-page: 635
  ident: b1590
  article-title: Broca's area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia
  publication-title: Brain Stimul
– volume: 28
  start-page: 231
  year: 2015
  end-page: 239
  ident: b0900
  article-title: Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain
  publication-title: NMR Biomed
– volume: 19
  start-page: 46
  year: 2016
  end-page: 52
  ident: b1835
  article-title: Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control
  publication-title: Prost Cancer Prost Dis
– volume: 7
  start-page: 762
  year: 2014
  end-page: 764
  ident: b1365
  article-title: The role of contact media at the skin-electrode interface during transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
– volume: 20
  start-page: e00255
  year: 2014
  ident: b1415
  article-title: Effects of transcranial direct current stimulation in combination with motor practice on dexterous grasping and manipulation in healthy older adults
  publication-title: Phys Rep
– volume: 8
  start-page: 455
  year: 2015
  end-page: 464
  ident: b1655
  article-title: Transcranial direct current stimulation in epilepsy
  publication-title: Brain Stimul
– volume: 21
  start-page: 333
  year: 2013
  end-page: 345
  ident: b1615
  article-title: Transcranial current brain stimulation (tCS): models and technologies
  publication-title: IEEE Transact Neur Sys Rehab Eng
– volume: 22
  start-page: 197
  year: 2010
  end-page: 198
  ident: b1335
  article-title: Recommendations for the use of tDCS in clinical research
  publication-title: Acta Neuropsych
– volume: 77
  start-page: 689
  year: 2016
  end-page: 690
  ident: b1565
  article-title: Safety and efficacy of electroconvulsive therapy for depression in the presence of deep brain stimulation in obsessive-compulsive disorder
  publication-title: J Clin Psych
– volume: 154
  start-page: 2178
  year: 2013
  end-page: 2184
  ident: b1975
  article-title: Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial
  publication-title: Pain
– volume: 27
  start-page: 256
  year: 2011
  end-page: 258
  ident: b0670
  article-title: Hypomania induction in a patient with bipolar II disorder by transcranial direct current stimulation (tDCS)
  publication-title: J ECT
– volume: 5
  start-page: e13766
  year: 2010
  ident: b2015
  article-title: Transcranial alternating current stimulation enhances individual alpha activity in human EEG
  publication-title: PLoS ONE
– volume: 67
  start-page: 129
  year: 2010
  end-page: 143
  ident: b0620
  article-title: Endogenous electric fields may guide neocortical network activity
  publication-title: Neuron
– volume: 5
  start-page: 430
  year: 2012
  end-page: 431
  ident: b0220
  article-title: Guidelines for precise and accurate computational models of tDCS
  publication-title: Brain Stimul
– volume: 374
  start-page: 20150187
  year: 2016
  ident: b1580
  article-title: The heart side of brain neuromodulation
  publication-title: Philos Trans R Soc A
– volume: 8
  start-page: e76112
  year: 2013
  ident: b0890
  article-title: Dosage considerations for transcranial direct current stimulation in children: a computational modeling study
  publication-title: PLoS ONE
– volume: 126
  start-page: 1071
  year: 2015
  end-page: 1107
  ident: b1585
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee
  publication-title: Clin Neurophysiol
– volume: 2016
  start-page: 5961362
  year: 2016
  ident: b0500
  article-title: Multisession anodal tDCS protocol improves motor system function in an aging population
  publication-title: Neur Plast
– volume: 8
  start-page: 163
  year: 2015
  end-page: 164
  ident: b1725
  article-title: Transcranial direct current stimulation (tDCS) for auditory verbal hallucinations in schizophrenia during pregnancy: a case report
  publication-title: Brain Stimul
– volume: 2014
  start-page: 173073
  year: 2014
  ident: b0045
  article-title: Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial
  publication-title: Behav Neurol
– volume: 10
  start-page: 349
  year: 2013
  end-page: 360
  ident: b0185
  article-title: Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation
  publication-title: Stem Cell Res
– volume: 9
  start-page: 26
  year: 2015
  ident: b0360
  article-title: Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols
  publication-title: Front Syst Neurosci
– volume: 5
  start-page: 10289
  year: 2015
  ident: b0750
  article-title: The galvanotactic migration of keratinocytes is enhanced by hypoxic preconditioning
  publication-title: Sci Rep
– volume: 74
  start-page: 266
  year: 2013
  end-page: 275
  ident: b0515
  article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS
  publication-title: NeuroImage
– volume: 234
  start-page: 637
  year: 2016
  end-page: 643
  ident: b1790
  article-title: “Unfocus” on focus: commercial tDCS headset impairs working memory
  publication-title: Exp Brain Res
– volume: 156
  start-page: 62
  year: 2015
  end-page: 71
  ident: b0535
  article-title: Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial
  publication-title: Pain
– volume: 1650
  start-page: 10
  year: 2016
  end-page: 20
  ident: b1985
  article-title: Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-alpha expression
  publication-title: Brain Res
– volume: 119
  start-page: 2636
  year: 2008
  end-page: 2640
  ident: b0390
  article-title: Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans
  publication-title: Clin Neurophysiol
– volume: 22
  start-page: 391
  year: 1999
  end-page: 397
  ident: b0480
  article-title: Pathobiology of ischaemic stroke: an integrated view
  publication-title: Trends Neurosci
– volume: 5
  start-page: 242
  year: 2012
  end-page: 251
  ident: b1380
  article-title: Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study
  publication-title: Brain Stimul
– volume: 7
  start-page: 230
  year: 2015
  ident: b1300
  article-title: No significant effect of prefrontal tDCS on working memory performance in older adults
  publication-title: Front Aging Neurosci
– volume: 53
  start-page: 257
  year: 2009
  end-page: 266
  ident: b1815
  article-title: Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats
  publication-title: Jpn J Ophthalmol
– volume: 44
  start-page: 3166
  year: 2013
  end-page: 3174
  ident: b1445
  article-title: Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke
  publication-title: Stroke
– volume: 3
  start-page: 84
  year: 2012
  ident: b1545
  article-title: EEG driven tDCS versus bifrontal tDCS for tinnitus
  publication-title: Front Psych
– volume: 121
  start-page: 1976
  year: 2010
  end-page: 1978
  ident: b0225
  article-title: Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode's position and size
  publication-title: Clin Neurophysiol
– volume: 10
  start-page: 101
  year: 1975
  end-page: 104
  ident: b0510
  article-title: Intracerebral current levels in man during electrosleep therapy
  publication-title: Biol Psych
– volume: 5
  start-page: 432
  year: 2012
  end-page: 434
  ident: b1550
  article-title: Contact dermatitis after transcranial direct current stimulation
  publication-title: Brain Stimul
– volume: 93
  start-page: 43
  year: 1993
  end-page: 45
  ident: b0260
  article-title: The use of the transcranial micropolarization method for decreasing the manifestations of hyperkinesis in patients with infantile cerebral palsy
  publication-title: Zh Nevrol Psikhiatr Im S S Korsakova
– volume: 8
  start-page: 590
  year: 2015
  end-page: 602
  ident: b1710
  article-title: The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
– volume: 16
  start-page: 127
  year: 2010
  end-page: 131
  ident: b1735
  article-title: The safety of transcranial magnetic stimulation with deep brain stimulation instruments
  publication-title: Parkins Rel Dis
– volume: 9
  start-page: 671
  year: 2016
  end-page: 681
  ident: b0115
  article-title: A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials
  publication-title: Brain Stimul
– volume: 254
  start-page: 18
  year: 2015
  end-page: 26
  ident: b0250
  article-title: An unexpected target of spinal direct current stimulation: interhemispheric connectivity in humans
  publication-title: J Neurosci Meth
– volume: 120
  start-page: 25
  year: 2015
  end-page: 35
  ident: b1675
  article-title: On the importance of electrode parameters for shaping electric field patterns generated by tDCS
  publication-title: NeuroImage
– volume: 8
  start-page: 43
  year: 2015
  end-page: 52
  ident: b0015
  article-title: Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update
  publication-title: J Vasc Intervent Neurol
– year: 1864
  ident: b2025
  article-title: Die Elektricität in der Medicin
– volume: 11
  start-page: 036002
  year: 2014
  ident: b1720
  article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation
  publication-title: J Neur Eng
– volume: 25
  start-page: 417
  year: 2012
  end-page: 425
  ident: b0540
  article-title: Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy
  publication-title: Epil Behav
– volume: 56
  start-page: 716
  year: 2001
  end-page: 723
  ident: b0365
  article-title: Effects of internal globus pallidus stimulation on motor cortex excitability
  publication-title: Neurology
– volume: 6
  start-page: 275
  year: 2014
  ident: b0905
  article-title: A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer's disease
  publication-title: Front Aging Neurosci
– volume: 219
  start-page: 297
  year: 2013
  end-page: 311
  ident: b0745
  article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations
  publication-title: J Neurosci Meth
– volume: 25
  start-page: 640
  year: 2011
  end-page: 654
  ident: b1695
  article-title: The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism
  publication-title: Clin Linguist Phon
– volume: 592
  start-page: 3345
  year: 2014
  end-page: 3369
  ident: b1495
  article-title: Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists
  publication-title: J Physiol
– volume: 17
  start-page: 647
  year: 2011
  end-page: 648
  ident: b0950
  article-title: Safety of transcranial magnetic stimulation for the newer generation of deep brain stimulators
  publication-title: Parkins Rel Disor
– volume: 41
  start-page: 2087
  year: 2010
  end-page: 2090
  ident: b1880
  article-title: Cortical neuromodulation modifies cerebral vasomotor reactivity
  publication-title: Stroke
– volume: 31
  start-page: 275
  year: 2013
  end-page: 285
  ident: b1855
  article-title: Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation
  publication-title: Rest Neur Neurosci
– volume: 521
  start-page: 148
  year: 2012
  end-page: 151
  ident: b0205
  article-title: TDCS selectively improves working memory in older adults with more education
  publication-title: Neurosci Lett
– volume: 111
  start-page: 1301
  year: 2010
  end-page: 1307
  ident: b1285
  article-title: The analgesic and antihyperalgesic effects of transcranial electrostimulation with combined direct and alternating current in healthy volunteers
  publication-title: Anest Anal
– volume: 17
  start-page: 810
  year: 2014
  end-page: 812
  ident: b1905
  article-title: Induction of self awareness in dreams through frontal low current stimulation of gamma activity
  publication-title: Nat Neurosci
– reference: Grecco LA, Mendonça ME, Duarte NA, Zanon N, Fregni F, Oliveira CS. Transcranial direct current stimulation combined with treadmill gait training in delayed neuro-psychomotor development. J Phys Ther Sci 2014b;26:945–50.
– volume: 8
  start-page: 066017
  year: 2011
  ident: b0545
  article-title: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS
  publication-title: J Neur Eng
– volume: 11
  start-page: 113
  year: 2017
  ident: b1010
  article-title: Can neuromodulation also enhance social inequality? Some possible indirect interventions of the state
  publication-title: Front Hum Neurosci
– volume: 56
  start-page: 634
  year: 2004
  end-page: 639
  ident: b1000
  article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects
  publication-title: Biol Psych
– volume: 10
  start-page: e0121904
  year: 2015
  ident: b0875
  article-title: Longitudinal neurostimulation in older adults improves working memory
  publication-title: PLoS ONE
– volume: 28
  start-page: 14147
  year: 2008
  end-page: 14155
  ident: b1825
  article-title: Increasing human brain excitability by transcranial high-frequency random noise stimulation
  publication-title: J Neurosci
– volume: 501
  start-page: 167
  year: 2013
  ident: b0215
  article-title: Neuroscience: transcranial devices are not playthings
  publication-title: Nature
– volume: 5
  start-page: 484
  year: 2012
  end-page: 491
  ident: b0985
  article-title: Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention
  publication-title: Brain Stimul
– volume: 10
  start-page: 275
  year: 2008
  end-page: 309
  ident: b0385
  article-title: Neural stimulation and recording electrodes
  publication-title: Ann Rev Biomed Eng
– year: 2013
  ident: b1685
  article-title: Simultaneous EEG monitoring during transcranial direct current stimulation
  publication-title: J Vis Exp
– volume: 11
  start-page: 75
  year: 2015
  end-page: 86
  ident: b0340
  article-title: Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion
  publication-title: Stem Cell Rev
– volume: 275
  start-page: 316
  year: 2016
  end-page: 327
  ident: b1060
  article-title: Microglia in the TBI brain: the good, the bad, and the dysregulated
  publication-title: Exp Neurol
– volume: 354
  start-page: 103
  year: 2015
  end-page: 109
  ident: b1965
  article-title: Prophylactic treatment in menstrual migraine: a proof-of-concept study
  publication-title: J Neurol Sci
– volume: 70
  start-page: 383
  year: 2013
  end-page: 391
  ident: b0325
  article-title: The sertraline vs electrical current therapy for treating depression clinical study results from a factorial, randomized, controlled trial
  publication-title: JAMA Psych
– volume: 43
  start-page: 220
  year: 2012
  end-page: 227
  ident: b1305
  article-title: Transcranial direct current stimulation of the human brain. From basic principles to clinical application
  publication-title: Klin Neurophysiol
– volume: 4
  start-page: 189
  year: 2011
  end-page: 201
  ident: b0560
  article-title: Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: a clinical observational study
  publication-title: Brain Stimul
– volume: 10
  start-page: 262
  year: 2016
  ident: b2010
  article-title: Weighing the cost and benefit of transcranial direct current stimulation on different reading subskills
  publication-title: Front Neurosci
– volume: 8
  start-page: 165
  year: 2015
  end-page: 166
  ident: b1940
  article-title: Skin burn after single session of transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
– volume: 35
  start-page: 2217
  year: 2014
  end-page: 2221
  ident: b0755
  article-title: Cerebellar direct current stimulation enhances motor learning in older adults
  publication-title: Neurobiol Aging
– volume: 120
  start-page: 1183
  year: 2009
  end-page: 1187
  ident: b1210
  article-title: What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS?
  publication-title: Clin Neurophysiol
– volume: 53
  start-page: 1085
  year: 2015
  end-page: 1101
  ident: b1195
  article-title: The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation
  publication-title: Med Biol Eng Com
– volume: 10
  start-page: e0143533
  year: 2015
  ident: b1265
  article-title: Entrainment of human alpha oscillations selectively enhances visual conjunction search
  publication-title: PLoS ONE
– volume: 53
  start-page: 209
  year: 2011
  end-page: 225
  ident: b1595
  article-title: The use of noninvasive brain stimulation in childhood psychiatric disorders: new diagnostic and therapeutic opportunities and challenges
  publication-title: Rev Neurol
– volume: 9
  start-page: 545
  year: 2016
  end-page: 552
  ident: b0680
  article-title: Safety, tolerability, blinding efficacy and behavioural effects of a novel MRI-compatible, high-definition tDCS set-up
  publication-title: Brain Stimul
– volume: 9
  start-page: 307
  year: 2015
  ident: b1270
  article-title: Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder
  publication-title: Front Cell Neurosci
– volume: 9
  start-page: 1245
  year: 2016
  end-page: 1252
  ident: b0130
  article-title: Efficacy and safety of combining clozapine with electrical or magnetic brain stimulation in treatment-refractory schizophrenia
  publication-title: Expert Rev Clin Pharmacol
– volume: 7
  start-page: 66
  year: 2016
  ident: b0145
  article-title: Transcranial direct current stimulation for treatment of childhood pharmacoresistant Lennox-Gastaut syndrome: a pilot study
  publication-title: Front Neurol
– volume: 28
  start-page: 275
  year: 2016
  end-page: 281
  ident: b1130
  article-title: Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders
  publication-title: J Cogn Neurosci
– volume: 48
  start-page: 2356
  year: 2007
  end-page: 2361
  ident: b1220
  article-title: Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury
  publication-title: Invest Ophthal Vis Sci
– volume: 2012
  start-page: 891
  year: 2012
  end-page: 895
  ident: b0945
  article-title: Electrode assembly design for transcranial direct current stimulation: a FEM modeling study
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 10
  start-page: 260
  year: 2017
  end-page: 262
  ident: b0320
  article-title: Treatment-emergent mania/hypomania during antidepressant treatment with transcranial direct current stimulation (tDCS): a systematic review and meta-analysis
  publication-title: Brain Stimul
– start-page: 127
  year: 2015
  end-page: 150
  ident: b1200
  article-title: Cranial electrical stimulation. Textbook of neuromodulation
– volume: 37
  start-page: 181
  year: 2015
  end-page: 191
  ident: b1840
  article-title: A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot
  publication-title: NeuroRehabilitation
– volume: 7
  start-page: 636
  year: 2014
  end-page: 642
  ident: b0770
  article-title: Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients
  publication-title: Brain Stimul
– volume: 27
  start-page: 335
  year: 2010
  end-page: 341
  ident: b0650
  article-title: Repetitive transorbital alternating current stimulation in optic neuropathy
  publication-title: NeuroRehabilitation
– volume: 6
  start-page: 696
  year: 2013
  end-page: 700
  ident: b0140
  article-title: Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy
  publication-title: Brain Stimul
– volume: 3
  start-page: 16
  year: 2011
  ident: b1570
  article-title: Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes
  publication-title: Front Aging Neurosci
– volume: 12
  start-page: 643
  year: 2009
  end-page: 650
  ident: b1700
  article-title: Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression
  publication-title: Int J Neuropsychopharmacol
– volume: 7
  start-page: 11100
  year: 2016
  ident: b1245
  article-title: Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain
  publication-title: Nat Commun
– volume: 26
  start-page: 590
  year: 2016
  end-page: 597
  ident: b1280
  article-title: Transcranial direct current stimulation in child and adolescent psychiatry
  publication-title: J Child Adolesc Psychopharmacol
– volume: 29
  start-page: 1360
  year: 2014
  end-page: 1365
  ident: b0065
  article-title: Feasibility of transcranial direct current stimulation use in children aged 5 to 12 years
  publication-title: J Child Neurol
– volume: 31
  start-page: 2160
  year: 2010
  end-page: 2168
  ident: b0850
  article-title: Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex
  publication-title: Neurobiol Aging
– volume: 20
  start-page: 1926
  year: 2010
  end-page: 1936
  ident: b0970
  article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease
  publication-title: Cereb Cor
– volume: 2
  start-page: 201
  year: 2009
  end-page: 207
  ident: b0450
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
– volume: 28
  start-page: 356
  year: 2013
  end-page: 361
  ident: b0315
  article-title: Interactions between transcranial direct current stimulation (tDCS) and pharmacological interventions in the major depressive episode: findings from a naturalistic study
  publication-title: Eur Psychiat
– volume: 2
  start-page: 759
  year: 2013
  end-page: 766
  ident: b1845
  article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines
  publication-title: NeuroImage Clin
– volume: 27
  start-page: 134
  year: 2011
  end-page: 140
  ident: b1810
  article-title: Cognitive, mood, and electroencephalographic effects of noninvasive cortical stimulation with weak electrical currents
  publication-title: J ECT
– volume: 29
  start-page: 167
  year: 2011
  end-page: 175
  ident: b0350
  article-title: Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability
  publication-title: Rest Neurol Neurosci
– volume: 119
  start-page: 1
  year: 2011
  end-page: 5
  ident: b1995
  article-title: Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients
  publication-title: Brain Lang
– volume: 3
  start-page: 74
  year: 2012
  ident: b0235
  article-title: A randomized double-blind sham-controlled study of transcranial direct current stimulation for treatment-resistant major depression
  publication-title: Front Psych
– volume: 5
  year: 2013
  ident: b0710
  article-title: Formation of cortical plasticity in older adults following tDCS and motor training
  publication-title: Front Aging Neurosci
– volume: 12
  start-page: 046030
  year: 2015
  ident: b0825
  article-title: Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes
  publication-title: J Neur Eng
– volume: 2009
  start-page: 670
  year: 2009
  end-page: 673
  ident: b0460
  article-title: Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 35
  start-page: 119
  year: 2012
  end-page: 124
  ident: b0405
  article-title: Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex
  publication-title: Eur J Neurosci
– volume: 21
  start-page: 1403
  year: 2011
  end-page: 1407
  ident: b0815
  article-title: Speech facilitation by left inferior frontal cortex stimulation
  publication-title: Curr Biol
– volume: 264
  start-page: S27
  year: 2014
  end-page: S33
  ident: b0170
  article-title: A perfect match: noninvasive brain stimulation and psychotherapy
  publication-title: Eur Arch Psych Clin Neurosci
– volume: 20
  start-page: 252
  year: 2016
  end-page: 257
  ident: b0345
  article-title: Transcranial direct current stimulation combined with integrative speech therapy in a child with cerebral palsy: a case report
  publication-title: J Bodyw Mov Ther
– volume: 6
  year: 2017
  ident: b0830
  article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation
  publication-title: eLife
– volume: 58
  start-page: 1773
  year: 2011
  end-page: 1780
  ident: b1410
  article-title: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical human head model
  publication-title: IEEE Trans Biomed Eng
– volume: 114
  start-page: 440
  year: 2015
  end-page: 446
  ident: b0255
  article-title: Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability
  publication-title: J Neurophysiol
– volume: 33
  start-page: 9176
  year: 2013
  end-page: 9183
  ident: b1055
  article-title: Differential effects of dual and unihemispheric motor cortex stimulation in older adults
  publication-title: J Neurosci
– volume: 279
  start-page: 127
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0290
  article-title: Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2016.02.018
– volume: 33
  start-page: 12470
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1165
  article-title: Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5743-12.2013
– volume: 35
  start-page: 2217
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0755
  article-title: Cerebellar direct current stimulation enhances motor learning in older adults
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2014.03.030
– volume: 67
  start-page: 129
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0620
  article-title: Endogenous electric fields may guide neocortical network activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.06.005
– volume: 74
  start-page: 330
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1115
  article-title: A meta-analysis of non-invasive brain stimulation and autonomic functioning: implications for brain-heart pathways to cardiovascular disease
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2016.05.001
– volume: 14
  start-page: 425
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1080
  article-title: Avoiding skin burns with transcranial direct current stimulation: preliminary considerations
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1017/S1461145710001197
– volume: 7
  start-page: 107
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1505
  article-title: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2015.00107
– volume: 583
  start-page: 555
  year: 2007
  ident: 10.1016/j.clinph.2017.06.001_b0470
  article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2007.137711
– volume: 31
  start-page: 275
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1855
  article-title: Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation
  publication-title: Rest Neur Neurosci
– volume: 22
  start-page: 197
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1335
  article-title: Recommendations for the use of tDCS in clinical research
  publication-title: Acta Neuropsych
  doi: 10.1111/j.1601-5215.2010.00480.x
– volume: 12
  start-page: 046030
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0825
  article-title: Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes
  publication-title: J Neur Eng
  doi: 10.1088/1741-2560/12/4/046030
– volume: 41
  start-page: 1475
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0810
  article-title: Augmenting mirror visual feedback-induced performance improvements in older adults
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.12899
– volume: 29
  start-page: 1360
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0065
  article-title: Feasibility of transcranial direct current stimulation use in children aged 5 to 12 years
  publication-title: J Child Neurol
  doi: 10.1177/0883073813503710
– volume: 12
  start-page: 643
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1700
  article-title: Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1017/S1461145708009553
– volume: 6
  start-page: 115
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0630
  article-title: Delayed plastic responses to anodal tDCS in older adults
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00115
– volume: 42
  start-page: 109
  year: 1976
  ident: 10.1016/j.clinph.2017.06.001_b0925
  article-title: Group techniques for program planning – guide to nominal group and Delphi processes – Delbecq, Al, Vandeven, Ah and Gustafson, Dh
  publication-title: J Am Inst Plann
– volume: 9
  start-page: 265
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1950
  article-title: Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2015.00265
– volume: 6
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0830
  article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation
  publication-title: eLife
  doi: 10.7554/eLife.18834
– volume: 7
  start-page: 11100
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1245
  article-title: Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain
  publication-title: Nat Commun
  doi: 10.1038/ncomms11100
– volume: 18
  issue: 2
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1425
  article-title: Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyu047
– volume: 85
  start-page: 1058
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0300
  article-title: Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.038
– volume: 55
  start-page: 590
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0100
  article-title: Transcranial direct current stimulation over the primary motor cortex during fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.085
– volume: 10
  start-page: e0121904
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0875
  article-title: Longitudinal neurostimulation in older adults improves working memory
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0121904
– volume: 85
  start-page: 943
  year: 2005
  ident: 10.1016/j.clinph.2017.06.001_b1150
  article-title: Controlling cell behavior electrically: current views and future potential
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00020.2004
– volume: 49
  start-page: 1801
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1475
  article-title: Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism
  publication-title: Cortex
  doi: 10.1016/j.cortex.2012.11.002
– volume: 75
  start-page: 12
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0490
  article-title: Targeted transcranial direct current stimulation for rehabilitation after stroke
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.02.049
– volume: 8
  start-page: 993
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0885
  article-title: Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.06.017
– volume: 7
  start-page: 636
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0770
  article-title: Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.06.008
– volume: 58
  start-page: 1773
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1410
  article-title: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical human head model
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2116019
– volume: 121
  start-page: 1976
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0225
  article-title: Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode's position and size
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.05.020
– volume: 7
  start-page: 765
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1555
  article-title: Skin lesions induced by transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.06.005
– volume: 91
  start-page: 619
  year: 1964
  ident: 10.1016/j.clinph.2017.06.001_b0005
  article-title: Code of ethics of the World Medical Association (Declaration of Helsinki)
  publication-title: Can Med Assoc J
– volume: 126
  start-page: 1071
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1585
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.02.001
– volume: 354
  start-page: 103
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1965
  article-title: Prophylactic treatment in menstrual migraine: a proof-of-concept study
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2015.05.009
– volume: 70
  start-page: 92
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b0760
  article-title: Probing the human brain with stimulating electrodes: the story of Roberts Bartholow's (1874) experiment on Mary Rafferty
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2009.01.008
– volume: 9
  start-page: 641
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0230
  article-title: Safety of transcranial direct current stimulation: evidence based update 2016
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.06.004
– volume: 14
  start-page: 1133
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0310
  article-title: A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1017/S1461145710001690
– volume: 3
  start-page: 58
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0605
  article-title: Anodal skin lesions after treatment with transcranial direct current stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.04.002
– volume: 521
  start-page: 148
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0205
  article-title: TDCS selectively improves working memory in older adults with more education
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2012.05.074
– volume: 14
  start-page: 388
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0790
  article-title: Neuroinflammation in Alzheimer's disease
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(15)70016-5
– volume: 26
  start-page: 1185
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0200
  article-title: Pilot study of feasibility of the effect of treatment with tDCS in patients suffering from treatment-resistant depression treated with escitalopram
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.09.026
– volume: 22
  start-page: 316
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0155
  article-title: Hypomanic episode in unipolar depression during transcranial direct current stimulation
  publication-title: Acta Neuropsych
  doi: 10.1111/j.1601-5215.2010.00495.x
– volume: 7
  start-page: 762
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1365
  article-title: The role of contact media at the skin-electrode interface during transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.06.006
– volume: 5
  start-page: 432
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1550
  article-title: Contact dermatitis after transcranial direct current stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.09.001
– volume: 2015
  start-page: 684025
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1435
  article-title: The bipolar depression electrical treatment trial (BETTER): design, rationale, and objectives of a randomized, sham-controlled trial and data from the pilot study phase
  publication-title: Neur Plast
– volume: 29
  start-page: 493
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1635
  article-title: Non-invasive alternating current stimulation improves vision in optic neuropathy
  publication-title: Rest Neurol Neurosci
– volume: 114
  start-page: 2220
  year: 2003
  ident: 10.1016/j.clinph.2017.06.001_b1320
  article-title: Safety criteria for transcranial direct current stimulation (tDCS) in humans
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00235-9
– volume: 109
  start-page: 48
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1715
  article-title: Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2012.09.001
– volume: 3
  start-page: 91
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0465
  article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
  publication-title: Front Psych
– volume: 85
  start-page: 1040
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0080
  article-title: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.026
– volume: 4
  start-page: 1
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b0195
  article-title: Modulating presence and impulsiveness by external stimulation of the brain
  publication-title: Behav Brain Func
  doi: 10.1186/1744-9081-4-33
– volume: 51
  start-page: 1310
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1640
  article-title: Transcranial direct current stimulation (tDCS) in a realistic head model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.052
– volume: 140
  start-page: 110
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0025
  article-title: Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: a combined tES-fMRI approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.11.034
– volume: 2015
  start-page: 928631
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0050
  article-title: The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: a randomized crossover controlled trial
  publication-title: Behav Neurol
  doi: 10.1155/2015/928631
– volume: 5
  start-page: 242
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1380
  article-title: Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.08.005
– volume: 16
  start-page: 277
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1090
  article-title: Irreversible electroporation: ready for prime time?
  publication-title: Tech Vasc Intervent Rad
  doi: 10.1053/j.tvir.2013.08.010
– volume: 282
  start-page: 974
  year: 1981
  ident: 10.1016/j.clinph.2017.06.001_b1540
  article-title: Clinical pharmacology. Adverse reactions to drugs
  publication-title: BMJ
  doi: 10.1136/bmj.282.6268.974
– volume: 34
  start-page: 121
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0565
  article-title: Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-131019
– volume: 95
  start-page: 337
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0690
  article-title: Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study
  publication-title: Phys Ther
  doi: 10.2522/ptj.20130565
– volume: 53
  start-page: 1125
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1830
  article-title: Potentially inappropriate medication: the quality of pharmacotherapy in the elderly
  publication-title: Der Internist
  doi: 10.1007/s00108-012-3087-5
– volume: 35
  start-page: 2840
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0720
  article-title: Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial
  publication-title: Res Devel Disab
  doi: 10.1016/j.ridd.2014.07.030
– volume: 28
  start-page: 231
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0900
  article-title: Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3244
– volume: 29
  start-page: 167
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0350
  article-title: Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability
  publication-title: Rest Neurol Neurosci
– volume: 74
  start-page: 108
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1025
  article-title: The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance
  publication-title: Neuropsychology
  doi: 10.1016/j.neuropsychologia.2015.01.037
– volume: 106
  start-page: 652
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1680
  article-title: Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study
  publication-title: J Neurophys
  doi: 10.1152/jn.00210.2011
– volume: 31
  start-page: 918
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0175
  article-title: Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a pilot study
  publication-title: J Child Neurol
  doi: 10.1177/0883073816630083
– volume: 10
  start-page: 683
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0965
  article-title: 5 kHz transcranial alternating current stimulation: lack of cortical excitability changes when grouped in a theta burst pattern
  publication-title: Front Hum Neurosci
– volume: 27
  start-page: 3807
  year: 2007
  ident: 10.1016/j.clinph.2017.06.001_b1330
  article-title: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5348-06.2007
– volume: 157
  start-page: 429
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1900
  article-title: Reduction of chronic abdominal pain in patients with inflammatory bowel disease through transcranial direct current stimulation: a randomized controlled trial
  publication-title: Pain
  doi: 10.1097/j.pain.0000000000000386
– volume: 2014
  start-page: 173073
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0045
  article-title: Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial
  publication-title: Behav Neurol
  doi: 10.1155/2014/173073
– volume: 66
  start-page: 198
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0615
  article-title: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.035
– volume: 8
  start-page: 76
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0940
  article-title: Safety of noninvasive brain stimulation in children and adolescents
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.10.012
– volume: 1
  start-page: 386
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b1370
  article-title: Skin lesions after treatment with transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.04.003
– volume: 21
  start-page: 185
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1260
  article-title: Metaplasticity in human cortex
  publication-title: Neuroscience
  doi: 10.1177/1073858414526645
– volume: 6
  start-page: 131
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0570
  article-title: The timing of cognitive plasticity in physiological aging: a tDCS study of naming
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00131
– volume: 20
  start-page: 1926
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0970
  article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease
  publication-title: Cereb Cor
  doi: 10.1093/cercor/bhp269
– volume: 88
  start-page: 404
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b0870
  article-title: Enhancing the working memory of stroke patients using tDCS
  publication-title: Am J Phys Med Rehab
  doi: 10.1097/PHM.0b013e3181a0e4cb
– volume: 8
  start-page: 455
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1655
  article-title: Transcranial direct current stimulation in epilepsy
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.01.001
– volume: 37
  start-page: 401
  year: 1994
  ident: 10.1016/j.clinph.2017.06.001_b0150
  article-title: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH)
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.1994.tb05705.x
– volume: 123
  start-page: 1219
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1385
  article-title: Transcranial direct current stimulation in children and adolescents: a comprehensive review
  publication-title: J Neural Transm
  doi: 10.1007/s00702-016-1572-z
– volume: 277
  start-page: 56
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1030
  article-title: COMETS2: an advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2016.12.008
– volume: 121
  start-page: 221
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0245
  article-title: Evidence for metaplasticity in the human visual cortex
  publication-title: J Neural Transm
  doi: 10.1007/s00702-013-1104-z
– volume: 30
  start-page: 1604
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0210
  article-title: Multiday transcranial direct current stimulation causes clinically insignificant changes in childhood dystonia: a pilot study
  publication-title: J Child Neurol
  doi: 10.1177/0883073815575369
– volume: 13
  start-page: 112
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0275
  article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception
  publication-title: J Pain
  doi: 10.1016/j.jpain.2011.07.001
– volume: 126
  start-page: 2189
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0705
  article-title: The effects of anodal-tDCS on cross-limb transfer in older adults
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.01.006
– volume: 3
  start-page: 16
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1570
  article-title: Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2011.00016
– volume: 21
  start-page: 333
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1615
  article-title: Transcranial current brain stimulation (tCS): models and technologies
  publication-title: IEEE Transact Neur Sys Rehab Eng
  doi: 10.1109/TNSRE.2012.2200046
– volume: 11
  start-page: 016002
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1920
  article-title: Investigation of tDCS volume conduction effects in a highly realistic head model
  publication-title: J Neur Eng
  doi: 10.1088/1741-2560/11/1/016002
– volume: 85
  start-page: 1048
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1925
  article-title: Impact of brain tissue filtering on neurostimulation fields: a modeling study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.06.079
– volume: 11
  start-page: 036002
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1720
  article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation
  publication-title: J Neur Eng
  doi: 10.1088/1741-2560/11/3/036002
– volume: 56
  start-page: 634
  year: 2004
  ident: 10.1016/j.clinph.2017.06.001_b1000
  article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects
  publication-title: Biol Psych
  doi: 10.1016/j.biopsych.2004.07.017
– volume: 31
  start-page: 820
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0090
  article-title: Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine
  publication-title: Cephalalgia
  doi: 10.1177/0333102411399349
– year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b1465
  article-title: Low-intensity transcranial current stimulation in psychiatry
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2017.16090996
– volume: 33
  start-page: 1682
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0590
  article-title: Non-invasive brain stimulation improves object-location learning in the elderly
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.05.007
– volume: 374
  start-page: 20150187
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1580
  article-title: The heart side of brain neuromodulation
  publication-title: Philos Trans R Soc A
  doi: 10.1098/rsta.2015.0187
– volume: 2012
  start-page: 5514
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1190
  article-title: Investigation of the electric field components of tDCS via anisotropically conductive gyri-specific finite element head models
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 121
  start-page: 1908
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0055
  article-title: Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.04.020
– volume: 43
  start-page: 220
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1305
  article-title: Transcranial direct current stimulation of the human brain. From basic principles to clinical application
  publication-title: Klin Neurophysiol
– volume: 34
  start-page: 5029
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1105
  article-title: Cerebellar-parietal connections underpin phonological storage
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0106-14.2014
– volume: 2
  start-page: 759
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1845
  article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2013.05.011
– volume: 56
  start-page: 716
  year: 2001
  ident: 10.1016/j.clinph.2017.06.001_b0365
  article-title: Effects of internal globus pallidus stimulation on motor cortex excitability
  publication-title: Neurology
  doi: 10.1212/WNL.56.6.716
– volume: 17
  start-page: 810
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1905
  article-title: Induction of self awareness in dreams through frontal low current stimulation of gamma activity
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3719
– volume: 27
  start-page: 295
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0420
  article-title: Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation
  publication-title: NeuroReport
  doi: 10.1097/WNR.0000000000000536
– volume: 54
  start-page: 663
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0400
  article-title: Reduced threshold for inhibitory homeostatic responses in migraine motor cortex? A tDCS/TMS study
  publication-title: Headache
  doi: 10.1111/head.12249
– volume: 115
  start-page: 2419
  year: 2004
  ident: 10.1016/j.clinph.2017.06.001_b1325
  article-title: MRI study of human brain exposed to weak direct current stimulation of the frontal cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.05.001
– volume: 6
  start-page: 253
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1175
  article-title: Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00253
– volume: 109
  start-page: 140
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1355
  article-title: Determinants of the electric field during transcranial direct current stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.033
– volume: 569
  start-page: 6
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1945
  article-title: Combination of transcranial direct current stimulation and methylphenidate in subacute stroke
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2014.03.011
– volume: 45
  start-page: 196
  year: 2001
  ident: 10.1016/j.clinph.2017.06.001_b0190
  article-title: Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation
  publication-title: Magn Res Med
  doi: 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1
– volume: 113
  start-page: 341
  year: 2002
  ident: 10.1016/j.clinph.2017.06.001_b0955
  article-title: Pseudo-bilateral hand motor responses evoked by transcranial magnetic stimulation in patients with deep brain stimulators
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(01)00731-3
– volume: 23
  start-page: E4
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0330
  article-title: Manic psychosis after sertraline and transcranial direct-current stimulation
  publication-title: J Neuropsych Clin Neurosci
  doi: 10.1176/jnp.23.3.jnpe4
– volume: 14
  start-page: 157
  year: 1999
  ident: 10.1016/j.clinph.2017.06.001_b0960
  article-title: Safety of transcranial magnetic stimulation in patients with implanted deep brain stimulators
  publication-title: Mov Disord
  doi: 10.1002/1531-8257(199901)14:1<157::AID-MDS1027>3.0.CO;2-U
– volume: 31
  start-page: 593
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0270
  article-title: Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2010.07080.x
– volume: 8
  start-page: 43
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0015
  article-title: Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update
  publication-title: J Vasc Intervent Neurol
– year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0700
  article-title: Concurrent diffuse optical measurement of cerebral hemodynamics and EEG during transcranial direct current stimulation (tDCS) in humans
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2017.01.132
– volume: 32
  start-page: 90
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1360
  article-title: Safety and feasibility of Irreversible Electroporation (IRE) in patients with locally advanced pancreatic cancer: results of a prospective study
  publication-title: Dig Surg
  doi: 10.1159/000375323
– volume: 5
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0710
  article-title: Formation of cortical plasticity in older adults following tDCS and motor training
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00087
– volume: 89
  start-page: 879
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0910
  article-title: Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke
  publication-title: Am J Phys Med Rehab
  doi: 10.1097/PHM.0b013e3181f70aa7
– volume: 96
  start-page: S129
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0375
  article-title: Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2014.10.013
– volume: 126
  start-page: 2181
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0575
  article-title: What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.03.015
– volume: 9
  start-page: 457
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1770
  article-title: Monotherapy with tDCS for treatment of depressive episode during pregnancy: a case report
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.03.007
– volume: 78
  start-page: 353
  year: 1998
  ident: 10.1016/j.clinph.2017.06.001_b1290
  article-title: Brain temperature and limits on transcranial cooling in humans: quantitative modeling results
  publication-title: Eur J Appl Physiol Occup Physiol
  doi: 10.1007/s004210050431
– volume: 2016
  start-page: 4274127
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0110
  article-title: Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults
  publication-title: Neural Plast
  doi: 10.1155/2016/4274127
– volume: 52
  start-page: 1283
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0440
  article-title: TDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine
  publication-title: Headache
  doi: 10.1111/j.1526-4610.2012.02141.x
– volume: 27
  start-page: 763
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1015
  article-title: Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial
  publication-title: J Phys Ther Sci
  doi: 10.1589/jpts.27.763
– volume: 2012
  start-page: 4128
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0075
  article-title: Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation
  publication-title: Conf Proc: Ann Internat Conf IEEE Eng Med Biol Soc
– volume: 23
  start-page: 7255
  year: 2003
  ident: 10.1016/j.clinph.2017.06.001_b0600
  article-title: Sensitivity of neurons to weak electric fields
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-19-07255.2003
– volume: 118
  start-page: 406
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1295
  article-title: Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.026
– volume: 2016
  start-page: 5961362
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0500
  article-title: Multisession anodal tDCS protocol improves motor system function in an aging population
  publication-title: Neur Plast
– volume: 8
  start-page: 739
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0695
  article-title: Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00739
– volume: 77
  start-page: 689
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1565
  article-title: Safety and efficacy of electroconvulsive therapy for depression in the presence of deep brain stimulation in obsessive-compulsive disorder
  publication-title: J Clin Psych
  doi: 10.4088/JCP.15lr10420
– volume: 25
  start-page: 417
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0540
  article-title: Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy
  publication-title: Epil Behav
  doi: 10.1016/j.yebeh.2012.06.027
– volume: 25
  start-page: 256
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1070
  article-title: Transcranial direct current stimulation priming of therapeutic repetitive transcranial magnetic stimulation: a pilot study
  publication-title: J ECT
  doi: 10.1097/YCT.0b013e3181a2f87e
– volume: 11
  start-page: 188
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b1375
  article-title: Transcranial direct current stimulation (tDCS) in therapy-resistant depression: preliminary results from a double-blind, placebo-controlled study
  publication-title: Int J Neuropsychopharmacol
– volume: 7
  start-page: 92
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0355
  article-title: Safety of 5 kHz tACS
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2013.08.004
– volume: 253
  start-page: 171
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0625
  article-title: The role of electrical stimulation therapy in ophthalmic diseases
  publication-title: Graefe's Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-014-2889-7
– volume: 1650
  start-page: 10
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1985
  article-title: Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-alpha expression
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2016.08.034
– volume: 20
  start-page: e00255
  issue: 2
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1415
  article-title: Effects of transcranial direct current stimulation in combination with motor practice on dexterous grasping and manipulation in healthy older adults
  publication-title: Phys Rep
  doi: 10.1002/phy2.255
– volume: 9
  start-page: 545
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0680
  article-title: Safety, tolerability, blinding efficacy and behavioural effects of a novel MRI-compatible, high-definition tDCS set-up
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.03.018
– ident: 10.1016/j.clinph.2017.06.001_b0725
  doi: 10.1589/jpts.26.945
– volume: 18
  issue: 5
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1430
  article-title: The morphological and molecular changes of brain cells exposed to direct current electric field stimulation
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyu090
– volume: 5
  start-page: e13766
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b2015
  article-title: Transcranial alternating current stimulation enhances individual alpha activity in human EEG
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0013766
– volume: 3
  start-page: 97
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0555
  article-title: Modulation of untruthful responses with non-invasive brain stimulation
  publication-title: Front Psych
– volume: 10
  start-page: 68
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1180
  article-title: Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromyalgia: a randomized placebo-controlled clinical trial
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2016.00068
– volume: 2
  start-page: 292
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0880
  article-title: Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community
  publication-title: J Law Biosci
  doi: 10.1093/jlb/lsv017
– volume: 119
  start-page: 25
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1230
  article-title: Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: self-reports and resting state EEG analysis
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2015.09.011
– volume: 53
  start-page: 1085
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1195
  article-title: The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation
  publication-title: Med Biol Eng Com
  doi: 10.1007/s11517-015-1301-z
– volume: 22
  start-page: 441
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1530
  article-title: Simulating transcranial direct current stimulation with a detailed anisotropic human head model
  publication-title: IEEE Trans Neur Sys Rehab Eng
  doi: 10.1109/TNSRE.2014.2308997
– volume: 42
  start-page: 723
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1345
  article-title: Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial
  publication-title: J Oral Rehab
  doi: 10.1111/joor.12300
– volume: 44
  start-page: 3166
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1445
  article-title: Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.001687
– volume: 6
  start-page: 275
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0905
  article-title: A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer's disease
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00275
– volume: 114
  start-page: 440
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0255
  article-title: Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00490.2014
– volume: 10
  start-page: 72
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0295
  article-title: Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS)
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2016.00072
– volume: 41
  start-page: 2087
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1880
  article-title: Cortical neuromodulation modifies cerebral vasomotor reactivity
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.583088
– volume: 10
  start-page: 262
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b2010
  article-title: Weighing the cost and benefit of transcranial direct current stimulation on different reading subskills
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00262
– volume: 19
  start-page: 228
  year: 2003
  ident: 10.1016/j.clinph.2017.06.001_b0035
  article-title: EU and member state medical devices regulation
  publication-title: Int J Technol Assess Health Care
  doi: 10.1017/S0266462303000217
– volume: 120
  start-page: 1161
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1050
  article-title: Safety limits of cathodal transcranial direct current stimulation in rats
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.01.022
– volume: 190
  start-page: 188
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1205
  article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2010.05.007
– volume: 7
  start-page: 823
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1515
  article-title: Neurosensory effects of transcranial alternating current stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.08.005
– volume: 117
  start-page: 845
  year: 2006
  ident: 10.1016/j.clinph.2017.06.001_b0675
  article-title: Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.12.003
– volume: 17
  start-page: 647
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0950
  article-title: Safety of transcranial magnetic stimulation for the newer generation of deep brain stimulators
  publication-title: Parkins Rel Disor
  doi: 10.1016/j.parkreldis.2011.05.007
– volume: 16
  start-page: 1695
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1525
  article-title: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1017/S1461145713000084
– volume: 24
  start-page: 3379
  year: 2004
  ident: 10.1016/j.clinph.2017.06.001_b1745
  article-title: Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5316-03.2004
– volume: 107
  start-page: 1868
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1535
  article-title: Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation
  publication-title: J Neurophys
  doi: 10.1152/jn.00319.2011
– volume: 2010
  start-page: 2073
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1650
  article-title: Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation
  publication-title: Ann Int Conf IEEE Eng Med Biol Soc
– volume: 8
  start-page: 066017
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0545
  article-title: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS
  publication-title: J Neur Eng
  doi: 10.1088/1741-2560/8/6/066017
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0805
  article-title: The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.08.003
– volume: 119
  start-page: 2636
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b0390
  article-title: Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.07.249
– volume: 74
  start-page: 152
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1750
  article-title: Transcranial direct current stimulation to the parietal cortex in hemispatial neglect: a feasibility study
  publication-title: Neuropsychology
  doi: 10.1016/j.neuropsychologia.2015.04.014
– volume: 140
  start-page: 118
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1910
  article-title: BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: a concurrent tACS-fMRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.003
– volume: 10
  start-page: 260
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0320
  article-title: Treatment-emergent mania/hypomania during antidepressant treatment with transcranial direct current stimulation (tDCS): a systematic review and meta-analysis
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.11.005
– volume: 9
  start-page: 1245
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0130
  article-title: Efficacy and safety of combining clozapine with electrical or magnetic brain stimulation in treatment-refractory schizophrenia
  publication-title: Expert Rev Clin Pharmacol
  doi: 10.1080/17512433.2016.1200971
– volume: 2016
  start-page: 2715196
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1470
  article-title: Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain
  publication-title: Stem Cells Int
  doi: 10.1155/2016/2715196
– volume: 141
  start-page: 171
  year: 2005
  ident: 10.1016/j.clinph.2017.06.001_b1185
  article-title: Electrical stimulation of excitable tissue: design of efficacious and safe protocols
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2004.10.020
– volume: 24
  start-page: 333
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0780
  article-title: Entrainment of brain oscillations by transcranial alternating current stimulation
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.12.041
– volume: 6
  start-page: 87
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1690
  article-title: Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2012.03.008
– ident: 10.1016/j.clinph.2017.06.001_b0715
– volume: 23
  start-page: 569
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1800
  article-title: Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.02.026
– volume: 83
  start-page: 1394
  year: 2000
  ident: 10.1016/j.clinph.2017.06.001_b1775
  article-title: Stochastic resonance improves signal detection in hippocampal CA1 neurons
  publication-title: J Neurophys
  doi: 10.1152/jn.2000.83.3.1394
– volume: 127
  start-page: 1031
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1970
  article-title: A technical guide to tDCS, and related non-invasive brain stimulation tools
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.11.012
– volume: 275
  start-page: 316
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1060
  article-title: Microglia in the TBI brain: the good, the bad, and the dysregulated
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2015.08.018
– volume: 4
  start-page: 275
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1140
  article-title: Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.01.001
– volume: 501
  start-page: 167
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0215
  article-title: Neuroscience: transcranial devices are not playthings
  publication-title: Nature
  doi: 10.1038/501167b
– volume: 20
  start-page: 313
  year: 2004
  ident: 10.1016/j.clinph.2017.06.001_b1560
  article-title: Transcranial direct current stimulation disrupts tactile perception
  publication-title: Eur J Neurosci
  doi: 10.1111/j.0953-816X.2004.03450.x
– volume: 8
  start-page: 1085
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0495
  article-title: High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.06.008
– volume: 37
  start-page: 996
  year: 1990
  ident: 10.1016/j.clinph.2017.06.001_b1155
  article-title: Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.102812
– volume: 46
  start-page: 169
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0520
  article-title: Transcranial direct current stimulation-induced seizure: analysis of a case
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059414540647
– volume: 1351
  start-page: 127
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1020
  article-title: The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects
  publication-title: Ann NY Acad Sci
  doi: 10.1111/nyas.12855
– volume: 2
  start-page: 201
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b0450
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.005
– volume: 19
  start-page: 46
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1835
  article-title: Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control
  publication-title: Prost Cancer Prost Dis
  doi: 10.1038/pcan.2015.47
– volume: 35
  start-page: 119
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0405
  article-title: Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2011.07939.x
– volume: 46
  start-page: 2147
  year: 2005
  ident: 10.1016/j.clinph.2017.06.001_b1250
  article-title: Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system
  publication-title: Invest Ophthal Vis Sci
  doi: 10.1167/iovs.04-1339
– volume: 2
  start-page: 215
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1520
  article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.007
– volume: 1489
  start-page: 17
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1765
  article-title: Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2012.10.009
– volume: 51
  start-page: 1234
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1455
  article-title: Anodal tDCS to V1 blocks visual perceptual learning consolidation
  publication-title: Neuropsychology
  doi: 10.1016/j.neuropsychologia.2013.03.013
– volume: 47
  start-page: 414
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1480
  article-title: No effects of anodal transcranial direct stimulation on language abilities in early rehabilitation of post-stroke aphasic patients
  publication-title: Neurol Neurochir Polska
  doi: 10.5114/ninp.2013.38221
– volume: 125
  start-page: 2260
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1405
  article-title: Modeling the current density generated by transcutaneous spinal direct current stimulation (tsDCS)
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.02.027
– volume: 11
  start-page: e0156134
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0655
  article-title: Alternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0156134
– volume: 11
  start-page: 124
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0920
  article-title: Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects
  publication-title: J Neuroeng Rehab
  doi: 10.1186/1743-0003-11-124
– volume: 124
  start-page: 133
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1755
  article-title: Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder
  publication-title: J Neural Transm
  doi: 10.1007/s00702-016-1646-y
– ident: 10.1016/j.clinph.2017.06.001_b0595
– volume: 27
  start-page: 335
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0650
  article-title: Repetitive transorbital alternating current stimulation in optic neuropathy
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-2010-0617
– volume: 6
  start-page: 146
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0775
  article-title: Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00146
– volume: 33
  start-page: 11425
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1785
  article-title: Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3887-12.2013
– volume: 8
  start-page: 127
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1095
  article-title: Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2014.00127
– volume: 2015
  start-page: 2729
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1120
  article-title: Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 5
  start-page: 86
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1670
  article-title: Time course of corticospinal excitability and autonomic function interplay during and following monopolar tDCS
  publication-title: Front Psych
– volume: 8
  start-page: 906
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0980
  article-title: Inter-subject variability in electric fields of motor cortical tDCS
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.05.002
– volume: 21
  start-page: 333
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1620
  article-title: Transcranial current brain stimulation (tCS): models and technologies
  publication-title: IEEE Trans Neur Sys Reh
  doi: 10.1109/TNSRE.2012.2200046
– volume: 1581
  start-page: 80
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1930
  article-title: In-vivo detection of inflammation and neurodegeneration in the chronic phase after permanent embolic stroke in rats
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2014.05.030
– volume: 8
  start-page: 163
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1725
  article-title: Transcranial direct current stimulation (tDCS) for auditory verbal hallucinations in schizophrenia during pregnancy: a case report
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.10.013
– volume: 9
  start-page: 671
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0115
  article-title: A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.05.004
– volume: 4
  start-page: 189
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0560
  article-title: Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: a clinical observational study
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.07.007
– volume: 34
  start-page: 215
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0415
  article-title: Evidence for reading improvement following tDCS treatment in children and adolescents with dyslexia
  publication-title: Rest Neurol Neurosci
– volume: 10
  start-page: 361
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0730
  article-title: Spared primary motor cortex and the presence of MEP in cerebral palsy dictate the responsiveness to tDCS during gait training
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2016.00361
– volume: 22
  start-page: 495
  year: 2005
  ident: 10.1016/j.clinph.2017.06.001_b1005
  article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2005.04233.x
– year: 1811
  ident: 10.1016/j.clinph.2017.06.001_b0930
– volume: 30
  start-page: 62
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0640
  article-title: Safety of electroconvulsive therapy in the presence of cranial metallic objects
  publication-title: J ECT
  doi: 10.1097/YCT.0b013e318295e30f
– volume: 63
  start-page: 168
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0975
  article-title: Current density imaging during transcranial direct current stimulation using DT-MRI and MREIT: algorithm development and numerical simulations
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2448555
– volume: 120
  start-page: 2008
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1575
  article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.08.016
– volume: 29
  start-page: 232
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b2000
  article-title: Cathodal transcranial direct current stimulation in children with dystonia: a sham-controlled study
  publication-title: J Child Neurol
  doi: 10.1177/0883073813492385
– volume: 110
  start-page: 1414
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0010
  article-title: Trans-spinal direct current stimulation modulates motor cortex-induced muscle contraction in mice
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01390.2010
– volume: 3
  start-page: 74
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0235
  article-title: A randomized double-blind sham-controlled study of transcranial direct current stimulation for treatment-resistant major depression
  publication-title: Front Psych
– volume: 7
  start-page: 230
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1300
  article-title: No significant effect of prefrontal tDCS on working memory performance in older adults
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2015.00230
– volume: 7
  start-page: 460
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1850
  article-title: When size matters: large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.01.059
– volume: 28
  start-page: 275
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1130
  article-title: Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn_a_00897
– issue: 86
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1170
  article-title: Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging
  publication-title: J Vis Exp
  doi: 10.3791/51730
– volume: 26
  start-page: 590
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1280
  article-title: Transcranial direct current stimulation in child and adolescent psychiatry
  publication-title: J Child Adolesc Psychopharmacol
  doi: 10.1089/cap.2015.0172
– volume: 43
  start-page: 231
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0665
  article-title: Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke
  publication-title: Contemp Clin Trials
  doi: 10.1016/j.cct.2015.06.005
– volume: 119
  start-page: 1
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1995
  article-title: Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients
  publication-title: Brain Lang
  doi: 10.1016/j.bandl.2011.05.002
– volume: 70
  start-page: 383
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0325
  article-title: The sertraline vs electrical current therapy for treating depression clinical study results from a factorial, randomized, controlled trial
  publication-title: JAMA Psych
  doi: 10.1001/2013.jamapsychiatry.32
– volume: 369
  start-page: 185
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0070
  article-title: At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2016.07.065
– volume: 118
  start-page: 1166
  year: 2007
  ident: 10.1016/j.clinph.2017.06.001_b0505
  article-title: Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.01.010
– volume: 64
  start-page: 184
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b1395
  article-title: A computational model of the electric field distribution due to regional personalized or non-personalized electrodes to select transcranial electric stimulation target
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2553177
– volume: 18
  start-page: 261
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0735
  article-title: Reducing transcranial direct current stimulation-induced erythema with skin pretreatment: considerations for sham-controlled clinical trials
  publication-title: Neuromodulation
  doi: 10.1111/ner.12230
– volume: 8
  start-page: e76112
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0890
  article-title: Dosage considerations for transcranial direct current stimulation in children: a computational modeling study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0076112
– volume: 3
  start-page: 23
  year: 1972
  ident: 10.1016/j.clinph.2017.06.001_b1225
  article-title: Septal stimulation for initiation of heterosexual behavior in a homosexual male
  publication-title: J Behav Ther Exp Psych
  doi: 10.1016/0005-7916(72)90029-8
– volume: 15
  start-page: 366
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1890
  article-title: Transcranial direct current stimulation (tDCS) for treatment of major depression during pregnancy: study protocol for a pilot randomized controlled trial
  publication-title: Trials
  doi: 10.1186/1745-6215-15-366
– volume: 13
  start-page: 61
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1085
  article-title: A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1017/S1461145709990411
– volume: 9
  start-page: 307
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1270
  article-title: Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2015.00307
– volume: 254
  start-page: 18
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0250
  article-title: An unexpected target of spinal direct current stimulation: interhemispheric connectivity in humans
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2015.07.012
– volume: 10
  start-page: 275
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b0385
  article-title: Neural stimulation and recording electrodes
  publication-title: Ann Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.10.061807.160518
– volume: 128
  start-page: 1943
  year: 2005
  ident: 10.1016/j.clinph.2017.06.001_b1510
  article-title: Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia
  publication-title: Brain
  doi: 10.1093/brain/awh527
– volume: 14
  start-page: 217
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0060
  article-title: Ephaptic coupling of cortical neurons
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2727
– volume: 4
  start-page: 169
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0445
  article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2010.11.001
– volume: 96
  start-page: S114
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1275
  article-title: Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury
  publication-title: Arch Phys Med Rehab
  doi: 10.1016/j.apmr.2014.11.004
– volume: 24
  start-page: 442
  year: 1994
  ident: 10.1016/j.clinph.2017.06.001_b0265
  article-title: The use of the method of transcranial micropolarization to decrease the severity hyperkineses in patients with infantile cerebral palsy
  publication-title: Neurosci Behav Physiol
  doi: 10.1007/BF02359800
– volume: 21
  start-page: 1403
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0815
  article-title: Speech facilitation by left inferior frontal cortex stimulation
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.07.021
– volume: 16
  start-page: 127
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1735
  article-title: The safety of transcranial magnetic stimulation with deep brain stimulation instruments
  publication-title: Parkins Rel Dis
  doi: 10.1016/j.parkreldis.2009.09.006
– volume: 10
  start-page: e0142740
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0165
  article-title: Elucidating the role of injury-induced electric fields (EFs) in regulating the astrocytic response to injury in the mammalian central nervous system
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0142740
– volume: 20
  start-page: 248
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0530
  article-title: The influence of skin redness on blinding in transcranial direct current stimulation studies: a crossover trial
  publication-title: Neuromodulation
  doi: 10.1111/ner.12527
– volume: 10
  start-page: 188
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0685
  article-title: Glia: a neglected player in non-invasive direct current brain stimulation
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2016.00188
– volume: 32
  start-page: 301
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0635
  article-title: After vs. priming effects of anodal transcranial direct current stimulation on upper extremity motor recovery in patients with subacute stroke
  publication-title: Rest Neurol Neurosci
– volume: 8
  start-page: 165
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1940
  article-title: Skin burn after single session of transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.10.015
– volume: 126
  start-page: 1392
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1240
  article-title: Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.10.142
– volume: 5
  start-page: 49
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1125
  article-title: Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00049
– volume: 28
  start-page: 1238
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b2005
  article-title: Cathodal transcranial direct current stimulation in children with dystonia: a pilot open-label trial
  publication-title: J Child Neurol
  doi: 10.1177/0883073812460092
– volume: 108
  start-page: e53367
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0430
  article-title: Non-invasive electrical brain stimulation montages for modulation of human motor function
  publication-title: J Vis Exp
– volume: 7
  start-page: 66
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0145
  article-title: Transcranial direct current stimulation for treatment of childhood pharmacoresistant Lennox-Gastaut syndrome: a pilot study
  publication-title: Front Neurol
  doi: 10.3389/fneur.2016.00066
– volume: 293
  start-page: 125
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0285
  article-title: Better together: left and right hemisphere engagement to reduce age-related memory loss
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2015.07.037
– volume: 25
  start-page: 640
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1695
  article-title: The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism
  publication-title: Clin Linguist Phon
  doi: 10.3109/02699206.2011.570852
– volume: 37
  start-page: 94
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0335
  article-title: Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner
  publication-title: Hum Brain Mapping
  doi: 10.1002/hbm.23016
– volume: 53
  start-page: 209
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1595
  article-title: The use of noninvasive brain stimulation in childhood psychiatric disorders: new diagnostic and therapeutic opportunities and challenges
  publication-title: Rev Neurol
– volume: 93
  start-page: 43
  year: 1993
  ident: 10.1016/j.clinph.2017.06.001_b0260
  article-title: The use of the transcranial micropolarization method for decreasing the manifestations of hyperkinesis in patients with infantile cerebral palsy
  publication-title: Zh Nevrol Psikhiatr Im S S Korsakova
– volume: 34
  start-page: 4022
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b2035
  article-title: Shaping memory accuracy by left prefrontal transcranial direct current stimulation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5407-13.2014
– volume: 234
  start-page: 637
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1790
  article-title: “Unfocus” on focus: commercial tDCS headset impairs working memory
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-015-4391-9
– issue: 76
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1685
  article-title: Simultaneous EEG monitoring during transcranial direct current stimulation
  publication-title: J Vis Exp
  doi: 10.3791/50426
– volume: 3
  start-page: 84
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1545
  article-title: EEG driven tDCS versus bifrontal tDCS for tinnitus
  publication-title: Front Psych
– volume: 2
  start-page: 669
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1955
  article-title: A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States
  publication-title: J Law Biosci
– volume: 11
  start-page: 113
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b1010
  article-title: Can neuromodulation also enhance social inequality? Some possible indirect interventions of the state
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2017.00113
– volume: 10
  start-page: 349
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0185
  article-title: Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2013.01.004
– volume: 2009
  start-page: 1596
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b0550
  article-title: Comparing different electrode configurations using the 10–10 international system in tDCS: a finite element model analysis
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 111
  start-page: 1301
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1285
  article-title: The analgesic and antihyperalgesic effects of transcranial electrostimulation with combined direct and alternating current in healthy volunteers
  publication-title: Anest Anal
  doi: 10.1213/ANE.0b013e3181e3697e
– volume: 8
  start-page: 1233
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0410
  article-title: Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.08.009
– volume: 27
  start-page: 363
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1730
  article-title: Transcranial direct current stimulation improves swallowing function in stroke patients
  publication-title: Neurorehab Neur Rep
  doi: 10.1177/1545968312474116
– volume: 233
  start-page: 2401
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b2020
  article-title: Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-015-4310-0
– volume: 71
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0935
  article-title: Subliminal semantic processing in face stimuli: an EEG and tDCS study
  publication-title: Neurosci Res
  doi: 10.1016/j.neures.2011.07.1668
– volume: 140
  start-page: 99
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1340
  article-title: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.03.065
– volume: 1
  start-page: 193
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1135
  article-title: Non-invasive brain stimulation applied to Heschl's gyrus modulates pitch discrimination
  publication-title: Front Psych
– volume: 25
  start-page: 122
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1420
  article-title: Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults
  publication-title: NeuroReport
  doi: 10.1097/WNR.0000000000000080
– volume: 9
  start-page: 54
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1500
  article-title: Direct electric stimulation to increase cerebrovascular function
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2015.00054
– volume: 64
  start-page: 872
  year: 2005
  ident: 10.1016/j.clinph.2017.06.001_b0860
  article-title: Safety and cognitive effect of frontal DC brain polarization in healthy individuals
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000152986.07469.E9
– volume: 124
  start-page: 1187
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0845
  article-title: Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.11.021
– volume: 7
  start-page: 94
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1885
  article-title: Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2013.00094
– volume: 132
  start-page: 3011
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1760
  article-title: Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation
  publication-title: Brain
  doi: 10.1093/brain/awp154
– volume: 29
  start-page: 5202
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1780
  article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4432-08.2009
– volume: 7
  start-page: e43776
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1605
  article-title: Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0043776
– volume: 6
  start-page: 696
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0140
  article-title: Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2013.01.009
– volume: 251
  start-page: 1041
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0645
  article-title: Non-invasive electrical brain stimulation induces vision restoration in patients with visual pathway damage
  publication-title: Graefe's Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-012-2084-7
– volume: 29
  start-page: E20
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1040
  article-title: Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial
  publication-title: J Head Trauma Rehab
  doi: 10.1097/HTR.0b013e318292a4c2
– volume: 7
  start-page: 793
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1490
  article-title: Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.07.036
– volume: 6
  start-page: 31236
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1350
  article-title: Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
  publication-title: Sci Rep
  doi: 10.1038/srep31236
– ident: 10.1016/j.clinph.2017.06.001_b0785
– volume: 36
  start-page: 5289
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1865
  article-title: Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4519-15.2016
– volume: 11
  start-page: e0149703
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1935
  article-title: Perceived comfort and blinding efficacy in randomised sham-controlled transcranial direct current stimulation (tDCS) trials at 2 mA in young and older healthy adults
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0149703
– volume: 121
  start-page: 2165
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1235
  article-title: Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.04.033
– volume: 156
  start-page: 62
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0535
  article-title: Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial
  publication-title: Pain
  doi: 10.1016/j.pain.0000000000000006
– volume: 37
  start-page: 243
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0585
  article-title: Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2009.05.027
– volume: 11
  start-page: 1
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1870
  article-title: Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-11-38
– volume: 38
  start-page: 637
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1255
  article-title: Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial
  publication-title: Disab Rehab
  doi: 10.3109/09638288.2015.1055379
– volume: 11
  start-page: 75
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0340
  article-title: Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion
  publication-title: Stem Cell Rev
  doi: 10.1007/s12015-014-9524-1
– volume: 6
  start-page: 289
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1660
  article-title: Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00289
– volume: 45
  start-page: 201
  year: 2005
  ident: 10.1016/j.clinph.2017.06.001_b0840
  article-title: Theta burst stimulation of the human motor cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.12.033
– volume: 53
  start-page: 853
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0610
  article-title: Pharmacological neuroenhancement and brain doping: chances and risks
  publication-title: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz
  doi: 10.1007/s00103-010-1105-0
– volume: 18
  start-page: 686
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0240
  article-title: Spinal direct current stimulation modulates short intracortical inhibition
  publication-title: Neuromodulation
  doi: 10.1111/ner.12298
– volume: 2012
  start-page: 891
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0945
  article-title: Electrode assembly design for transcranial direct current stimulation: a FEM modeling study
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 46
  start-page: 319
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1035
  article-title: A comprehensive database of published tDCS clinical trials (2005–2016)
  publication-title: Neurophysiol Clinique
  doi: 10.1016/j.neucli.2016.10.002
– volume: 97
  start-page: 142
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1875
  article-title: Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study
  publication-title: Epil Res
  doi: 10.1016/j.eplepsyres.2011.07.016
– volume: 31
  start-page: 2160
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0850
  article-title: Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2008.12.008
– volume: 89
  start-page: 216
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1610
  article-title: Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.002
– volume: 20
  start-page: 215
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b1630
  article-title: Safety review of transcranial direct current stimulation in stroke
  publication-title: Neuromodulation
  doi: 10.1111/ner.12574
– volume: 53
  start-page: 257
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1815
  article-title: Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats
  publication-title: Jpn J Ophthalmol
  doi: 10.1007/s10384-009-0657-8
– volume: 35
  start-page: 579
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1990
  article-title: Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient – a case report
  publication-title: Ann Rehab Med
  doi: 10.5535/arm.2011.35.4.579
– volume: 97
  start-page: 3109
  year: 2007
  ident: 10.1016/j.clinph.2017.06.001_b1315
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
  publication-title: J Neurophys
  doi: 10.1152/jn.01312.2006
– volume: 5
  start-page: 430
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0220
  article-title: Guidelines for precise and accurate computational models of tDCS
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.06.001
– volume: 3
  start-page: 6
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1705
  article-title: Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation
  publication-title: Front Int Neurosci
– volume: 33
  start-page: 9176
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1055
  article-title: Differential effects of dual and unihemispheric motor cortex stimulation in older adults
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0055-13.2013
– volume: 30
  start-page: e16
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1895
  article-title: Electroconvulsive therapy in patients with deep brain stimulators
  publication-title: J ECT
  doi: 10.1097/YCT.0000000000000074
– volume: 7
  start-page: 28
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0740
  article-title: Reduced discomfort during high-definition transcutaneous stimulation using 6% benzocaine
  publication-title: Front Neuroeng
  doi: 10.3389/fneng.2014.00028
– volume: 6
  start-page: 21583
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0835
  article-title: Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells
  publication-title: Sci Rep
  doi: 10.1038/srep21583
– volume: 29
  start-page: 147
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1740
  article-title: Safety of repeated transcranial direct current stimulation in impaired skin a case report
  publication-title: J ECT
  doi: 10.1097/YCT.0b013e318279c1a1
– volume: 72
  start-page: 208
  year: 2007
  ident: 10.1016/j.clinph.2017.06.001_b1485
  article-title: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2007.01.004
– ident: 10.1016/j.clinph.2017.06.001_b0135
– volume: 21
  start-page: 1471
  year: 2006
  ident: 10.1016/j.clinph.2017.06.001_b0795
  article-title: MEP latency shift after implantation of deep brain stimulation systems in the subthalamic nucleus in patients with advanced Parkinson's disease
  publication-title: Mov Dis
  doi: 10.1002/mds.20951
– volume: 22
  start-page: 391
  year: 1999
  ident: 10.1016/j.clinph.2017.06.001_b0480
  article-title: Pathobiology of ischaemic stroke: an integrated view
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(99)01401-0
– volume: 70
  start-page: 48
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1215
  article-title: The electric field in the cortex during transcranial current stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.034
– volume: 217
  start-page: 459
  year: 2003
  ident: 10.1016/j.clinph.2017.06.001_b1145
  article-title: Medical device regulation for manufacturers
  publication-title: P I Mech Eng H
  doi: 10.1243/09544110360729090
– volume: 74
  start-page: 266
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0515
  article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.01.042
– volume: 264
  start-page: S27
  issue: Suppl. 1
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0170
  article-title: A perfect match: noninvasive brain stimulation and psychotherapy
  publication-title: Eur Arch Psych Clin Neurosci
  doi: 10.1007/s00406-014-0540-6
– volume: 80
  start-page: 432
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0820
  article-title: Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites
  publication-title: Biol Psych
  doi: 10.1016/j.biopsych.2015.11.008
– volume: 7
  start-page: 334
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1440
  article-title: Pain treatment using tDCS in a single patient: tele-medicine approach in non-invasive brain simulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2013.11.008
– volume: 2015
  start-page: 963293
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1400
  article-title: Effect of the interindividual variability on computational modeling of transcranial direct current stimulation
  publication-title: Comp Int Neurosci
– volume: 10
  start-page: 101
  year: 1975
  ident: 10.1016/j.clinph.2017.06.001_b0510
  article-title: Intracerebral current levels in man during electrosleep therapy
  publication-title: Biol Psych
– ident: 10.1016/j.clinph.2017.06.001_b1915
  doi: 10.1137/15M1026481
– volume: 10
  start-page: 553
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0370
  article-title: Safety and tolerability of transcranial direct current stimulation to stroke patients – a phase I current escalation study
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2017.02.007
– volume: 9
  start-page: 525
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0280
  article-title: Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES)
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.03.001
– volume: 120
  start-page: 1183
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b1210
  article-title: What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS?
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.03.023
– volume: 28
  start-page: 356
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0315
  article-title: Interactions between transcranial direct current stimulation (tDCS) and pharmacological interventions in the major depressive episode: findings from a naturalistic study
  publication-title: Eur Psychiat
  doi: 10.1016/j.eurpsy.2012.09.001
– volume: 154
  start-page: 2178
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1975
  article-title: Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial
  publication-title: Pain
  doi: 10.1016/j.pain.2013.06.045
– volume: 27
  start-page: 256
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0670
  article-title: Hypomania induction in a patient with bipolar II disorder by transcranial direct current stimulation (tDCS)
  publication-title: J ECT
  doi: 10.1097/YCT.0b013e3182012b89
– volume: 592
  start-page: 3345
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1495
  article-title: Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2013.270280
– volume: 29
  start-page: 1212
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0395
  article-title: Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial
  publication-title: Clin Rehabil
  doi: 10.1177/0269215514566997
– volume: 27
  start-page: 134
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1810
  article-title: Cognitive, mood, and electroencephalographic effects of noninvasive cortical stimulation with weak electrical currents
  publication-title: J ECT
  doi: 10.1097/YCT.0b013e3181e631a8
– volume: 34
  start-page: 3646
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0765
  article-title: Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5308-13.2014
– volume: 219
  start-page: 297
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0745
  article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2013.07.016
– volume: 10
  start-page: e0143533
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1265
  article-title: Entrainment of human alpha oscillations selectively enhances visual conjunction search
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0143533
– volume: 3
  start-page: 90
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1645
  article-title: Target optimization in transcranial direct current stimulation
  publication-title: Front Psych
– volume: 73
  start-page: 10
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b2030
  article-title: Neuroenhancement of the aging brain: restoring skill acquisition in old subjects
  publication-title: Ann Neurol
  doi: 10.1002/ana.23761
– volume: 12
  start-page: 261
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0160
  article-title: Effect of tDCS stimulation for improving working memory on stroke patients' EEG variation
  publication-title: J Kor Cont Assoc
  doi: 10.5392/JKCA.2012.12.07.261
– start-page: 127
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1200
– volume: 8
  start-page: 590
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1710
  article-title: The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.01.401
– volume: 127
  start-page: 3425
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0865
  article-title: Animal models of transcranial direct current stimulation: methods and mechanisms
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2016.08.016
– volume: 5
  start-page: 155
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0895
  article-title: Differences in the experience of active and sham transcranial direct current stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.02.007
– volume: 37
  start-page: 510
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b1820
  article-title: Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2009.11.004
– volume: 39
  start-page: 890
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0105
  article-title: Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition
  publication-title: J Pain Symp Man
  doi: 10.1016/j.jpainsymman.2009.09.023
– volume: 52
  start-page: 1268
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0455
  article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.252
– volume: 55
  start-page: 809
  year: 2007
  ident: 10.1016/j.clinph.2017.06.001_b1065
  article-title: In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.07.027
– volume: 8
  start-page: 046011
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0485
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J Neur Eng
  doi: 10.1088/1741-2560/8/4/046011
– volume: 23
  start-page: 109
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0580
  article-title: Transcranial electrical stimulation: what we know and do not know about mechanisms
  publication-title: Neuroscientist
  doi: 10.1177/1073858416631966
– volume: 128
  start-page: 1109
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b1460
  article-title: Safety of repetitive transcranial magnetic stimulation in patients with implanted subdural cortical electrodes. An ex-vivo study and report of a case
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2017.01.021
– volume: 85
  start-page: 425
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0915
  article-title: Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001806
– volume: 127
  start-page: 189
  year: 1955
  ident: 10.1016/j.clinph.2017.06.001_b0305
  article-title: The site of electrical excitation of the human eye
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1955.sp005248
– year: 1860
  ident: 10.1016/j.clinph.2017.06.001_b0040
– volume: 7
  start-page: 627
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1590
  article-title: Broca's area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.06.004
– volume: 31
  start-page: 784
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1600
  article-title: Noninvasive brain stimulation in pediatric attention-deficit hyperactivity disorder (ADHD): a review
  publication-title: J Child Neurol
  doi: 10.1177/0883073815615672
– volume: 1
  start-page: 97
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b0085
  article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2007.10.001
– volume: 33
  start-page: 4482
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0855
  article-title: The mental cost of cognitive enhancement
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4927-12.2013
– volume: 90
  start-page: 191
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0180
  article-title: Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.031
– volume: 5
  start-page: 10289
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0750
  article-title: The galvanotactic migration of keratinocytes is enhanced by hypoxic preconditioning
  publication-title: Sci Rep
  doi: 10.1038/srep10289
– volume: 4
  start-page: 175
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b0660
  article-title: Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.07.003
– volume: 554
  start-page: 94
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b1805
  article-title: Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2013.08.064
– volume: 97
  start-page: 954
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b0120
  article-title: Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation
  publication-title: J Med Assoc Thai
– volume: 48
  start-page: 5782
  year: 2007
  ident: 10.1016/j.clinph.2017.06.001_b0995
  article-title: Bidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.07-0706
– volume: 2010
  start-page: 6821
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0475
  article-title: Transcranial magnetic stimulation in the presence of deep brain stimulation implants: induced electrode currents
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 593
  start-page: 3645
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1390
  article-title: Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation
  publication-title: J Physiol
  doi: 10.1113/JP270484
– volume: 37
  start-page: 181
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1840
  article-title: A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robottherapy for the impaired upper limb insub-acute and chronic stroke
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-151251
– volume: 28
  start-page: 14147
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b1825
  article-title: Increasing human brain excitability by transcranial high-frequency random noise stimulation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4248-08.2008
– volume: 27
  start-page: 2758
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0380
  article-title: Transcranial direct-current stimulation can enhance motor learning in children
  publication-title: Cereb Cor
– volume: 1
  start-page: 206
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b1310
  article-title: Transcranial direct current stimulation: state of the art 2008
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.06.004
– volume: 152
  start-page: 142
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0800
  article-title: Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.001
– volume: 117
  start-page: 455
  year: 2006
  ident: 10.1016/j.clinph.2017.06.001_b1110
  article-title: Safety of rTMS to non-motor cortical areas in healthy participants and patients
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.10.014
– volume: 8
  start-page: 132
  year: 2014
  ident: 10.1016/j.clinph.2017.06.001_b1100
  article-title: Best of both worlds: promise of combining brain stimulation and brain connectome
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2014.00132
– volume: 171
  start-page: 330
  year: 1995
  ident: 10.1016/j.clinph.2017.06.001_b0525
  article-title: Growth cone neurotransmitter receptor activation modulates electric field-guided nerve growth
  publication-title: Devel Biol
  doi: 10.1006/dbio.1995.1285
– volume: 33
  start-page: 647
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0990
  article-title: A-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect
  publication-title: Rest Neurol Neurosci
– volume: 5
  start-page: 484
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b0985
  article-title: Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.08.008
– volume: 6
  start-page: 41
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1045
  article-title: ARP2/3 complex is required for directional migration of neural stem cell-derived oligodendrocyte precursors in electric fields
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-015-0042-0
– volume: 18
  start-page: 157
  year: 2013
  ident: 10.1016/j.clinph.2017.06.001_b0030
  article-title: Short-term and long-term effects of electrical stimulation on skin properties
  publication-title: Physiother Res Int
  doi: 10.1002/pri.1543
– year: 1864
  ident: 10.1016/j.clinph.2017.06.001_b2025
– volume: 18
  start-page: 2701
  year: 2008
  ident: 10.1016/j.clinph.2017.06.001_b0095
  article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn032
– volume: 200
  start-page: 52
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1075
  article-title: Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial
  publication-title: Br J Psych
  doi: 10.1192/bjp.bp.111.097634
– volume: 20
  start-page: 252
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0345
  article-title: Transcranial direct current stimulation combined with integrative speech therapy in a child with cerebral palsy: a case report
  publication-title: J Bodyw Mov Ther
  doi: 10.1016/j.jbmt.2015.03.007
– volume: 2016
  start-page: 5068127
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1795
  article-title: TDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke
  publication-title: Biomed Res Int
  doi: 10.1155/2016/5068127
– volume: 140
  start-page: 66
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0425
  article-title: The right inferior frontal cortex in response inhibition: a tDCS-ERP co-registration study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.11.044
– volume: 2009
  start-page: 670
  year: 2009
  ident: 10.1016/j.clinph.2017.06.001_b0460
  article-title: Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode
  publication-title: Ann Intern Conf IEEE Eng Med Biol Soc
– volume: 123
  start-page: 2006
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1625
  article-title: TDCS possibly stimulates glial cells
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.02.082
– volume: 9
  start-page: 26
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b0360
  article-title: Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2015.00026
– volume: 11
  year: 2017
  ident: 10.1016/j.clinph.2017.06.001_b0435
  article-title: Moral enhancement using non-invasive brain stimulation
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2017.00077
– volume: 120
  start-page: 25
  year: 2015
  ident: 10.1016/j.clinph.2017.06.001_b1675
  article-title: On the importance of electrode parameters for shaping electric field patterns generated by tDCS
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.067
– volume: 4
  start-page: 38
  year: 2011
  ident: 10.1016/j.clinph.2017.06.001_b1160
  article-title: Reducing procedural pain and discomfort associated with transcranial direct current stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2010.05.002
– volume: 80
  start-page: 1
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1980
  article-title: An open letter concerning do-it-yourself users of transcranial direct current stimulation
  publication-title: Ann Neurol
  doi: 10.1002/ana.24689
– volume: 5
  start-page: 435
  year: 2012
  ident: 10.1016/j.clinph.2017.06.001_b1450
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.10.001
– volume: 42
  start-page: 211
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1960
  article-title: The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals
  publication-title: J Med Ethics
  doi: 10.1136/medethics-2015-102704
– volume: 39
  start-page: 210
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1665
  article-title: Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2015.12.010
– volume: 61
  start-page: 4506
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b0020
  article-title: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/12/4506
– volume: 26
  start-page: 68
  year: 2010
  ident: 10.1016/j.clinph.2017.06.001_b0125
  article-title: Induction of hypomanic episode with transcranial direct current stimulation
  publication-title: J ECT
  doi: 10.1097/YCT.0b013e3181a744bf
– volume: 36
  start-page: 396
  year: 2016
  ident: 10.1016/j.clinph.2017.06.001_b1860
  article-title: Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2499-15.2016
– volume: 48
  start-page: 2356
  year: 2007
  ident: 10.1016/j.clinph.2017.06.001_b1220
  article-title: Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury
  publication-title: Invest Ophthal Vis Sci
  doi: 10.1167/iovs.06-1329
– reference: 26923911 - Exp Neurol. 2016 May;279:127-136
– reference: 27147964 - Front Cell Neurosci. 2016 Mar 22;10:72
– reference: 24792908 - Neurobiol Aging. 2014 Oct;35(10):2217-21
– reference: 11180425 - Magn Reson Med. 2001 Feb;45(2):196-201
– reference: 25925328 - J Neurophysiol. 2015 Jul;114(1):440-6
– reference: 15245504 - Eur J Neurosci. 2004 Jul;20(1):313-6
– reference: 25862601 - Brain Stimul. 2015 May-Jun;8(3):590-602
– reference: 19520165 - Neurobiol Dis. 2010 Feb;37(2):243-51
– reference: 23831866 - Pain. 2013 Oct;154(10):2178-84
– reference: 19286295 - Brain Cogn. 2009 Jun;70(1):92-115
– reference: 19620953 - Am J Phys Med Rehabil. 2009 May;88(5):404-9
– reference: 26142274 - Neuroimage. 2015 Oct 15;120:25-35
– reference: 24389501 - Brain Stimul. 2014 Mar-Apr;7(2):334-5
– reference: 14354638 - J Physiol. 1955 Jan 28;127(1):189-200
– reference: 25869110 - Clin EEG Neurosci. 2015 Apr;46(2):169
– reference: 8154217 - Zh Nevrol Psikhiatr Im S S Korsakova. 1993;93(5):43-5
– reference: 24064065 - Brain Stimul. 2014 Jan-Feb;7(1):92-6
– reference: 26156511 - Neurology. 2015 Aug 4;85(5):425-32
– reference: 16427357 - Clin Neurophysiol. 2006 Apr;117(4):845-50
– reference: 23435010 - Stem Cell Res. 2013 May;10(3):349-60
– reference: 25988491 - Sci Rep. 2015 May 19;5:10289
– reference: 25530675 - Behav Neurol. 2014;2014:173073
– reference: 19964238 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:670-3
– reference: 23473040 - Int J Neuropsychopharmacol. 2013 Sep;16(8):1695-706
– reference: 22537864 - Brain Stimul. 2013 Jan;6(1):87-93
– reference: 25855132 - Restor Neurol Neurosci. 2015;33(5):647-62
– reference: 28274831 - Neuroimage. 2017 May 15;152:142-157
– reference: 25468075 - Brain Stimul. 2015 Jan-Feb;8(1):165-6
– reference: 25891021 - J Oral Rehabil. 2015 Oct;42(10):723-32
– reference: 21641021 - Brain Lang. 2011 Oct;119(1):1-5
– reference: 22236710 - J Neurophysiol. 2012 Apr;107(7):1868-80
– reference: 23040278 - Comput Methods Programs Biomed. 2013 Jan;109(1):48-64
– reference: 23366036 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:891-5
– reference: 24760509 - Physiol Rep. 2014 Mar 20;2(3):e00255
– reference: 25442154 - Brain Stimul. 2014 Nov-Dec;7(6):823-31
– reference: 25009493 - Front Aging Neurosci. 2014 Jun 24;6:131
– reference: 25368577 - Front Aging Neurosci. 2014 Oct 20;6:289
– reference: 24021804 - Neurosci Lett. 2013 Oct 25;554:94-8
– reference: 22032743 - Brain Stimul. 2011 Oct;4(4):275-80
– reference: 27185286 - Neurosci Biobehav Rev. 2017 Mar;74(Pt B):330-341
– reference: 24367333 - Front Aging Neurosci. 2013 Dec 06;5:87
– reference: 23954780 - J Neurosci Methods. 2013 Oct 15;219(2):297-311
– reference: 26029083 - Front Hum Neurosci. 2015 May 15;9:265
– reference: 10712466 - J Neurophysiol. 2000 Mar;83(3):1394-402
– reference: 25468234 - Clin Neurophysiol. 2015 Jul;126(7):1392-9
– reference: 26488591 - J Cogn Neurosci. 2016 Feb;28(2):275-81
– reference: 26900961 - PLoS One. 2016 Feb 22;11(2):e0149703
– reference: 21613597 - J Neurophysiol. 2011 Aug;106(2):652-61
– reference: 27989592 - J Neurosci Methods. 2017 Feb 1;277:56-62
– reference: 26879095 - J Child Neurol. 2016 Jun;31(7):918-24
– reference: 27774197 - J Law Biosci. 2015 Jun 02;2(2):292-335
– reference: 27216434 - Ann Neurol. 2016 Jul;80(1):1-4
– reference: 15987799 - Physiol Rev. 2005 Jul;85(3):943-78
– reference: 25448248 - Arch Phys Med Rehabil. 2015 Apr;96(4 Suppl):S129-37
– reference: 22037128 - Brain Stimul. 2012 Apr;5(2):155-62
– reference: 25536713 - J Med Assoc Thai. 2014 Sep;97(9):954-62
– reference: 27108392 - Brain Stimul. 2016 Jul-Aug;9(4):545-52
– reference: 25461825 - Arch Phys Med Rehabil. 2015 Apr;96(4 Suppl):S114-21
– reference: 25522422 - Int J Neuropsychopharmacol. 2014 Dec 07;18(5):null
– reference: 23165924 - Physiother Res Int. 2013 Sep;18(3):157-66
– reference: 27486393 - Front Hum Neurosci. 2016 Jul 19;10:361
– reference: 22912618 - Front Psychiatry. 2012 Aug 17;3:74
– reference: 26200716 - Behav Brain Res. 2015 Oct 15;293:125-33
– reference: 25105567 - Res Dev Disabil. 2014 Nov;35(11):2840-8
– reference: 28736118 - Clin Neurophysiol. 2017 Sep;128(9):1770-1771
– reference: 20554472 - Clin Neurophysiol. 2010 Dec;121(12):2165-71
– reference: 17329167 - Clin Neurophysiol. 2007 May;118(5):1166-70
– reference: 26881118 - Neural Plast. 2016;2016:5961362
– reference: 21335303 - IEEE Trans Biomed Eng. 2011 Jun;58(6):1773-80
– reference: 22928032 - PLoS One. 2012;7(8):e43776
– reference: 25637226 - Neuropsychologia. 2015 Jul;74:108-19
– reference: 23097644 - Front Psychiatry. 2012 Oct 22;3:91
– reference: 26608246 - Neuroimage. 2016 Oct 15;140:110-7
– reference: 27053386 - Brain Stimul. 2016 May-Jun;9(3):457-458
– reference: 21684040 - Neurobiol Aging. 2012 Aug;33(8):1682-9
– reference: 20350607 - Neuroimage. 2010 Jul 15;51(4):1310-8
– reference: 23880500 - Neuroimage. 2014 Jan 15;85 Pt 3:1058-68
– reference: 26923418 - Neurobiol Aging. 2016 Mar;39:210-216
– reference: 26111387 - IEEE Trans Biomed Eng. 2016 Jan;63(1):168-75
– reference: 18055832 - Invest Ophthalmol Vis Sci. 2007 Dec;48(12):5782-7
– reference: 18429704 - Annu Rev Biomed Eng. 2008;10:275-309
– reference: 27569587 - Brain Res. 2016 Nov 1;1650:10-20
– reference: 25604912 - Clin Rehabil. 2015 Dec;29(12):1212-23
– reference: 25013302 - J Phys Ther Sci. 2014 Jun;26(6):945-50
– reference: 17785187 - Neuron. 2007 Sep 6;55(5):809-23
– reference: 11897534 - Clin Neurophysiol. 2002 Mar;113(3):341-5
– reference: 26321911 - Front Cell Neurosci. 2015 Aug 11;9:307
– reference: 21206371 - J ECT. 2011 Sep;27(3):256-8
– reference: 23099102 - Neuroimage. 2014 Jan 15;85 Pt 3:1040-7
– reference: 26251227 - Ann N Y Acad Sci. 2015 Sep;1351:127-40
– reference: 20962598 - Am J Phys Med Rehabil. 2010 Nov;89(11):879-86
– reference: 27123448 - Biomed Res Int. 2016;2016:5068127
– reference: 21962982 - Brain Stimul. 2012 Oct;5(4):484-91
– reference: 25613437 - Neuroimage. 2015 Apr 1;109:140-50
– reference: 26350410 - Brain Stimul. 2016 Jan-Feb;9(1):1-7
– reference: 25732105 - Clin Neurophysiol. 2015 Nov;126(11):2189-97
– reference: 24025832 - Nature. 2013 Sep 12;501(7466):167
– reference: 25697590 - Brain Stimul. 2015 May-Jun;8(3):455-64
– reference: 21160123 - NeuroRehabilitation. 2010;27(4):335-41
– reference: 24623779 - J Neurosci. 2014 Mar 12;34(11):4022-6
– reference: 26890096 - Restor Neurol Neurosci. 2016;34(2):215-26
– reference: 23303424 - J ECT. 2013 Jun;29(2):147-8
– reference: 26072125 - Contemp Clin Trials. 2015 Jul;43:231-6
– reference: 20488204 - J Neurosci Methods. 2010 Jul 15;190(2):188-97
– reference: 15351385 - Clin Neurophysiol. 2004 Oct;115(10):2419-23
– reference: 25599302 - Pain. 2015 Jan;156(1):62-71
– reference: 20161507 - Brain Stimul. 2009 Oct;2(4):215-28, 228.e1-3
– reference: 23467363 - J Neurosci. 2013 Mar 6;33(10):4482-6
– reference: 22733164 - Graefes Arch Clin Exp Ophthalmol. 2013 Mar;251(3):1041-3
– reference: 21659696 - J Neural Eng. 2011 Aug;8(4):046011
– reference: 24284464 - NeuroRehabilitation. 2014;34(1):121-7
– reference: 26873962 - Neuroscientist. 2016 Feb 12;:null
– reference: 26097454 - Front Aging Neurosci. 2015 Jun 05;7:107
– reference: 26889687 - J Vis Exp. 2016 Feb 04;(108):e53367
– reference: 26696882 - Front Aging Neurosci. 2015 Dec 14;7:230
– reference: 26026283 - Brain Stimul. 2015 Sep-Oct;8(5):906-13
– reference: 24086698 - PLoS One. 2013 Sep 27;8(9):e76112
– reference: 25101009 - Front Psychiatry. 2014 Jul 21;5:86
– reference: 25890209 - Stem Cell Res Ther. 2015 Mar 21;6:41
– reference: 24822247 - Headache. 2014 Apr;54(4):663-74
– reference: 21894658 - Fed Regist. 2011 Aug 23;76(163):52667-8
– reference: 27173384 - J Neural Transm (Vienna). 2016 Oct;123(10 ):1219-34
– reference: 25878904 - Neural Plast. 2015;2015:684025
– reference: 25522391 - Int J Neuropsychopharmacol. 2014 Oct 31;18(2):null
– reference: 25073936 - Brain Stimul. 2014 Sep-Oct;7(5):765-7
– reference: 19913097 - Neurobiol Dis. 2010 Mar;37(3):510-8
– reference: 21095849 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6821-4
– reference: 26758832 - J Neurosci. 2016 Jan 13;36(2):396-404
– reference: 26469395 - Pain. 2016 Feb;157(2):429-37
– reference: 26484510 - NeuroRehabilitation. 2015 ;37(2):181-91
– reference: 27774217 - J Law Biosci. 2015 Oct 12;2(3):669-696
– reference: 24553318 - J ECT. 2014 Mar;30(1):62-8
– reference: 20633396 - Brain Stimul. 2008 Oct;1(4):386-7
– reference: 26898606 - Sci Rep. 2016 Feb 22;6:21583
– reference: 28326031 - Front Hum Neurosci. 2017 Mar 07;11:113
– reference: 25126060 - Front Syst Neurosci. 2014 Jul 30;8:132
– reference: 25071479 - Front Syst Neurosci. 2014 Jul 08;8:127
– reference: 23760989 - J Child Neurol. 2014 Feb;29(2):232-9
– reference: 24695720 - J Neurosci. 2014 Apr 2;34(14):5029-37
– reference: 26736856 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :2729-32
– reference: 25285077 - Front Hum Neurosci. 2014 Sep 19;8:739
– reference: 27372845 - Brain Stimul. 2016 Sep-Oct;9(5):641-661
– reference: 25454337 - Clin Neurophysiol. 2015 Jun;126(6):1185-9
– reference: 25253645 - Eur Arch Psychiatry Clin Neurosci. 2014 Nov;264 Suppl 1:S27-33
– reference: 27261431 - Brain Stimul. 2016 Sep-Oct;9(5):671-681
– reference: 28275345 - Front Hum Neurosci. 2017 Feb 22;11:77
– reference: 17460302 - Invest Ophthalmol Vis Sci. 2007 May;48(5):2356-61
– reference: 12701954 - Int J Technol Assess Health Care. 2003 Winter;19(1):228-48
– reference: 17452283 - Brain Res Bull. 2007 May 30;72(4-6):208-14
– reference: 26598772 - Brain Stimul. 2015 Sep-Oct;8(5):993-1006
– reference: 23756431 - J Head Trauma Rehabil. 2014 May-Jun;29(3):E20-9
– reference: 23478342 - Restor Neurol Neurosci. 2013;31(3):275-85
– reference: 21211569 - Neuroimage. 2011 Mar 15;55(2):590-6
– reference: 23415451 - Clin Neurophysiol. 2013 Jun;124(6):1187-95
– reference: 23541726 - Curr Biol. 2013 Apr 8;23 (7):569-74
– reference: 23843514 - J Neurosci. 2013 Jul 10;33(28):11425-31
– reference: 24398722 - Restor Neurol Neurosci. 2014;32(2):301-12
– reference: 26576215 - J Vasc Interv Neurol. 2015 Oct;8(4):43-52
– reference: 21780073 - Rev Neurol. 2011 Aug 16;53(4):209-25
– reference: 20105234 - Eur J Neurosci. 2010 Feb;31(3):593-7
– reference: 25071548 - Front Neuroeng. 2014 Jul 11;7:28
– reference: 19671217 - Int J Neuropsychopharmacol. 2010 Feb;13(1):61-9
– reference: 25852494 - Front Syst Neurosci. 2015 Mar 17;9:26
– reference: 23063889 - Brain Res. 2012 Dec 13;1489:17-26
– reference: 18680573 - Behav Brain Funct. 2008 Aug 04;4:33
– reference: 21035740 - Clin Neurophysiol. 2010 Dec;121(12):1976-8
– reference: 27535462 - Sci Rep. 2016 Aug 18;6:31236
– reference: 19528092 - Brain. 2009 Nov;132(Pt 11):3011-20
– reference: 20633386 - Brain Stimul. 2008 Jul;1(3):206-23
– reference: 25501299 - Graefes Arch Clin Exp Ophthalmol. 2015 Feb;253(2):171-6
– reference: 27551261 - Front Cell Neurosci. 2016 Aug 08;10:188
– reference: 24062685 - Front Aging Neurosci. 2013 Sep 11;5:49
– reference: 15522246 - Biol Psychiatry. 2004 Nov 1;56(9):634-9
– reference: 21586823 - Restor Neurol Neurosci. 2011;29(3):167-75
– reference: 25499471 - Brain Stimul. 2015 Jan-Feb;8(1):76-87
– reference: 28259678 - Clin Neurophysiol. 2017 Jun;128(6):1109-1115
– reference: 24737098 - J Neural Eng. 2014 Jun;11(3):036002
– reference: 12917358 - J Neurosci. 2003 Aug 13;23(19):7255-61
– reference: 27375421 - Front Neurosci. 2016 Jun 07;10:262
– reference: 18372292 - Cereb Cortex. 2008 Nov;18(11):2701-5
– reference: 24625701 - J ECT. 2014 Sep;30(3):e16-8
– reference: 23884951 - J Neurosci. 2013 Jul 24;33(30):12470-8
– reference: 20233439 - BMC Neurosci. 2010 Mar 16;11:38
– reference: 25880098 - Neuromodulation. 2015 Dec;18(8):686-93
– reference: 20530614 - Anesth Analg. 2010 Nov;111(5):1301-7
– reference: 21350028 - J Appl Physiol (1985). 2011 May;110(5):1414-24
– reference: 21986238 - Brain Stimul. 2012 Jul;5(3):432-4
– reference: 23562964 - Neuropsychologia. 2013 Jun;51(7):1234-9
– reference: 23389323 - JAMA Psychiatry. 2013 Apr;70(4):383-91
– reference: 1120172 - Biol Psychiatry. 1975 Feb;10(1):101-4
– reference: 26458516 - Neuroimage. 2016 Oct 15;140:118-25
– reference: 24936185 - Front Aging Neurosci. 2014 Jun 06;6:115
– reference: 26606255 - PLoS One. 2015 Nov 25;10(11):e0143533
– reference: 26619787 - Neuroimage. 2016 Oct 15;140:66-75
– reference: 15661300 - J Neurosci Methods. 2005 Feb 15;141(2):171-98
– reference: 26652115 - Clin Neurophysiol. 2016 Feb;127(2):1031-1048
– reference: 25929230 - J Physiol. 2015 Aug 15;593(16):3645-55
– reference: 20435146 - Neuroimage. 2010 Oct 1;52(4):1268-78
– reference: 22674451 - Internist (Berl). 2012 Sep;53(9):1125-30
– reference: 27093311 - IEEE Trans Biomed Eng. 2017 Jan;64(1):184-195
– reference: 26590479 - Brain Stimul. 2015 Nov-Dec;8(6):1233-5
– reference: 23473936 - Neuroimage. 2013 Jul 15;75:12-19
– reference: 21631313 - Clin Linguist Phon. 2011 Jun;25(6-7):640-54
– reference: 19483641 - J ECT. 2010 Mar;26(1):68-9
– reference: 23982710 - Stroke. 2013 Nov;44(11):3166-74
– reference: 24345389 - Neuroimage. 2014 Apr 1;89:216-25
– reference: 26458959 - Prostate Cancer Prostatic Dis. 2016 Mar;19(1):46-52
– reference: 25018056 - Brain Stimul. 2014 Sep-Oct;7(5):762-4
– reference: 14702983 - Proc Inst Mech Eng H. 2003;217(6):459-67
– reference: 21240273 - Nat Neurosci. 2011 Feb;14(2):217-23
– reference: 26996082 - Neuron. 2016 Apr 6;90(1):191-203
– reference: 25216650 - Brain Stimul. 2014 Sep-Oct;7(5):636-42
– reference: 21095946 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2073-6
– reference: 25922128 - Clin Neurophysiol. 2015 Nov;126(11):2181-8
– reference: 15664172 - Neuron. 2005 Jan 20;45(2):201-6
– reference: 23055986 - Front Psychiatry. 2012 Sep 25;3:84
– reference: 20648973 - Brain Stimul. 2009 Oct;2(4):201-7, 207.e1
– reference: 25413621 - Phys Ther. 2015 Mar;95(3):337-49
– reference: 25234606 - Trials. 2014 Sep 18;15:366
– reference: 26280313 - Exp Brain Res. 2016 Mar;234(3):637-43
– reference: 25963755 - Exp Brain Res. 2015 Aug;233(8):2401-9
– reference: 16045502 - Eur J Neurosci. 2005 Jul;22(2):495-504
– reference: 23034972 - J Child Neurol. 2013 Oct;28(10):1238-44
– reference: 27044999 - Philos Trans A Math Phys Eng Sci. 2016 May 13;374(2067):null
– reference: 27210840 - J Bodyw Mov Ther. 2016 Apr;20(2):252-7
– reference: 19109497 - J Neurosci. 2008 Dec 24;28(52):14147-55
– reference: 25849358 - PLoS One. 2015 Apr 07;10(4):e0121904
– reference: 17409245 - J Neurosci. 2007 Apr 4;27(14):3807-12
– reference: 25022472 - Brain Stimul. 2014 Sep-Oct;7(5):627-35
– reference: 19201066 - Neurobiol Aging. 2010 Dec;31(12):2160-8
– reference: 24159560 - Neuroimage Clin. 2013 May 31;2:759-66
– reference: 24907311 - J Physiol. 2014 Aug 15;592(16):3345-69
– reference: 17251360 - J Neurophysiol. 2007 Apr;97(4):3109-17
– reference: 26774968 - Biol Psychiatry. 2016 Sep 15;80(6):432-438
– reference: 23087654 - Front Psychiatry. 2012 Oct 17;3:90
– reference: 21948925 - J Neuropsychiatry Clin Neurosci. 2011 Summer;23(3):E4-5
– reference: 7838369 - Neurosci Behav Physiol. 1994 Sep-Oct;24(5):442-5
– reference: 23850466 - Neuroimage. 2014 Jan 15;85 Pt 3:1048-57
– reference: 21820308 - Curr Biol. 2011 Aug 23;21(16):1403-7
– reference: 22506177 - Ann Rehabil Med. 2011 Aug;35(4):579-82
– reference: 25940845 - Med Biol Eng Comput. 2015 Oct;53(10 ):1085-101
– reference: 25521600 - NMR Biomed. 2015 Feb;28(2):231-9
– reference: 21072168 - PLoS One. 2010 Nov 01;5(11):e13766
– reference: 20019146 - Cereb Cortex. 2010 Aug;20(8):1926-36
– reference: 21641264 - Parkinsonism Relat Disord. 2011 Sep;17(8):647-8
– reference: 23550273 - Front Psychiatry. 2013 Feb 26;3:97
– reference: 18925985 - Int J Neuropsychopharmacol. 2009 Jun;12(5):643-50
– reference: 20434997 - Neuron. 2010 Apr 29;66(2):198-204
– reference: 23392916 - Neurorehabil Neural Repair. 2013 May;27(4):363-9
– reference: 22104190 - J Pain. 2012 Feb;13(2):112-20
– reference: 27653887 - J Neurol Sci. 2016 Oct 15;369:185-190
– reference: 9918361 - Mov Disord. 1999 Jan;14(1):157-8
– reference: 20327943 - Can Med Assoc J. 1964 Sep 12;91(11):619
– reference: 24784477 - Clin Neurophysiol. 2014 Nov;125(11):2260-70
– reference: 26003225 - J Neurol Sci. 2015 Jul 15;354(1-2):103-9
– reference: 22124039 - Restor Neurol Neurosci. 2011;29(6):493-505
– reference: 25295004 - Front Aging Neurosci. 2014 Sep 23;6:253
– reference: 24582373 - Brain Stimul. 2014 May-Jun;7(3):460-7
– reference: 26449209 - Brain Res Bull. 2015 Oct;119(Pt A):25-33
– reference: 22016735 - Front Aging Neurosci. 2011 Oct 12;3:16
– reference: 16703590 - Mov Disord. 2006 Sep;21(9):1471-6
– reference: 19506706 - Front Integr Neurosci. 2009 May 18;3:6
– reference: 26324456 - J Med Ethics. 2016 Apr;42(4):211-5
– reference: 27249078 - J Clin Psychiatry. 2016 May;77(5):689-90
– reference: 17599962 - J Physiol. 2007 Sep 1;583(Pt 2):555-65
– reference: 28220641 - Neuromodulation. 2017 Apr;20(3):215-222
– reference: 15872016 - Brain. 2005 Aug;128(Pt 8):1943-50
– reference: 6781682 - Br Med J (Clin Res Ed). 1981 Mar 21;282(6268):974-6
– reference: 24162796 - J Neural Transm (Vienna). 2014;121(3):221-31
– reference: 27223853 - Phys Med Biol. 2016 Jun 21;61(12 ):4506-21
– reference: 27298740 - Neural Plast. 2016;2016:4274127
– reference: 20938352 - J ECT. 2011 Jun;27(2):134-40
– reference: 25135003 - J Neuroeng Rehabil. 2014 Aug 18;11:124
– reference: 25792098 - Lancet Neurol. 2015 Apr;14(4):388-405
– reference: 24310982 - J Neural Eng. 2014 Feb;11(1):016002
– reference: 25940097 - Neuropsychologia. 2015 Jul;74:152-61
– reference: 26079636 - Disabil Rehabil. 2016;38(7):637-43
– reference: 28279641 - Brain Stimul. 2017 May - Jun;10 (3):553-559
– reference: 26226938 - Brain Stimul. 2015 Nov-Dec;8(6):1085-92
– reference: 27027666 - J Child Adolesc Psychopharmacol. 2016 Sep;26(7):590-7
– reference: 22086257 - J Neural Eng. 2011 Dec;8(6):066017
– reference: 21885255 - Epilepsy Res. 2011 Nov;97(1-2):142-5
– reference: 9754976 - Eur J Appl Physiol Occup Physiol. 1998 Sep;78(4):353-9
– reference: 22949089 - IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):333-45
– reference: 26848997 - Neuroreport. 2016 Mar 23;27(5):295-300
– reference: 27865707 - Neurophysiol Clin. 2016 Dec;46(6):319-398
– reference: 24461998 - Curr Biol. 2014 Feb 3;24(3):333-9
– reference: 27039705 - Neuroimage. 2016 Oct 15;140:99-109
– reference: 24599463 - J Neurosci. 2014 Mar 5;34(10):3646-52
– reference: 26661481 - J Child Neurol. 2016 May;31(6):784-96
– reference: 21286253 - Front Psychol. 2010 Nov 11;1:193
– reference: 19833552 - Clin Neurophysiol. 2009 Dec;120(12):2008-39
– reference: 27166171 - Cereb Cortex. 2017 May 1;27(5):2758-2767
– reference: 28231716 - Am J Psychiatry. 2017 Jul 1;174(7):628-639
– reference: 19964541 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:1596-9
– reference: 15753425 - Neurology. 2005 Mar 8;64(5):872-5
– reference: 27916405 - Brain Stimul. 2017 Mar - Apr;10 (2):260-262
– reference: 27403166 - Stem Cells Int. 2016;2016:2715196
– reference: 26170244 - J Neural Eng. 2015 Aug;12(4):046030
– reference: 22305345 - Brain Stimul. 2012 Oct;5(4):435-53
– reference: 23274187 - Neuroimage. 2013 Apr 15;70:48-58
– reference: 23370061 - Neuroimage. 2013 Jul 1;74:266-75
– reference: 21320389 - Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45
– reference: 19484445 - Jpn J Ophthalmol. 2009 May;53(3):257-66
– reference: 27693941 - Clin Neurophysiol. 2016 Nov;127(11):3425-3454
– reference: 19811944 - Parkinsonism Relat Disord. 2010 Feb;16(2):127-31
– reference: 27000523 - Nat Commun. 2016 Mar 22;7:11100
– reference: 25209456 - Neuromodulation. 2015 Jun;18(4):261-5
– reference: 20633376 - Brain Stimul. 2008 Apr;1(2):97-105
– reference: 23225625 - Ann Neurol. 2013 Jan;73(1):10-5
– reference: 21962978 - Brain Stimul. 2012 Jul;5(3):242-51
– reference: 23851401 - J Vis Exp. 2013 Jun 17;(76):null
– reference: 19403329 - Clin Neurophysiol. 2009 Jun;120(6):1161-7
– reference: 25931726 - J Phys Ther Sci. 2015 Mar;27(3):763-8
– reference: 21981853 - Brain Stimul. 2011 Oct;4(4):175-88
– reference: 20700786 - Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2010 Aug;53(8):853-9
– reference: 19386916 - J Neurosci. 2009 Apr 22;29(16):5202-6
– reference: 22480602 - Clin Neurophysiol. 2012 Oct;123(10):2006-9
– reference: 8054244 - Br J Clin Pharmacol. 1994 May;37(5):401-4
– reference: 15056717 - J Neurosci. 2004 Mar 31;24(13):3379-85
– reference: 24796646 - J Vis Exp. 2014 Apr 27;(86):null
– reference: 23415937 - Brain Stimul. 2013 Jul;6(4):696-700
– reference: 28119589 - Front Hum Neurosci. 2017 Jan 10;10 :683
– reference: 25071555 - Front Aging Neurosci. 2014 Jul 10;6:146
– reference: 25792428 - J Child Neurol. 2015 Oct;30(12):1604-15
– reference: 7556917 - Dev Biol. 1995 Oct;171(2):330-9
– reference: 24238383 - Tech Vasc Interv Radiol. 2013 Dec;16(4):277-86
– reference: 21981854 - Brain Stimul. 2011 Oct;4(4):189-201
– reference: 27199889 - Front Neurol. 2016 May 04;7:66
– reference: 20471313 - Clin Neurophysiol. 2010 Nov;121(11):1908-14
– reference: 23366836 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4128-31
– reference: 22211744 - Eur J Neurosci. 2012 Jan;35(1):119-24
– reference: 20624597 - Neuron. 2010 Jul 15;67(1):129-43
– reference: 25912048 - Eur J Neurosci. 2015 May;41(11):1475-83
– reference: 10441299 - Trends Neurosci. 1999 Sep;22(9):391-7
– reference: 27704654 - Neuromodulation. 2017 Apr;20(3):248-255
– reference: 22684095 - Neurosci Lett. 2012 Jul 19;521(2):148-51
– reference: 14580622 - Clin Neurophysiol. 2003 Nov;114(11):2220-2; author reply 2222-3
– reference: 16387549 - Clin Neurophysiol. 2006 Feb;117(2):455-71
– reference: 27170126 - J Neurosci. 2016 May 11;36(19):5289-98
– reference: 27322602 - Expert Rev Clin Pharmacol. 2016 Sep;9(9):1245-52
– reference: 20671257 - Stroke. 2010 Sep;41(9):2087-90
– reference: 20471549 - J Pain Symptom Manage. 2010 May;39(5):890-903
– reference: 21398419 - Cephalalgia. 2011 May;31(7):820-8
– reference: 24905627 - Brain Res. 2014 Sep 18;1581:80-8
– reference: 21782547 - Brain Stimul. 2012 Jul;5(3):430-1
– reference: 25861158 - Behav Neurol. 2015;2015:928631
– reference: 24049057 - J Child Neurol. 2014 Oct;29(10):1360-5
– reference: 25870543 - Front Syst Neurosci. 2015 Mar 30;9:54
– reference: 27355577 - PLoS One. 2016 Jun 29;11(6):e0156134
– reference: 11274304 - Neurology. 2001 Mar 27;56(6):716-23
– reference: 21777878 - Brain Stimul. 2011 Jul;4(3):169-74
– reference: 21255753 - Brain Stimul. 2011 Jan;4(1):38-42
– reference: 19440158 - J ECT. 2009 Dec;25(4):256-60
– reference: 22215866 - Br J Psychiatry. 2012 Jan;200(1):52-9
– reference: 24631567 - Neurosci Lett. 2014 May 21;569:6-11
– reference: 25765775 - Dig Surg. 2015;32(2):90-7
– reference: 20923600 - Int J Neuropsychopharmacol. 2011 Apr;14(3):425-6
– reference: 25346688 - Front Aging Neurosci. 2014 Oct 09;6:275
– reference: 27061368 - Brain Stimul. 2016 Jul-Aug;9(4):525-8
– reference: 23123281 - Epilepsy Behav. 2012 Nov;25(3):417-25
– reference: 23237479 - Cortex. 2013 Jul-Aug;49(7):1801-7
– reference: 23367178 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5514-7
– reference: 24620008 - Neuroscientist. 2015 Apr;21(2):185-202
– reference: 25153776 - Brain Stimul. 2014 Nov-Dec;7(6):793-9
– reference: 15914636 - Invest Ophthalmol Vis Sci. 2005 Jun;46(6):2147-55
– reference: 26265912 - Comput Intell Neurosci. 2015;2015:963293
– reference: 24166562 - Neurol Neurochir Pol. 2013 Sep-Oct;47(5):414-22
– reference: 20633432 - Brain Stimul. 2010 Jan;3(1):58-9
– reference: 26503692 - Hum Brain Mapp. 2016 Jan;37(1):94-121
– reference: 2249872 - IEEE Trans Biomed Eng. 1990 Oct;37(10):996-1001
– reference: 22512348 - Headache. 2012 Sep;52(8):1283-95
– reference: 26342753 - Exp Neurol. 2016 Jan;275 Pt 3:316-327
– reference: 18786856 - Clin Neurophysiol. 2008 Nov;119(11):2636-40
– reference: 26213216 - J Neurosci Methods. 2015 Oct 30;254:18-26
– reference: 26562295 - PLoS One. 2015 Nov 12;10(11):e0142740
– reference: 24324410 - Front Syst Neurosci. 2013 Nov 25;7:94
– reference: 24816141 - Nat Neurosci. 2014 Jun;17(6):810-2
– reference: 19423386 - Clin Neurophysiol. 2009 Jun;120(6):1183-7
– reference: 25096637 - Stem Cell Rev. 2015 Feb;11(1):75-86
– reference: 27853926 - J Neural Transm (Vienna). 2017 Jan;124(1):133-144
– reference: 29096212 - Clin Neurophysiol. 2017 Dec;128(12 ):2397-2399
– reference: 23699528 - J Neurosci. 2013 May 22;33(21):9176-83
– reference: 26080310 - Neuroimage. 2015 Sep;118:406-13
– reference: 24760939 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):441-52
– reference: 25797650 - Clin Neurophysiol. 2015 Jun;126(6):1071-107
– reference: 25468071 - Brain Stimul. 2015 Jan-Feb;8(1):163-4
– reference: 23182847 - Eur Psychiatry. 2013 Aug;28(6):356-61
– reference: 27014012 - Front Hum Neurosci. 2016 Mar 10;10:68
– reference: 24176927 - Neuroreport. 2014 Jan 22;25(2):122-6
SSID ssj0007042
Score 2.682817
SecondaryResourceType review_article
Snippet •The application of low intensity TES in humans appears to be safe.•The profile of AEs in terms of frequency, magnitude and type is comparable in different...
Highlights • The application of low intensity TES in humans appears to be safe. • The profile of AEs in terms of frequency, magnitude and type is comparable in...
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1774
SubjectTerms Adverse events
Animals
Brain - physiology
Burns, Electric - etiology
Burns, Electric - prevention & control
Humans
Neurology
Practice Guidelines as Topic - standards
Safety
tACS
tDCS
TES
Transcranial Direct Current Stimulation - adverse effects
Transcranial Direct Current Stimulation - ethics
Transcranial Direct Current Stimulation - standards
Title Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245717302122
https://www.clinicalkey.es/playcontent/1-s2.0-S1388245717302122
https://dx.doi.org/10.1016/j.clinph.2017.06.001
https://www.ncbi.nlm.nih.gov/pubmed/28709880
https://www.proquest.com/docview/1920195671
https://pubmed.ncbi.nlm.nih.gov/PMC5985830
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQk9Bepo19sQ_kSXskNImduN4bQkOFAS8MiTfLTq5bUEmrNtXUl_3tu4ud0gIT014iJTnHSXxf1v3ujrHPJeUPK0ijHBKNGxSRR07qHMUdEmrDrYdt-tjZeT64lCdX2dUGO-xyYQhWGXS_1-mttg5XeuFv9iZV1btIBHqHMqMwMtUpJz0spSIu3_99C_NQcdtAh4gjou7S51qMF2UfTigkkah9H5X4m3m6737eRVGumKWj5-xZ8Cf5gX_lF2wD6m22dRYi5i_Zzen4F688Tr1Z8IZMU4EHZDvuW-BUBUcxvwltvL7wCzuEZrHHgZDwdrTHR4BWhE990_rxdMFtXfKVwDf_MadaWYSff8Uuj75-PxxEocVCVKCr0US51spSbG5YxlINcwGpVa6wFh0t7ZLUSXRv8tTq0upUQb-kHZiL-7IEUrFCvGab9biGt4yDAuUcPqzUiSyFcKntZ32ArCC8VaF2mOj-rClC_XFqgzEyHdDs2vj1MLQexuPtdli0HDXx9Tceoc-6RTNdbilqQ4MG4pFx6qFxMAsiPTOJmaUmNvfYbnXkGuf-w5yfOq4yKNQUqbE1jOc4l07bRE6FNG88ly2_niLTGrUuzrvGf0sCKhi-fqeufraFwzONKyLid__9xu_ZUzrzGLsPbLOZzuEjOmWN222lbpc9OTj-Njj_A_RCOME
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdQkba9TOwTxj48aY9kTeIkrveG0FAZbV8AiTfLTq5bUEmrNhXqf89d7FTt2MS0lzzEvjix7yu6390x9qWg_GEJcZBBpPAHRWSBTVSG4g4RteFW4yZ9bDjK-lfJj-v0eoedtLkwBKv0ut_p9EZb-ztdv5vdWVl2LyKB3mGSUhiZ6pSjHt6l6lRph-0en533R2uFLMOmhw7ND4igzaBrYF6UgDijqEQkv7rAxN8s1EMP9Hcg5YZlOt1jz71LyY_dW79gO1C9ZE-GPmj-it0Opne8dFD1esVrsk45XpDzuOuCU-YcJf3Wd_L6xi_MGOrVEQcCw5vJEZ8AGhI-d33rp_MVN1XBN2Lf_OeSymURhP41uzr9fnnSD3yXhSBHb6MOMqWkofDcuAgTOc4ExEba3Bj0tZSNYpugh5PFRhVGxRJ6Bf2E2bCXFEBaVog3rFNNK9hnHCRIa_FhhYqSQggbm17aA0hzglzl8oCJdmd17kuQUyeMiW6xZjfanYem89AOcnfAgjXVzJXgeGR-2h6abtNLUSFqtBGP0Mk_0cHCS_VCR3oR61A_4LxNyi3m_Yc1P7dcpVGuKVhjKpgucS0VN7mcEue8dVy2_noKTitUvLjuFv-tJ1DN8O2RqvzV1A5PFZ6ICN_99xt_Yk_7l8OBHpyNzg_ZMxpxkLv3rFPPl_ABfbTafvQyeA-DWzty
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+intensity+transcranial+electric+stimulation%3A+Safety%2C+ethical%2C+legal+regulatory+and+application+guidelines&rft.jtitle=Clinical+neurophysiology&rft.au=Antal%2C+A&rft.au=Alekseichuk%2C+I&rft.au=Bikson%2C+M&rft.au=Brockm%C3%B6ller%2C+J&rft.date=2017-09-01&rft.issn=1872-8952&rft.eissn=1872-8952&rft.volume=128&rft.issue=9&rft.spage=1774&rft_id=info:doi/10.1016%2Fj.clinph.2017.06.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon