Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines
•The application of low intensity TES in humans appears to be safe.•The profile of AEs in terms of frequency, magnitude and type is comparable in different populations.•Structured checklists and interviews as recommended procedures are provided in this paper. Low intensity transcranial electrical st...
Saved in:
Published in | Clinical neurophysiology Vol. 128; no. 9; pp. 1774 - 1809 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The application of low intensity TES in humans appears to be safe.•The profile of AEs in terms of frequency, magnitude and type is comparable in different populations.•Structured checklists and interviews as recommended procedures are provided in this paper.
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1–2mA and during tACS at higher peak-to-peak intensities above 2mA.
The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues.
Safety is established for low-intensity ‘conventional’ TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3–13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe.
In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6–7, 2016 and were refined thereafter by email correspondence. |
---|---|
AbstractList | Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m
that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence. Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence. Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1–2 mA and during tACS at higher peak-to-peak intensities above 2 mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity ‘conventional’ TES defined as <4 mA, up to 60 min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3–13 A/m 2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10 mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6–7, 2016 and were refined thereafter by email correspondence. Highlights • The application of low intensity TES in humans appears to be safe. • The profile of AEs in terms of frequency, magnitude and type is comparable in different populations. • Structured checklists and interviews as recommended procedures are provided in this paper. •The application of low intensity TES in humans appears to be safe.•The profile of AEs in terms of frequency, magnitude and type is comparable in different populations.•Structured checklists and interviews as recommended procedures are provided in this paper. Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1–2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity ‘conventional’ TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3–13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6–7, 2016 and were refined thereafter by email correspondence. |
Author | McCaig, C.D. Priori, A. Rothwell, J. Alekseichuk, I. Dowthwaite, G. Wexler, A. Ellrich, J. Paulus, W. Chen, R. Ziemann, U. Hummel, F.C. Loo, C.K. Ruffini, G. George, M.S. Brunoni, A.R. Pascual-Leone, A. Cohen, L.G. Liebetanz, D. Brockmöller, J. Padberg, F. Moliadze, V. Miniussi, C. Nitsche, M.A. Hallett, M. Haueisen, J. Ugawa, Y. Flöel, A. Schellhorn, K. Rossini, P.M. Poppendieck, W. Rossi, S. Nowak, R. Siebner, H.R. Antal, A. Rueger, M.A. Bikson, M. Herrmann, C.S. Miranda, P.C. Lefaucheur, J.P. Fregni, F. Hamilton, R. |
AuthorAffiliation | r Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland z Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany n Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA o Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany ap Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA j EBS Technologies GmbH, Europarc Dreilinden, Germany a Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany p Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany h Department of Health Science and Technology, Aalborg University, Aalborg, Denmark ab Neuroelectrics, Barcelona, Spain c Department of Cli |
AuthorAffiliation_xml | – name: a Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany – name: f Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA – name: af Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy – name: t School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia – name: ah Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy – name: m Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA – name: u Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK – name: ak neuroCare Group GmbH, Munich, Germany – name: k Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany – name: s Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France – name: ar Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA – name: n Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA – name: am Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark – name: ag Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy – name: e Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada – name: l Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA – name: x Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal – name: ab Neuroelectrics, Barcelona, Spain – name: o Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany – name: aq Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany – name: i Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany – name: d Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil – name: b Department of Biomedical Engineering, The City College of New York, New York, USA – name: g The Magstim Company, Whitland, UK – name: q Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland – name: an Department of Neurology, Fukushima Medical University, Fukushima, Japan – name: ap Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA – name: z Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany – name: h Department of Health Science and Technology, Aalborg University, Aalborg, Denmark – name: ac Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany – name: p Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany – name: y Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany – name: ao Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan – name: j EBS Technologies GmbH, Europarc Dreilinden, Germany – name: aa Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany – name: ai UCL Institute of Neurology, London, UK – name: aj Department of Neurology, University Hospital of Cologne, Germany – name: al Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark – name: ae Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany – name: v Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy – name: ad Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA – name: r Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland – name: c Department of Clinical Pharmacology, University Medical Center Goettingen, Germany – name: w Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy |
Author_xml | – sequence: 1 givenname: A. surname: Antal fullname: Antal, A. email: AAntal@gwdg.de organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany – sequence: 2 givenname: I. surname: Alekseichuk fullname: Alekseichuk, I. organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany – sequence: 3 givenname: M. surname: Bikson fullname: Bikson, M. organization: Department of Biomedical Engineering, The City College of New York, New York, USA – sequence: 4 givenname: J. surname: Brockmöller fullname: Brockmöller, J. organization: Department of Clinical Pharmacology, University Medical Center Goettingen, Germany – sequence: 5 givenname: A.R. surname: Brunoni fullname: Brunoni, A.R. organization: Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil – sequence: 6 givenname: R. surname: Chen fullname: Chen, R. organization: Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada – sequence: 7 givenname: L.G. surname: Cohen fullname: Cohen, L.G. organization: Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA – sequence: 8 givenname: G. surname: Dowthwaite fullname: Dowthwaite, G. organization: The Magstim Company, Whitland, UK – sequence: 9 givenname: J. surname: Ellrich fullname: Ellrich, J. organization: Department of Health Science and Technology, Aalborg University, Aalborg, Denmark – sequence: 10 givenname: A. surname: Flöel fullname: Flöel, A. organization: Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany – sequence: 11 givenname: F. surname: Fregni fullname: Fregni, F. organization: Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA – sequence: 12 givenname: M.S. surname: George fullname: George, M.S. organization: Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA – sequence: 13 givenname: R. surname: Hamilton fullname: Hamilton, R. organization: Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA – sequence: 14 givenname: J. surname: Haueisen fullname: Haueisen, J. organization: Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany – sequence: 15 givenname: C.S. surname: Herrmann fullname: Herrmann, C.S. organization: Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany – sequence: 16 givenname: F.C. surname: Hummel fullname: Hummel, F.C. organization: Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland – sequence: 17 givenname: J.P. surname: Lefaucheur fullname: Lefaucheur, J.P. organization: Department of Physiology, Henri Mondor Hospital, Assistance Publique – Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France – sequence: 18 givenname: D. surname: Liebetanz fullname: Liebetanz, D. organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany – sequence: 19 givenname: C.K. surname: Loo fullname: Loo, C.K. organization: School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia – sequence: 20 givenname: C.D. surname: McCaig fullname: McCaig, C.D. organization: Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK – sequence: 21 givenname: C. surname: Miniussi fullname: Miniussi, C. organization: Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy – sequence: 22 givenname: P.C. surname: Miranda fullname: Miranda, P.C. organization: Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal – sequence: 23 givenname: V. surname: Moliadze fullname: Moliadze, V. organization: Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany – sequence: 24 givenname: M.A. surname: Nitsche fullname: Nitsche, M.A. organization: Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany – sequence: 25 givenname: R. surname: Nowak fullname: Nowak, R. organization: Neuroelectrics, Barcelona, Spain – sequence: 26 givenname: F. surname: Padberg fullname: Padberg, F. organization: Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany – sequence: 27 givenname: A. surname: Pascual-Leone fullname: Pascual-Leone, A. organization: Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA – sequence: 28 givenname: W. surname: Poppendieck fullname: Poppendieck, W. organization: Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany – sequence: 29 givenname: A. surname: Priori fullname: Priori, A. organization: Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy – sequence: 30 givenname: S. surname: Rossi fullname: Rossi, S. organization: Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy – sequence: 31 givenname: P.M. surname: Rossini fullname: Rossini, P.M. organization: Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy – sequence: 32 givenname: J. surname: Rothwell fullname: Rothwell, J. organization: UCL Institute of Neurology, London, UK – sequence: 33 givenname: M.A. surname: Rueger fullname: Rueger, M.A. organization: Department of Neurology, University Hospital of Cologne, Germany – sequence: 34 givenname: G. surname: Ruffini fullname: Ruffini, G. organization: Neuroelectrics, Barcelona, Spain – sequence: 35 givenname: K. surname: Schellhorn fullname: Schellhorn, K. organization: neuroCare Group GmbH, Munich, Germany – sequence: 36 givenname: H.R. surname: Siebner fullname: Siebner, H.R. organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark – sequence: 37 givenname: Y. surname: Ugawa fullname: Ugawa, Y. organization: Department of Neurology, Fukushima Medical University, Fukushima, Japan – sequence: 38 givenname: A. surname: Wexler fullname: Wexler, A. organization: Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 39 givenname: U. surname: Ziemann fullname: Ziemann, U. organization: Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany – sequence: 40 givenname: M. surname: Hallett fullname: Hallett, M. organization: Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA – sequence: 41 givenname: W. surname: Paulus fullname: Paulus, W. organization: Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28709880$$D View this record in MEDLINE/PubMed |
BookMark | eNqVUluLEzEUHmTFveg_EJlHH7b1JDNNMossyOINCj6sPh_SzGmbmiY1yaz035uxXVFBFl-SwPkuyfflvDrxwVNVPWcwZcDEq83UOOt36ykHJqcgpgDsUXXGlOQT1c34STk3Sk14O5On1XlKGwCQ0PIn1SlXEjql4KzazsP32vpMPtm8r3PUPpmyWO1qcmRytKZO2W4Hp7MN_qq-1UvK-8ua8toa7S5rR6sCjrQaISHua-37Wu92roxHSr0abE_lrpSeVo-X2iV6dtwvqi_v3n6--TCZf3r_8ebNfGKEaPJEdJ3UUgAse2jlUjTEtVwYrXnDuwXji5bLRnDd9brjklTfAGsXoNqeWCtk01xU1wfd3bDYUm_Il4c53EW71XGPQVv8c-LtGlfhDmedmqkGisDLo0AM3wZKGbc2GXJOewpDQtaV1LuZkKxAX_zu9cvkPuMCuDoATAwpRVqisflnMsXaOmSAY6G4wUOhOBaKILAUWsjtX-R7_QdoxwCopHxnKWIylryh3sZSKvbB_q_ACBoL_0p7SpswRF8aRIaJI-Dt-NXGn8ZkA5xxXgRe_1vgYf8f0XToDg |
CitedBy_id | crossref_primary_10_1186_s12967_023_03989_9 crossref_primary_10_1590_1516_4446_2020_1169 crossref_primary_10_3389_fpain_2021_753464 crossref_primary_10_9758_cpn_2023_21_1_19 crossref_primary_10_3233_RNN_211230 crossref_primary_10_1016_j_clinph_2024_03_039 crossref_primary_10_3389_fnhum_2024_1477111 crossref_primary_10_1007_s11517_021_02338_6 crossref_primary_10_1038_s41398_021_01391_x crossref_primary_10_1093_scan_nsaa099 crossref_primary_10_1016_j_bbr_2022_113805 crossref_primary_10_1016_j_brs_2017_12_008 crossref_primary_10_1097_ICU_0000000000000590 crossref_primary_10_1038_s41467_019_10581_7 crossref_primary_10_1136_bmjopen_2021_059943 crossref_primary_10_1186_s13063_024_08699_1 crossref_primary_10_1002_jnr_24849 crossref_primary_10_3389_fnins_2022_814003 crossref_primary_10_1016_j_cobme_2018_11_001 crossref_primary_10_1111_cns_70110 crossref_primary_10_3389_fnhum_2018_00317 crossref_primary_10_3390_jcm11092297 crossref_primary_10_1111_ejn_16041 crossref_primary_10_1016_j_neuropsychologia_2021_107751 crossref_primary_10_3389_fneur_2024_1278200 crossref_primary_10_1016_j_dscb_2024_100123 crossref_primary_10_1016_j_neucli_2020_02_006 crossref_primary_10_2174_1871527320666210809121922 crossref_primary_10_1186_s10194_018_0904_9 crossref_primary_10_1016_j_seizure_2021_01_020 crossref_primary_10_1038_s41598_022_18376_5 crossref_primary_10_3390_bs13060477 crossref_primary_10_3390_brainsci13050760 crossref_primary_10_1016_j_neuroimage_2023_120242 crossref_primary_10_1038_s41598_018_35879_2 crossref_primary_10_1176_appi_ajp_2019_19090957 crossref_primary_10_3389_fnhum_2021_637080 crossref_primary_10_1093_geronb_gby134 crossref_primary_10_3928_00485713_20221018_02 crossref_primary_10_3390_ijms22052541 crossref_primary_10_12786_bn_2021_14_e9 crossref_primary_10_1016_j_brs_2023_02_012 crossref_primary_10_1016_j_ebiom_2021_103514 crossref_primary_10_2147_NDT_S295945 crossref_primary_10_1002_bies_201800197 crossref_primary_10_1007_s11920_024_01540_1 crossref_primary_10_1016_j_brs_2017_12_007 crossref_primary_10_3389_fphar_2020_00125 crossref_primary_10_1016_j_brs_2017_12_002 crossref_primary_10_1155_2019_1971875 crossref_primary_10_1177_15459683221124116 crossref_primary_10_1016_j_bbr_2024_115201 crossref_primary_10_1016_j_clinph_2023_08_011 crossref_primary_10_1044_2020_AJSLP_19_00073 crossref_primary_10_1088_1741_2552_ad2d32 crossref_primary_10_1097_PR9_0000000000000723 crossref_primary_10_3389_fnhum_2024_1468538 crossref_primary_10_1093_braincomms_fcad191 crossref_primary_10_1007_s12152_020_09444_6 crossref_primary_10_1016_j_clinph_2024_11_011 crossref_primary_10_1016_j_neures_2020_01_002 crossref_primary_10_1016_j_nicl_2024_103582 crossref_primary_10_3389_fneur_2021_598135 crossref_primary_10_1016_j_clinph_2020_11_018 crossref_primary_10_1177_1545968319893286 crossref_primary_10_1038_s41598_022_16545_0 crossref_primary_10_1136_bmjopen_2020_045285 crossref_primary_10_1007_s00406_020_01209_9 crossref_primary_10_1016_j_jpain_2022_09_010 crossref_primary_10_1017_neu_2024_35 crossref_primary_10_1016_j_arr_2020_101065 crossref_primary_10_1177_1545968318792616 crossref_primary_10_20960_nh_04100 crossref_primary_10_3389_fneur_2023_1069434 crossref_primary_10_1016_j_neucli_2018_12_003 crossref_primary_10_1016_j_cortex_2022_05_015 crossref_primary_10_3389_fnins_2017_00464 crossref_primary_10_1016_j_brs_2021_05_006 crossref_primary_10_1080_02699052_2022_2145363 crossref_primary_10_1016_j_neubiorev_2022_104867 crossref_primary_10_1016_j_apmr_2021_06_029 crossref_primary_10_1016_j_brs_2019_07_010 crossref_primary_10_3390_jpm11090940 crossref_primary_10_1016_j_neubiorev_2022_104743 crossref_primary_10_1016_j_entcom_2021_100455 crossref_primary_10_1016_j_jocn_2019_03_045 crossref_primary_10_1016_j_neuroimage_2023_120145 crossref_primary_10_1038_s41598_023_29124_8 crossref_primary_10_1371_journal_pone_0203727 crossref_primary_10_1016_j_clinph_2024_09_011 crossref_primary_10_17267_2965_3738bis_2024_e5952 crossref_primary_10_1016_j_neurom_2024_05_002 crossref_primary_10_1186_s13063_023_07791_2 crossref_primary_10_2478_amns_2023_2_00320 crossref_primary_10_1212_WNL_0000000000013061 crossref_primary_10_3389_fphar_2021_624582 crossref_primary_10_1016_j_neucli_2017_09_002 crossref_primary_10_1038_s41598_020_63332_w crossref_primary_10_1016_j_neuropsychologia_2021_107966 crossref_primary_10_3389_fpsyt_2024_1450351 crossref_primary_10_1080_17434440_2020_1813565 crossref_primary_10_1038_s41598_020_74072_2 crossref_primary_10_1016_j_neuroscience_2021_03_002 crossref_primary_10_1038_s41531_023_00610_0 crossref_primary_10_3389_fnhum_2021_661079 crossref_primary_10_3389_fnsys_2022_837979 crossref_primary_10_1016_j_humov_2019_06_003 crossref_primary_10_1177_10738584211054742 crossref_primary_10_1523_ENEURO_0481_18_2019 crossref_primary_10_3389_fnagi_2021_684689 crossref_primary_10_1007_s12311_020_01155_1 crossref_primary_10_1016_j_neuroimage_2024_120550 crossref_primary_10_1016_j_neucli_2023_102922 crossref_primary_10_3389_fnhum_2023_1270605 crossref_primary_10_1159_000542163 crossref_primary_10_1186_s40359_020_00454_w crossref_primary_10_1016_j_ijpsycho_2025_112539 crossref_primary_10_1016_j_cortex_2020_08_002 crossref_primary_10_1097_j_pain_0000000000003338 crossref_primary_10_3390_ijerph18073678 crossref_primary_10_1002_trc2_12005 crossref_primary_10_1016_j_brs_2020_11_012 crossref_primary_10_1016_j_neubiorev_2020_09_005 crossref_primary_10_1038_s41598_021_87371_z crossref_primary_10_3389_fnagi_2021_765370 crossref_primary_10_1016_j_cnp_2020_07_003 crossref_primary_10_1111_jnp_12425 crossref_primary_10_3389_fnagi_2024_1414593 crossref_primary_10_3389_fpsyg_2023_1104410 crossref_primary_10_1016_j_neuroimage_2024_120541 crossref_primary_10_1007_s40473_021_00238_5 crossref_primary_10_1016_j_jneumeth_2018_11_011 crossref_primary_10_1007_s12311_019_01014_8 crossref_primary_10_1016_j_neulet_2024_137849 crossref_primary_10_1016_j_clinph_2017_09_112 crossref_primary_10_1007_s00429_021_02451_0 crossref_primary_10_3389_fneur_2023_1327383 crossref_primary_10_1097_YCT_0000000000001074 crossref_primary_10_1162_jocn_a_01490 crossref_primary_10_1016_j_ebr_2021_100501 crossref_primary_10_1016_j_ijpsycho_2020_10_006 crossref_primary_10_3389_fnbeh_2021_820017 crossref_primary_10_1016_j_psychres_2021_114024 crossref_primary_10_1038_s41598_025_88256_1 crossref_primary_10_1159_000504609 crossref_primary_10_36290_psy_2021_005 crossref_primary_10_1038_s41598_022_26914_4 crossref_primary_10_1038_s41598_023_34724_5 crossref_primary_10_1007_s00221_019_05543_w crossref_primary_10_3390_brainsci13010137 crossref_primary_10_3389_fneur_2021_729703 crossref_primary_10_1007_s12152_020_09435_7 crossref_primary_10_1016_j_drugalcdep_2018_08_018 crossref_primary_10_3390_neurosci5040043 crossref_primary_10_1177_17474930231203982 crossref_primary_10_1016_j_brs_2020_05_010 crossref_primary_10_1007_s11357_024_01206_z crossref_primary_10_1016_j_brs_2023_11_002 crossref_primary_10_1016_j_clinph_2020_01_008 crossref_primary_10_1007_s12311_021_01362_4 crossref_primary_10_1111_dmcn_14104 crossref_primary_10_1016_j_clinph_2024_10_011 crossref_primary_10_1016_j_neuroscience_2019_05_041 crossref_primary_10_1523_JNEUROSCI_1372_23_2024 crossref_primary_10_1002_da_22878 crossref_primary_10_1016_j_brs_2019_08_004 crossref_primary_10_1097_PSY_0000000000001074 crossref_primary_10_1080_21507740_2021_1896601 crossref_primary_10_1002_trc2_12262 crossref_primary_10_1093_neuros_nyz096 crossref_primary_10_1016_j_conctc_2022_100945 crossref_primary_10_3389_fpsyt_2019_00334 crossref_primary_10_1002_hbm_24556 crossref_primary_10_1002_dneu_22949 crossref_primary_10_1016_j_cortex_2021_12_001 crossref_primary_10_3389_fnhum_2021_662016 crossref_primary_10_1038_s41596_023_00873_0 crossref_primary_10_3390_biom13081220 crossref_primary_10_1371_journal_pone_0300243 crossref_primary_10_3390_brainsci13071024 crossref_primary_10_1016_j_neuroscience_2021_02_013 crossref_primary_10_3758_s13423_024_02595_0 crossref_primary_10_3389_fnhum_2024_1500502 crossref_primary_10_1016_j_jsmc_2022_06_013 crossref_primary_10_1038_s41398_019_0439_0 crossref_primary_10_1186_s13063_023_07234_y crossref_primary_10_1371_journal_pcbi_1011164 crossref_primary_10_1016_j_brainres_2021_147365 crossref_primary_10_1038_s41598_021_00933_z crossref_primary_10_1016_j_brs_2019_08_014 crossref_primary_10_1016_j_msard_2022_103813 crossref_primary_10_4103_1673_5374_335796 crossref_primary_10_1016_j_brs_2018_06_004 crossref_primary_10_3390_jcm13113084 crossref_primary_10_1016_j_arr_2021_101555 crossref_primary_10_3389_fnagi_2017_00401 crossref_primary_10_1016_j_brs_2018_06_008 crossref_primary_10_1016_j_pnpbp_2023_110802 crossref_primary_10_1017_S1355617719000766 crossref_primary_10_3389_fneur_2022_962684 crossref_primary_10_1001_jamaneurol_2019_3523 crossref_primary_10_1038_s41467_023_38910_x crossref_primary_10_1007_s00455_022_10528_z crossref_primary_10_3389_fnhum_2018_00482 crossref_primary_10_3389_fnhum_2021_661396 crossref_primary_10_1016_j_brs_2018_07_049 crossref_primary_10_1097_j_pain_0000000000002493 crossref_primary_10_1097_WCO_0000000000000997 crossref_primary_10_3390_brainsci11081078 crossref_primary_10_3233_RNN_211198 crossref_primary_10_1016_j_clinph_2020_08_017 crossref_primary_10_1007_s13311_019_00780_x crossref_primary_10_1016_j_brs_2019_02_005 crossref_primary_10_1016_j_clinph_2023_06_009 crossref_primary_10_1016_j_schres_2020_03_060 crossref_primary_10_1007_s00406_020_01121_2 crossref_primary_10_1007_s12311_023_01652_z crossref_primary_10_3389_fpsyg_2024_1479887 crossref_primary_10_1016_j_ijchp_2023_100369 crossref_primary_10_1016_j_rehab_2024_101826 crossref_primary_10_1007_s00406_023_01620_y crossref_primary_10_1038_s41598_021_84298_3 crossref_primary_10_3389_fnhum_2025_1501209 crossref_primary_10_1016_j_clinph_2024_12_004 crossref_primary_10_3389_fneur_2024_1338430 crossref_primary_10_3390_ijerph19127042 crossref_primary_10_1016_j_neurobiolaging_2019_07_009 crossref_primary_10_1186_s12938_020_00792_1 crossref_primary_10_1016_j_brs_2020_02_011 crossref_primary_10_1038_s41598_019_51792_8 crossref_primary_10_3389_fnins_2021_649459 crossref_primary_10_1155_2022_6197505 crossref_primary_10_1016_j_brs_2020_02_015 crossref_primary_10_3389_fnhum_2022_1049572 crossref_primary_10_1007_s00221_023_06624_7 crossref_primary_10_1093_braincomms_fcae468 crossref_primary_10_3389_fnhum_2024_1341707 crossref_primary_10_1016_j_bbr_2023_114581 crossref_primary_10_1016_j_clinph_2023_06_013 crossref_primary_10_3389_fpsyt_2022_837774 crossref_primary_10_1016_j_neuroscience_2021_05_001 crossref_primary_10_1016_j_cortex_2023_09_019 crossref_primary_10_3389_fnins_2020_00729 crossref_primary_10_3390_brainsci13111604 crossref_primary_10_1007_s00702_024_02853_4 crossref_primary_10_1016_j_jpsychires_2021_03_019 crossref_primary_10_1111_epi_17514 crossref_primary_10_3390_brainsci12020180 crossref_primary_10_1186_s40035_024_00423_y crossref_primary_10_1117_1_NPh_5_1_015001 crossref_primary_10_1016_j_neulet_2023_137301 crossref_primary_10_1002_mrm_29780 crossref_primary_10_1016_j_brs_2020_10_002 crossref_primary_10_3389_frspt_2024_1422868 crossref_primary_10_2139_ssrn_4047883 crossref_primary_10_1088_1361_6560_ad5bb9 crossref_primary_10_1371_journal_pcbi_1009386 crossref_primary_10_1038_s41598_025_93631_z crossref_primary_10_1097_MRR_0000000000000427 crossref_primary_10_3389_fnhum_2023_1168673 crossref_primary_10_3389_fnins_2023_1180454 crossref_primary_10_1007_s00115_023_01572_7 crossref_primary_10_3389_fnhum_2019_00371 crossref_primary_10_1186_s13195_020_00692_5 crossref_primary_10_1007_s12311_023_01650_1 crossref_primary_10_3233_JAD_230069 crossref_primary_10_29328_journal_jnpr_1001041 crossref_primary_10_1038_s41539_022_00152_9 crossref_primary_10_1002_pchj_544 crossref_primary_10_1007_s12152_022_09507_w crossref_primary_10_1016_j_neurol_2018_09_014 crossref_primary_10_1088_1741_2552_ac55ae crossref_primary_10_25692_ACEN_2020_2_1 crossref_primary_10_1063_5_0085850 crossref_primary_10_3389_fpsyt_2024_1427365 crossref_primary_10_1038_s41598_020_68992_2 crossref_primary_10_1016_j_ijchp_2023_100384 crossref_primary_10_1111_cns_13971 crossref_primary_10_3389_fpain_2024_1353987 crossref_primary_10_3389_fimmu_2022_935614 crossref_primary_10_1038_s41467_024_51633_x crossref_primary_10_1097_PEP_0000000000000886 crossref_primary_10_1016_j_neubiorev_2021_10_040 crossref_primary_10_1016_j_clinph_2023_11_003 crossref_primary_10_1016_j_pnpbp_2019_109836 crossref_primary_10_1093_scan_nsae062 crossref_primary_10_1155_2021_6627507 crossref_primary_10_3389_fpsyt_2024_1441533 crossref_primary_10_54108_10074 crossref_primary_10_3390_brainsci12060738 crossref_primary_10_1016_j_enganabound_2021_10_026 crossref_primary_10_1016_j_clinph_2019_08_016 crossref_primary_10_1016_j_neucli_2019_01_002 crossref_primary_10_3390_clockssleep6020015 crossref_primary_10_58563_dkyad_2024_72_5 crossref_primary_10_1016_j_heliyon_2023_e14946 crossref_primary_10_1016_j_neuroimage_2021_118781 crossref_primary_10_1016_j_neuroscience_2025_01_013 crossref_primary_10_1097_YCO_0000000000000954 crossref_primary_10_3390_app14156698 crossref_primary_10_3390_life13051125 crossref_primary_10_1007_s12311_023_01578_6 crossref_primary_10_3390_app12115609 crossref_primary_10_1016_j_jad_2024_05_166 crossref_primary_10_1109_ACCESS_2022_3206047 crossref_primary_10_3389_fnagi_2023_1087749 crossref_primary_10_1016_j_neuroscience_2019_01_035 crossref_primary_10_1126_sciadv_aau9309 crossref_primary_10_1007_s10286_024_01055_y crossref_primary_10_1080_02687038_2021_1959015 crossref_primary_10_1016_j_clinph_2024_05_007 crossref_primary_10_1016_j_jad_2019_06_020 crossref_primary_10_1016_j_burns_2020_06_005 crossref_primary_10_1016_j_nbd_2020_104865 crossref_primary_10_3389_fenrg_2022_860427 crossref_primary_10_1016_j_jpsychires_2023_12_037 crossref_primary_10_1016_j_afres_2024_100584 crossref_primary_10_3390_bioengineering11050467 crossref_primary_10_1016_j_brs_2025_01_025 crossref_primary_10_1186_s12888_025_06506_y crossref_primary_10_3389_fnhum_2021_699473 crossref_primary_10_1177_00986283211060324 crossref_primary_10_1016_j_clinph_2021_02_391 crossref_primary_10_3390_brainsci12010058 crossref_primary_10_1016_j_bbr_2023_114383 crossref_primary_10_1007_s10072_025_08077_y crossref_primary_10_1093_cercor_bhac540 crossref_primary_10_7554_eLife_56359 crossref_primary_10_1016_j_brs_2023_08_019 crossref_primary_10_3390_brainsci14010087 crossref_primary_10_4103_BNM_BNM_5_25 crossref_primary_10_1016_j_cca_2019_05_008 crossref_primary_10_1016_j_jad_2019_12_009 crossref_primary_10_3389_fnbeh_2023_1239463 crossref_primary_10_1016_j_brs_2018_12_977 crossref_primary_10_47456_rbps_v26i1_46477 crossref_primary_10_3390_brainsci10070467 crossref_primary_10_3389_fnhum_2021_652393 crossref_primary_10_1186_s13195_021_00844_1 crossref_primary_10_1186_s42466_020_0052_y crossref_primary_10_1016_j_brs_2025_01_012 crossref_primary_10_3389_fnins_2024_1359446 crossref_primary_10_3389_fnagi_2019_00200 crossref_primary_10_1016_j_clinph_2022_02_023 crossref_primary_10_1080_00207144_2024_2394183 crossref_primary_10_1016_j_neucli_2025_103055 crossref_primary_10_3389_fneur_2021_732034 crossref_primary_10_3390_medicina59111957 crossref_primary_10_3389_fragi_2023_1171133 crossref_primary_10_1016_j_brainres_2022_147834 crossref_primary_10_1007_s00221_021_06243_0 crossref_primary_10_1111_ejn_14403 crossref_primary_10_1016_j_brs_2022_06_012 crossref_primary_10_1016_j_neuroimage_2019_03_044 crossref_primary_10_3389_fnbeh_2022_925122 crossref_primary_10_3389_fnins_2020_00735 crossref_primary_10_1016_j_brs_2022_12_006 crossref_primary_10_1038_s41598_021_81693_8 crossref_primary_10_1038_s41562_024_01901_z crossref_primary_10_3389_fpsyt_2022_840836 crossref_primary_10_1126_sciadv_ado4103 crossref_primary_10_1093_ijnp_pyaa051 crossref_primary_10_3389_fcell_2020_00541 crossref_primary_10_3390_brainsci10100719 crossref_primary_10_1186_s12888_024_05567_9 crossref_primary_10_3390_brainsci11081104 crossref_primary_10_1002_eom2_12045 crossref_primary_10_1016_j_cortex_2021_10_005 crossref_primary_10_1016_j_neuropsychologia_2019_05_008 crossref_primary_10_1371_journal_pone_0269851 crossref_primary_10_1016_j_brainres_2020_147227 crossref_primary_10_1016_j_neulet_2022_136691 crossref_primary_10_3389_fcell_2021_731028 crossref_primary_10_1016_j_clinph_2021_01_032 crossref_primary_10_1088_1361_6560_abb7c1 crossref_primary_10_1016_j_brainres_2025_149550 crossref_primary_10_3390_jcm13154420 crossref_primary_10_1016_j_jocn_2020_05_024 crossref_primary_10_61186_shefa_11_2_20 crossref_primary_10_1007_s00702_023_02726_2 crossref_primary_10_3389_fneur_2018_00816 crossref_primary_10_1186_s13063_021_05172_1 crossref_primary_10_3390_clockssleep7010003 crossref_primary_10_1186_s12984_024_01498_4 crossref_primary_10_47529_2223_2524_2021_3_7 crossref_primary_10_2147_NDT_S371624 crossref_primary_10_25259_ABP_10_2024 crossref_primary_10_5265_jcogpsy_20_91 crossref_primary_10_3389_fnins_2023_1148336 crossref_primary_10_1016_j_apmr_2018_10_011 crossref_primary_10_1186_s13063_022_06234_8 crossref_primary_10_1016_j_neubiorev_2023_105300 crossref_primary_10_1007_s00701_021_04938_5 crossref_primary_10_1002_14651858_CD015067_pub2 crossref_primary_10_3390_brainsci14070695 crossref_primary_10_1016_j_clinph_2021_01_020 crossref_primary_10_1080_02687038_2020_1769987 crossref_primary_10_3389_fpsyt_2022_828773 crossref_primary_10_1016_j_brs_2019_12_019 crossref_primary_10_1016_j_brs_2021_02_018 crossref_primary_10_1016_j_jad_2025_01_017 crossref_primary_10_3389_fnimg_2024_1341732 crossref_primary_10_3390_brainsci12010095 crossref_primary_10_1007_s11062_020_09875_0 crossref_primary_10_1016_j_brs_2021_09_006 crossref_primary_10_1097_CM9_0000000000003581 crossref_primary_10_3390_jcm10132981 crossref_primary_10_1016_j_clinph_2023_12_129 crossref_primary_10_1016_j_scib_2024_10_001 crossref_primary_10_3389_fnbeh_2018_00133 crossref_primary_10_1176_appi_focus_17101 crossref_primary_10_3389_fneur_2024_1286856 crossref_primary_10_1136_bmjopen_2024_090523 crossref_primary_10_1016_j_bpsc_2022_09_014 crossref_primary_10_1016_j_neubiorev_2024_105831 crossref_primary_10_1038_s41598_021_87914_4 crossref_primary_10_3389_fnhum_2023_1056432 crossref_primary_10_1007_s00702_019_02092_y crossref_primary_10_1186_s42234_020_00054_4 crossref_primary_10_1080_14737175_2020_1820324 crossref_primary_10_3389_fneur_2020_00701 crossref_primary_10_1097_WNP_0000000000000838 crossref_primary_10_1007_s00424_020_02428_8 crossref_primary_10_1002_gj_4862 crossref_primary_10_1038_s41598_020_64717_7 crossref_primary_10_1016_j_cortex_2024_05_004 crossref_primary_10_1038_s41598_024_62185_x crossref_primary_10_1186_s12904_023_01129_0 crossref_primary_10_1016_j_clinph_2024_06_004 crossref_primary_10_1016_j_cortex_2019_10_001 crossref_primary_10_1111_ejn_16603 crossref_primary_10_1093_brain_awab257 crossref_primary_10_1016_j_clinph_2017_06_242 crossref_primary_10_1126_sciadv_adp3145 crossref_primary_10_1016_j_jpain_2021_03_150 crossref_primary_10_1016_j_rehab_2019_05_009 crossref_primary_10_3389_fnins_2024_1453839 crossref_primary_10_1038_s41598_024_55125_2 crossref_primary_10_4103_indianjpsychiatry_indianjpsychiatry_496_22 crossref_primary_10_1016_j_wneu_2023_06_090 crossref_primary_10_1038_s41598_020_64378_6 crossref_primary_10_1097_PHM_0000000000001721 crossref_primary_10_1590_1516_4446_2019_0620 crossref_primary_10_1590_1516_4446_2019_0741 crossref_primary_10_3390_brainsci12091194 crossref_primary_10_1038_s41598_017_17279_0 crossref_primary_10_1111_head_13935 crossref_primary_10_3389_fcvm_2022_853427 crossref_primary_10_1177_1545968320962513 crossref_primary_10_1186_s13195_021_00922_4 crossref_primary_10_1016_j_bbr_2023_114600 crossref_primary_10_1126_sciadv_aaz2747 crossref_primary_10_3390_biomedicines10102333 crossref_primary_10_1177_15459683211019344 crossref_primary_10_1038_s41598_021_02177_3 crossref_primary_10_3389_fnhum_2024_1484593 crossref_primary_10_3389_fnbeh_2018_00132 crossref_primary_10_1007_s13311_019_00734_3 crossref_primary_10_1016_j_brs_2020_08_017 crossref_primary_10_1038_s41598_023_33057_7 crossref_primary_10_1073_pnas_2101273118 crossref_primary_10_1177_15500594221098285 crossref_primary_10_1016_j_jsmc_2019_11_002 crossref_primary_10_1038_s41598_019_39900_0 crossref_primary_10_1016_j_nbd_2023_106137 crossref_primary_10_3390_biomedicines10071681 crossref_primary_10_3389_fnmol_2022_1056966 crossref_primary_10_1016_j_ijpsycho_2019_04_002 crossref_primary_10_1007_s00221_022_06462_z crossref_primary_10_1177_20406223241297397 crossref_primary_10_3390_life14050539 crossref_primary_10_1016_j_bjpt_2024_101088 crossref_primary_10_3390_brainsci11070947 crossref_primary_10_3390_brainsci12091179 crossref_primary_10_1002_hbm_24908 crossref_primary_10_3389_fnins_2022_984893 crossref_primary_10_3389_fnagi_2019_00144 crossref_primary_10_1016_j_bbr_2019_112232 crossref_primary_10_3390_brainsci9030069 crossref_primary_10_3390_life13051172 crossref_primary_10_1186_s13063_024_08045_5 crossref_primary_10_1002_ana_25151 crossref_primary_10_1016_j_jfludis_2025_106100 crossref_primary_10_1155_2022_9419154 crossref_primary_10_3389_fpsyg_2019_00213 crossref_primary_10_3389_fnins_2020_547069 crossref_primary_10_1016_j_pnpbp_2020_110119 crossref_primary_10_1186_s13195_024_01381_3 crossref_primary_10_1002_mds_29967 crossref_primary_10_1152_jn_00590_2018 crossref_primary_10_1017_neu_2021_14 crossref_primary_10_17749_2077_8333_epi_par_con_2021_043 crossref_primary_10_1016_j_neuroscience_2019_11_016 crossref_primary_10_1097_YCT_0000000000000523 crossref_primary_10_3389_fncel_2019_00400 crossref_primary_10_1007_s10072_021_05641_0 crossref_primary_10_1186_s12888_024_05650_1 crossref_primary_10_3389_fneur_2019_01089 crossref_primary_10_1007_s00702_020_02223_w crossref_primary_10_1016_j_bbr_2023_114661 crossref_primary_10_1038_s41598_020_61626_7 crossref_primary_10_3390_brainsci13030395 crossref_primary_10_1016_j_bbr_2020_112801 crossref_primary_10_1016_j_neubiorev_2021_07_013 crossref_primary_10_1007_s00482_022_00684_4 crossref_primary_10_1111_add_15889 crossref_primary_10_3390_ijms26041754 crossref_primary_10_1016_j_cmpb_2023_107878 crossref_primary_10_1016_j_neuropsychologia_2018_07_037 crossref_primary_10_1016_j_yebeh_2022_108676 crossref_primary_10_1097_WNR_0000000000001413 crossref_primary_10_1111_ejn_15563 crossref_primary_10_1016_j_jpsychores_2024_111868 crossref_primary_10_1002_mds_29836 crossref_primary_10_1002_adma_202400346 crossref_primary_10_1097_YCT_0000000000000531 crossref_primary_10_12688_f1000research_21831_2 crossref_primary_10_1097_YCT_0000000000000534 crossref_primary_10_12688_f1000research_21831_1 crossref_primary_10_7717_peerj_19064 crossref_primary_10_1016_j_brs_2021_01_011 crossref_primary_10_1016_j_bbr_2023_114770 crossref_primary_10_1016_j_cnp_2022_05_002 crossref_primary_10_1016_j_arcmed_2024_103086 crossref_primary_10_1177_10538135241301692 crossref_primary_10_3389_fnsys_2022_827353 crossref_primary_10_1007_s12152_022_09508_9 crossref_primary_10_1089_jop_2022_0046 crossref_primary_10_1016_j_cortex_2019_08_009 crossref_primary_10_1016_j_psc_2023_02_005 crossref_primary_10_3389_fnhum_2020_595567 crossref_primary_10_3389_fnhum_2022_918470 crossref_primary_10_3390_brainsci14020133 crossref_primary_10_1016_j_neucli_2019_11_002 crossref_primary_10_1016_j_brs_2023_05_016 crossref_primary_10_1016_j_neuroscience_2019_04_032 crossref_primary_10_1016_j_pnpbp_2018_11_004 crossref_primary_10_3389_fneur_2022_913517 crossref_primary_10_12998_wjcc_v9_i31_9350 crossref_primary_10_1016_j_npep_2025_102501 crossref_primary_10_1097_YCT_0000000000000540 crossref_primary_10_1186_s12984_019_0581_1 crossref_primary_10_1002_bem_22542 crossref_primary_10_3928_00485713_20221025_01 crossref_primary_10_1038_s41596_021_00664_5 crossref_primary_10_1093_braincomms_fcab010 crossref_primary_10_1016_j_brs_2024_07_013 crossref_primary_10_1016_j_clinph_2019_04_004 crossref_primary_10_1055_a_2071_7668 crossref_primary_10_1007_s00221_023_06620_x crossref_primary_10_1093_cercor_bhad127 crossref_primary_10_1016_j_neuroimage_2019_116451 crossref_primary_10_1038_s41562_020_00979_5 crossref_primary_10_1093_braincomms_fcaa045 crossref_primary_10_1287_mnsc_2022_4596 crossref_primary_10_1016_j_burns_2018_11_020 crossref_primary_10_2174_1567205020666230601095957 crossref_primary_10_1016_j_brs_2023_05_008 crossref_primary_10_52675_jhesp_1279591 crossref_primary_10_3233_RNN_231314 crossref_primary_10_1111_ejn_15584 crossref_primary_10_1016_j_neurol_2021_12_014 crossref_primary_10_1007_s11055_022_01258_8 crossref_primary_10_1016_j_pnpbp_2020_110149 crossref_primary_10_3389_fnins_2018_00421 crossref_primary_10_3389_fnins_2021_651253 crossref_primary_10_1093_brain_awab157 crossref_primary_10_1016_j_neuroimage_2021_118100 crossref_primary_10_1080_10749357_2023_2165260 crossref_primary_10_1007_s11724_017_0532_1 crossref_primary_10_3389_fpsyt_2023_1206805 crossref_primary_10_1016_j_clinph_2022_08_018 crossref_primary_10_3390_jcm14062083 crossref_primary_10_5812_ijpbs_124236 crossref_primary_10_1038_s41539_024_00222_0 crossref_primary_10_1016_j_neurom_2023_04_477 crossref_primary_10_1038_s41598_020_76533_0 crossref_primary_10_1038_s41598_024_79118_3 crossref_primary_10_1007_s00787_024_02635_z crossref_primary_10_1007_s10608_019_10044_9 crossref_primary_10_1016_j_mri_2019_03_010 crossref_primary_10_3390_jcm12103407 crossref_primary_10_1007_s11357_024_01272_3 crossref_primary_10_1177_15459683231209136 crossref_primary_10_1161_STROKEAHA_120_029221 crossref_primary_10_3389_fnins_2018_00176 crossref_primary_10_3389_fpsyt_2021_567718 crossref_primary_10_12688_wellcomeopenres_16679_1 crossref_primary_10_3389_fnins_2021_779271 crossref_primary_10_12688_wellcomeopenres_16679_2 crossref_primary_10_1109_ACCESS_2022_3231729 crossref_primary_10_1016_j_neuroimage_2022_119351 crossref_primary_10_1016_j_neurot_2024_e00460 crossref_primary_10_1371_journal_pbio_3000833 crossref_primary_10_1016_S0140_6736_23_00640_2 crossref_primary_10_1093_schbul_sbac078 crossref_primary_10_1109_ACCESS_2021_3100851 crossref_primary_10_1111_ene_14451 crossref_primary_10_1016_j_jad_2019_02_039 crossref_primary_10_1016_j_neulet_2020_134775 crossref_primary_10_3390_brainsci14050457 crossref_primary_10_4306_jknpa_2018_57_2_119 crossref_primary_10_1038_s41598_022_13091_7 crossref_primary_10_1007_s00221_025_07009_8 crossref_primary_10_1007_s11357_024_01077_4 crossref_primary_10_1093_scan_nsaa125 crossref_primary_10_1186_s13063_022_06128_9 crossref_primary_10_5498_wjp_v11_i8_477 crossref_primary_10_1016_j_neuroscience_2024_07_022 crossref_primary_10_3389_fnins_2018_00284 crossref_primary_10_1097_MD_0000000000019671 crossref_primary_10_1002_bem_22417 crossref_primary_10_4103_ipj_ipj_56_24 crossref_primary_10_1002_bem_22536 crossref_primary_10_1093_texcom_tgaa069 crossref_primary_10_3390_brainsci13071037 crossref_primary_10_1111_nmo_14173 crossref_primary_10_1080_02687038_2024_2341462 crossref_primary_10_3389_fpsyg_2024_1405636 crossref_primary_10_1080_14737175_2021_1974841 crossref_primary_10_3389_fnins_2021_576526 crossref_primary_10_1017_cjn_2021_158 crossref_primary_10_1111_ejn_15018 crossref_primary_10_3389_fneur_2022_953939 crossref_primary_10_1111_ejn_15017 crossref_primary_10_3389_fpsyt_2021_680525 crossref_primary_10_3390_brainsci13040698 crossref_primary_10_1007_s41465_019_00136_5 crossref_primary_10_1162_jocn_a_02074 crossref_primary_10_1007_s10548_020_00752_x crossref_primary_10_3390_ctn5020013 crossref_primary_10_1016_j_clinph_2021_10_016 crossref_primary_10_1088_1741_2552_abf00b crossref_primary_10_1016_j_neulet_2023_137190 crossref_primary_10_3389_fnagi_2021_725013 crossref_primary_10_1136_bcr_2021_243212 crossref_primary_10_1007_s12152_021_09468_6 crossref_primary_10_1080_08164622_2024_2349565 crossref_primary_10_1007_s00429_021_02245_4 crossref_primary_10_1016_S2215_0366_18_30468_1 crossref_primary_10_9758_cpn_22_1042 crossref_primary_10_1080_2326263X_2024_2372863 crossref_primary_10_1176_appi_ajp_20230838 crossref_primary_10_3233_JAD_179932 crossref_primary_10_3389_fpsyt_2022_782144 crossref_primary_10_1016_j_nlm_2019_107037 crossref_primary_10_3389_fpsyg_2022_1005479 crossref_primary_10_1111_ejn_15148 crossref_primary_10_3389_fneur_2023_1269472 crossref_primary_10_3389_fphy_2020_00105 crossref_primary_10_1038_s41598_018_25562_x crossref_primary_10_1038_s41593_023_01457_7 crossref_primary_10_1371_journal_pone_0217729 crossref_primary_10_1038_s41467_019_13417_6 crossref_primary_10_1136_bmjopen_2021_055038 crossref_primary_10_1097_YCT_0000000000000512 crossref_primary_10_3389_fnhum_2020_00366 crossref_primary_10_3390_brainsci12040472 crossref_primary_10_1016_j_dcn_2023_101312 crossref_primary_10_1371_journal_pone_0318593 crossref_primary_10_1007_s12311_024_01741_7 crossref_primary_10_1007_s40473_021_00227_8 crossref_primary_10_1002_trc2_12219 crossref_primary_10_1016_j_dcn_2023_101317 crossref_primary_10_1038_s41598_023_32779_y crossref_primary_10_3344_kjp_2021_34_2_156 crossref_primary_10_3389_fncel_2022_945777 crossref_primary_10_3389_fneur_2020_605335 crossref_primary_10_1016_j_brs_2019_07_027 crossref_primary_10_3389_fnhum_2021_674851 crossref_primary_10_1093_cercor_bhae395 crossref_primary_10_1186_s42234_022_00089_9 crossref_primary_10_1007_s00221_023_06728_0 crossref_primary_10_1136_gpsych_2023_101261 crossref_primary_10_1007_s15202_019_2170_3 crossref_primary_10_1007_s12311_023_01590_w crossref_primary_10_3389_fnhum_2020_00349 crossref_primary_10_3389_fnins_2022_1013691 crossref_primary_10_1016_j_clinph_2022_07_494 crossref_primary_10_1016_j_pnpbp_2018_06_003 crossref_primary_10_3389_fneur_2022_897124 crossref_primary_10_1038_s41598_020_75460_4 crossref_primary_10_3389_fnhum_2022_952602 crossref_primary_10_1002_mrm_28944 crossref_primary_10_3390_nano11081962 crossref_primary_10_1016_j_neuropsychologia_2020_107672 crossref_primary_10_1038_s41598_024_53507_0 crossref_primary_10_3390_brainsci11020207 crossref_primary_10_1038_s41598_024_57917_y crossref_primary_10_61186_psj_21_2_113 crossref_primary_10_1186_s12984_024_01481_z crossref_primary_10_1177_0276237418818637 crossref_primary_10_1016_j_cortex_2022_01_021 crossref_primary_10_1111_jsr_13927 crossref_primary_10_1016_j_msard_2023_105114 crossref_primary_10_1007_s00702_020_02166_2 crossref_primary_10_1111_ejn_15049 crossref_primary_10_1007_s12311_023_01649_8 crossref_primary_10_1155_2020_8896423 crossref_primary_10_3389_fpsyg_2019_02923 crossref_primary_10_3758_s13415_021_00885_x crossref_primary_10_1007_s41465_018_0088_x crossref_primary_10_1186_s12888_023_05112_0 crossref_primary_10_1007_s12311_021_01255_6 crossref_primary_10_1007_s41465_017_0062_z crossref_primary_10_1038_s41539_024_00278_y crossref_primary_10_1080_21641846_2024_2365107 crossref_primary_10_1590_1516_4446_2017_0018 crossref_primary_10_3390_brainsci8080155 crossref_primary_10_1016_j_brs_2019_11_004 crossref_primary_10_1016_j_brs_2019_05_015 crossref_primary_10_1038_s41598_020_80069_8 crossref_primary_10_1016_j_brs_2019_11_007 crossref_primary_10_1017_S0033291721001859 crossref_primary_10_3389_fneur_2023_1098831 crossref_primary_10_3389_fncel_2022_818703 crossref_primary_10_3389_fnins_2022_936975 crossref_primary_10_1111_cns_14109 crossref_primary_10_1001_jamaneurol_2018_1751 crossref_primary_10_1162_imag_a_00429 crossref_primary_10_1186_s13104_020_05421_7 crossref_primary_10_1016_j_neures_2019_12_005 crossref_primary_10_1016_j_cobeha_2019_02_003 crossref_primary_10_1016_j_neuroimage_2022_119109 crossref_primary_10_1016_j_psychres_2020_112744 crossref_primary_10_1016_j_neubiorev_2019_06_007 crossref_primary_10_3390_brainsci14090928 crossref_primary_10_3389_fnins_2022_903977 crossref_primary_10_1016_j_clinph_2021_06_031 crossref_primary_10_1186_s12984_019_0591_z crossref_primary_10_1007_s41465_024_00304_2 crossref_primary_10_1186_s13063_023_07680_8 crossref_primary_10_3390_s18041136 crossref_primary_10_1136_bmjopen_2023_075373 crossref_primary_10_1007_s13311_023_01437_6 crossref_primary_10_3390_brainsci13030451 crossref_primary_10_1111_bdi_13283 crossref_primary_10_1146_annurev_med_060619_022857 crossref_primary_10_1212_WNL_0000000000006210 crossref_primary_10_5664_jcsm_10272 crossref_primary_10_1016_j_neucli_2019_07_013 crossref_primary_10_3389_fnins_2024_1389651 crossref_primary_10_1016_j_cortex_2023_03_011 crossref_primary_10_1016_j_jtos_2018_11_002 crossref_primary_10_1167_tvst_13_9_25 crossref_primary_10_1038_s41598_024_51690_8 crossref_primary_10_1155_np_7853199 crossref_primary_10_1016_j_physbeh_2023_114073 crossref_primary_10_1016_j_brs_2022_01_004 crossref_primary_10_1016_j_clinph_2021_05_015 crossref_primary_10_1038_s41598_024_52763_4 crossref_primary_10_3389_fnhum_2021_639640 crossref_primary_10_1155_2019_2184398 crossref_primary_10_1177_03000605241238066 crossref_primary_10_1016_j_brs_2023_01_1672 crossref_primary_10_1016_j_jad_2018_02_077 crossref_primary_10_1016_j_brs_2019_06_029 crossref_primary_10_3389_fnagi_2022_1009262 crossref_primary_10_3390_bs14121176 crossref_primary_10_1016_j_neulet_2018_11_015 crossref_primary_10_1016_j_neuron_2022_05_005 crossref_primary_10_1016_j_neurom_2022_10_049 crossref_primary_10_3389_fnhum_2021_661432 |
Cites_doi | 10.1016/j.expneurol.2016.02.018 10.1523/JNEUROSCI.5743-12.2013 10.1016/j.neurobiolaging.2014.03.030 10.1016/j.neuron.2010.06.005 10.1016/j.neubiorev.2016.05.001 10.1017/S1461145710001197 10.3389/fnagi.2015.00107 10.1113/jphysiol.2007.137711 10.1111/j.1601-5215.2010.00480.x 10.1088/1741-2560/12/4/046030 10.1111/ejn.12899 10.1177/0883073813503710 10.1017/S1461145708009553 10.3389/fnagi.2014.00115 10.3389/fnhum.2015.00265 10.7554/eLife.18834 10.1038/ncomms11100 10.1093/ijnp/pyu047 10.1016/j.neuroimage.2013.07.038 10.1016/j.neuroimage.2010.11.085 10.1371/journal.pone.0121904 10.1152/physrev.00020.2004 10.1016/j.cortex.2012.11.002 10.1016/j.neuroimage.2013.02.049 10.1016/j.brs.2015.06.017 10.1016/j.brs.2014.06.008 10.1109/TBME.2011.2116019 10.1016/j.clinph.2010.05.020 10.1016/j.brs.2014.06.005 10.1016/j.clinph.2015.02.001 10.1016/j.jns.2015.05.009 10.1016/j.bandc.2009.01.008 10.1016/j.brs.2016.06.004 10.1017/S1461145710001690 10.1016/j.brs.2009.04.002 10.1016/j.neulet.2012.05.074 10.1016/S1474-4422(15)70016-5 10.1016/j.clinph.2014.09.026 10.1111/j.1601-5215.2010.00495.x 10.1016/j.brs.2014.06.006 10.1016/j.brs.2011.09.001 10.1016/S1388-2457(03)00235-9 10.1016/j.cmpb.2012.09.001 10.1016/j.neuroimage.2012.10.026 10.1186/1744-9081-4-33 10.1016/j.neuroimage.2010.03.052 10.1016/j.neuroimage.2015.11.034 10.1155/2015/928631 10.1016/j.brs.2011.08.005 10.1053/j.tvir.2013.08.010 10.1136/bmj.282.6268.974 10.3233/NRE-131019 10.2522/ptj.20130565 10.1007/s00108-012-3087-5 10.1016/j.ridd.2014.07.030 10.1002/nbm.3244 10.1016/j.neuropsychologia.2015.01.037 10.1152/jn.00210.2011 10.1177/0883073816630083 10.1523/JNEUROSCI.5348-06.2007 10.1097/j.pain.0000000000000386 10.1155/2014/173073 10.1016/j.neuron.2010.03.035 10.1016/j.brs.2014.10.012 10.1016/j.brs.2008.04.003 10.1177/1073858414526645 10.3389/fnagi.2014.00131 10.1093/cercor/bhp269 10.1097/PHM.0b013e3181a0e4cb 10.1016/j.brs.2015.01.001 10.1111/j.1365-2125.1994.tb05705.x 10.1007/s00702-016-1572-z 10.1016/j.jneumeth.2016.12.008 10.1007/s00702-013-1104-z 10.1177/0883073815575369 10.1016/j.jpain.2011.07.001 10.1016/j.clinph.2015.01.006 10.3389/fnagi.2011.00016 10.1109/TNSRE.2012.2200046 10.1088/1741-2560/11/1/016002 10.1016/j.neuroimage.2013.06.079 10.1088/1741-2560/11/3/036002 10.1016/j.biopsych.2004.07.017 10.1177/0333102411399349 10.1176/appi.ajp.2017.16090996 10.1016/j.neurobiolaging.2011.05.007 10.1098/rsta.2015.0187 10.1016/j.clinph.2010.04.020 10.1523/JNEUROSCI.0106-14.2014 10.1016/j.nicl.2013.05.011 10.1212/WNL.56.6.716 10.1038/nn.3719 10.1097/WNR.0000000000000536 10.1111/head.12249 10.1016/j.clinph.2004.05.001 10.3389/fnagi.2014.00253 10.1016/j.neuroimage.2015.01.033 10.1016/j.neulet.2014.03.011 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1 10.1016/S1388-2457(01)00731-3 10.1176/jnp.23.3.jnpe4 10.1002/1531-8257(199901)14:1<157::AID-MDS1027>3.0.CO;2-U 10.1111/j.1460-9568.2010.07080.x 10.1016/j.brs.2017.01.132 10.1159/000375323 10.3389/fnagi.2013.00087 10.1097/PHM.0b013e3181f70aa7 10.1016/j.apmr.2014.10.013 10.1016/j.clinph.2015.03.015 10.1016/j.brs.2016.03.007 10.1007/s004210050431 10.1155/2016/4274127 10.1111/j.1526-4610.2012.02141.x 10.1589/jpts.27.763 10.1523/JNEUROSCI.23-19-07255.2003 10.1016/j.neuroimage.2015.06.026 10.3389/fnhum.2014.00739 10.4088/JCP.15lr10420 10.1016/j.yebeh.2012.06.027 10.1097/YCT.0b013e3181a2f87e 10.1016/j.brs.2013.08.004 10.1007/s00417-014-2889-7 10.1016/j.brainres.2016.08.034 10.1002/phy2.255 10.1016/j.brs.2016.03.018 10.1589/jpts.26.945 10.1093/ijnp/pyu090 10.1371/journal.pone.0013766 10.3389/fnhum.2016.00068 10.1093/jlb/lsv017 10.1016/j.brainresbull.2015.09.011 10.1007/s11517-015-1301-z 10.1109/TNSRE.2014.2308997 10.1111/joor.12300 10.1161/STROKEAHA.113.001687 10.3389/fnagi.2014.00275 10.1152/jn.00490.2014 10.3389/fncel.2016.00072 10.1161/STROKEAHA.110.583088 10.3389/fnins.2016.00262 10.1017/S0266462303000217 10.1016/j.clinph.2009.01.022 10.1016/j.jneumeth.2010.05.007 10.1016/j.brs.2014.08.005 10.1016/j.clinph.2005.12.003 10.1016/j.parkreldis.2011.05.007 10.1017/S1461145713000084 10.1523/JNEUROSCI.5316-03.2004 10.1152/jn.00319.2011 10.1088/1741-2560/8/6/066017 10.1016/j.brs.2015.08.003 10.1016/j.clinph.2008.07.249 10.1016/j.neuropsychologia.2015.04.014 10.1016/j.neuroimage.2015.10.003 10.1016/j.brs.2016.11.005 10.1080/17512433.2016.1200971 10.1155/2016/2715196 10.1016/j.jneumeth.2004.10.020 10.1016/j.cub.2013.12.041 10.1016/j.brs.2012.03.008 10.1016/j.cub.2013.02.026 10.1152/jn.2000.83.3.1394 10.1016/j.clinph.2015.11.012 10.1016/j.expneurol.2015.08.018 10.1016/j.brs.2011.01.001 10.1038/501167b 10.1111/j.0953-816X.2004.03450.x 10.1016/j.brs.2015.06.008 10.1109/10.102812 10.1177/1550059414540647 10.1111/nyas.12855 10.1016/j.brs.2009.03.005 10.1038/pcan.2015.47 10.1111/j.1460-9568.2011.07939.x 10.1167/iovs.04-1339 10.1016/j.brs.2009.03.007 10.1016/j.brainres.2012.10.009 10.1016/j.neuropsychologia.2013.03.013 10.5114/ninp.2013.38221 10.1016/j.clinph.2014.02.027 10.1371/journal.pone.0156134 10.1186/1743-0003-11-124 10.1007/s00702-016-1646-y 10.3233/NRE-2010-0617 10.3389/fnagi.2014.00146 10.1523/JNEUROSCI.3887-12.2013 10.3389/fnsys.2014.00127 10.1016/j.brs.2015.05.002 10.1016/j.brainres.2014.05.030 10.1016/j.brs.2014.10.013 10.1016/j.brs.2016.05.004 10.1016/j.brs.2011.07.007 10.3389/fnhum.2016.00361 10.1111/j.1460-9568.2005.04233.x 10.1097/YCT.0b013e318295e30f 10.1109/TBME.2015.2448555 10.1016/j.clinph.2009.08.016 10.1177/0883073813492385 10.1152/japplphysiol.01390.2010 10.3389/fnagi.2015.00230 10.1016/j.brs.2014.01.059 10.1162/jocn_a_00897 10.3791/51730 10.1089/cap.2015.0172 10.1016/j.cct.2015.06.005 10.1016/j.bandl.2011.05.002 10.1001/2013.jamapsychiatry.32 10.1016/j.jns.2016.07.065 10.1016/j.clinph.2007.01.010 10.1109/TBME.2016.2553177 10.1111/ner.12230 10.1371/journal.pone.0076112 10.1016/0005-7916(72)90029-8 10.1186/1745-6215-15-366 10.1017/S1461145709990411 10.3389/fncel.2015.00307 10.1016/j.jneumeth.2015.07.012 10.1146/annurev.bioeng.10.061807.160518 10.1093/brain/awh527 10.1038/nn.2727 10.1016/j.brs.2010.11.001 10.1016/j.apmr.2014.11.004 10.1007/BF02359800 10.1016/j.cub.2011.07.021 10.1016/j.parkreldis.2009.09.006 10.1371/journal.pone.0142740 10.1111/ner.12527 10.3389/fncel.2016.00188 10.1016/j.brs.2014.10.015 10.1016/j.clinph.2014.10.142 10.3389/fnagi.2013.00049 10.1177/0883073812460092 10.3389/fneur.2016.00066 10.1016/j.bbr.2015.07.037 10.3109/02699206.2011.570852 10.1002/hbm.23016 10.1523/JNEUROSCI.5407-13.2014 10.1007/s00221-015-4391-9 10.3791/50426 10.3389/fnhum.2017.00113 10.1016/j.scr.2013.01.004 10.1213/ANE.0b013e3181e3697e 10.1016/j.brs.2015.08.009 10.1177/1545968312474116 10.1007/s00221-015-4310-0 10.1016/j.neures.2011.07.1668 10.1016/j.neuroimage.2016.03.065 10.1097/WNR.0000000000000080 10.3389/fnsys.2015.00054 10.1212/01.WNL.0000152986.07469.E9 10.1016/j.clinph.2012.11.021 10.3389/fnsys.2013.00094 10.1093/brain/awp154 10.1523/JNEUROSCI.4432-08.2009 10.1371/journal.pone.0043776 10.1016/j.brs.2013.01.009 10.1007/s00417-012-2084-7 10.1097/HTR.0b013e318292a4c2 10.1016/j.brs.2014.07.036 10.1038/srep31236 10.1523/JNEUROSCI.4519-15.2016 10.1371/journal.pone.0149703 10.1016/j.clinph.2010.04.033 10.1016/j.pain.0000000000000006 10.1016/j.nbd.2009.05.027 10.1186/1471-2202-11-38 10.3109/09638288.2015.1055379 10.1007/s12015-014-9524-1 10.3389/fnagi.2014.00289 10.1016/j.neuron.2004.12.033 10.1007/s00103-010-1105-0 10.1111/ner.12298 10.1016/j.neucli.2016.10.002 10.1016/j.eplepsyres.2011.07.016 10.1016/j.neurobiolaging.2008.12.008 10.1016/j.neuroimage.2013.12.002 10.1111/ner.12574 10.1007/s10384-009-0657-8 10.5535/arm.2011.35.4.579 10.1152/jn.01312.2006 10.1016/j.brs.2011.06.001 10.1523/JNEUROSCI.0055-13.2013 10.1097/YCT.0000000000000074 10.3389/fneng.2014.00028 10.1038/srep21583 10.1097/YCT.0b013e318279c1a1 10.1016/j.brainresbull.2007.01.004 10.1002/mds.20951 10.1016/S0166-2236(99)01401-0 10.1016/j.neuroimage.2012.12.034 10.1243/09544110360729090 10.1016/j.neuroimage.2013.01.042 10.1007/s00406-014-0540-6 10.1016/j.biopsych.2015.11.008 10.1016/j.brs.2013.11.008 10.1137/15M1026481 10.1016/j.brs.2017.02.007 10.1016/j.brs.2016.03.001 10.1016/j.clinph.2009.03.023 10.1016/j.eurpsy.2012.09.001 10.1016/j.pain.2013.06.045 10.1097/YCT.0b013e3182012b89 10.1113/jphysiol.2013.270280 10.1177/0269215514566997 10.1097/YCT.0b013e3181e631a8 10.1523/JNEUROSCI.5308-13.2014 10.1016/j.jneumeth.2013.07.016 10.1371/journal.pone.0143533 10.1002/ana.23761 10.5392/JKCA.2012.12.07.261 10.1016/j.brs.2015.01.401 10.1016/j.clinph.2016.08.016 10.1016/j.brs.2011.02.007 10.1016/j.nbd.2009.11.004 10.1016/j.jpainsymman.2009.09.023 10.1016/j.neuroimage.2010.04.252 10.1016/j.neuron.2007.07.027 10.1088/1741-2560/8/4/046011 10.1177/1073858416631966 10.1016/j.clinph.2017.01.021 10.1212/WNL.0000000000001806 10.1113/jphysiol.1955.sp005248 10.1016/j.brs.2014.06.004 10.1177/0883073815615672 10.1016/j.brs.2007.10.001 10.1523/JNEUROSCI.4927-12.2013 10.1016/j.neuron.2016.02.031 10.1038/srep10289 10.1016/j.brs.2011.07.003 10.1016/j.neulet.2013.08.064 10.1167/iovs.07-0706 10.1113/JP270484 10.3233/NRE-151251 10.1523/JNEUROSCI.4248-08.2008 10.1016/j.brs.2008.06.004 10.1016/j.neuroimage.2017.03.001 10.1016/j.clinph.2005.10.014 10.3389/fnsys.2014.00132 10.1006/dbio.1995.1285 10.1016/j.brs.2011.08.008 10.1186/s13287-015-0042-0 10.1002/pri.1543 10.1093/cercor/bhn032 10.1192/bjp.bp.111.097634 10.1016/j.jbmt.2015.03.007 10.1155/2016/5068127 10.1016/j.neuroimage.2015.11.044 10.1016/j.clinph.2012.02.082 10.3389/fnsys.2015.00026 10.3389/fnhum.2017.00077 10.1016/j.neuroimage.2015.06.067 10.1016/j.brs.2010.05.002 10.1002/ana.24689 10.1016/j.brs.2011.10.001 10.1136/medethics-2015-102704 10.1016/j.neurobiolaging.2015.12.010 10.1088/0031-9155/61/12/4506 10.1097/YCT.0b013e3181a744bf 10.1523/JNEUROSCI.2499-15.2016 10.1167/iovs.06-1329 |
ContentType | Journal Article |
Copyright | 2017 International Federation of Clinical Neurophysiology International Federation of Clinical Neurophysiology Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved. |
Copyright_xml | – notice: 2017 International Federation of Clinical Neurophysiology – notice: International Federation of Clinical Neurophysiology – notice: Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.clinph.2017.06.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8952 |
EndPage | 1809 |
ExternalDocumentID | PMC5985830 28709880 10_1016_j_clinph_2017_06_001 S1388245717302122 1_s2_0_S1388245717302122 |
Genre | Research Support, N.I.H., Intramural Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH111896 |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG VQA AADPK AAIAV ABLVK ABYKQ AFMIJ AHPSJ AJBFU EFLBG LCYCR ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c663t-6997a7600fd047f63e2a7bcaa2329b12b427362a9da927e8d3014b084de146733 |
IEDL.DBID | .~1 |
ISSN | 1388-2457 1872-8952 |
IngestDate | Thu Aug 21 18:26:41 EDT 2025 Fri Jul 11 06:55:51 EDT 2025 Wed Feb 19 02:43:02 EST 2025 Tue Jul 01 02:54:40 EDT 2025 Thu Apr 24 22:54:18 EDT 2025 Fri Feb 23 02:12:23 EST 2024 Sun Feb 23 10:20:02 EST 2025 Tue Aug 26 16:35:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | FDA PPC RCT tsDCS TES M1 tACS CNS HD-tDCS IFG MDD PFC CFR MRS TPJ DBS Adverse events ONS MMSE tRNS Vmem NMDA Safety EC EF NSE AC AD AE DLPFC EEG MEG ICH MAE AR fMRI PD DIY tDCS SAE ECT MEP TMS rTMS DC Repetitive Transcranial magnetic stimulation Randomized clinical trial Central nervous system Code of Federal Regulations Neuron specific enolase Inferior frontal gyrus transcranial direct current stimulation Transcranial electrical stimulation Temporoparietal junction Magnetic resonance spectroscopy N-Methyl-D-Aspartate safety Deep Brain Stimulation Functional magnetic resonance imaging Food and Drug Administration High-Definition tDCS Major Depressive Disorder Alzheimer’s disease Adverse event Do it yourself Primary motor cortex Direct Current Alternating Current Mini Mental State Examination International Council on Harmonisation (before 2015: International Conference on Harmonisation) Probability Learning Task transcutaneous spinal Direct Current Stimulation Electroencephalography Mild adverse event transcranial alternating current stimulation European Commission Dorsolateral prefrontal cortex Optic nerve stimulation Serious adverse event PLT Transmembrane potential Posterior Parietal Cortex Adverse reaction Electroconvulsive therapy Transcranial magnetic stimulation Magnetoencephalography adverse events Prefrontal Cortex Motor Evoked Potential Electric field Parkinson’s disease Transcranial random noise stimulation |
Language | English |
License | Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c663t-6997a7600fd047f63e2a7bcaa2329b12b427362a9da927e8d3014b084de146733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Shared last authorship. |
OpenAccessLink | http://www.who.int/medical_devices/publications/en/MD_Regulations.pdf |
PMID | 28709880 |
PQID | 1920195671 |
PQPubID | 23479 |
PageCount | 36 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985830 proquest_miscellaneous_1920195671 pubmed_primary_28709880 crossref_citationtrail_10_1016_j_clinph_2017_06_001 crossref_primary_10_1016_j_clinph_2017_06_001 elsevier_sciencedirect_doi_10_1016_j_clinph_2017_06_001 elsevier_clinicalkeyesjournals_1_s2_0_S1388245717302122 elsevier_clinicalkey_doi_10_1016_j_clinph_2017_06_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Clinical neurophysiology |
PublicationTitleAlternate | Clin Neurophysiol |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Palm, Keeser, Schiller, Fintescu, Reisinger, Mulert (b1375) 2008; 11 Manenti, Brambilla, Petesi, Ferrari, Cotelli (b1125) 2013; 5 Dmochowski, Datta, Bikson, Su, Parra (b0485) 2011; 8 Gbadeyan, Steinhauser, McMahon, Meinzer (b0680) 2016; 9 Parazzini, Fiocchi, Liorni, Ravazzani (b1400) 2015; 2015 Krishnan, Santos, Peterson, Ehinger (b0940) 2015; 8 Chaieb, Antal, Pisoni, Saiote, Opitz, Ambrus (b0355) 2014; 7 Charvet, Kasschau, Datta, Knotkova, Stevens, Alonzo (b0360) 2015; 9 Nitsche, Doemkes, Karakose, Antal, Liebetanz, Lang (b1315) 2007; 97 Floel, Suttorp, Kohl, Kurten, Lohmann, Breitenstein (b0590) 2012; 33 Bandeira, Guimaraes, Jagersbacher, Barretto, de Jesus-Silva, Santos (b0175) 2016; 31 Bennabi, Nicolier, Monnin, Tio, Pazart, Vandel (b0200) 2015; 26 Donnell, Nascimento, Lawrence, Gupta, Zieba, Truong (b0495) 2015; 8 Fagerlund, Hansen, Aslaksen (b0535) 2015; 156 Lefaucheur (b1035) 2016; 46 Gall, Schmidt, Schittkowski, Antal, Ambrus, Paulus (b0655) 2016; 11 Jwa (b0880) 2015; 2 Nitsche, Niehaus, Hoffmann, Hengst, Liebetanz, Paulus (b1325) 2004; 115 Shahid, Wen, Ahfock (b1715) 2013; 109 Tansey, Goldberg (b1820) 2010; 37 Floel, Cohen (b0585) 2010; 37 Wurzman, Hamilton, Pascual-Leone, Fox (b1980) 2016; 80 Huang, Hoffmann, Wheeler, Schiapparelli, Quinones-Hinojosa, Searson (b0835) 2016; 6 Monai, Ohkura, Tanaka, Oe, Konno, Hirai (b1245) 2016; 7 Palm, Keeser, Schiller, Fintescu, Nitsche, Reisinger (b1370) 2008; 1 Ezquerro, Moffa, Bikson, Khadka, Aparicio, de Sampaio-Junior (b0530) 2017; 20 McCreery, Agnew, Yuen, Bullara (b1155) 1990; 37 Spezia Adachi, Caumo, Laste, Fernandes Medeiros, Ripoll Rozisky, de Souza (b1765) 2012; 1489 Sadleir, Vannorsdall, Schretlen, Gordon (b1640) 2010; 51 Brindley (b0305) 1955; 127 Neuling, Ruhnau, Fusca, Demarchi, Herrmann, Weisz (b1295) 2015; 118 Antal, Polania, Schmidt-Samoa, Dechent, Paulus (b0100) 2011; 55 Anastassiou, Perin, Markram, Koch (b0060) 2011; 14 Dundas, Thickbroom, Mastaglia (b0505) 2007; 118 Rubio, Boes, Laganiere, Rotenberg, Jeurissen, Pascual-Leone (b1600) 2016; 31 Wallace, Cooper, Paulmann, Fitzgerald, Russo (b1935) 2016; 11 Shahid, Bikson, Salman, Wen, Ahfock (b1720) 2014; 11 Manor, Zhou, Jor'dan, Zhang, Fang, Pascual-Leone (b1130) 2016; 28 Parazzini, Fiocchi, Rossi, Paglialonga, Ravazzani (b1410) 2011; 58 Hidding, Baumer, Siebner, Demiralay, Buhmann, Weyh (b0795) 2006; 21 Grappengiesser C. Versuche den Galvanismus zur Heilung einiger Krankheiten. Berlin; 1801. Laczo, Antal, Niebergall, Treue, Paulus (b0985) 2012; 5 Darby, Pascual-Leone (b0435) 2017; 11 Schneider, Hopp (b1695) 2011; 25 Wessel, Zimerman, Hummel (b1950) 2015; 9 Cogan (b0385) 2008; 10 Costanzo, Menghini, Casula, Amendola, Mazzone, Valeri (b0410) 2015; 8 Howell, Huynh, Grill (b0825) 2015; 12 Kim, Udupa, Ni, Moro, Gunraj, Mazzella (b0915) 2015; 85 Food, Drug Administration HHS. International conference on harmonisation; guidance on E2F development safety update report; availability. Notice Fed Regist 2011;76:52667–8. Mattai, Miller, Weisinger, Greenstein, Bakalar, Tossell (b1140) 2011; 4 Thiem (b1830) 2012; 53 Faria, Leal, Miranda (b0550) 2009; 2009 Seibt, Brunoni, Huang, Bikson (b1710) 2015; 8 Dirnagl, Iadecola, Moskowitz (b0480) 1999; 22 McCaig, Rajnicek, Song, Zhao (b1150) 2005; 85 Paiella, Butturini, Frigerio, Salvia, Armatura, Bacchion (b1360) 2015; 32 Antal, Kriener, Lang, Boros, Paulus (b0090) 2011; 31 Bajbouj, Padberg (b0170) 2014; 264 Nitsche, Liebetanz, Lang, Antal, Tergau, Paulus (b1320) 2003; 114 Volz, Farmer, Siegmund (b1900) 2016; 157 Nilsson, Lebedev, Lovden (b1300) 2015; 7 Rossi, Santarnecchi, Valenza, Ulivelli (b1580) 2016; 374 Young, Bertucco, Sheehan-Stross, Sanger (b2005) 2013; 28 Faria, Fregni, Sebastiao, Dias, Leal (b0540) 2012; 25 Schambra, Abe, Luckenbaugh, Reis, Krakauer, Cohen (b1680) 2011; 106 Antal, Lang, Boros, Nitsche, Siebner, Paulus (b0095) 2008; 18 Le Thuc, Blondeau, Nahon, Rovere (b1020) 2015; 1351 Mathys, Loui, Zheng, Schlaug (b1135) 2010; 1 Rueger, Keuters, Walberer, Braun, Klein, Sparing (b1605) 2012; 7 Antal, Terney, Kuhnl, Paulus (b0105) 2010; 39 Walberer, Jantzen, Backes, Rueger, Keuters, Neumaier (b1930) 2014; 1581 Rossi, Hallett, Rossini, Pascual-Leone, Grp (b1575) 2009; 120 Sreeraj, Bose, Shanbhag, Narayanaswamy, Venkatasubramanian, Benegal (b1770) 2016; 9 Alam, Truong, Khadka, Bikson (b0020) 2016; 61 Brunoni, Valiengo, Zanao, de Oliveira, Bensenor, Fregni (b0330) 2011; 23 Schwiedrzik (b1705) 2009; 3 Heise, Niehoff, Feldheim, Liuzzi, Gerloff, Hummel (b0775) 2014; 6 Andrade, Magnavita, Allegro, Neto, Lucena Rde, Fregni (b0065) 2014; 29 Ekici (b0520) 2015; 46 Dymond, Coger, Serafetinides (b0510) 1975; 10 Laakso, Tanaka, Koyama, De Santis, Hirata (b0980) 2015; 8 Baudewig, Nitsche, Paulus, Frahm (b0190) 2001; 45 Fujiyama, Hyde, Hinder, Kim, McCormack, Vickers (b0630) 2014; 6 Mancini, Pellicciari, Brignani, Mauri, De Marchis, Miniussi (b1120) 2015; 2015 Amatachaya, Auvichayapat, Patjanasoontorn, Suphakunpinyo, Ngernyam, Aree-Uea (b0045) 2014; 2014 Udupa, Bahl, Ni, Gunraj, Mazzella, Moro (b1860) 2016; 36 Frohlich, McCormick (b0620) 2010; 67 Ridder, Vanneste (b1545) 2012; 3 Li, Wang, Lucas, Li, Yao (b1045) 2015; 6 Palm, Schiller, Fintescu, Obermeier, Keeser, Reisinger (b1380) 2012; 5 Al-Qudah, Yacoub, Souayah (b0015) 2015; 8 Kwon, Sajib, Sersa, Oh, Jeong, Kim (b0975) 2016; 63 Althaus (b0040) 1860 Hone-Blanchet, Edden, Fecteau (b0820) 2015; 80 Moliadze, Schmanke, Andreas, Lyzhko, Freitag, Siniatchkin (b1240) 2015; 126 Bocci, Caleo, Vannini, Vergari, Cogiamanian, Rossi (b0250) 2015; 254 Ang, Guan, Phua, Wang, Teh, Chen (b0075) 2012; 2012 Bikson, Datta (b0220) 2012; 5 Macher, Bohringer, Villringer, Pleger (b1105) 2014; 34 Goodwill, Daly, Kidgell (b0705) 2015; 126 Dmochowski, Datta, Huang, Richardson, Bikson, Fridriksson (b0490) 2013; 75 Phielipp, Saha, Sankar, Yugeta, Chen (b1460) 2017; 128 Miyake, Yoshida, Inoue, Hata (b1220) 2007; 48 Augustin F. Galvanismus und dessen Medizinischer Anwendung. Berlin; 1801. Bae, Jeong, Lee, Kim (b0160) 2012; 12 Kunz, Antal, Hewitt, Neef, Opitz, Paulus (b0965) 2016; 10 Russo, Souza Carneiro, Bolognini, Fregni (b1630) 2017; 20 Datta, Baker, Bikson, Fridriksson (b0445) 2011; 4 Human Experimentation (b0005) 1964; 91 Opitz, Paulus, Will, Antunes, Thielscher (b1355) 2015; 109 Zimerman, Nitsch, Giraux, Gerloff, Cohen, Hummel (b2030) 2013; 73 Jones, Stephens, Alam, Bikson, Berryhill (b0875) 2015; 10 Triccas, Burridge, Hughes, Verheyden, Desikan, Rothwell (b1840) 2015; 37 Loo, Sachdev, Martin, Pigot, Alonzo, Malhi (b1085) 2010; 13 Nekhendzy, Lemmens, Tingle, Nekhendzy, Angst (b1285) 2010; 111 Giovannella, Mitjà, Gregori-Pla, Ibañez, Ruffini, Durduran (b0700) 2017 Morimoto, Miyoshi, Matsuda, Tano, Fujikado, Fukuda (b1250) 2005; 46 Pereira Junior Bde, Tortella, Lafer, Nunes, Bensenor, Lotufo (b1435) 2015; 2015 Smit, Schutter, Nijboer, Visser-Meily, Kappelle, Kant (b1750) 2015; 74 Plewnia, Zwissler, Langst, Maurer, Giel, Kruger (b1475) 2013; 49 Berryhill, Jones (b0205) 2012; 521 Aree-uea, Auvichayapat, Janyacharoen, Siritaratiwat, Amatachaya, Prasertnoo (b0120) 2014; 97 Stagg, Best, Stephenson, O'Shea, Wylezinska, Kincses (b1780) 2009; 29 Bortoletto, Rodella, Salvador, Miranda, Miniussi (b0280) 2016; 9 Logothetis, Kayser, Oeltermann (b1065) 2007; 55 Arumugham, Thirthalli, Andrade (b0130) 2016; 9 Kronberg, Bikson (b0945) 2012; 2012 Wexler (b1955) 2015; 2 Curado, Fritsch, Reis (b0430) 2016; 108 Ho, Taylor, Chew, Galvez, Alonzo, Bai (b0805) 2016; 9 Edwards, Cortes, Datta, Minhas, Wassermann, Bikson (b0515) 2013; 74 Moliadze, Antal, Paulus (b1235) 2010; 121 Vandermeeren, Jamart, Ossemann (b1870) 2010; 11 Vigod, Dennis, Daskalakis, Murphy, Ray, Oberlander (b1890) 2014; 15 Kim, Lim, Kang, You, Oh, Oh (b0910) 2010; 89 Borckardt, Bikson, Frohman, Reeves, Datta, Bansal (b0275) 2012; 13 Philip, Nelson, Frohlich, Lim, Widge, Carpenter (b1465) 2017 Kessler, Turkeltaub, Benson, Hamilton (b0895) 2012; 5 Machii, Cohen, Ramos-Estebanez, Pascual-Leone (b1110) 2006; 117 Saturnino, Antunes, Thielscher (b1675) 2015; 120 Kim, Ku, Cho, Kim, Cho, Lim (b0920) 2014; 11 Grecco LA, Mendonça ME, Duarte NA, Zanon N, Fregni F, Oliveira CS. Transcranial direct current stimulation combined with treadmill gait training in delayed neuro-psychomotor development. J Phys Ther Sci 2014b;26:945–50. Antal, Boros, Poreisz, Chaieb, Terney, Paulus (b0085) 2008; 1 Pulgar (b1500) 2015; 9 Parikh, Cole (b1415) 2014; 20 Poreisz, Boros, Antal, Paulus (b1485) 2007; 72 Cosentino, Fierro, Paladino, Talamanca, Vigneri, Palermo (b0405) 2012; 35 Bocci, Marceglia, Vergari, Cognetto, Cogiamanian, Sartucci (b0255) 2015; 114 Minhas, Bansal, Patel, Ho, Diaz, Datta (b1205) 2010; 190 Shigematsu, Fujishima, Ohno (b1730) 2013; 27 Wagner, Eden, Rushmore, Russo, Dipietro, Fregni (b1925) 2014; 85 Ting, Tran, Bohm, Siriwardana, Van Leeuwen, Haynes (b1835) 2016; 19 Dumel, Bourassa, Desjardins, Voarino, Charlebois-Plante, Doyon (b0500) 2016; 2016 Nitsche, Cohen, Wassermann, Priori, Lang, Antal (b1310) 2008; 1 Palm, Segmiller, Epple, Freisleder, Koutsouleris, Schulte-Korne (b1385) 2016; 123 Kessler, Minhas, Woods, Rosen, Gorman, Bikson (b0890) 2013; 8 van der Groen, Wenderoth (b1865) 2016; 36 Mortensen, Figlewski, Andersen (b1255) 2016; 38 Parazzini, Fiocchi, Cancelli, Cottone, Liorni, Ravazzani (b1395) 2017; 64 Lang, Siebner, Ward, Lee, Nitsche, Paulus (b1005) 2005; 22 Vila-Rodriguez, McGirr, Tham, Hadjipavlou, Honey (b1895) 2014; 30 Murray, Edwards, Ruffini, Labar, Stampas, Pascual-Leone (b1275) 2015; 96 Pikhovych, Stolberg, Flitsch, Walter, Graf, Fink (b1470) 2016; 2016 Vernieri, Assenza, Maggio, Tibuzzi, Zappasodi, Altamura (b1880) 2010; 41 Datta, Bikson, Fregni (b0455) 2010; 52 Tadini, El-Nazer, Brunoni, Williams, Carvas, Boggio (b1810) 2011; 27 San-Juan, Morales-Quezada, Orozco Garduno, Alonso-Vanegas, Gonzalez-Aragon, Espinoza Lopez (b1655) 2015; 8 Carvalho Lima, Collange Grecco, Marques, Fregni, Brandao de Avila (b0345) 2016; 20 Cogiamanian, Vergari, Pulecchi, Marceglia, Priori (b0390) 2008; 119 Heide, Winkler, Helms, Nitsche, Trenkwalder, Paulus (b0770) 2014; 7 Ziemssen (b2025) 1864 Bocci, Barloscio, Vergari, Di Rollo, Rossi, Priori (b0240) 2015; 18 Fecteau, Boggio, Fregni, Pascu Khedr (10.1016/j.clinph.2017.06.001_b0905) 2014; 6 Metwally (10.1016/j.clinph.2017.06.001_b1195) 2015; 53 Wrigley (10.1016/j.clinph.2017.06.001_b1975) 2013; 154 Brunoni (10.1016/j.clinph.2017.06.001_b0320) 2017; 10 Al-Qudah (10.1016/j.clinph.2017.06.001_b0015) 2015; 8 Ruffini (10.1016/j.clinph.2017.06.001_b1615) 2013; 21 Gall (10.1016/j.clinph.2017.06.001_b0655) 2016; 11 Tagami (10.1016/j.clinph.2017.06.001_b1815) 2009; 53 Kessler (10.1016/j.clinph.2017.06.001_b0890) 2013; 8 San-Juan (10.1016/j.clinph.2017.06.001_b1655) 2015; 8 Brambilla (10.1016/j.clinph.2017.06.001_b0285) 2015; 293 Arul-Anandam (10.1016/j.clinph.2017.06.001_b0125) 2010; 26 Antal (10.1016/j.clinph.2017.06.001_b0090) 2011; 31 Sparing (10.1016/j.clinph.2017.06.001_b1760) 2009; 132 Fusco (10.1016/j.clinph.2017.06.001_b0635) 2014; 32 Dundas (10.1016/j.clinph.2017.06.001_b0505) 2007; 118 Pelletier (10.1016/j.clinph.2017.06.001_b1425) 2014; 18 Cabral-Calderin (10.1016/j.clinph.2017.06.001_b0335) 2016; 37 Truong (10.1016/j.clinph.2017.06.001_b1845) 2013; 2 Baber (10.1016/j.clinph.2017.06.001_b0150) 1994; 37 Yin (10.1016/j.clinph.2017.06.001_b1985) 2016; 1650 Datta (10.1016/j.clinph.2017.06.001_b0460) 2009; 2009 Carvalho Lima (10.1016/j.clinph.2017.06.001_b0345) 2016; 20 Lang (10.1016/j.clinph.2017.06.001_b1005) 2005; 22 Spezia Adachi (10.1016/j.clinph.2017.06.001_b1765) 2012; 1489 Ang (10.1016/j.clinph.2017.06.001_b0075) 2012; 2012 Nelson (10.1016/j.clinph.2017.06.001_b1290) 1998; 78 Logothetis (10.1016/j.clinph.2017.06.001_b1065) 2007; 55 Rueger (10.1016/j.clinph.2017.06.001_b1605) 2012; 7 Galvez (10.1016/j.clinph.2017.06.001_b0670) 2011; 27 Peruzzotti-Jametti (10.1016/j.clinph.2017.06.001_b1445) 2013; 44 Nitsche (10.1016/j.clinph.2017.06.001_b1330) 2007; 27 Erskine (10.1016/j.clinph.2017.06.001_b0525) 1995; 171 Aparicio (10.1016/j.clinph.2017.06.001_b0115) 2016; 9 Brem (10.1016/j.clinph.2017.06.001_b0300) 2014; 85 Bennabi (10.1016/j.clinph.2017.06.001_b0200) 2015; 26 Young (10.1016/j.clinph.2017.06.001_b2000) 2014; 29 Schestatsky (10.1016/j.clinph.2017.06.001_b1685) 2013 Wagner (10.1016/j.clinph.2017.06.001_b1925) 2014; 85 Holland (10.1016/j.clinph.2017.06.001_b0815) 2011; 21 Shenoy (10.1016/j.clinph.2017.06.001_b1725) 2015; 8 Kronberg (10.1016/j.clinph.2017.06.001_b0945) 2012; 2012 Tadini (10.1016/j.clinph.2017.06.001_b1810) 2011; 27 Schmidt (10.1016/j.clinph.2017.06.001_b1690) 2013; 6 Nitsche (10.1016/j.clinph.2017.06.001_b1325) 2004; 115 Datta (10.1016/j.clinph.2017.06.001_b0445) 2011; 4 Palm (10.1016/j.clinph.2017.06.001_b1370) 2008; 1 Kunz (10.1016/j.clinph.2017.06.001_b0965) 2016; 10 Kessler (10.1016/j.clinph.2017.06.001_b0895) 2012; 5 Jwa (10.1016/j.clinph.2017.06.001_b0880) 2015; 2 Quartarone (10.1016/j.clinph.2017.06.001_b1510) 2005; 128 Faria (10.1016/j.clinph.2017.06.001_b0550) 2009; 2009 Miranda (10.1016/j.clinph.2017.06.001_b1210) 2009; 120 Lee (10.1016/j.clinph.2017.06.001_b1030) 2016; 277 Helfrich (10.1016/j.clinph.2017.06.001_b0780) 2014; 24 Panouillères (10.1016/j.clinph.2017.06.001_b1390) 2015; 593 Fertonani (10.1016/j.clinph.2017.06.001_b0575) 2015; 126 Plewnia (10.1016/j.clinph.2017.06.001_b1475) 2013; 49 Gillick (10.1016/j.clinph.2017.06.001_b0690) 2015; 95 Chhatbar (10.1016/j.clinph.2017.06.001_b0370) 2017; 10 Datta (10.1016/j.clinph.2017.06.001_b0465) 2012; 3 Lang (10.1016/j.clinph.2017.06.001_b1000) 2004; 56 Loo (10.1016/j.clinph.2017.06.001_b1080) 2011; 14 Fertonani (10.1016/j.clinph.2017.06.001_b0570) 2014; 6 Kim (10.1016/j.clinph.2017.06.001_b0915) 2015; 85 Merrill (10.1016/j.clinph.2017.06.001_b1185) 2005; 141 Ekici (10.1016/j.clinph.2017.06.001_b0520) 2015; 46 Harris (10.1016/j.clinph.2017.06.001_b0760) 2009; 70 Miyake (10.1016/j.clinph.2017.06.001_b1220) 2007; 48 Dmochowski (10.1016/j.clinph.2017.06.001_b0490) 2013; 75 Zaehle (10.1016/j.clinph.2017.06.001_b2015) 2010; 5 Fecteau (10.1016/j.clinph.2017.06.001_b0555) 2012; 3 Russo (10.1016/j.clinph.2017.06.001_b1630) 2017; 20 Rae (10.1016/j.clinph.2017.06.001_b1525) 2013; 16 Costanzo (10.1016/j.clinph.2017.06.001_b0410) 2015; 8 Laakso (10.1016/j.clinph.2017.06.001_b0980) 2015; 8 Giovannella (10.1016/j.clinph.2017.06.001_b0700) 2017 Vicario (10.1016/j.clinph.2017.06.001_b1885) 2013; 7 Human Experimentation (10.1016/j.clinph.2017.06.001_b0005) 1964; 91 Dmochowski (10.1016/j.clinph.2017.06.001_b0485) 2011; 8 McAllister (10.1016/j.clinph.2017.06.001_b1145) 2003; 217 Fagerlund (10.1016/j.clinph.2017.06.001_b0535) 2015; 156 Sunwoo (10.1016/j.clinph.2017.06.001_b1805) 2013; 554 Altenstetter (10.1016/j.clinph.2017.06.001_b0035) 2003; 19 Wang (10.1016/j.clinph.2017.06.001_b1945) 2014; 569 Krishnan (10.1016/j.clinph.2017.06.001_b0940) 2015; 8 Wallace (10.1016/j.clinph.2017.06.001_b1935) 2016; 11 Brunoni (10.1016/j.clinph.2017.06.001_b0325) 2013; 70 Kleymeyer (10.1016/j.clinph.2017.06.001_b0925) 1976; 42 Ahmed (10.1016/j.clinph.2017.06.001_b0010) 2011; 110 10.1016/j.clinph.2017.06.001_b0785 Palm (10.1016/j.clinph.2017.06.001_b1385) 2016; 123 Baer (10.1016/j.clinph.2017.06.001_b0165) 2015; 10 Breitling (10.1016/j.clinph.2017.06.001_b0295) 2016; 10 Rossi (10.1016/j.clinph.2017.06.001_b1580) 2016; 374 Dymond (10.1016/j.clinph.2017.06.001_b0510) 1975; 10 Goodwill (10.1016/j.clinph.2017.06.001_b0705) 2015; 126 Wurzman (10.1016/j.clinph.2017.06.001_b1980) 2016; 80 Smit (10.1016/j.clinph.2017.06.001_b1750) 2015; 74 Peters (10.1016/j.clinph.2017.06.001_b1455) 2013; 51 Voss (10.1016/j.clinph.2017.06.001_b1905) 2014; 17 Fu (10.1016/j.clinph.2017.06.001_b0625) 2015; 253 Santarnecchi (10.1016/j.clinph.2017.06.001_b1670) 2014; 5 Cao (10.1016/j.clinph.2017.06.001_b0340) 2015; 11 Shahid (10.1016/j.clinph.2017.06.001_b1715) 2013; 109 Amatachaya (10.1016/j.clinph.2017.06.001_b0050) 2015; 2015 Terney (10.1016/j.clinph.2017.06.001_b1825) 2008; 28 Mattai (10.1016/j.clinph.2017.06.001_b1140) 2011; 4 Costanzo (10.1016/j.clinph.2017.06.001_b0420) 2016; 27 Triccas (10.1016/j.clinph.2017.06.001_b1840) 2015; 37 Ross (10.1016/j.clinph.2017.06.001_b1570) 2011; 3 Gandiga (10.1016/j.clinph.2017.06.001_b0675) 2006; 117 Parikh (10.1016/j.clinph.2017.06.001_b1415) 2014; 20 Dumel (10.1016/j.clinph.2017.06.001_b0500) 2016; 2016 10.1016/j.clinph.2017.06.001_b0715 Nitsche (10.1016/j.clinph.2017.06.001_b1315) 2007; 97 Raco (10.1016/j.clinph.2017.06.001_b1515) 2014; 7 Vosskuhl (10.1016/j.clinph.2017.06.001_b1910) 2016; 140 Datta (10.1016/j.clinph.2017.06.001_b0455) 2010; 52 Norris (10.1016/j.clinph.2017.06.001_b1335) 2010; 22 Borckardt (10.1016/j.clinph.2017.06.001_b0275) 2012; 13 Andre (10.1016/j.clinph.2017.06.001_b0070) 2016; 369 Blumberger (10.1016/j.clinph.2017.06.001_b0235) 2012; 3 Alekseichuk (10.1016/j.clinph.2017.06.001_b0025) 2016; 140 Wang (10.1016/j.clinph.2017.06.001_b1940) 2015; 8 Heide (10.1016/j.clinph.2017.06.001_b0770) 2014; 7 Prehn-Kristensen (10.1016/j.clinph.2017.06.001_b1490) 2014; 7 Parazzini (10.1016/j.clinph.2017.06.001_b1405) 2014; 125 Turi (10.1016/j.clinph.2017.06.001_b1855) 2013; 31 Iyer (10.1016/j.clinph.2017.06.001_b0860) 2005; 64 10.1016/j.clinph.2017.06.001_b0725 Nitsche (10.1016/j.clinph.2017.06.001_b1320) 2003; 114 Franke (10.1016/j.clinph.2017.06.001_b0610) 2010; 53 Bikson (10.1016/j.clinph.2017.06.001_b0220) 2012; 5 Antal (10.1016/j.clinph.2017.06.001_b0105) 2010; 39 Salvador (10.1016/j.clinph.2017.06.001_b1650) 2010; 2010 Polanowska (10.1016/j.clinph.2017.06.001_b1480) 2013; 47 Ranieri (10.1016/j.clinph.2017.06.001_b1535) 2012; 107 Mathys (10.1016/j.clinph.2017.06.001_b1135) 2010; 1 Gahr (10.1016/j.clinph.2017.06.001_b0640) 2014; 30 Cosentino (10.1016/j.clinph.2017.06.001_b0405) 2012; 35 Walberer (10.1016/j.clinph.2017.06.001_b1930) 2014; 1581 Loo (10.1016/j.clinph.2017.06.001_b1075) 2012; 200 Jones (10.1016/j.clinph.2017.06.001_b0875) 2015; 10 Antal (10.1016/j.clinph.2017.06.001_b0080) 2014; 85 Meinzer (10.1016/j.clinph.2017.06.001_b1165) 2013; 33 Pulgar (10.1016/j.clinph.2017.06.001_b1500) 2015; 9 Lazzari (10.1016/j.clinph.2017.06.001_b1015) 2015; 27 Guarienti (10.1016/j.clinph.2017.06.001_b0735) 2015; 18 Bocci (10.1016/j.clinph.2017.06.001_b0250) 2015; 254 Bae (10.1016/j.clinph.2017.06.001_b0160) 2012; 12 Goodwill (10.1016/j.clinph.2017.06.001_b0710) 2013; 5 Sadleir (10.1016/j.clinph.2017.06.001_b1645) 2012; 3 Ziemssen (10.1016/j.clinph.2017.06.001_b2025) 1864 Riedel (10.1016/j.clinph.2017.06.001_b1550) 2012; 5 Sabel (10.1016/j.clinph.2017.06.001_b1635) 2011; 29 Sun (10.1016/j.clinph.2017.06.001_b1800) 2013; 23 Murray (10.1016/j.clinph.2017.06.001_b1275) 2015; 96 Stacey (10.1016/j.clinph.2017.06.001_b1775) 2000; 83 Palm (10.1016/j.clinph.2017.06.001_b1380) 2012; 5 Huang (10.1016/j.clinph.2017.06.001_b0835) 2016; 6 Philip (10.1016/j.clinph.2017.06.001_b1465) 2017 Turi (10.1016/j.clinph.2017.06.001_b1850) 2014; 7 Hubli (10.1016/j.clinph.2017.06.001_b0845) 2013; 124 Kuhn (10.1016/j.clinph.2017.06.001_b0955) 2002; 113 Kim (10.1016/j.clinph.2017.06.001_b0920) 2014; 11 Cogiamanian (10.1016/j.clinph.2017.06.001_b0390) 2008; 119 Deng (10.1016/j.clinph.2017.06.001_b0475) 2010; 2010 Fritsch (10.1016/j.clinph.2017.06.001_b0615) 2010; 66 Huang (10.1016/j.clinph.2017.06.001_b0840) 2005; 45 Brindley (10.1016/j.clinph.2017.06.001_b0305) 1955; 127 Paiella (10.1016/j.clinph.2017.06.001_b1360) 2015; 32 Jackson (10.1016/j.clinph.2017.06.001_b0865) 2016; 127 Park (10.1016/j.clinph.2017.06.001_b1420) 2014; 25 Shigematsu (10.1016/j.clinph.2017.06.001_b1730) 2013; 27 Auvichayapat (10.1016/j.clinph.2017.06.001_b0145) 2016; 7 Opitz (10.1016/j.clinph.2017.06.001_b1355) 2015; 109 Hill (10.1016/j.clinph.2017.06.001_b0800) 2017; 152 Shahid (10.1016/j.clinph.2017.06.001_b1720) 2014; 11 Hone-Blanchet (10.1016/j.clinph.2017.06.001_b0820) 2015; 80 Udupa (10.1016/j.clinph.2017.06.001_b1860) 2016; 36 Hoff (10.1016/j.clinph.2017.06.001_b0810) 2015; 41 Faria (10.1016/j.clinph.2017.06.001_b0540) 2012; 25 Bikson (10.1016/j.clinph.2017.06.001_b0225) 2010; 121 Guleyupoglu (10.1016/j.clinph.2017.06.001_b0740) 2014; 7 Moliadze (10.1016/j.clinph.2017.06.001_b1230) 2015; 119 Puri (10.1016/j.clinph.2017.06.001_b1505) 2015; 7 Munz (10.1016/j.clinph.2017.06.001_b1270) 2015; 9 Poreisz (10.1016/j.clinph.2017.06.001_b1485) 2007; 72 Vernieri (10.1016/j.clinph.2017.06.001_b1880) 2010; 41 Arumugham (10.1016/j.clinph.2 19386916 - J Neurosci. 2009 Apr 22;29(16):5202-6 20633432 - Brain Stimul. 2010 Jan;3(1):58-9 25792098 - Lancet Neurol. 2015 Apr;14(4):388-405 24284464 - NeuroRehabilitation. 2014;34(1):121-7 25499471 - Brain Stimul. 2015 Jan-Feb;8(1):76-87 26156511 - Neurology. 2015 Aug 4;85(5):425-32 19520165 - Neurobiol Dis. 2010 Feb;37(2):243-51 15753425 - Neurology. 2005 Mar 8;64(5):872-5 20671257 - Stroke. 2010 Sep;41(9):2087-90 27322602 - Expert Rev Clin Pharmacol. 2016 Sep;9(9):1245-52 16045502 - Eur J Neurosci. 2005 Jul;22(2):495-504 23473936 - Neuroimage. 2013 Jul 15;75:12-19 23850466 - Neuroimage. 2014 Jan 15;85 Pt 3:1048-57 22236710 - J Neurophysiol. 2012 Apr;107(7):1868-80 25501299 - Graefes Arch Clin Exp Ophthalmol. 2015 Feb;253(2):171-6 23541726 - Curr Biol. 2013 Apr 8;23 (7):569-74 19964238 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:670-3 25013302 - J Phys Ther Sci. 2014 Jun;26(6):945-50 25253645 - Eur Arch Psychiatry Clin Neurosci. 2014 Nov;264 Suppl 1:S27-33 26484510 - NeuroRehabilitation. 2015 ;37(2):181-91 1120172 - Biol Psychiatry. 1975 Feb;10(1):101-4 25461825 - Arch Phys Med Rehabil. 2015 Apr;96(4 Suppl):S114-21 24905627 - Brain Res. 2014 Sep 18;1581:80-8 26898606 - Sci Rep. 2016 Feb 22;6:21583 12701954 - Int J Technol Assess Health Care. 2003 Winter;19(1):228-48 22037128 - Brain Stimul. 2012 Apr;5(2):155-62 26503692 - Hum Brain Mapp. 2016 Jan;37(1):94-121 27147964 - Front Cell Neurosci. 2016 Mar 22;10:72 25071479 - Front Syst Neurosci. 2014 Jul 08;8:127 27166171 - Cereb Cortex. 2017 May 1;27(5):2758-2767 10712466 - J Neurophysiol. 2000 Mar;83(3):1394-402 23366036 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:891-5 25765775 - Dig Surg. 2015;32(2):90-7 23366836 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4128-31 21885255 - Epilepsy Res. 2011 Nov;97(1-2):142-5 22032743 - Brain Stimul. 2011 Oct;4(4):275-80 22104190 - J Pain. 2012 Feb;13(2):112-20 24737098 - J Neural Eng. 2014 Jun;11(3):036002 23097644 - Front Psychiatry. 2012 Oct 22;3:91 25637226 - Neuropsychologia. 2015 Jul;74:108-19 26652115 - Clin Neurophysiol. 2016 Feb;127(2):1031-1048 24553318 - J ECT. 2014 Mar;30(1):62-8 24631567 - Neurosci Lett. 2014 May 21;569:6-11 26608246 - Neuroimage. 2016 Oct 15;140:110-7 19484445 - Jpn J Ophthalmol. 2009 May;53(3):257-66 25126060 - Front Syst Neurosci. 2014 Jul 30;8:132 24310982 - J Neural Eng. 2014 Feb;11(1):016002 19423386 - Clin Neurophysiol. 2009 Jun;120(6):1183-7 26080310 - Neuroimage. 2015 Sep;118:406-13 21160123 - NeuroRehabilitation. 2010;27(4):335-41 27014012 - Front Hum Neurosci. 2016 Mar 10;10:68 25135003 - J Neuroeng Rehabil. 2014 Aug 18;11:124 24792908 - Neurobiol Aging. 2014 Oct;35(10):2217-21 27249078 - J Clin Psychiatry. 2016 May;77(5):689-90 24049057 - J Child Neurol. 2014 Oct;29(10):1360-5 21095946 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2073-6 15664172 - Neuron. 2005 Jan 20;45(2):201-6 18429704 - Annu Rev Biomed Eng. 2008;10:275-309 25870543 - Front Syst Neurosci. 2015 Mar 30;9:54 25234606 - Trials. 2014 Sep 18;15:366 20105234 - Eur J Neurosci. 2010 Feb;31(3):593-7 18680573 - Behav Brain Funct. 2008 Aug 04;4:33 27569587 - Brain Res. 2016 Nov 1;1650:10-20 19440158 - J ECT. 2009 Dec;25(4):256-60 23087654 - Front Psychiatry. 2012 Oct 17;3:90 25368577 - Front Aging Neurosci. 2014 Oct 20;6:289 24599463 - J Neurosci. 2014 Mar 5;34(10):3646-52 9918361 - Mov Disord. 1999 Jan;14(1):157-8 21981854 - Brain Stimul. 2011 Oct;4(4):189-201 24086698 - PLoS One. 2013 Sep 27;8(9):e76112 14580622 - Clin Neurophysiol. 2003 Nov;114(11):2220-2; author reply 2222-3 26280313 - Exp Brain Res. 2016 Mar;234(3):637-43 25295004 - Front Aging Neurosci. 2014 Sep 23;6:253 24760509 - Physiol Rep. 2014 Mar 20;2(3):e00255 20233439 - BMC Neurosci. 2010 Mar 16;11:38 22506177 - Ann Rehabil Med. 2011 Aug;35(4):579-82 23699528 - J Neurosci. 2013 May 22;33(21):9176-83 26097454 - Front Aging Neurosci. 2015 Jun 05;7:107 27039705 - Neuroimage. 2016 Oct 15;140:99-109 23562964 - Neuropsychologia. 2013 Jun;51(7):1234-9 23225625 - Ann Neurol. 2013 Jan;73(1):10-5 23303424 - J ECT. 2013 Jun;29(2):147-8 20161507 - Brain Stimul. 2009 Oct;2(4):215-28, 228.e1-3 25849358 - PLoS One. 2015 Apr 07;10(4):e0121904 23367178 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5514-7 26774968 - Biol Psychiatry. 2016 Sep 15;80(6):432-438 24176927 - Neuroreport. 2014 Jan 22;25(2):122-6 25792428 - J Child Neurol. 2015 Oct;30(12):1604-15 25890209 - Stem Cell Res Ther. 2015 Mar 21;6:41 25468071 - Brain Stimul. 2015 Jan-Feb;8(1):163-4 25855132 - Restor Neurol Neurosci. 2015;33(5):647-62 22912618 - Front Psychiatry. 2012 Aug 17;3:74 21948925 - J Neuropsychiatry Clin Neurosci. 2011 Summer;23(3):E4-5 26879095 - J Child Neurol. 2016 Jun;31(7):918-24 10441299 - Trends Neurosci. 1999 Sep;22(9):391-7 26079636 - Disabil Rehabil. 2016;38(7):637-43 26458959 - Prostate Cancer Prostatic Dis. 2016 Mar;19(1):46-52 26342753 - Exp Neurol. 2016 Jan;275 Pt 3:316-327 20350607 - Neuroimage. 2010 Jul 15;51(4):1310-8 21641021 - Brain Lang. 2011 Oct;119(1):1-5 25105567 - Res Dev Disabil. 2014 Nov;35(11):2840-8 26200716 - Behav Brain Res. 2015 Oct 15;293:125-33 25153776 - Brain Stimul. 2014 Nov-Dec;7(6):793-9 25613437 - Neuroimage. 2015 Apr 1;109:140-50 18925985 - Int J Neuropsychopharmacol. 2009 Jun;12(5):643-50 26170244 - J Neural Eng. 2015 Aug;12(4):046030 26226938 - Brain Stimul. 2015 Nov-Dec;8(6):1085-92 24324410 - Front Syst Neurosci. 2013 Nov 25;7:94 20938352 - J ECT. 2011 Jun;27(2):134-40 19528092 - Brain. 2009 Nov;132(Pt 11):3011-20 20434997 - Neuron. 2010 Apr 29;66(2):198-204 21206371 - J ECT. 2011 Sep;27(3):256-8 23392916 - Neurorehabil Neural Repair. 2013 May;27(4):363-9 22949089 - IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):333-45 23982710 - Stroke. 2013 Nov;44(11):3166-74 8054244 - Br J Clin Pharmacol. 1994 May;37(5):401-4 27216434 - Ann Neurol. 2016 Jul;80(1):1-4 25468234 - Clin Neurophysiol. 2015 Jul;126(7):1392-9 11897534 - Clin Neurophysiol. 2002 Mar;113(3):341-5 23123281 - Epilepsy Behav. 2012 Nov;25(3):417-25 28279641 - Brain Stimul. 2017 May - Jun;10 (3):553-559 26890096 - Restor Neurol Neurosci. 2016;34(2):215-26 25454337 - Clin Neurophysiol. 2015 Jun;126(6):1185-9 20624597 - Neuron. 2010 Jul 15;67(1):129-43 26142274 - Neuroimage. 2015 Oct 15;120:25-35 25101009 - Front Psychiatry. 2014 Jul 21;5:86 26449209 - Brain Res Bull. 2015 Oct;119(Pt A):25-33 15987799 - Physiol Rev. 2005 Jul;85(3):943-78 8154217 - Zh Nevrol Psikhiatr Im S S Korsakova. 1993;93(5):43-5 21095849 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6821-4 25988491 - Sci Rep. 2015 May 19;5:10289 27916405 - Brain Stimul. 2017 Mar - Apr;10 (2):260-262 26758832 - J Neurosci. 2016 Jan 13;36(2):396-404 24760939 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):441-52 22480602 - Clin Neurophysiol. 2012 Oct;123(10):2006-9 25925328 - J Neurophysiol. 2015 Jul;114(1):440-6 28259678 - Clin Neurophysiol. 2017 Jun;128(6):1109-1115 23389323 - JAMA Psychiatry. 2013 Apr;70(4):383-91 25912048 - Eur J Neurosci. 2015 May;41(11):1475-83 17409245 - J Neurosci. 2007 Apr 4;27(14):3807-12 21240273 - Nat Neurosci. 2011 Feb;14(2):217-23 20488204 - J Neurosci Methods. 2010 Jul 15;190(2):188-97 26576215 - J Vasc Interv Neurol. 2015 Oct;8(4):43-52 27774217 - J Law Biosci. 2015 Oct 12;2(3):669-696 28231716 - Am J Psychiatry. 2017 Jul 1;174(7):628-639 25604912 - Clin Rehabil. 2015 Dec;29(12):1212-23 2249872 - IEEE Trans Biomed Eng. 1990 Oct;37(10):996-1001 21641264 - Parkinsonism Relat Disord. 2011 Sep;17(8):647-8 15914636 - Invest Ophthalmol Vis Sci. 2005 Jun;46(6):2147-55 21072168 - PLoS One. 2010 Nov 01;5(11):e13766 25732105 - Clin Neurophysiol. 2015 Nov;126(11):2189-97 22211744 - Eur J Neurosci. 2012 Jan;35(1):119-24 27774197 - J Law Biosci. 2015 Jun 02;2(2):292-335 27199889 - Front Neurol. 2016 May 04;7:66 25862601 - Brain Stimul. 2015 May-Jun;8(3):590-602 25022472 - Brain Stimul. 2014 Sep-Oct;7(5):627-35 23550273 - Front Psychiatry. 2013 Feb 26;3:97 27044999 - Philos Trans A Math Phys Eng Sci. 2016 May 13;374(2067):null 23760989 - J Child Neurol. 2014 Feb;29(2):232-9 19483641 - J ECT. 2010 Mar;26(1):68-9 19671217 - Int J Neuropsychopharmacol. 2010 Feb;13(1):61-9 23034972 - J Child Neurol. 2013 Oct;28(10):1238-44 26003225 - J Neurol Sci. 2015 Jul 15;354(1-2):103-9 22684095 - Neurosci Lett. 2012 Jul 19;521(2):148-51 24025832 - Nature. 2013 Sep 12;501(7466):167 24907311 - J Physiol. 2014 Aug 15;592(16):3345-69 24822247 - Headache. 2014 Apr;54(4):663-74 28275345 - Front Hum Neurosci. 2017 Feb 22;11:77 25922128 - Clin Neurophysiol. 2015 Nov;126(11):2181-8 20327943 - Can Med Assoc J. 1964 Sep 12;91(11):619 24816141 - Nat Neurosci. 2014 Jun;17(6):810-2 9754976 - Eur J Appl Physiol Occup Physiol. 1998 Sep;78(4):353-9 22086257 - J Neural Eng. 2011 Dec;8(6):066017 25346688 - Front Aging Neurosci. 2014 Oct 09;6:275 16387549 - Clin Neurophysiol. 2006 Feb;117(2):455-71 26996082 - Neuron. 2016 Apr 6;90(1):191-203 27355577 - PLoS One. 2016 Jun 29;11(6):e0156134 29096212 - Clin Neurophysiol. 2017 Dec;128(12 ):2397-2399 18372292 - Cereb Cortex. 2008 Nov;18(11):2701-5 27210840 - J Bodyw Mov Ther. 2016 Apr;20(2):252-7 19201066 - Neurobiol Aging. 2010 Dec;31(12):2160-8 26350410 - Brain Stimul. 2016 Jan-Feb;9(1):1-7 14702983 - Proc Inst Mech Eng H. 2003;217(6):459-67 22124039 - Restor Neurol Neurosci. 2011;29(6):493-505 27173384 - J Neural Transm (Vienna). 2016 Oct;123(10 ):1219-34 15056717 - J Neurosci. 2004 Mar 31;24(13):3379-85 25536713 - J Med Assoc Thai. 2014 Sep;97(9):954-62 23831866 - Pain. 2013 Oct;154(10):2178-84 27403166 - Stem Cells Int. 2016;2016:2715196 20019146 - Cereb Cortex. 2010 Aug;20(8):1926-36 27375421 - Front Neurosci. 2016 Jun 07;10:262 20554472 - Clin Neurophysiol. 2010 Dec;121(12):2165-71 26029083 - Front Hum Neurosci. 2015 May 15;9:265 22928032 - PLoS One. 2012;7(8):e43776 26873962 - Neuroscientist. 2016 Feb 12;:null 20633396 - Brain Stimul. 2008 Oct;1(4):386-7 20648973 - Brain Stimul. 2009 Oct;2(4):201-7, 207.e1 28119589 - Front Hum Neurosci. 2017 Jan 10;10 :683 21986238 - Brain Stimul. 2012 Jul;5(3):432-4 24062685 - Front Aging Neurosci. 2013 Sep 11;5:49 23756431 - J Head Trauma Rehabil. 2014 May-Jun;29(3):E20-9 21613597 - J Neurophysiol. 2011 Aug;106(2):652-61 27027666 - J Child Adolesc Psychopharmacol. 2016 |
References_xml | – volume: 95 start-page: 337 year: 2015 end-page: 349 ident: b0690 article-title: Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study publication-title: Phys Ther – volume: 34 start-page: 215 year: 2016 end-page: 226 ident: b0415 article-title: Evidence for reading improvement following tDCS treatment in children and adolescents with dyslexia publication-title: Rest Neurol Neurosci – volume: 190 start-page: 188 year: 2010 end-page: 197 ident: b1205 article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS publication-title: J Neurosci Meth – volume: 11 start-page: 016002 year: 2014 ident: b1920 article-title: Investigation of tDCS volume conduction effects in a highly realistic head model publication-title: J Neur Eng – volume: 24 start-page: 333 year: 2014 end-page: 339 ident: b0780 article-title: Entrainment of brain oscillations by transcranial alternating current stimulation publication-title: Curr Biol – volume: 200 start-page: 52 year: 2012 end-page: 59 ident: b1075 article-title: Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial publication-title: Br J Psych – volume: 8 start-page: 046011 year: 2011 ident: b0485 article-title: Optimized multi-electrode stimulation increases focality and intensity at target publication-title: J Neur Eng – volume: 9 start-page: 525 year: 2016 end-page: 528 ident: b0280 article-title: Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES) publication-title: Brain Stimul – volume: 52 start-page: 1268 year: 2010 end-page: 1278 ident: b0455 article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow publication-title: NeuroImage – volume: 2016 start-page: 2715196 year: 2016 ident: b1470 article-title: Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain publication-title: Stem Cells Int – volume: 61 start-page: 4506 year: 2016 end-page: 4521 ident: b0020 article-title: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS) publication-title: Phys Med Biol – volume: 23 start-page: 569 year: 2013 end-page: 574 ident: b1800 article-title: Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field publication-title: Curr Biol – volume: 2 start-page: 669 year: 2015 end-page: 696 ident: b1955 article-title: A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States publication-title: J Law Biosci – volume: 6 start-page: 131 year: 2014 ident: b0570 article-title: The timing of cognitive plasticity in physiological aging: a tDCS study of naming publication-title: Front Aging Neurosci – volume: 53 start-page: 1125 year: 2012 end-page: 1130 ident: b1830 article-title: Potentially inappropriate medication: the quality of pharmacotherapy in the elderly publication-title: Der Internist – volume: 88 start-page: 404 year: 2009 ident: b0870 article-title: Enhancing the working memory of stroke patients using tDCS publication-title: Am J Phys Med Rehab – volume: 6 start-page: 146 year: 2014 ident: b0775 article-title: Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age publication-title: Front Aging Neurosci – volume: 20 start-page: 215 year: 2017 end-page: 222 ident: b1630 article-title: Safety review of transcranial direct current stimulation in stroke publication-title: Neuromodulation – volume: 6 start-page: 31236 year: 2016 ident: b1350 article-title: Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates publication-title: Sci Rep – volume: 5 start-page: 435 year: 2012 end-page: 453 ident: b1450 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul – volume: 12 start-page: 261 year: 2012 end-page: 272 ident: b0160 article-title: Effect of tDCS stimulation for improving working memory on stroke patients' EEG variation publication-title: J Kor Cont Assoc – volume: 27 start-page: 363 year: 2013 end-page: 369 ident: b1730 article-title: Transcranial direct current stimulation improves swallowing function in stroke patients publication-title: Neurorehab Neur Rep – volume: 74 start-page: 108 year: 2015 end-page: 119 ident: b1025 article-title: The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance publication-title: Neuropsychology – volume: 2016 start-page: 4274127 year: 2016 ident: b0110 article-title: Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults publication-title: Neural Plast – reference: Wagner S, Burgen M, Wolters C. An optimization approach for well-targeted transcranial direct current stimulation. Soc Ind App Math 2016;76:2154–74. – volume: 73 start-page: 10 year: 2013 end-page: 15 ident: b2030 article-title: Neuroenhancement of the aging brain: restoring skill acquisition in old subjects publication-title: Ann Neurol – volume: 3 start-page: 90 year: 2012 ident: b1645 article-title: Target optimization in transcranial direct current stimulation publication-title: Front Psych – volume: 36 start-page: 5289 year: 2016 end-page: 5298 ident: b1865 article-title: Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception publication-title: J Neurosci – volume: 8 start-page: 739 year: 2014 ident: b0695 article-title: Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization publication-title: Front Hum Neurosci – volume: 42 start-page: 109 year: 1976 end-page: 110 ident: b0925 article-title: Group techniques for program planning – guide to nominal group and Delphi processes – Delbecq, Al, Vandeven, Ah and Gustafson, Dh publication-title: J Am Inst Plann – volume: 23 start-page: 7255 year: 2003 end-page: 7261 ident: b0600 article-title: Sensitivity of neurons to weak electric fields publication-title: J Neurosci – volume: 29 start-page: 493 year: 2011 end-page: 505 ident: b1635 article-title: Non-invasive alternating current stimulation improves vision in optic neuropathy publication-title: Rest Neurol Neurosci – year: 1860 ident: b0040 article-title: Elektricität in der Medizin – volume: 30 start-page: 62 year: 2014 end-page: 68 ident: b0640 article-title: Safety of electroconvulsive therapy in the presence of cranial metallic objects publication-title: J ECT – volume: 9 start-page: 265 year: 2015 ident: b1950 article-title: Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke publication-title: Front Hum Neurosci – volume: 55 start-page: 809 year: 2007 end-page: 823 ident: b1065 article-title: In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation publication-title: Neuron – volume: 7 start-page: 28 year: 2014 ident: b0740 article-title: Reduced discomfort during high-definition transcutaneous stimulation using 6% benzocaine publication-title: Front Neuroeng – volume: 42 start-page: 211 year: 2016 end-page: 215 ident: b1960 article-title: The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals publication-title: J Med Ethics – volume: 85 start-page: 425 year: 2015 end-page: 432 ident: b0915 article-title: Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease publication-title: Neurology – volume: 24 start-page: 3379 year: 2004 end-page: 3385 ident: b1745 article-title: Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex publication-title: J Neurosci – volume: 583 start-page: 555 year: 2007 end-page: 565 ident: b0470 article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields publication-title: J Physiol – volume: 128 start-page: 1109 year: 2017 end-page: 1115 ident: b1460 article-title: Safety of repetitive transcranial magnetic stimulation in patients with implanted subdural cortical electrodes. An ex-vivo study and report of a case publication-title: Clin Neurophysiol – volume: 35 start-page: 2840 year: 2014 end-page: 2848 ident: b0720 article-title: Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial publication-title: Res Devel Disab – volume: 28 start-page: 1238 year: 2013 end-page: 1244 ident: b2005 article-title: Cathodal transcranial direct current stimulation in children with dystonia: a pilot open-label trial publication-title: J Child Neurol – volume: 29 start-page: 147 year: 2013 end-page: 148 ident: b1740 article-title: Safety of repeated transcranial direct current stimulation in impaired skin a case report publication-title: J ECT – volume: 33 start-page: 1682 year: 2012 end-page: 1689 ident: b0590 article-title: Non-invasive brain stimulation improves object-location learning in the elderly publication-title: Neurobiol Aging – volume: 33 start-page: 4482 year: 2013 end-page: 4486 ident: b0855 article-title: The mental cost of cognitive enhancement publication-title: J Neurosci – volume: 126 start-page: 1392 year: 2015 end-page: 1399 ident: b1240 article-title: Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents publication-title: Clin Neurophysiol – volume: 31 start-page: 820 year: 2011 end-page: 828 ident: b0090 article-title: Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine publication-title: Cephalalgia – volume: 51 start-page: 1234 year: 2013 end-page: 1239 ident: b1455 article-title: Anodal tDCS to V1 blocks visual perceptual learning consolidation publication-title: Neuropsychology – volume: 18 start-page: 261 year: 2015 end-page: 265 ident: b0735 article-title: Reducing transcranial direct current stimulation-induced erythema with skin pretreatment: considerations for sham-controlled clinical trials publication-title: Neuromodulation – volume: 11 start-page: 124 year: 2014 ident: b0920 article-title: Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects publication-title: J Neuroeng Rehab – volume: 7 start-page: 334 year: 2014 end-page: 335 ident: b1440 article-title: Pain treatment using tDCS in a single patient: tele-medicine approach in non-invasive brain simulation publication-title: Brain Stimul – volume: 8 start-page: 1233 year: 2015 end-page: 1235 ident: b0410 article-title: Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia publication-title: Brain Stimul – volume: 279 start-page: 127 year: 2016 end-page: 136 ident: b0290 article-title: Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke publication-title: Exp Neurol – volume: 26 start-page: 1185 year: 2015 end-page: 1189 ident: b0200 article-title: Pilot study of feasibility of the effect of treatment with tDCS in patients suffering from treatment-resistant depression treated with escitalopram publication-title: Clin Neurophysiol – volume: 1489 start-page: 17 year: 2012 end-page: 26 ident: b1765 article-title: Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model publication-title: Brain Res – volume: 31 start-page: 918 year: 2016 end-page: 924 ident: b0175 article-title: Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a pilot study publication-title: J Child Neurol – volume: 18 start-page: 686 year: 2015 end-page: 693 ident: b0240 article-title: Spinal direct current stimulation modulates short intracortical inhibition publication-title: Neuromodulation – volume: 1 start-page: 97 year: 2008 end-page: 105 ident: b0085 article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans publication-title: Brain Stimul – volume: 45 start-page: 201 year: 2005 end-page: 206 ident: b0840 article-title: Theta burst stimulation of the human motor cortex publication-title: Neuron – volume: 18 start-page: 2701 year: 2008 end-page: 2705 ident: b0095 article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura publication-title: Cereb Cortex – volume: 91 start-page: 619 year: 1964 ident: b0005 article-title: Code of ethics of the World Medical Association (Declaration of Helsinki) publication-title: Can Med Assoc J – volume: 22 start-page: 441 year: 2014 end-page: 452 ident: b1530 article-title: Simulating transcranial direct current stimulation with a detailed anisotropic human head model publication-title: IEEE Trans Neur Sys Rehab Eng – volume: 127 start-page: 1031 year: 2016 end-page: 1048 ident: b1970 article-title: A technical guide to tDCS, and related non-invasive brain stimulation tools publication-title: Clin Neurophysiol – volume: 7 start-page: e43776 year: 2012 ident: b1605 article-title: Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain publication-title: PLoS ONE – volume: 2 start-page: 292 year: 2015 end-page: 335 ident: b0880 article-title: Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community publication-title: J Law Biosci – volume: 70 start-page: 92 year: 2009 end-page: 115 ident: b0760 article-title: Probing the human brain with stimulating electrodes: the story of Roberts Bartholow's (1874) experiment on Mary Rafferty publication-title: Brain Cogn – volume: 10 start-page: 553 year: 2017 end-page: 559 ident: b0370 article-title: Safety and tolerability of transcranial direct current stimulation to stroke patients – a phase I current escalation study publication-title: Brain Stimul – volume: 32 start-page: 90 year: 2015 end-page: 97 ident: b1360 article-title: Safety and feasibility of Irreversible Electroporation (IRE) in patients with locally advanced pancreatic cancer: results of a prospective study publication-title: Dig Surg – volume: 37 start-page: 94 year: 2016 end-page: 121 ident: b0335 article-title: Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner publication-title: Hum Brain Mapping – volume: 109 start-page: 140 year: 2015 end-page: 150 ident: b1355 article-title: Determinants of the electric field during transcranial direct current stimulation publication-title: NeuroImage – volume: 127 start-page: 189 year: 1955 end-page: 200 ident: b0305 article-title: The site of electrical excitation of the human eye publication-title: J Physiol – volume: 14 start-page: 217 year: 2011 end-page: 223 ident: b0060 article-title: Ephaptic coupling of cortical neurons publication-title: Nat Neurosci – volume: 31 start-page: 593 year: 2010 end-page: 597 ident: b0270 article-title: Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation publication-title: Eur J Neurosci – volume: 37 start-page: 510 year: 2010 end-page: 518 ident: b1820 article-title: Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention publication-title: Neurobiol Dis – volume: 74 start-page: 330 year: 2016 end-page: 341 ident: b1115 article-title: A meta-analysis of non-invasive brain stimulation and autonomic functioning: implications for brain-heart pathways to cardiovascular disease publication-title: Neurosci Biobehav Rev – volume: 6 start-page: 289 year: 2014 ident: b1660 article-title: Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly publication-title: Front Aging Neurosci – volume: 123 start-page: 1219 year: 2016 end-page: 1234 ident: b1385 article-title: Transcranial direct current stimulation in children and adolescents: a comprehensive review publication-title: J Neural Transm – volume: 5 start-page: 86 year: 2014 ident: b1670 article-title: Time course of corticospinal excitability and autonomic function interplay during and following monopolar tDCS publication-title: Front Psych – volume: 2015 start-page: 2729 year: 2015 end-page: 2732 ident: b1120 article-title: Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 277 start-page: 56 year: 2016 end-page: 62 ident: b1030 article-title: COMETS2: an advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation publication-title: J Neurosci Meth – volume: 41 start-page: 1475 year: 2015 end-page: 1483 ident: b0810 article-title: Augmenting mirror visual feedback-induced performance improvements in older adults publication-title: Eur J Neurosci – volume: 6 start-page: 115 year: 2014 ident: b0630 article-title: Delayed plastic responses to anodal tDCS in older adults publication-title: Front Aging Neurosci – volume: 2 start-page: 215 year: 2009 end-page: 228 ident: b1520 article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro publication-title: Brain Stimul – volume: 32 start-page: 301 year: 2014 end-page: 312 ident: b0635 article-title: After vs. priming effects of anodal transcranial direct current stimulation on upper extremity motor recovery in patients with subacute stroke publication-title: Rest Neurol Neurosci – volume: 251 start-page: 1041 year: 2013 end-page: 1043 ident: b0645 article-title: Non-invasive electrical brain stimulation induces vision restoration in patients with visual pathway damage publication-title: Graefe's Arch Clin Exp Ophthalmol – volume: 29 start-page: E20 year: 2014 end-page: E29 ident: b1040 article-title: Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial publication-title: J Head Trauma Rehab – volume: 8 start-page: 132 year: 2014 ident: b1100 article-title: Best of both worlds: promise of combining brain stimulation and brain connectome publication-title: Front Syst Neurosci – volume: 27 start-page: 2758 year: 2017 end-page: 2767 ident: b0380 article-title: Transcranial direct-current stimulation can enhance motor learning in children publication-title: Cereb Cor – volume: 128 start-page: 1943 year: 2005 end-page: 1950 ident: b1510 article-title: Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia publication-title: Brain – volume: 43 start-page: 231 year: 2015 end-page: 236 ident: b0665 article-title: Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke publication-title: Contemp Clin Trials – volume: 13 start-page: 61 year: 2010 end-page: 69 ident: b1085 article-title: A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression publication-title: Int J Neuropsychopharmacol – volume: 15 start-page: 366 year: 2014 ident: b1890 article-title: Transcranial direct current stimulation (tDCS) for treatment of major depression during pregnancy: study protocol for a pilot randomized controlled trial publication-title: Trials – volume: 96 start-page: S129 year: 2015 end-page: S137 ident: b0375 article-title: Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury publication-title: Arch Phys Med Rehabil – volume: 6 start-page: 21583 year: 2016 ident: b0835 article-title: Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells publication-title: Sci Rep – volume: 109 start-page: 48 year: 2013 end-page: 64 ident: b1715 article-title: Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS publication-title: Comput Methods Prog Biomed – volume: 124 start-page: 133 year: 2016 end-page: 144 ident: b1755 article-title: Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder publication-title: J Neural Transm – volume: 23 start-page: 109 year: 2017 end-page: 123 ident: b0580 article-title: Transcranial electrical stimulation: what we know and do not know about mechanisms publication-title: Neuroscientist – volume: 115 start-page: 2419 year: 2004 end-page: 2423 ident: b1325 article-title: MRI study of human brain exposed to weak direct current stimulation of the frontal cortex publication-title: Clin Neurophysiol – volume: 4 start-page: 38 year: 2011 end-page: 42 ident: b1160 article-title: Reducing procedural pain and discomfort associated with transcranial direct current stimulation publication-title: Brain Stimul – reference: Hellwag CF, Jacobi M. Erfahrungen über die Heilkräfte des Galvanismus. Hamburg; 1802. – reference: Food, Drug Administration HHS. International conference on harmonisation; guidance on E2F development safety update report; availability. Notice Fed Regist 2011;76:52667–8. – volume: 27 start-page: 295 year: 2016 end-page: 300 ident: b0420 article-title: Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation publication-title: NeuroReport – volume: 42 start-page: 723 year: 2015 end-page: 732 ident: b1345 article-title: Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial publication-title: J Oral Rehab – volume: 20 start-page: 313 year: 2004 end-page: 316 ident: b1560 article-title: Transcranial direct current stimulation disrupts tactile perception publication-title: Eur J Neurosci – volume: 89 start-page: 879 year: 2010 ident: b0910 article-title: Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke publication-title: Am J Phys Med Rehab – volume: 36 start-page: 396 year: 2016 end-page: 404 ident: b1860 article-title: Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson's disease publication-title: J Neurosci – volume: 1581 start-page: 80 year: 2014 end-page: 88 ident: b1930 article-title: In-vivo detection of inflammation and neurodegeneration in the chronic phase after permanent embolic stroke in rats publication-title: Brain Res – volume: 140 start-page: 66 year: 2016 end-page: 75 ident: b0425 article-title: The right inferior frontal cortex in response inhibition: a tDCS-ERP co-registration study publication-title: NeuroImage – volume: 554 start-page: 94 year: 2013 end-page: 98 ident: b1805 article-title: Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect publication-title: Neurosci Lett – volume: 293 start-page: 125 year: 2015 end-page: 133 ident: b0285 article-title: Better together: left and right hemisphere engagement to reduce age-related memory loss publication-title: Behav Brain Res – volume: 10 start-page: 72 year: 2016 ident: b0295 article-title: Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS) publication-title: Front Cell Neurosci – volume: 114 start-page: 2220 year: 2003 end-page: 2222 ident: b1320 article-title: Safety criteria for transcranial direct current stimulation (tDCS) in humans publication-title: Clin Neurophysiol – volume: 127 start-page: 3425 year: 2016 end-page: 3454 ident: b0865 article-title: Animal models of transcranial direct current stimulation: methods and mechanisms publication-title: Clin Neurophysiol – volume: 54 start-page: 663 year: 2014 end-page: 674 ident: b0400 article-title: Reduced threshold for inhibitory homeostatic responses in migraine motor cortex? A tDCS/TMS study publication-title: Headache – volume: 124 start-page: 1187 year: 2013 end-page: 1195 ident: b0845 article-title: Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury publication-title: Clin Neurophysiol – volume: 120 start-page: 1161 year: 2009 end-page: 1167 ident: b1050 article-title: Safety limits of cathodal transcranial direct current stimulation in rats publication-title: Clin Neurophysiol – volume: 11 start-page: 1 year: 2010 end-page: 10 ident: b1870 article-title: Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions publication-title: BMC Neurosci – volume: 21 start-page: 185 year: 2015 end-page: 202 ident: b1260 article-title: Metaplasticity in human cortex publication-title: Neuroscience – volume: 55 start-page: 590 year: 2011 end-page: 596 ident: b0100 article-title: Transcranial direct current stimulation over the primary motor cortex during fMRI publication-title: NeuroImage – volume: 97 start-page: 954 year: 2014 end-page: 962 ident: b0120 article-title: Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation publication-title: J Med Assoc Thai – volume: 217 start-page: 459 year: 2003 end-page: 467 ident: b1145 article-title: Medical device regulation for manufacturers publication-title: P I Mech Eng H – volume: 2012 start-page: 4128 year: 2012 end-page: 4131 ident: b0075 article-title: Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation publication-title: Conf Proc: Ann Internat Conf IEEE Eng Med Biol Soc – volume: 52 start-page: 1283 year: 2012 end-page: 1295 ident: b0440 article-title: TDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine publication-title: Headache – volume: 14 start-page: 1133 year: 2011 end-page: 1145 ident: b0310 article-title: A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation publication-title: Int J Neuropsychopharmacol – volume: 27 start-page: 3807 year: 2007 end-page: 3812 ident: b1330 article-title: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex publication-title: J Neurosci – volume: 6 start-page: 41 year: 2015 ident: b1045 article-title: ARP2/3 complex is required for directional migration of neural stem cell-derived oligodendrocyte precursors in electric fields publication-title: Stem Cell Res Ther – volume: 2015 start-page: 928631 year: 2015 ident: b0050 article-title: The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: a randomized crossover controlled trial publication-title: Behav Neurol – volume: 7 start-page: 460 year: 2014 end-page: 467 ident: b1850 article-title: When size matters: large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density publication-title: Brain Stimul – volume: 4 start-page: 1 year: 2008 end-page: 7 ident: b0195 article-title: Modulating presence and impulsiveness by external stimulation of the brain publication-title: Behav Brain Func – volume: 78 start-page: 353 year: 1998 end-page: 359 ident: b1290 article-title: Brain temperature and limits on transcranial cooling in humans: quantitative modeling results publication-title: Eur J Appl Physiol Occup Physiol – volume: 97 start-page: 142 year: 2011 end-page: 145 ident: b1875 article-title: Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study publication-title: Epil Res – volume: 66 start-page: 198 year: 2010 end-page: 204 ident: b0615 article-title: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning publication-title: Neuron – volume: 37 start-page: 401 year: 1994 end-page: 404 ident: b0150 article-title: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH) publication-title: Br J Clin Pharmacol – volume: 14 start-page: 157 year: 1999 end-page: 158 ident: b0960 article-title: Safety of transcranial magnetic stimulation in patients with implanted deep brain stimulators publication-title: Mov Disord – volume: 3 start-page: 58 year: 2010 end-page: 59 ident: b0605 article-title: Anodal skin lesions after treatment with transcranial direct current stimulation publication-title: Brain Stimul – volume: 72 start-page: 208 year: 2007 end-page: 214 ident: b1485 article-title: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients publication-title: Brain Res Bull – reference: Grappengiesser C. Versuche den Galvanismus zur Heilung einiger Krankheiten. Berlin; 1801. – volume: 171 start-page: 330 year: 1995 end-page: 339 ident: b0525 article-title: Growth cone neurotransmitter receptor activation modulates electric field-guided nerve growth publication-title: Devel Biol – volume: 34 start-page: 3646 year: 2014 end-page: 3652 ident: b0765 article-title: Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age publication-title: J Neurosci – volume: 46 start-page: 169 year: 2015 ident: b0520 article-title: Transcranial direct current stimulation-induced seizure: analysis of a case publication-title: Clin EEG Neurosci – volume: 369 start-page: 185 year: 2016 end-page: 190 ident: b0070 article-title: At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia publication-title: J Neurol Sci – volume: 16 start-page: 277 year: 2013 end-page: 286 ident: b1090 article-title: Irreversible electroporation: ready for prime time? publication-title: Tech Vasc Intervent Rad – volume: 8 start-page: 127 year: 2014 ident: b1095 article-title: Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition publication-title: Front Syst Neurosci – volume: 11 start-page: 188 year: 2008 end-page: 190 ident: b1375 article-title: Transcranial direct current stimulation (tDCS) in therapy-resistant depression: preliminary results from a double-blind, placebo-controlled study publication-title: Int J Neuropsychopharmacol – volume: 140 start-page: 118 year: 2016 end-page: 125 ident: b1910 article-title: BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: a concurrent tACS-fMRI study publication-title: NeuroImage – volume: 18 year: 2014 ident: b1430 article-title: The morphological and molecular changes of brain cells exposed to direct current electric field stimulation publication-title: Int J Neuropsychopharmacol – volume: 8 start-page: 1085 year: 2015 end-page: 1092 ident: b0495 article-title: High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD publication-title: Brain Stimul – volume: 90 start-page: 191 year: 2016 end-page: 203 ident: b0180 article-title: Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories publication-title: Neuron – volume: 125 start-page: 2260 year: 2014 end-page: 2270 ident: b1405 article-title: Modeling the current density generated by transcutaneous spinal direct current stimulation (tsDCS) publication-title: Clin Neurophysiol – volume: 569 start-page: 6 year: 2014 end-page: 11 ident: b1945 article-title: Combination of transcranial direct current stimulation and methylphenidate in subacute stroke publication-title: Neurosci Lett – volume: 6 start-page: 253 year: 2014 ident: b1175 article-title: Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults publication-title: Front Aging Neurosci – volume: 107 start-page: 1868 year: 2012 end-page: 1880 ident: b1535 article-title: Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation publication-title: J Neurophys – volume: 37 start-page: 243 year: 2010 end-page: 251 ident: b0585 article-title: Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke publication-title: Neurobiol Dis – volume: 46 start-page: 2147 year: 2005 end-page: 2155 ident: b1250 article-title: Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system publication-title: Invest Ophthal Vis Sci – volume: 11 start-page: e0149703 year: 2016 ident: b1935 article-title: Perceived comfort and blinding efficacy in randomised sham-controlled transcranial direct current stimulation (tDCS) trials at 2 mA in young and older healthy adults publication-title: PLoS ONE – year: 2017 ident: b1465 article-title: Low-intensity transcranial current stimulation in psychiatry publication-title: Am J Psychiatry – volume: 8 start-page: 906 year: 2015 end-page: 913 ident: b0980 article-title: Inter-subject variability in electric fields of motor cortical tDCS publication-title: Brain Stimul – year: 2014 ident: b1170 article-title: Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging publication-title: J Vis Exp – volume: 106 start-page: 652 year: 2011 end-page: 661 ident: b1680 article-title: Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study publication-title: J Neurophys – volume: 2015 start-page: 963293 year: 2015 ident: b1400 article-title: Effect of the interindividual variability on computational modeling of transcranial direct current stimulation publication-title: Comp Int Neurosci – volume: 4 start-page: 169 year: 2011 end-page: 174 ident: b0445 article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient publication-title: Brain Stimul – volume: 113 start-page: 341 year: 2002 end-page: 345 ident: b0955 article-title: Pseudo-bilateral hand motor responses evoked by transcranial magnetic stimulation in patients with deep brain stimulators publication-title: Clin Neurophysiol – volume: 34 start-page: 121 year: 2014 end-page: 127 ident: b0565 article-title: Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis publication-title: NeuroRehabilitation – volume: 48 start-page: 5782 year: 2007 end-page: 5787 ident: b0995 article-title: Bidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study publication-title: Invest Ophthalmol Vis Sci – volume: 3 start-page: 91 year: 2012 ident: b0465 article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models publication-title: Front Psych – volume: 121 start-page: 2165 year: 2010 end-page: 2171 ident: b1235 article-title: Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes publication-title: Clin Neurophysiol – volume: 7 start-page: 94 year: 2013 ident: b1885 article-title: Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges publication-title: Front Syst Neurosci – volume: 29 start-page: 1212 year: 2015 end-page: 1223 ident: b0395 article-title: Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial publication-title: Clin Rehabil – volume: 18 year: 2014 ident: b1425 article-title: Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models publication-title: Int J Neuropsychopharmacol – volume: 9 start-page: 54 year: 2015 ident: b1500 article-title: Direct electric stimulation to increase cerebrovascular function publication-title: Front Syst Neurosci – volume: 10 start-page: 68 year: 2016 ident: b1180 article-title: Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromyalgia: a randomized placebo-controlled clinical trial publication-title: Front Hum Neurosci – volume: 30 start-page: e16 year: 2014 end-page: e18 ident: b1895 article-title: Electroconvulsive therapy in patients with deep brain stimulators publication-title: J ECT – volume: 30 start-page: 1604 year: 2015 end-page: 1615 ident: b0210 article-title: Multiday transcranial direct current stimulation causes clinically insignificant changes in childhood dystonia: a pilot study publication-title: J Child Neurol – volume: 140 start-page: 110 year: 2016 end-page: 117 ident: b0025 article-title: Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: a combined tES-fMRI approach publication-title: NeuroImage – volume: 26 start-page: 68 year: 2010 end-page: 69 ident: b0125 article-title: Induction of hypomanic episode with transcranial direct current stimulation publication-title: J ECT – volume: 33 start-page: 12470 year: 2013 end-page: 12478 ident: b1165 article-title: Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes publication-title: J Neurosci – volume: 27 start-page: 763 year: 2015 end-page: 768 ident: b1015 article-title: Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial publication-title: J Phys Ther Sci – volume: 10 start-page: e0142740 year: 2015 ident: b0165 article-title: Elucidating the role of injury-induced electric fields (EFs) in regulating the astrocytic response to injury in the mammalian central nervous system publication-title: PLoS ONE – volume: 1 start-page: 193 year: 2010 ident: b1135 article-title: Non-invasive brain stimulation applied to Heschl's gyrus modulates pitch discrimination publication-title: Front Psych – volume: 593 start-page: 3645 year: 2015 end-page: 3655 ident: b1390 article-title: Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation publication-title: J Physiol – volume: 7 start-page: 765 year: 2014 end-page: 767 ident: b1555 article-title: Skin lesions induced by transcranial direct current stimulation (tDCS) publication-title: Brain Stimul – reference: Augustin F. Galvanismus und dessen Medizinischer Anwendung. Berlin; 1801. – volume: 85 start-page: 1040 year: 2014 end-page: 1047 ident: b0080 article-title: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain publication-title: NeuroImage – volume: 22 start-page: 495 year: 2005 end-page: 504 ident: b1005 article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? publication-title: Eur J Neurosci – volume: 19 start-page: 228 year: 2003 end-page: 248 ident: b0035 article-title: EU and member state medical devices regulation publication-title: Int J Technol Assess Health Care – volume: 152 start-page: 142 year: 2017 end-page: 157 ident: b0800 article-title: Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults publication-title: NeuroImage – volume: 4 start-page: 275 year: 2011 end-page: 280 ident: b1140 article-title: Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia publication-title: Brain Stimul – volume: 20 start-page: 248 year: 2017 end-page: 255 ident: b0530 article-title: The influence of skin redness on blinding in transcranial direct current stimulation studies: a crossover trial publication-title: Neuromodulation – volume: 29 start-page: 232 year: 2014 end-page: 239 ident: b2000 article-title: Cathodal transcranial direct current stimulation in children with dystonia: a sham-controlled study publication-title: J Child Neurol – volume: 233 start-page: 2401 year: 2015 end-page: 2409 ident: b2020 article-title: Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults publication-title: Exp Brain Res – volume: 45 start-page: 196 year: 2001 end-page: 201 ident: b0190 article-title: Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation publication-title: Magn Res Med – volume: 4 start-page: 175 year: 2011 end-page: 188 ident: b0660 article-title: Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy publication-title: Brain Stimul – volume: 7 start-page: 92 year: 2014 end-page: 96 ident: b0355 article-title: Safety of 5 kHz tACS publication-title: Brain Stimul – volume: 23 start-page: E4 year: 2011 end-page: E5 ident: b0330 article-title: Manic psychosis after sertraline and transcranial direct-current stimulation publication-title: J Neuropsych Clin Neurosci – volume: 80 start-page: 432 year: 2015 end-page: 438 ident: b0820 article-title: Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites publication-title: Biol Psych – volume: 119 start-page: 25 year: 2015 end-page: 33 ident: b1230 article-title: Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: self-reports and resting state EEG analysis publication-title: Brain Res Bull – volume: 2009 start-page: 1596 year: 2009 end-page: 1599 ident: b0550 article-title: Comparing different electrode configurations using the 10–10 international system in tDCS: a finite element model analysis publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 3 start-page: 23 year: 1972 end-page: 30 ident: b1225 article-title: Septal stimulation for initiation of heterosexual behavior in a homosexual male publication-title: J Behav Ther Exp Psych – volume: 71 year: 2011 ident: b0935 article-title: Subliminal semantic processing in face stimuli: an EEG and tDCS study publication-title: Neurosci Res – volume: 18 start-page: 157 year: 2013 end-page: 166 ident: b0030 article-title: Short-term and long-term effects of electrical stimulation on skin properties publication-title: Physiother Res Int – volume: 33 start-page: 647 year: 2015 end-page: 662 ident: b0990 article-title: A-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect publication-title: Rest Neurol Neurosci – volume: 1 start-page: 386 year: 2008 end-page: 387 ident: b1370 article-title: Skin lesions after treatment with transcranial direct current stimulation (tDCS) publication-title: Brain Stimul – volume: 7 start-page: 107 year: 2015 ident: b1505 article-title: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective publication-title: Front Aging Neurosci – volume: 121 start-page: 1908 year: 2010 end-page: 1914 ident: b0055 article-title: Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS publication-title: Clin Neurophysiol – volume: 6 start-page: 87 year: 2013 end-page: 93 ident: b1690 article-title: Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study publication-title: Brain Stimul – volume: 126 start-page: 2181 year: 2015 end-page: 2188 ident: b0575 article-title: What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects publication-title: Clin Neurophysiol – volume: 85 start-page: 943 year: 2005 end-page: 978 ident: b1150 article-title: Controlling cell behavior electrically: current views and future potential publication-title: Physiol Rev – volume: 97 start-page: 3109 year: 2007 end-page: 3117 ident: b1315 article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex publication-title: J Neurophys – volume: 14 start-page: 425 year: 2011 end-page: 426 ident: b1080 article-title: Avoiding skin burns with transcranial direct current stimulation: preliminary considerations publication-title: Int J Neuropsychopharmacol – volume: 37 start-page: 996 year: 1990 end-page: 1001 ident: b1155 article-title: Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation publication-title: IEEE Trans Biomed Eng – volume: 9 start-page: 457 year: 2016 end-page: 458 ident: b1770 article-title: Monotherapy with tDCS for treatment of depressive episode during pregnancy: a case report publication-title: Brain Stimul – volume: 8 start-page: 993 year: 2015 end-page: 1006 ident: b0885 article-title: Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation publication-title: Brain Stimul – volume: 70 start-page: 48 year: 2013 end-page: 58 ident: b1215 article-title: The electric field in the cortex during transcranial current stimulation publication-title: NeuroImage – volume: 2012 start-page: 5514 year: 2012 end-page: 5517 ident: b1190 article-title: Investigation of the electric field components of tDCS via anisotropically conductive gyri-specific finite element head models publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 29 start-page: 5202 year: 2009 end-page: 5206 ident: b1780 article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation publication-title: J Neurosci – volume: 117 start-page: 845 year: 2006 end-page: 850 ident: b0675 article-title: Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation publication-title: Clin Neurophysiol – volume: 118 start-page: 406 year: 2015 end-page: 413 ident: b1295 article-title: Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation publication-title: NeuroImage – volume: 35 start-page: 579 year: 2011 end-page: 582 ident: b1990 article-title: Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient – a case report publication-title: Ann Rehab Med – volume: 53 start-page: 853 year: 2010 end-page: 859 ident: b0610 article-title: Pharmacological neuroenhancement and brain doping: chances and risks publication-title: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz – volume: 25 start-page: 256 year: 2009 end-page: 260 ident: b1070 article-title: Transcranial direct current stimulation priming of therapeutic repetitive transcranial magnetic stimulation: a pilot study publication-title: J ECT – volume: 34 start-page: 5029 year: 2014 end-page: 5037 ident: b1105 article-title: Cerebellar-parietal connections underpin phonological storage publication-title: J Neurosci – volume: 1351 start-page: 127 year: 2015 end-page: 140 ident: b1020 article-title: The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects publication-title: Ann NY Acad Sci – volume: 2010 start-page: 2073 year: 2010 end-page: 2076 ident: b1650 article-title: Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation publication-title: Ann Int Conf IEEE Eng Med Biol Soc – volume: 10 start-page: 361 year: 2016 ident: b0730 article-title: Spared primary motor cortex and the presence of MEP in cerebral palsy dictate the responsiveness to tDCS during gait training publication-title: Front Hum Neurosci – volume: 126 start-page: 2189 year: 2015 end-page: 2197 ident: b0705 article-title: The effects of anodal-tDCS on cross-limb transfer in older adults publication-title: Clin Neurophysiol – volume: 1 start-page: 206 year: 2008 end-page: 223 ident: b1310 article-title: Transcranial direct current stimulation: state of the art 2008 publication-title: Brain Stimul – volume: 85 start-page: 1058 year: 2014 end-page: 1068 ident: b0300 article-title: Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition? publication-title: NeuroImage – volume: 7 start-page: 823 year: 2014 end-page: 831 ident: b1515 article-title: Neurosensory effects of transcranial alternating current stimulation publication-title: Brain Stimul – volume: 51 start-page: 1310 year: 2010 end-page: 1318 ident: b1640 article-title: Transcranial direct current stimulation (tDCS) in a realistic head model publication-title: NeuroImage – volume: 157 start-page: 429 year: 2016 end-page: 437 ident: b1900 article-title: Reduction of chronic abdominal pain in patients with inflammatory bowel disease through transcranial direct current stimulation: a randomized controlled trial publication-title: Pain – volume: 2016 start-page: 5068127 year: 2016 ident: b1795 article-title: TDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke publication-title: Biomed Res Int – volume: 80 start-page: 1 year: 2016 end-page: 4 ident: b1980 article-title: An open letter concerning do-it-yourself users of transcranial direct current stimulation publication-title: Ann Neurol – volume: 96 start-page: S114 year: 2015 end-page: S121 ident: b1275 article-title: Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury publication-title: Arch Phys Med Rehab – volume: 24 start-page: 442 year: 1994 end-page: 445 ident: b0265 article-title: The use of the method of transcranial micropolarization to decrease the severity hyperkineses in patients with infantile cerebral palsy publication-title: Neurosci Behav Physiol – volume: 141 start-page: 171 year: 2005 end-page: 198 ident: b1185 article-title: Electrical stimulation of excitable tissue: design of efficacious and safe protocols publication-title: J Neurosci Meth – volume: 75 start-page: 12 year: 2013 end-page: 19 ident: b0490 article-title: Targeted transcranial direct current stimulation for rehabilitation after stroke publication-title: NeuroImage – volume: 13 start-page: 112 year: 2012 end-page: 120 ident: b0275 article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception publication-title: J Pain – volume: 140 start-page: 99 year: 2016 end-page: 109 ident: b1340 article-title: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation publication-title: NeuroImage – volume: 9 start-page: 641 year: 2016 end-page: 661 ident: b0230 article-title: Safety of transcranial direct current stimulation: evidence based update 2016 publication-title: Brain Stimul – volume: 118 start-page: 1166 year: 2007 end-page: 1170 ident: b0505 article-title: Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes publication-title: Clin Neurophysiol – volume: 9 start-page: 1 year: 2016 end-page: 7 ident: b0805 article-title: The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions publication-title: Brain Stimul – volume: 21 start-page: 1471 year: 2006 end-page: 1476 ident: b0795 article-title: MEP latency shift after implantation of deep brain stimulation systems in the subthalamic nucleus in patients with advanced Parkinson's disease publication-title: Mov Dis – volume: 31 start-page: 784 year: 2016 end-page: 796 ident: b1600 article-title: Noninvasive brain stimulation in pediatric attention-deficit hyperactivity disorder (ADHD): a review publication-title: J Child Neurol – volume: 123 start-page: 2006 year: 2012 end-page: 2009 ident: b1625 article-title: TDCS possibly stimulates glial cells publication-title: Clin Neurophysiol – volume: 282 start-page: 974 year: 1981 end-page: 976 ident: b1540 article-title: Clinical pharmacology. Adverse reactions to drugs publication-title: BMJ – year: 1811 ident: b0930 article-title: Versuch einer Darstellung des animalischen Magnetismus als Heilmittel – volume: 8 start-page: 76 year: 2015 end-page: 87 ident: b0940 article-title: Safety of noninvasive brain stimulation in children and adolescents publication-title: Brain Stimul – volume: 121 start-page: 221 year: 2014 end-page: 231 ident: b0245 article-title: Evidence for metaplasticity in the human visual cortex publication-title: J Neural Transm – volume: 49 start-page: 1801 year: 2013 end-page: 1807 ident: b1475 article-title: Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism publication-title: Cortex – volume: 39 start-page: 890 year: 2010 end-page: 903 ident: b0105 article-title: Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition publication-title: J Pain Symp Man – volume: 3 start-page: 6 year: 2009 ident: b1705 article-title: Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation publication-title: Front Int Neurosci – volume: 33 start-page: 11425 year: 2013 end-page: 11431 ident: b1785 article-title: Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex publication-title: J Neurosci – volume: 63 start-page: 168 year: 2016 end-page: 175 ident: b0975 article-title: Current density imaging during transcranial direct current stimulation using DT-MRI and MREIT: algorithm development and numerical simulations publication-title: IEEE Trans Biomed Eng – volume: 5 start-page: 49 year: 2013 ident: b1125 article-title: Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation publication-title: Front Aging Neurosci – volume: 7 start-page: 793 year: 2014 end-page: 799 ident: b1490 article-title: Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls publication-title: Brain Stimul – volume: 120 start-page: 2008 year: 2009 end-page: 2039 ident: b1575 article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clin Neurophysiol – volume: 38 start-page: 637 year: 2016 end-page: 643 ident: b1255 article-title: Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial publication-title: Disab Rehab – volume: 14 start-page: 388 year: 2015 end-page: 405 ident: b0790 article-title: Neuroinflammation in Alzheimer's disease publication-title: Lancet Neurol – year: 2017 ident: b0700 article-title: Concurrent diffuse optical measurement of cerebral hemodynamics and EEG during transcranial direct current stimulation (tDCS) in humans publication-title: Brain Stimul – volume: 11 year: 2017 ident: b0435 article-title: Moral enhancement using non-invasive brain stimulation publication-title: Front Hum Neurosci – volume: 47 start-page: 414 year: 2013 end-page: 422 ident: b1480 article-title: No effects of anodal transcranial direct stimulation on language abilities in early rehabilitation of post-stroke aphasic patients publication-title: Neurol Neurochir Polska – volume: 64 start-page: 872 year: 2005 end-page: 875 ident: b0860 article-title: Safety and cognitive effect of frontal DC brain polarization in healthy individuals publication-title: Neurology – volume: 39 start-page: 210 year: 2016 end-page: 216 ident: b1665 article-title: Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning publication-title: Neurobiol Aging – volume: 108 start-page: e53367 year: 2016 ident: b0430 article-title: Non-invasive electrical brain stimulation montages for modulation of human motor function publication-title: J Vis Exp – volume: 89 start-page: 216 year: 2014 end-page: 225 ident: b1610 article-title: Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields publication-title: NeuroImage – volume: 64 start-page: 184 year: 2017 end-page: 195 ident: b1395 article-title: A computational model of the electric field distribution due to regional personalized or non-personalized electrodes to select transcranial electric stimulation target publication-title: IEEE Trans Biomed Eng – volume: 46 start-page: 319 year: 2016 end-page: 398 ident: b1035 article-title: A comprehensive database of published tDCS clinical trials (2005–2016) publication-title: Neurophysiol Clinique – volume: 85 start-page: 1048 year: 2014 end-page: 1057 ident: b1925 article-title: Impact of brain tissue filtering on neurostimulation fields: a modeling study publication-title: NeuroImage – volume: 5 start-page: 155 year: 2012 end-page: 162 ident: b0895 article-title: Differences in the experience of active and sham transcranial direct current stimulation publication-title: Brain Stimul – volume: 117 start-page: 455 year: 2006 end-page: 471 ident: b1110 article-title: Safety of rTMS to non-motor cortical areas in healthy participants and patients publication-title: Clin Neurophysiol – volume: 25 start-page: 122 year: 2014 end-page: 126 ident: b1420 article-title: Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults publication-title: NeuroReport – volume: 132 start-page: 3011 year: 2009 end-page: 3020 ident: b1760 article-title: Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation publication-title: Brain – volume: 110 start-page: 1414 year: 2011 end-page: 1424 ident: b0010 article-title: Trans-spinal direct current stimulation modulates motor cortex-induced muscle contraction in mice publication-title: J Appl Physiol – volume: 21 start-page: 333 year: 2013 end-page: 345 ident: b1620 article-title: Transcranial current brain stimulation (tCS): models and technologies publication-title: IEEE Trans Neur Sys Reh – volume: 83 start-page: 1394 year: 2000 end-page: 1402 ident: b1775 article-title: Stochastic resonance improves signal detection in hippocampal CA1 neurons publication-title: J Neurophys – volume: 74 start-page: 152 year: 2015 end-page: 161 ident: b1750 article-title: Transcranial direct current stimulation to the parietal cortex in hemispatial neglect: a feasibility study publication-title: Neuropsychology – volume: 11 start-page: e0156134 year: 2016 ident: b0655 article-title: Alternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial publication-title: PLoS ONE – volume: 22 start-page: 316 year: 2010 end-page: 318 ident: b0155 article-title: Hypomanic episode in unipolar depression during transcranial direct current stimulation publication-title: Acta Neuropsych – volume: 3 start-page: 97 year: 2012 ident: b0555 article-title: Modulation of untruthful responses with non-invasive brain stimulation publication-title: Front Psych – volume: 2010 start-page: 6821 year: 2010 end-page: 6824 ident: b0475 article-title: Transcranial magnetic stimulation in the presence of deep brain stimulation implants: induced electrode currents publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 34 start-page: 4022 year: 2014 end-page: 4026 ident: b2035 article-title: Shaping memory accuracy by left prefrontal transcranial direct current stimulation publication-title: J Neurosci – volume: 10 start-page: 683 year: 2016 ident: b0965 article-title: 5 kHz transcranial alternating current stimulation: lack of cortical excitability changes when grouped in a theta burst pattern publication-title: Front Hum Neurosci – volume: 253 start-page: 171 year: 2015 end-page: 176 ident: b0625 article-title: The role of electrical stimulation therapy in ophthalmic diseases publication-title: Graefe's Arch Clin Exp Ophthalmol – volume: 2015 start-page: 684025 year: 2015 ident: b1435 article-title: The bipolar depression electrical treatment trial (BETTER): design, rationale, and objectives of a randomized, sham-controlled trial and data from the pilot study phase publication-title: Neur Plast – volume: 16 start-page: 1695 year: 2013 end-page: 1706 ident: b1525 article-title: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics publication-title: Int J Neuropsychopharmacol – volume: 10 start-page: 188 year: 2016 ident: b0685 article-title: Glia: a neglected player in non-invasive direct current brain stimulation publication-title: Front Cell Neurosci – volume: 7 start-page: 627 year: 2014 end-page: 635 ident: b1590 article-title: Broca's area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia publication-title: Brain Stimul – volume: 28 start-page: 231 year: 2015 end-page: 239 ident: b0900 article-title: Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain publication-title: NMR Biomed – volume: 19 start-page: 46 year: 2016 end-page: 52 ident: b1835 article-title: Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control publication-title: Prost Cancer Prost Dis – volume: 7 start-page: 762 year: 2014 end-page: 764 ident: b1365 article-title: The role of contact media at the skin-electrode interface during transcranial direct current stimulation (tDCS) publication-title: Brain Stimul – volume: 20 start-page: e00255 year: 2014 ident: b1415 article-title: Effects of transcranial direct current stimulation in combination with motor practice on dexterous grasping and manipulation in healthy older adults publication-title: Phys Rep – volume: 8 start-page: 455 year: 2015 end-page: 464 ident: b1655 article-title: Transcranial direct current stimulation in epilepsy publication-title: Brain Stimul – volume: 21 start-page: 333 year: 2013 end-page: 345 ident: b1615 article-title: Transcranial current brain stimulation (tCS): models and technologies publication-title: IEEE Transact Neur Sys Rehab Eng – volume: 22 start-page: 197 year: 2010 end-page: 198 ident: b1335 article-title: Recommendations for the use of tDCS in clinical research publication-title: Acta Neuropsych – volume: 77 start-page: 689 year: 2016 end-page: 690 ident: b1565 article-title: Safety and efficacy of electroconvulsive therapy for depression in the presence of deep brain stimulation in obsessive-compulsive disorder publication-title: J Clin Psych – volume: 154 start-page: 2178 year: 2013 end-page: 2184 ident: b1975 article-title: Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial publication-title: Pain – volume: 27 start-page: 256 year: 2011 end-page: 258 ident: b0670 article-title: Hypomania induction in a patient with bipolar II disorder by transcranial direct current stimulation (tDCS) publication-title: J ECT – volume: 5 start-page: e13766 year: 2010 ident: b2015 article-title: Transcranial alternating current stimulation enhances individual alpha activity in human EEG publication-title: PLoS ONE – volume: 67 start-page: 129 year: 2010 end-page: 143 ident: b0620 article-title: Endogenous electric fields may guide neocortical network activity publication-title: Neuron – volume: 5 start-page: 430 year: 2012 end-page: 431 ident: b0220 article-title: Guidelines for precise and accurate computational models of tDCS publication-title: Brain Stimul – volume: 374 start-page: 20150187 year: 2016 ident: b1580 article-title: The heart side of brain neuromodulation publication-title: Philos Trans R Soc A – volume: 8 start-page: e76112 year: 2013 ident: b0890 article-title: Dosage considerations for transcranial direct current stimulation in children: a computational modeling study publication-title: PLoS ONE – volume: 126 start-page: 1071 year: 2015 end-page: 1107 ident: b1585 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee publication-title: Clin Neurophysiol – volume: 2016 start-page: 5961362 year: 2016 ident: b0500 article-title: Multisession anodal tDCS protocol improves motor system function in an aging population publication-title: Neur Plast – volume: 8 start-page: 163 year: 2015 end-page: 164 ident: b1725 article-title: Transcranial direct current stimulation (tDCS) for auditory verbal hallucinations in schizophrenia during pregnancy: a case report publication-title: Brain Stimul – volume: 2014 start-page: 173073 year: 2014 ident: b0045 article-title: Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial publication-title: Behav Neurol – volume: 10 start-page: 349 year: 2013 end-page: 360 ident: b0185 article-title: Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation publication-title: Stem Cell Res – volume: 9 start-page: 26 year: 2015 ident: b0360 article-title: Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols publication-title: Front Syst Neurosci – volume: 5 start-page: 10289 year: 2015 ident: b0750 article-title: The galvanotactic migration of keratinocytes is enhanced by hypoxic preconditioning publication-title: Sci Rep – volume: 74 start-page: 266 year: 2013 end-page: 275 ident: b0515 article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS publication-title: NeuroImage – volume: 234 start-page: 637 year: 2016 end-page: 643 ident: b1790 article-title: “Unfocus” on focus: commercial tDCS headset impairs working memory publication-title: Exp Brain Res – volume: 156 start-page: 62 year: 2015 end-page: 71 ident: b0535 article-title: Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial publication-title: Pain – volume: 1650 start-page: 10 year: 2016 end-page: 20 ident: b1985 article-title: Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-alpha expression publication-title: Brain Res – volume: 119 start-page: 2636 year: 2008 end-page: 2640 ident: b0390 article-title: Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans publication-title: Clin Neurophysiol – volume: 22 start-page: 391 year: 1999 end-page: 397 ident: b0480 article-title: Pathobiology of ischaemic stroke: an integrated view publication-title: Trends Neurosci – volume: 5 start-page: 242 year: 2012 end-page: 251 ident: b1380 article-title: Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study publication-title: Brain Stimul – volume: 7 start-page: 230 year: 2015 ident: b1300 article-title: No significant effect of prefrontal tDCS on working memory performance in older adults publication-title: Front Aging Neurosci – volume: 53 start-page: 257 year: 2009 end-page: 266 ident: b1815 article-title: Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats publication-title: Jpn J Ophthalmol – volume: 44 start-page: 3166 year: 2013 end-page: 3174 ident: b1445 article-title: Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke publication-title: Stroke – volume: 3 start-page: 84 year: 2012 ident: b1545 article-title: EEG driven tDCS versus bifrontal tDCS for tinnitus publication-title: Front Psych – volume: 121 start-page: 1976 year: 2010 end-page: 1978 ident: b0225 article-title: Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode's position and size publication-title: Clin Neurophysiol – volume: 10 start-page: 101 year: 1975 end-page: 104 ident: b0510 article-title: Intracerebral current levels in man during electrosleep therapy publication-title: Biol Psych – volume: 5 start-page: 432 year: 2012 end-page: 434 ident: b1550 article-title: Contact dermatitis after transcranial direct current stimulation publication-title: Brain Stimul – volume: 93 start-page: 43 year: 1993 end-page: 45 ident: b0260 article-title: The use of the transcranial micropolarization method for decreasing the manifestations of hyperkinesis in patients with infantile cerebral palsy publication-title: Zh Nevrol Psikhiatr Im S S Korsakova – volume: 8 start-page: 590 year: 2015 end-page: 602 ident: b1710 article-title: The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS) publication-title: Brain Stimul – volume: 16 start-page: 127 year: 2010 end-page: 131 ident: b1735 article-title: The safety of transcranial magnetic stimulation with deep brain stimulation instruments publication-title: Parkins Rel Dis – volume: 9 start-page: 671 year: 2016 end-page: 681 ident: b0115 article-title: A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials publication-title: Brain Stimul – volume: 254 start-page: 18 year: 2015 end-page: 26 ident: b0250 article-title: An unexpected target of spinal direct current stimulation: interhemispheric connectivity in humans publication-title: J Neurosci Meth – volume: 120 start-page: 25 year: 2015 end-page: 35 ident: b1675 article-title: On the importance of electrode parameters for shaping electric field patterns generated by tDCS publication-title: NeuroImage – volume: 8 start-page: 43 year: 2015 end-page: 52 ident: b0015 article-title: Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update publication-title: J Vasc Intervent Neurol – year: 1864 ident: b2025 article-title: Die Elektricität in der Medicin – volume: 11 start-page: 036002 year: 2014 ident: b1720 article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation publication-title: J Neur Eng – volume: 25 start-page: 417 year: 2012 end-page: 425 ident: b0540 article-title: Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy publication-title: Epil Behav – volume: 56 start-page: 716 year: 2001 end-page: 723 ident: b0365 article-title: Effects of internal globus pallidus stimulation on motor cortex excitability publication-title: Neurology – volume: 6 start-page: 275 year: 2014 ident: b0905 article-title: A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer's disease publication-title: Front Aging Neurosci – volume: 219 start-page: 297 year: 2013 end-page: 311 ident: b0745 article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations publication-title: J Neurosci Meth – volume: 25 start-page: 640 year: 2011 end-page: 654 ident: b1695 article-title: The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism publication-title: Clin Linguist Phon – volume: 592 start-page: 3345 year: 2014 end-page: 3369 ident: b1495 article-title: Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists publication-title: J Physiol – volume: 17 start-page: 647 year: 2011 end-page: 648 ident: b0950 article-title: Safety of transcranial magnetic stimulation for the newer generation of deep brain stimulators publication-title: Parkins Rel Disor – volume: 41 start-page: 2087 year: 2010 end-page: 2090 ident: b1880 article-title: Cortical neuromodulation modifies cerebral vasomotor reactivity publication-title: Stroke – volume: 31 start-page: 275 year: 2013 end-page: 285 ident: b1855 article-title: Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation publication-title: Rest Neur Neurosci – volume: 521 start-page: 148 year: 2012 end-page: 151 ident: b0205 article-title: TDCS selectively improves working memory in older adults with more education publication-title: Neurosci Lett – volume: 111 start-page: 1301 year: 2010 end-page: 1307 ident: b1285 article-title: The analgesic and antihyperalgesic effects of transcranial electrostimulation with combined direct and alternating current in healthy volunteers publication-title: Anest Anal – volume: 17 start-page: 810 year: 2014 end-page: 812 ident: b1905 article-title: Induction of self awareness in dreams through frontal low current stimulation of gamma activity publication-title: Nat Neurosci – reference: Grecco LA, Mendonça ME, Duarte NA, Zanon N, Fregni F, Oliveira CS. Transcranial direct current stimulation combined with treadmill gait training in delayed neuro-psychomotor development. J Phys Ther Sci 2014b;26:945–50. – volume: 8 start-page: 066017 year: 2011 ident: b0545 article-title: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS publication-title: J Neur Eng – volume: 11 start-page: 113 year: 2017 ident: b1010 article-title: Can neuromodulation also enhance social inequality? Some possible indirect interventions of the state publication-title: Front Hum Neurosci – volume: 56 start-page: 634 year: 2004 end-page: 639 ident: b1000 article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects publication-title: Biol Psych – volume: 10 start-page: e0121904 year: 2015 ident: b0875 article-title: Longitudinal neurostimulation in older adults improves working memory publication-title: PLoS ONE – volume: 28 start-page: 14147 year: 2008 end-page: 14155 ident: b1825 article-title: Increasing human brain excitability by transcranial high-frequency random noise stimulation publication-title: J Neurosci – volume: 501 start-page: 167 year: 2013 ident: b0215 article-title: Neuroscience: transcranial devices are not playthings publication-title: Nature – volume: 5 start-page: 484 year: 2012 end-page: 491 ident: b0985 article-title: Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention publication-title: Brain Stimul – volume: 10 start-page: 275 year: 2008 end-page: 309 ident: b0385 article-title: Neural stimulation and recording electrodes publication-title: Ann Rev Biomed Eng – year: 2013 ident: b1685 article-title: Simultaneous EEG monitoring during transcranial direct current stimulation publication-title: J Vis Exp – volume: 11 start-page: 75 year: 2015 end-page: 86 ident: b0340 article-title: Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion publication-title: Stem Cell Rev – volume: 275 start-page: 316 year: 2016 end-page: 327 ident: b1060 article-title: Microglia in the TBI brain: the good, the bad, and the dysregulated publication-title: Exp Neurol – volume: 354 start-page: 103 year: 2015 end-page: 109 ident: b1965 article-title: Prophylactic treatment in menstrual migraine: a proof-of-concept study publication-title: J Neurol Sci – volume: 70 start-page: 383 year: 2013 end-page: 391 ident: b0325 article-title: The sertraline vs electrical current therapy for treating depression clinical study results from a factorial, randomized, controlled trial publication-title: JAMA Psych – volume: 43 start-page: 220 year: 2012 end-page: 227 ident: b1305 article-title: Transcranial direct current stimulation of the human brain. From basic principles to clinical application publication-title: Klin Neurophysiol – volume: 4 start-page: 189 year: 2011 end-page: 201 ident: b0560 article-title: Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: a clinical observational study publication-title: Brain Stimul – volume: 10 start-page: 262 year: 2016 ident: b2010 article-title: Weighing the cost and benefit of transcranial direct current stimulation on different reading subskills publication-title: Front Neurosci – volume: 8 start-page: 165 year: 2015 end-page: 166 ident: b1940 article-title: Skin burn after single session of transcranial direct current stimulation (tDCS) publication-title: Brain Stimul – volume: 35 start-page: 2217 year: 2014 end-page: 2221 ident: b0755 article-title: Cerebellar direct current stimulation enhances motor learning in older adults publication-title: Neurobiol Aging – volume: 120 start-page: 1183 year: 2009 end-page: 1187 ident: b1210 article-title: What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? publication-title: Clin Neurophysiol – volume: 53 start-page: 1085 year: 2015 end-page: 1101 ident: b1195 article-title: The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation publication-title: Med Biol Eng Com – volume: 10 start-page: e0143533 year: 2015 ident: b1265 article-title: Entrainment of human alpha oscillations selectively enhances visual conjunction search publication-title: PLoS ONE – volume: 53 start-page: 209 year: 2011 end-page: 225 ident: b1595 article-title: The use of noninvasive brain stimulation in childhood psychiatric disorders: new diagnostic and therapeutic opportunities and challenges publication-title: Rev Neurol – volume: 9 start-page: 545 year: 2016 end-page: 552 ident: b0680 article-title: Safety, tolerability, blinding efficacy and behavioural effects of a novel MRI-compatible, high-definition tDCS set-up publication-title: Brain Stimul – volume: 9 start-page: 307 year: 2015 ident: b1270 article-title: Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder publication-title: Front Cell Neurosci – volume: 9 start-page: 1245 year: 2016 end-page: 1252 ident: b0130 article-title: Efficacy and safety of combining clozapine with electrical or magnetic brain stimulation in treatment-refractory schizophrenia publication-title: Expert Rev Clin Pharmacol – volume: 7 start-page: 66 year: 2016 ident: b0145 article-title: Transcranial direct current stimulation for treatment of childhood pharmacoresistant Lennox-Gastaut syndrome: a pilot study publication-title: Front Neurol – volume: 28 start-page: 275 year: 2016 end-page: 281 ident: b1130 article-title: Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders publication-title: J Cogn Neurosci – volume: 48 start-page: 2356 year: 2007 end-page: 2361 ident: b1220 article-title: Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury publication-title: Invest Ophthal Vis Sci – volume: 2012 start-page: 891 year: 2012 end-page: 895 ident: b0945 article-title: Electrode assembly design for transcranial direct current stimulation: a FEM modeling study publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 10 start-page: 260 year: 2017 end-page: 262 ident: b0320 article-title: Treatment-emergent mania/hypomania during antidepressant treatment with transcranial direct current stimulation (tDCS): a systematic review and meta-analysis publication-title: Brain Stimul – start-page: 127 year: 2015 end-page: 150 ident: b1200 article-title: Cranial electrical stimulation. Textbook of neuromodulation – volume: 37 start-page: 181 year: 2015 end-page: 191 ident: b1840 article-title: A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot publication-title: NeuroRehabilitation – volume: 7 start-page: 636 year: 2014 end-page: 642 ident: b0770 article-title: Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients publication-title: Brain Stimul – volume: 27 start-page: 335 year: 2010 end-page: 341 ident: b0650 article-title: Repetitive transorbital alternating current stimulation in optic neuropathy publication-title: NeuroRehabilitation – volume: 6 start-page: 696 year: 2013 end-page: 700 ident: b0140 article-title: Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy publication-title: Brain Stimul – volume: 3 start-page: 16 year: 2011 ident: b1570 article-title: Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes publication-title: Front Aging Neurosci – volume: 12 start-page: 643 year: 2009 end-page: 650 ident: b1700 article-title: Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression publication-title: Int J Neuropsychopharmacol – volume: 7 start-page: 11100 year: 2016 ident: b1245 article-title: Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain publication-title: Nat Commun – volume: 26 start-page: 590 year: 2016 end-page: 597 ident: b1280 article-title: Transcranial direct current stimulation in child and adolescent psychiatry publication-title: J Child Adolesc Psychopharmacol – volume: 29 start-page: 1360 year: 2014 end-page: 1365 ident: b0065 article-title: Feasibility of transcranial direct current stimulation use in children aged 5 to 12 years publication-title: J Child Neurol – volume: 31 start-page: 2160 year: 2010 end-page: 2168 ident: b0850 article-title: Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex publication-title: Neurobiol Aging – volume: 20 start-page: 1926 year: 2010 end-page: 1936 ident: b0970 article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease publication-title: Cereb Cor – volume: 2 start-page: 201 year: 2009 end-page: 207 ident: b0450 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul – volume: 28 start-page: 356 year: 2013 end-page: 361 ident: b0315 article-title: Interactions between transcranial direct current stimulation (tDCS) and pharmacological interventions in the major depressive episode: findings from a naturalistic study publication-title: Eur Psychiat – volume: 2 start-page: 759 year: 2013 end-page: 766 ident: b1845 article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines publication-title: NeuroImage Clin – volume: 27 start-page: 134 year: 2011 end-page: 140 ident: b1810 article-title: Cognitive, mood, and electroencephalographic effects of noninvasive cortical stimulation with weak electrical currents publication-title: J ECT – volume: 29 start-page: 167 year: 2011 end-page: 175 ident: b0350 article-title: Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability publication-title: Rest Neurol Neurosci – volume: 119 start-page: 1 year: 2011 end-page: 5 ident: b1995 article-title: Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients publication-title: Brain Lang – volume: 3 start-page: 74 year: 2012 ident: b0235 article-title: A randomized double-blind sham-controlled study of transcranial direct current stimulation for treatment-resistant major depression publication-title: Front Psych – volume: 5 year: 2013 ident: b0710 article-title: Formation of cortical plasticity in older adults following tDCS and motor training publication-title: Front Aging Neurosci – volume: 12 start-page: 046030 year: 2015 ident: b0825 article-title: Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes publication-title: J Neur Eng – volume: 2009 start-page: 670 year: 2009 end-page: 673 ident: b0460 article-title: Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 35 start-page: 119 year: 2012 end-page: 124 ident: b0405 article-title: Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex publication-title: Eur J Neurosci – volume: 21 start-page: 1403 year: 2011 end-page: 1407 ident: b0815 article-title: Speech facilitation by left inferior frontal cortex stimulation publication-title: Curr Biol – volume: 264 start-page: S27 year: 2014 end-page: S33 ident: b0170 article-title: A perfect match: noninvasive brain stimulation and psychotherapy publication-title: Eur Arch Psych Clin Neurosci – volume: 20 start-page: 252 year: 2016 end-page: 257 ident: b0345 article-title: Transcranial direct current stimulation combined with integrative speech therapy in a child with cerebral palsy: a case report publication-title: J Bodyw Mov Ther – volume: 6 year: 2017 ident: b0830 article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation publication-title: eLife – volume: 58 start-page: 1773 year: 2011 end-page: 1780 ident: b1410 article-title: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical human head model publication-title: IEEE Trans Biomed Eng – volume: 114 start-page: 440 year: 2015 end-page: 446 ident: b0255 article-title: Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability publication-title: J Neurophysiol – volume: 33 start-page: 9176 year: 2013 end-page: 9183 ident: b1055 article-title: Differential effects of dual and unihemispheric motor cortex stimulation in older adults publication-title: J Neurosci – volume: 279 start-page: 127 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0290 article-title: Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke publication-title: Exp Neurol doi: 10.1016/j.expneurol.2016.02.018 – volume: 33 start-page: 12470 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1165 article-title: Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5743-12.2013 – volume: 35 start-page: 2217 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0755 article-title: Cerebellar direct current stimulation enhances motor learning in older adults publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2014.03.030 – volume: 67 start-page: 129 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0620 article-title: Endogenous electric fields may guide neocortical network activity publication-title: Neuron doi: 10.1016/j.neuron.2010.06.005 – volume: 74 start-page: 330 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1115 article-title: A meta-analysis of non-invasive brain stimulation and autonomic functioning: implications for brain-heart pathways to cardiovascular disease publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2016.05.001 – volume: 14 start-page: 425 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1080 article-title: Avoiding skin burns with transcranial direct current stimulation: preliminary considerations publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145710001197 – volume: 7 start-page: 107 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1505 article-title: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2015.00107 – volume: 583 start-page: 555 year: 2007 ident: 10.1016/j.clinph.2017.06.001_b0470 article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields publication-title: J Physiol doi: 10.1113/jphysiol.2007.137711 – volume: 31 start-page: 275 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1855 article-title: Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation publication-title: Rest Neur Neurosci – volume: 22 start-page: 197 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1335 article-title: Recommendations for the use of tDCS in clinical research publication-title: Acta Neuropsych doi: 10.1111/j.1601-5215.2010.00480.x – volume: 12 start-page: 046030 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0825 article-title: Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes publication-title: J Neur Eng doi: 10.1088/1741-2560/12/4/046030 – volume: 41 start-page: 1475 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0810 article-title: Augmenting mirror visual feedback-induced performance improvements in older adults publication-title: Eur J Neurosci doi: 10.1111/ejn.12899 – volume: 29 start-page: 1360 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0065 article-title: Feasibility of transcranial direct current stimulation use in children aged 5 to 12 years publication-title: J Child Neurol doi: 10.1177/0883073813503710 – volume: 12 start-page: 643 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1700 article-title: Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145708009553 – volume: 6 start-page: 115 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0630 article-title: Delayed plastic responses to anodal tDCS in older adults publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2014.00115 – volume: 42 start-page: 109 year: 1976 ident: 10.1016/j.clinph.2017.06.001_b0925 article-title: Group techniques for program planning – guide to nominal group and Delphi processes – Delbecq, Al, Vandeven, Ah and Gustafson, Dh publication-title: J Am Inst Plann – volume: 9 start-page: 265 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1950 article-title: Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2015.00265 – volume: 6 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0830 article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation publication-title: eLife doi: 10.7554/eLife.18834 – volume: 7 start-page: 11100 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1245 article-title: Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain publication-title: Nat Commun doi: 10.1038/ncomms11100 – volume: 18 issue: 2 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1425 article-title: Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyu047 – volume: 85 start-page: 1058 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0300 article-title: Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.07.038 – volume: 55 start-page: 590 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0100 article-title: Transcranial direct current stimulation over the primary motor cortex during fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.085 – volume: 10 start-page: e0121904 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0875 article-title: Longitudinal neurostimulation in older adults improves working memory publication-title: PLoS ONE doi: 10.1371/journal.pone.0121904 – volume: 85 start-page: 943 year: 2005 ident: 10.1016/j.clinph.2017.06.001_b1150 article-title: Controlling cell behavior electrically: current views and future potential publication-title: Physiol Rev doi: 10.1152/physrev.00020.2004 – volume: 49 start-page: 1801 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1475 article-title: Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism publication-title: Cortex doi: 10.1016/j.cortex.2012.11.002 – volume: 75 start-page: 12 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0490 article-title: Targeted transcranial direct current stimulation for rehabilitation after stroke publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.02.049 – volume: 8 start-page: 993 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0885 article-title: Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2015.06.017 – volume: 7 start-page: 636 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0770 article-title: Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients publication-title: Brain Stimul doi: 10.1016/j.brs.2014.06.008 – volume: 58 start-page: 1773 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1410 article-title: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical human head model publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2116019 – volume: 121 start-page: 1976 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0225 article-title: Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode's position and size publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2010.05.020 – volume: 7 start-page: 765 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1555 article-title: Skin lesions induced by transcranial direct current stimulation (tDCS) publication-title: Brain Stimul doi: 10.1016/j.brs.2014.06.005 – volume: 91 start-page: 619 year: 1964 ident: 10.1016/j.clinph.2017.06.001_b0005 article-title: Code of ethics of the World Medical Association (Declaration of Helsinki) publication-title: Can Med Assoc J – volume: 126 start-page: 1071 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1585 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.02.001 – volume: 354 start-page: 103 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1965 article-title: Prophylactic treatment in menstrual migraine: a proof-of-concept study publication-title: J Neurol Sci doi: 10.1016/j.jns.2015.05.009 – volume: 70 start-page: 92 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b0760 article-title: Probing the human brain with stimulating electrodes: the story of Roberts Bartholow's (1874) experiment on Mary Rafferty publication-title: Brain Cogn doi: 10.1016/j.bandc.2009.01.008 – volume: 9 start-page: 641 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0230 article-title: Safety of transcranial direct current stimulation: evidence based update 2016 publication-title: Brain Stimul doi: 10.1016/j.brs.2016.06.004 – volume: 14 start-page: 1133 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0310 article-title: A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145710001690 – volume: 3 start-page: 58 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0605 article-title: Anodal skin lesions after treatment with transcranial direct current stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2009.04.002 – volume: 521 start-page: 148 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0205 article-title: TDCS selectively improves working memory in older adults with more education publication-title: Neurosci Lett doi: 10.1016/j.neulet.2012.05.074 – volume: 14 start-page: 388 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0790 article-title: Neuroinflammation in Alzheimer's disease publication-title: Lancet Neurol doi: 10.1016/S1474-4422(15)70016-5 – volume: 26 start-page: 1185 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0200 article-title: Pilot study of feasibility of the effect of treatment with tDCS in patients suffering from treatment-resistant depression treated with escitalopram publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.09.026 – volume: 22 start-page: 316 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0155 article-title: Hypomanic episode in unipolar depression during transcranial direct current stimulation publication-title: Acta Neuropsych doi: 10.1111/j.1601-5215.2010.00495.x – volume: 7 start-page: 762 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1365 article-title: The role of contact media at the skin-electrode interface during transcranial direct current stimulation (tDCS) publication-title: Brain Stimul doi: 10.1016/j.brs.2014.06.006 – volume: 5 start-page: 432 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1550 article-title: Contact dermatitis after transcranial direct current stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2011.09.001 – volume: 2015 start-page: 684025 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1435 article-title: The bipolar depression electrical treatment trial (BETTER): design, rationale, and objectives of a randomized, sham-controlled trial and data from the pilot study phase publication-title: Neur Plast – volume: 29 start-page: 493 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1635 article-title: Non-invasive alternating current stimulation improves vision in optic neuropathy publication-title: Rest Neurol Neurosci – volume: 114 start-page: 2220 year: 2003 ident: 10.1016/j.clinph.2017.06.001_b1320 article-title: Safety criteria for transcranial direct current stimulation (tDCS) in humans publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00235-9 – volume: 109 start-page: 48 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1715 article-title: Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2012.09.001 – volume: 3 start-page: 91 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0465 article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models publication-title: Front Psych – volume: 85 start-page: 1040 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0080 article-title: Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.026 – volume: 4 start-page: 1 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b0195 article-title: Modulating presence and impulsiveness by external stimulation of the brain publication-title: Behav Brain Func doi: 10.1186/1744-9081-4-33 – volume: 51 start-page: 1310 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1640 article-title: Transcranial direct current stimulation (tDCS) in a realistic head model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.052 – volume: 140 start-page: 110 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0025 article-title: Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: a combined tES-fMRI approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.11.034 – volume: 2015 start-page: 928631 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0050 article-title: The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: a randomized crossover controlled trial publication-title: Behav Neurol doi: 10.1155/2015/928631 – volume: 5 start-page: 242 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1380 article-title: Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study publication-title: Brain Stimul doi: 10.1016/j.brs.2011.08.005 – volume: 16 start-page: 277 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1090 article-title: Irreversible electroporation: ready for prime time? publication-title: Tech Vasc Intervent Rad doi: 10.1053/j.tvir.2013.08.010 – volume: 282 start-page: 974 year: 1981 ident: 10.1016/j.clinph.2017.06.001_b1540 article-title: Clinical pharmacology. Adverse reactions to drugs publication-title: BMJ doi: 10.1136/bmj.282.6268.974 – volume: 34 start-page: 121 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0565 article-title: Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis publication-title: NeuroRehabilitation doi: 10.3233/NRE-131019 – volume: 95 start-page: 337 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0690 article-title: Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study publication-title: Phys Ther doi: 10.2522/ptj.20130565 – volume: 53 start-page: 1125 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1830 article-title: Potentially inappropriate medication: the quality of pharmacotherapy in the elderly publication-title: Der Internist doi: 10.1007/s00108-012-3087-5 – volume: 35 start-page: 2840 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0720 article-title: Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial publication-title: Res Devel Disab doi: 10.1016/j.ridd.2014.07.030 – volume: 28 start-page: 231 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0900 article-title: Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain publication-title: NMR Biomed doi: 10.1002/nbm.3244 – volume: 29 start-page: 167 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0350 article-title: Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability publication-title: Rest Neurol Neurosci – volume: 74 start-page: 108 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1025 article-title: The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance publication-title: Neuropsychology doi: 10.1016/j.neuropsychologia.2015.01.037 – volume: 106 start-page: 652 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1680 article-title: Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study publication-title: J Neurophys doi: 10.1152/jn.00210.2011 – volume: 31 start-page: 918 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0175 article-title: Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a pilot study publication-title: J Child Neurol doi: 10.1177/0883073816630083 – volume: 10 start-page: 683 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0965 article-title: 5 kHz transcranial alternating current stimulation: lack of cortical excitability changes when grouped in a theta burst pattern publication-title: Front Hum Neurosci – volume: 27 start-page: 3807 year: 2007 ident: 10.1016/j.clinph.2017.06.001_b1330 article-title: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5348-06.2007 – volume: 157 start-page: 429 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1900 article-title: Reduction of chronic abdominal pain in patients with inflammatory bowel disease through transcranial direct current stimulation: a randomized controlled trial publication-title: Pain doi: 10.1097/j.pain.0000000000000386 – volume: 2014 start-page: 173073 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0045 article-title: Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial publication-title: Behav Neurol doi: 10.1155/2014/173073 – volume: 66 start-page: 198 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0615 article-title: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning publication-title: Neuron doi: 10.1016/j.neuron.2010.03.035 – volume: 8 start-page: 76 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0940 article-title: Safety of noninvasive brain stimulation in children and adolescents publication-title: Brain Stimul doi: 10.1016/j.brs.2014.10.012 – volume: 1 start-page: 386 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b1370 article-title: Skin lesions after treatment with transcranial direct current stimulation (tDCS) publication-title: Brain Stimul doi: 10.1016/j.brs.2008.04.003 – volume: 21 start-page: 185 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1260 article-title: Metaplasticity in human cortex publication-title: Neuroscience doi: 10.1177/1073858414526645 – volume: 6 start-page: 131 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0570 article-title: The timing of cognitive plasticity in physiological aging: a tDCS study of naming publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2014.00131 – volume: 20 start-page: 1926 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0970 article-title: The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease publication-title: Cereb Cor doi: 10.1093/cercor/bhp269 – volume: 88 start-page: 404 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b0870 article-title: Enhancing the working memory of stroke patients using tDCS publication-title: Am J Phys Med Rehab doi: 10.1097/PHM.0b013e3181a0e4cb – volume: 8 start-page: 455 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1655 article-title: Transcranial direct current stimulation in epilepsy publication-title: Brain Stimul doi: 10.1016/j.brs.2015.01.001 – volume: 37 start-page: 401 year: 1994 ident: 10.1016/j.clinph.2017.06.001_b0150 article-title: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH) publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.1994.tb05705.x – volume: 123 start-page: 1219 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1385 article-title: Transcranial direct current stimulation in children and adolescents: a comprehensive review publication-title: J Neural Transm doi: 10.1007/s00702-016-1572-z – volume: 277 start-page: 56 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1030 article-title: COMETS2: an advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2016.12.008 – volume: 121 start-page: 221 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0245 article-title: Evidence for metaplasticity in the human visual cortex publication-title: J Neural Transm doi: 10.1007/s00702-013-1104-z – volume: 30 start-page: 1604 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0210 article-title: Multiday transcranial direct current stimulation causes clinically insignificant changes in childhood dystonia: a pilot study publication-title: J Child Neurol doi: 10.1177/0883073815575369 – volume: 13 start-page: 112 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0275 article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception publication-title: J Pain doi: 10.1016/j.jpain.2011.07.001 – volume: 126 start-page: 2189 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0705 article-title: The effects of anodal-tDCS on cross-limb transfer in older adults publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.01.006 – volume: 3 start-page: 16 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1570 article-title: Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2011.00016 – volume: 21 start-page: 333 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1615 article-title: Transcranial current brain stimulation (tCS): models and technologies publication-title: IEEE Transact Neur Sys Rehab Eng doi: 10.1109/TNSRE.2012.2200046 – volume: 11 start-page: 016002 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1920 article-title: Investigation of tDCS volume conduction effects in a highly realistic head model publication-title: J Neur Eng doi: 10.1088/1741-2560/11/1/016002 – volume: 85 start-page: 1048 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1925 article-title: Impact of brain tissue filtering on neurostimulation fields: a modeling study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.06.079 – volume: 11 start-page: 036002 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1720 article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation publication-title: J Neur Eng doi: 10.1088/1741-2560/11/3/036002 – volume: 56 start-page: 634 year: 2004 ident: 10.1016/j.clinph.2017.06.001_b1000 article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects publication-title: Biol Psych doi: 10.1016/j.biopsych.2004.07.017 – volume: 31 start-page: 820 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0090 article-title: Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine publication-title: Cephalalgia doi: 10.1177/0333102411399349 – year: 2017 ident: 10.1016/j.clinph.2017.06.001_b1465 article-title: Low-intensity transcranial current stimulation in psychiatry publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2017.16090996 – volume: 33 start-page: 1682 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0590 article-title: Non-invasive brain stimulation improves object-location learning in the elderly publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2011.05.007 – volume: 374 start-page: 20150187 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1580 article-title: The heart side of brain neuromodulation publication-title: Philos Trans R Soc A doi: 10.1098/rsta.2015.0187 – volume: 2012 start-page: 5514 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1190 article-title: Investigation of the electric field components of tDCS via anisotropically conductive gyri-specific finite element head models publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 121 start-page: 1908 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0055 article-title: Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2010.04.020 – volume: 43 start-page: 220 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1305 article-title: Transcranial direct current stimulation of the human brain. From basic principles to clinical application publication-title: Klin Neurophysiol – volume: 34 start-page: 5029 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1105 article-title: Cerebellar-parietal connections underpin phonological storage publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0106-14.2014 – volume: 2 start-page: 759 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1845 article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2013.05.011 – volume: 56 start-page: 716 year: 2001 ident: 10.1016/j.clinph.2017.06.001_b0365 article-title: Effects of internal globus pallidus stimulation on motor cortex excitability publication-title: Neurology doi: 10.1212/WNL.56.6.716 – volume: 17 start-page: 810 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1905 article-title: Induction of self awareness in dreams through frontal low current stimulation of gamma activity publication-title: Nat Neurosci doi: 10.1038/nn.3719 – volume: 27 start-page: 295 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0420 article-title: Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation publication-title: NeuroReport doi: 10.1097/WNR.0000000000000536 – volume: 54 start-page: 663 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0400 article-title: Reduced threshold for inhibitory homeostatic responses in migraine motor cortex? A tDCS/TMS study publication-title: Headache doi: 10.1111/head.12249 – volume: 115 start-page: 2419 year: 2004 ident: 10.1016/j.clinph.2017.06.001_b1325 article-title: MRI study of human brain exposed to weak direct current stimulation of the frontal cortex publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.05.001 – volume: 6 start-page: 253 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1175 article-title: Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2014.00253 – volume: 109 start-page: 140 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1355 article-title: Determinants of the electric field during transcranial direct current stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.033 – volume: 569 start-page: 6 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1945 article-title: Combination of transcranial direct current stimulation and methylphenidate in subacute stroke publication-title: Neurosci Lett doi: 10.1016/j.neulet.2014.03.011 – volume: 45 start-page: 196 year: 2001 ident: 10.1016/j.clinph.2017.06.001_b0190 article-title: Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation publication-title: Magn Res Med doi: 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1 – volume: 113 start-page: 341 year: 2002 ident: 10.1016/j.clinph.2017.06.001_b0955 article-title: Pseudo-bilateral hand motor responses evoked by transcranial magnetic stimulation in patients with deep brain stimulators publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(01)00731-3 – volume: 23 start-page: E4 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0330 article-title: Manic psychosis after sertraline and transcranial direct-current stimulation publication-title: J Neuropsych Clin Neurosci doi: 10.1176/jnp.23.3.jnpe4 – volume: 14 start-page: 157 year: 1999 ident: 10.1016/j.clinph.2017.06.001_b0960 article-title: Safety of transcranial magnetic stimulation in patients with implanted deep brain stimulators publication-title: Mov Disord doi: 10.1002/1531-8257(199901)14:1<157::AID-MDS1027>3.0.CO;2-U – volume: 31 start-page: 593 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0270 article-title: Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2010.07080.x – volume: 8 start-page: 43 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0015 article-title: Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update publication-title: J Vasc Intervent Neurol – year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0700 article-title: Concurrent diffuse optical measurement of cerebral hemodynamics and EEG during transcranial direct current stimulation (tDCS) in humans publication-title: Brain Stimul doi: 10.1016/j.brs.2017.01.132 – volume: 32 start-page: 90 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1360 article-title: Safety and feasibility of Irreversible Electroporation (IRE) in patients with locally advanced pancreatic cancer: results of a prospective study publication-title: Dig Surg doi: 10.1159/000375323 – volume: 5 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0710 article-title: Formation of cortical plasticity in older adults following tDCS and motor training publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2013.00087 – volume: 89 start-page: 879 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0910 article-title: Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke publication-title: Am J Phys Med Rehab doi: 10.1097/PHM.0b013e3181f70aa7 – volume: 96 start-page: S129 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0375 article-title: Noninvasive brain stimulation: the potential for use in the rehabilitation of pediatric acquired brain injury publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2014.10.013 – volume: 126 start-page: 2181 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0575 article-title: What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.03.015 – volume: 9 start-page: 457 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1770 article-title: Monotherapy with tDCS for treatment of depressive episode during pregnancy: a case report publication-title: Brain Stimul doi: 10.1016/j.brs.2016.03.007 – volume: 78 start-page: 353 year: 1998 ident: 10.1016/j.clinph.2017.06.001_b1290 article-title: Brain temperature and limits on transcranial cooling in humans: quantitative modeling results publication-title: Eur J Appl Physiol Occup Physiol doi: 10.1007/s004210050431 – volume: 2016 start-page: 4274127 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0110 article-title: Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults publication-title: Neural Plast doi: 10.1155/2016/4274127 – volume: 52 start-page: 1283 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0440 article-title: TDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine publication-title: Headache doi: 10.1111/j.1526-4610.2012.02141.x – volume: 27 start-page: 763 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1015 article-title: Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial publication-title: J Phys Ther Sci doi: 10.1589/jpts.27.763 – volume: 2012 start-page: 4128 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0075 article-title: Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation publication-title: Conf Proc: Ann Internat Conf IEEE Eng Med Biol Soc – volume: 23 start-page: 7255 year: 2003 ident: 10.1016/j.clinph.2017.06.001_b0600 article-title: Sensitivity of neurons to weak electric fields publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-19-07255.2003 – volume: 118 start-page: 406 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1295 article-title: Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.06.026 – volume: 2016 start-page: 5961362 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0500 article-title: Multisession anodal tDCS protocol improves motor system function in an aging population publication-title: Neur Plast – volume: 8 start-page: 739 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0695 article-title: Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.00739 – volume: 77 start-page: 689 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1565 article-title: Safety and efficacy of electroconvulsive therapy for depression in the presence of deep brain stimulation in obsessive-compulsive disorder publication-title: J Clin Psych doi: 10.4088/JCP.15lr10420 – volume: 25 start-page: 417 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0540 article-title: Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy publication-title: Epil Behav doi: 10.1016/j.yebeh.2012.06.027 – volume: 25 start-page: 256 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1070 article-title: Transcranial direct current stimulation priming of therapeutic repetitive transcranial magnetic stimulation: a pilot study publication-title: J ECT doi: 10.1097/YCT.0b013e3181a2f87e – volume: 11 start-page: 188 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b1375 article-title: Transcranial direct current stimulation (tDCS) in therapy-resistant depression: preliminary results from a double-blind, placebo-controlled study publication-title: Int J Neuropsychopharmacol – volume: 7 start-page: 92 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0355 article-title: Safety of 5 kHz tACS publication-title: Brain Stimul doi: 10.1016/j.brs.2013.08.004 – volume: 253 start-page: 171 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0625 article-title: The role of electrical stimulation therapy in ophthalmic diseases publication-title: Graefe's Arch Clin Exp Ophthalmol doi: 10.1007/s00417-014-2889-7 – volume: 1650 start-page: 10 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1985 article-title: Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-alpha expression publication-title: Brain Res doi: 10.1016/j.brainres.2016.08.034 – volume: 20 start-page: e00255 issue: 2 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1415 article-title: Effects of transcranial direct current stimulation in combination with motor practice on dexterous grasping and manipulation in healthy older adults publication-title: Phys Rep doi: 10.1002/phy2.255 – volume: 9 start-page: 545 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0680 article-title: Safety, tolerability, blinding efficacy and behavioural effects of a novel MRI-compatible, high-definition tDCS set-up publication-title: Brain Stimul doi: 10.1016/j.brs.2016.03.018 – ident: 10.1016/j.clinph.2017.06.001_b0725 doi: 10.1589/jpts.26.945 – volume: 18 issue: 5 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1430 article-title: The morphological and molecular changes of brain cells exposed to direct current electric field stimulation publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyu090 – volume: 5 start-page: e13766 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b2015 article-title: Transcranial alternating current stimulation enhances individual alpha activity in human EEG publication-title: PLoS ONE doi: 10.1371/journal.pone.0013766 – volume: 3 start-page: 97 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0555 article-title: Modulation of untruthful responses with non-invasive brain stimulation publication-title: Front Psych – volume: 10 start-page: 68 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1180 article-title: Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromyalgia: a randomized placebo-controlled clinical trial publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2016.00068 – volume: 2 start-page: 292 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0880 article-title: Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community publication-title: J Law Biosci doi: 10.1093/jlb/lsv017 – volume: 119 start-page: 25 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1230 article-title: Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: self-reports and resting state EEG analysis publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2015.09.011 – volume: 53 start-page: 1085 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1195 article-title: The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation publication-title: Med Biol Eng Com doi: 10.1007/s11517-015-1301-z – volume: 22 start-page: 441 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1530 article-title: Simulating transcranial direct current stimulation with a detailed anisotropic human head model publication-title: IEEE Trans Neur Sys Rehab Eng doi: 10.1109/TNSRE.2014.2308997 – volume: 42 start-page: 723 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1345 article-title: Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial publication-title: J Oral Rehab doi: 10.1111/joor.12300 – volume: 44 start-page: 3166 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1445 article-title: Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.113.001687 – volume: 6 start-page: 275 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0905 article-title: A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer's disease publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2014.00275 – volume: 114 start-page: 440 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0255 article-title: Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability publication-title: J Neurophysiol doi: 10.1152/jn.00490.2014 – volume: 10 start-page: 72 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0295 article-title: Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS) publication-title: Front Cell Neurosci doi: 10.3389/fncel.2016.00072 – volume: 41 start-page: 2087 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1880 article-title: Cortical neuromodulation modifies cerebral vasomotor reactivity publication-title: Stroke doi: 10.1161/STROKEAHA.110.583088 – volume: 10 start-page: 262 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b2010 article-title: Weighing the cost and benefit of transcranial direct current stimulation on different reading subskills publication-title: Front Neurosci doi: 10.3389/fnins.2016.00262 – volume: 19 start-page: 228 year: 2003 ident: 10.1016/j.clinph.2017.06.001_b0035 article-title: EU and member state medical devices regulation publication-title: Int J Technol Assess Health Care doi: 10.1017/S0266462303000217 – volume: 120 start-page: 1161 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1050 article-title: Safety limits of cathodal transcranial direct current stimulation in rats publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.01.022 – volume: 190 start-page: 188 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1205 article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2010.05.007 – volume: 7 start-page: 823 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1515 article-title: Neurosensory effects of transcranial alternating current stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2014.08.005 – volume: 117 start-page: 845 year: 2006 ident: 10.1016/j.clinph.2017.06.001_b0675 article-title: Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.12.003 – volume: 17 start-page: 647 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0950 article-title: Safety of transcranial magnetic stimulation for the newer generation of deep brain stimulators publication-title: Parkins Rel Disor doi: 10.1016/j.parkreldis.2011.05.007 – volume: 16 start-page: 1695 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1525 article-title: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145713000084 – volume: 24 start-page: 3379 year: 2004 ident: 10.1016/j.clinph.2017.06.001_b1745 article-title: Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5316-03.2004 – volume: 107 start-page: 1868 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1535 article-title: Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation publication-title: J Neurophys doi: 10.1152/jn.00319.2011 – volume: 2010 start-page: 2073 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1650 article-title: Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation publication-title: Ann Int Conf IEEE Eng Med Biol Soc – volume: 8 start-page: 066017 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0545 article-title: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS publication-title: J Neur Eng doi: 10.1088/1741-2560/8/6/066017 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0805 article-title: The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions publication-title: Brain Stimul doi: 10.1016/j.brs.2015.08.003 – volume: 119 start-page: 2636 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b0390 article-title: Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.07.249 – volume: 74 start-page: 152 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1750 article-title: Transcranial direct current stimulation to the parietal cortex in hemispatial neglect: a feasibility study publication-title: Neuropsychology doi: 10.1016/j.neuropsychologia.2015.04.014 – volume: 140 start-page: 118 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1910 article-title: BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: a concurrent tACS-fMRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.10.003 – volume: 10 start-page: 260 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0320 article-title: Treatment-emergent mania/hypomania during antidepressant treatment with transcranial direct current stimulation (tDCS): a systematic review and meta-analysis publication-title: Brain Stimul doi: 10.1016/j.brs.2016.11.005 – volume: 9 start-page: 1245 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0130 article-title: Efficacy and safety of combining clozapine with electrical or magnetic brain stimulation in treatment-refractory schizophrenia publication-title: Expert Rev Clin Pharmacol doi: 10.1080/17512433.2016.1200971 – volume: 2016 start-page: 2715196 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1470 article-title: Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain publication-title: Stem Cells Int doi: 10.1155/2016/2715196 – volume: 141 start-page: 171 year: 2005 ident: 10.1016/j.clinph.2017.06.001_b1185 article-title: Electrical stimulation of excitable tissue: design of efficacious and safe protocols publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2004.10.020 – volume: 24 start-page: 333 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0780 article-title: Entrainment of brain oscillations by transcranial alternating current stimulation publication-title: Curr Biol doi: 10.1016/j.cub.2013.12.041 – volume: 6 start-page: 87 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1690 article-title: Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study publication-title: Brain Stimul doi: 10.1016/j.brs.2012.03.008 – ident: 10.1016/j.clinph.2017.06.001_b0715 – volume: 23 start-page: 569 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1800 article-title: Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field publication-title: Curr Biol doi: 10.1016/j.cub.2013.02.026 – volume: 83 start-page: 1394 year: 2000 ident: 10.1016/j.clinph.2017.06.001_b1775 article-title: Stochastic resonance improves signal detection in hippocampal CA1 neurons publication-title: J Neurophys doi: 10.1152/jn.2000.83.3.1394 – volume: 127 start-page: 1031 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1970 article-title: A technical guide to tDCS, and related non-invasive brain stimulation tools publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.11.012 – volume: 275 start-page: 316 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1060 article-title: Microglia in the TBI brain: the good, the bad, and the dysregulated publication-title: Exp Neurol doi: 10.1016/j.expneurol.2015.08.018 – volume: 4 start-page: 275 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1140 article-title: Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia publication-title: Brain Stimul doi: 10.1016/j.brs.2011.01.001 – volume: 501 start-page: 167 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0215 article-title: Neuroscience: transcranial devices are not playthings publication-title: Nature doi: 10.1038/501167b – volume: 20 start-page: 313 year: 2004 ident: 10.1016/j.clinph.2017.06.001_b1560 article-title: Transcranial direct current stimulation disrupts tactile perception publication-title: Eur J Neurosci doi: 10.1111/j.0953-816X.2004.03450.x – volume: 8 start-page: 1085 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0495 article-title: High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD publication-title: Brain Stimul doi: 10.1016/j.brs.2015.06.008 – volume: 37 start-page: 996 year: 1990 ident: 10.1016/j.clinph.2017.06.001_b1155 article-title: Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.102812 – volume: 46 start-page: 169 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0520 article-title: Transcranial direct current stimulation-induced seizure: analysis of a case publication-title: Clin EEG Neurosci doi: 10.1177/1550059414540647 – volume: 1351 start-page: 127 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1020 article-title: The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects publication-title: Ann NY Acad Sci doi: 10.1111/nyas.12855 – volume: 2 start-page: 201 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b0450 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul doi: 10.1016/j.brs.2009.03.005 – volume: 19 start-page: 46 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1835 article-title: Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control publication-title: Prost Cancer Prost Dis doi: 10.1038/pcan.2015.47 – volume: 35 start-page: 119 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0405 article-title: Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2011.07939.x – volume: 46 start-page: 2147 year: 2005 ident: 10.1016/j.clinph.2017.06.001_b1250 article-title: Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system publication-title: Invest Ophthal Vis Sci doi: 10.1167/iovs.04-1339 – volume: 2 start-page: 215 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1520 article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro publication-title: Brain Stimul doi: 10.1016/j.brs.2009.03.007 – volume: 1489 start-page: 17 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1765 article-title: Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model publication-title: Brain Res doi: 10.1016/j.brainres.2012.10.009 – volume: 51 start-page: 1234 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1455 article-title: Anodal tDCS to V1 blocks visual perceptual learning consolidation publication-title: Neuropsychology doi: 10.1016/j.neuropsychologia.2013.03.013 – volume: 47 start-page: 414 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1480 article-title: No effects of anodal transcranial direct stimulation on language abilities in early rehabilitation of post-stroke aphasic patients publication-title: Neurol Neurochir Polska doi: 10.5114/ninp.2013.38221 – volume: 125 start-page: 2260 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1405 article-title: Modeling the current density generated by transcutaneous spinal direct current stimulation (tsDCS) publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.02.027 – volume: 11 start-page: e0156134 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0655 article-title: Alternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial publication-title: PLoS ONE doi: 10.1371/journal.pone.0156134 – volume: 11 start-page: 124 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0920 article-title: Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects publication-title: J Neuroeng Rehab doi: 10.1186/1743-0003-11-124 – volume: 124 start-page: 133 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1755 article-title: Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder publication-title: J Neural Transm doi: 10.1007/s00702-016-1646-y – ident: 10.1016/j.clinph.2017.06.001_b0595 – volume: 27 start-page: 335 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0650 article-title: Repetitive transorbital alternating current stimulation in optic neuropathy publication-title: NeuroRehabilitation doi: 10.3233/NRE-2010-0617 – volume: 6 start-page: 146 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0775 article-title: Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2014.00146 – volume: 33 start-page: 11425 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1785 article-title: Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3887-12.2013 – volume: 8 start-page: 127 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1095 article-title: Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2014.00127 – volume: 2015 start-page: 2729 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1120 article-title: Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 5 start-page: 86 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1670 article-title: Time course of corticospinal excitability and autonomic function interplay during and following monopolar tDCS publication-title: Front Psych – volume: 8 start-page: 906 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0980 article-title: Inter-subject variability in electric fields of motor cortical tDCS publication-title: Brain Stimul doi: 10.1016/j.brs.2015.05.002 – volume: 21 start-page: 333 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1620 article-title: Transcranial current brain stimulation (tCS): models and technologies publication-title: IEEE Trans Neur Sys Reh doi: 10.1109/TNSRE.2012.2200046 – volume: 1581 start-page: 80 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1930 article-title: In-vivo detection of inflammation and neurodegeneration in the chronic phase after permanent embolic stroke in rats publication-title: Brain Res doi: 10.1016/j.brainres.2014.05.030 – volume: 8 start-page: 163 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1725 article-title: Transcranial direct current stimulation (tDCS) for auditory verbal hallucinations in schizophrenia during pregnancy: a case report publication-title: Brain Stimul doi: 10.1016/j.brs.2014.10.013 – volume: 9 start-page: 671 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0115 article-title: A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials publication-title: Brain Stimul doi: 10.1016/j.brs.2016.05.004 – volume: 4 start-page: 189 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0560 article-title: Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: a clinical observational study publication-title: Brain Stimul doi: 10.1016/j.brs.2011.07.007 – volume: 34 start-page: 215 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0415 article-title: Evidence for reading improvement following tDCS treatment in children and adolescents with dyslexia publication-title: Rest Neurol Neurosci – volume: 10 start-page: 361 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0730 article-title: Spared primary motor cortex and the presence of MEP in cerebral palsy dictate the responsiveness to tDCS during gait training publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2016.00361 – volume: 22 start-page: 495 year: 2005 ident: 10.1016/j.clinph.2017.06.001_b1005 article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2005.04233.x – year: 1811 ident: 10.1016/j.clinph.2017.06.001_b0930 – volume: 30 start-page: 62 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0640 article-title: Safety of electroconvulsive therapy in the presence of cranial metallic objects publication-title: J ECT doi: 10.1097/YCT.0b013e318295e30f – volume: 63 start-page: 168 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0975 article-title: Current density imaging during transcranial direct current stimulation using DT-MRI and MREIT: algorithm development and numerical simulations publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2448555 – volume: 120 start-page: 2008 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1575 article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.08.016 – volume: 29 start-page: 232 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b2000 article-title: Cathodal transcranial direct current stimulation in children with dystonia: a sham-controlled study publication-title: J Child Neurol doi: 10.1177/0883073813492385 – volume: 110 start-page: 1414 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0010 article-title: Trans-spinal direct current stimulation modulates motor cortex-induced muscle contraction in mice publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01390.2010 – volume: 3 start-page: 74 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0235 article-title: A randomized double-blind sham-controlled study of transcranial direct current stimulation for treatment-resistant major depression publication-title: Front Psych – volume: 7 start-page: 230 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1300 article-title: No significant effect of prefrontal tDCS on working memory performance in older adults publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2015.00230 – volume: 7 start-page: 460 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1850 article-title: When size matters: large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density publication-title: Brain Stimul doi: 10.1016/j.brs.2014.01.059 – volume: 28 start-page: 275 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1130 article-title: Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders publication-title: J Cogn Neurosci doi: 10.1162/jocn_a_00897 – issue: 86 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1170 article-title: Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging publication-title: J Vis Exp doi: 10.3791/51730 – volume: 26 start-page: 590 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1280 article-title: Transcranial direct current stimulation in child and adolescent psychiatry publication-title: J Child Adolesc Psychopharmacol doi: 10.1089/cap.2015.0172 – volume: 43 start-page: 231 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0665 article-title: Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke publication-title: Contemp Clin Trials doi: 10.1016/j.cct.2015.06.005 – volume: 119 start-page: 1 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1995 article-title: Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients publication-title: Brain Lang doi: 10.1016/j.bandl.2011.05.002 – volume: 70 start-page: 383 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0325 article-title: The sertraline vs electrical current therapy for treating depression clinical study results from a factorial, randomized, controlled trial publication-title: JAMA Psych doi: 10.1001/2013.jamapsychiatry.32 – volume: 369 start-page: 185 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0070 article-title: At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia publication-title: J Neurol Sci doi: 10.1016/j.jns.2016.07.065 – volume: 118 start-page: 1166 year: 2007 ident: 10.1016/j.clinph.2017.06.001_b0505 article-title: Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.01.010 – volume: 64 start-page: 184 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b1395 article-title: A computational model of the electric field distribution due to regional personalized or non-personalized electrodes to select transcranial electric stimulation target publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2553177 – volume: 18 start-page: 261 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0735 article-title: Reducing transcranial direct current stimulation-induced erythema with skin pretreatment: considerations for sham-controlled clinical trials publication-title: Neuromodulation doi: 10.1111/ner.12230 – volume: 8 start-page: e76112 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0890 article-title: Dosage considerations for transcranial direct current stimulation in children: a computational modeling study publication-title: PLoS ONE doi: 10.1371/journal.pone.0076112 – volume: 3 start-page: 23 year: 1972 ident: 10.1016/j.clinph.2017.06.001_b1225 article-title: Septal stimulation for initiation of heterosexual behavior in a homosexual male publication-title: J Behav Ther Exp Psych doi: 10.1016/0005-7916(72)90029-8 – volume: 15 start-page: 366 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1890 article-title: Transcranial direct current stimulation (tDCS) for treatment of major depression during pregnancy: study protocol for a pilot randomized controlled trial publication-title: Trials doi: 10.1186/1745-6215-15-366 – volume: 13 start-page: 61 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1085 article-title: A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145709990411 – volume: 9 start-page: 307 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1270 article-title: Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder publication-title: Front Cell Neurosci doi: 10.3389/fncel.2015.00307 – volume: 254 start-page: 18 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0250 article-title: An unexpected target of spinal direct current stimulation: interhemispheric connectivity in humans publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2015.07.012 – volume: 10 start-page: 275 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b0385 article-title: Neural stimulation and recording electrodes publication-title: Ann Rev Biomed Eng doi: 10.1146/annurev.bioeng.10.061807.160518 – volume: 128 start-page: 1943 year: 2005 ident: 10.1016/j.clinph.2017.06.001_b1510 article-title: Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia publication-title: Brain doi: 10.1093/brain/awh527 – volume: 14 start-page: 217 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0060 article-title: Ephaptic coupling of cortical neurons publication-title: Nat Neurosci doi: 10.1038/nn.2727 – volume: 4 start-page: 169 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0445 article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient publication-title: Brain Stimul doi: 10.1016/j.brs.2010.11.001 – volume: 96 start-page: S114 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1275 article-title: Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury publication-title: Arch Phys Med Rehab doi: 10.1016/j.apmr.2014.11.004 – volume: 24 start-page: 442 year: 1994 ident: 10.1016/j.clinph.2017.06.001_b0265 article-title: The use of the method of transcranial micropolarization to decrease the severity hyperkineses in patients with infantile cerebral palsy publication-title: Neurosci Behav Physiol doi: 10.1007/BF02359800 – volume: 21 start-page: 1403 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0815 article-title: Speech facilitation by left inferior frontal cortex stimulation publication-title: Curr Biol doi: 10.1016/j.cub.2011.07.021 – volume: 16 start-page: 127 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1735 article-title: The safety of transcranial magnetic stimulation with deep brain stimulation instruments publication-title: Parkins Rel Dis doi: 10.1016/j.parkreldis.2009.09.006 – volume: 10 start-page: e0142740 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0165 article-title: Elucidating the role of injury-induced electric fields (EFs) in regulating the astrocytic response to injury in the mammalian central nervous system publication-title: PLoS ONE doi: 10.1371/journal.pone.0142740 – volume: 20 start-page: 248 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0530 article-title: The influence of skin redness on blinding in transcranial direct current stimulation studies: a crossover trial publication-title: Neuromodulation doi: 10.1111/ner.12527 – volume: 10 start-page: 188 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0685 article-title: Glia: a neglected player in non-invasive direct current brain stimulation publication-title: Front Cell Neurosci doi: 10.3389/fncel.2016.00188 – volume: 32 start-page: 301 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0635 article-title: After vs. priming effects of anodal transcranial direct current stimulation on upper extremity motor recovery in patients with subacute stroke publication-title: Rest Neurol Neurosci – volume: 8 start-page: 165 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1940 article-title: Skin burn after single session of transcranial direct current stimulation (tDCS) publication-title: Brain Stimul doi: 10.1016/j.brs.2014.10.015 – volume: 126 start-page: 1392 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1240 article-title: Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.10.142 – volume: 5 start-page: 49 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1125 article-title: Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2013.00049 – volume: 28 start-page: 1238 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b2005 article-title: Cathodal transcranial direct current stimulation in children with dystonia: a pilot open-label trial publication-title: J Child Neurol doi: 10.1177/0883073812460092 – volume: 108 start-page: e53367 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0430 article-title: Non-invasive electrical brain stimulation montages for modulation of human motor function publication-title: J Vis Exp – volume: 7 start-page: 66 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0145 article-title: Transcranial direct current stimulation for treatment of childhood pharmacoresistant Lennox-Gastaut syndrome: a pilot study publication-title: Front Neurol doi: 10.3389/fneur.2016.00066 – volume: 293 start-page: 125 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0285 article-title: Better together: left and right hemisphere engagement to reduce age-related memory loss publication-title: Behav Brain Res doi: 10.1016/j.bbr.2015.07.037 – volume: 25 start-page: 640 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1695 article-title: The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism publication-title: Clin Linguist Phon doi: 10.3109/02699206.2011.570852 – volume: 37 start-page: 94 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0335 article-title: Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner publication-title: Hum Brain Mapping doi: 10.1002/hbm.23016 – volume: 53 start-page: 209 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1595 article-title: The use of noninvasive brain stimulation in childhood psychiatric disorders: new diagnostic and therapeutic opportunities and challenges publication-title: Rev Neurol – volume: 93 start-page: 43 year: 1993 ident: 10.1016/j.clinph.2017.06.001_b0260 article-title: The use of the transcranial micropolarization method for decreasing the manifestations of hyperkinesis in patients with infantile cerebral palsy publication-title: Zh Nevrol Psikhiatr Im S S Korsakova – volume: 34 start-page: 4022 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b2035 article-title: Shaping memory accuracy by left prefrontal transcranial direct current stimulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5407-13.2014 – volume: 234 start-page: 637 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1790 article-title: “Unfocus” on focus: commercial tDCS headset impairs working memory publication-title: Exp Brain Res doi: 10.1007/s00221-015-4391-9 – issue: 76 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1685 article-title: Simultaneous EEG monitoring during transcranial direct current stimulation publication-title: J Vis Exp doi: 10.3791/50426 – volume: 3 start-page: 84 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1545 article-title: EEG driven tDCS versus bifrontal tDCS for tinnitus publication-title: Front Psych – volume: 2 start-page: 669 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1955 article-title: A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States publication-title: J Law Biosci – volume: 11 start-page: 113 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b1010 article-title: Can neuromodulation also enhance social inequality? Some possible indirect interventions of the state publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2017.00113 – volume: 10 start-page: 349 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0185 article-title: Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation publication-title: Stem Cell Res doi: 10.1016/j.scr.2013.01.004 – volume: 2009 start-page: 1596 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b0550 article-title: Comparing different electrode configurations using the 10–10 international system in tDCS: a finite element model analysis publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 111 start-page: 1301 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1285 article-title: The analgesic and antihyperalgesic effects of transcranial electrostimulation with combined direct and alternating current in healthy volunteers publication-title: Anest Anal doi: 10.1213/ANE.0b013e3181e3697e – volume: 8 start-page: 1233 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0410 article-title: Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia publication-title: Brain Stimul doi: 10.1016/j.brs.2015.08.009 – volume: 27 start-page: 363 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1730 article-title: Transcranial direct current stimulation improves swallowing function in stroke patients publication-title: Neurorehab Neur Rep doi: 10.1177/1545968312474116 – volume: 233 start-page: 2401 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b2020 article-title: Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults publication-title: Exp Brain Res doi: 10.1007/s00221-015-4310-0 – volume: 71 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0935 article-title: Subliminal semantic processing in face stimuli: an EEG and tDCS study publication-title: Neurosci Res doi: 10.1016/j.neures.2011.07.1668 – volume: 140 start-page: 99 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1340 article-title: Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.03.065 – volume: 1 start-page: 193 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1135 article-title: Non-invasive brain stimulation applied to Heschl's gyrus modulates pitch discrimination publication-title: Front Psych – volume: 25 start-page: 122 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1420 article-title: Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults publication-title: NeuroReport doi: 10.1097/WNR.0000000000000080 – volume: 9 start-page: 54 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1500 article-title: Direct electric stimulation to increase cerebrovascular function publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2015.00054 – volume: 64 start-page: 872 year: 2005 ident: 10.1016/j.clinph.2017.06.001_b0860 article-title: Safety and cognitive effect of frontal DC brain polarization in healthy individuals publication-title: Neurology doi: 10.1212/01.WNL.0000152986.07469.E9 – volume: 124 start-page: 1187 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0845 article-title: Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.11.021 – volume: 7 start-page: 94 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1885 article-title: Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2013.00094 – volume: 132 start-page: 3011 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1760 article-title: Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation publication-title: Brain doi: 10.1093/brain/awp154 – volume: 29 start-page: 5202 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1780 article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4432-08.2009 – volume: 7 start-page: e43776 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1605 article-title: Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain publication-title: PLoS ONE doi: 10.1371/journal.pone.0043776 – volume: 6 start-page: 696 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0140 article-title: Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy publication-title: Brain Stimul doi: 10.1016/j.brs.2013.01.009 – volume: 251 start-page: 1041 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0645 article-title: Non-invasive electrical brain stimulation induces vision restoration in patients with visual pathway damage publication-title: Graefe's Arch Clin Exp Ophthalmol doi: 10.1007/s00417-012-2084-7 – volume: 29 start-page: E20 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1040 article-title: Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial publication-title: J Head Trauma Rehab doi: 10.1097/HTR.0b013e318292a4c2 – volume: 7 start-page: 793 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1490 article-title: Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls publication-title: Brain Stimul doi: 10.1016/j.brs.2014.07.036 – volume: 6 start-page: 31236 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1350 article-title: Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates publication-title: Sci Rep doi: 10.1038/srep31236 – ident: 10.1016/j.clinph.2017.06.001_b0785 – volume: 36 start-page: 5289 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1865 article-title: Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4519-15.2016 – volume: 11 start-page: e0149703 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1935 article-title: Perceived comfort and blinding efficacy in randomised sham-controlled transcranial direct current stimulation (tDCS) trials at 2 mA in young and older healthy adults publication-title: PLoS ONE doi: 10.1371/journal.pone.0149703 – volume: 121 start-page: 2165 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1235 article-title: Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2010.04.033 – volume: 156 start-page: 62 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0535 article-title: Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial publication-title: Pain doi: 10.1016/j.pain.0000000000000006 – volume: 37 start-page: 243 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0585 article-title: Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2009.05.027 – volume: 11 start-page: 1 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1870 article-title: Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions publication-title: BMC Neurosci doi: 10.1186/1471-2202-11-38 – volume: 38 start-page: 637 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1255 article-title: Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial publication-title: Disab Rehab doi: 10.3109/09638288.2015.1055379 – volume: 11 start-page: 75 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0340 article-title: Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion publication-title: Stem Cell Rev doi: 10.1007/s12015-014-9524-1 – volume: 6 start-page: 289 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1660 article-title: Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2014.00289 – volume: 45 start-page: 201 year: 2005 ident: 10.1016/j.clinph.2017.06.001_b0840 article-title: Theta burst stimulation of the human motor cortex publication-title: Neuron doi: 10.1016/j.neuron.2004.12.033 – volume: 53 start-page: 853 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0610 article-title: Pharmacological neuroenhancement and brain doping: chances and risks publication-title: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz doi: 10.1007/s00103-010-1105-0 – volume: 18 start-page: 686 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0240 article-title: Spinal direct current stimulation modulates short intracortical inhibition publication-title: Neuromodulation doi: 10.1111/ner.12298 – volume: 2012 start-page: 891 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0945 article-title: Electrode assembly design for transcranial direct current stimulation: a FEM modeling study publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 46 start-page: 319 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1035 article-title: A comprehensive database of published tDCS clinical trials (2005–2016) publication-title: Neurophysiol Clinique doi: 10.1016/j.neucli.2016.10.002 – volume: 97 start-page: 142 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1875 article-title: Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study publication-title: Epil Res doi: 10.1016/j.eplepsyres.2011.07.016 – volume: 31 start-page: 2160 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0850 article-title: Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2008.12.008 – volume: 89 start-page: 216 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1610 article-title: Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.002 – volume: 20 start-page: 215 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b1630 article-title: Safety review of transcranial direct current stimulation in stroke publication-title: Neuromodulation doi: 10.1111/ner.12574 – volume: 53 start-page: 257 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1815 article-title: Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats publication-title: Jpn J Ophthalmol doi: 10.1007/s10384-009-0657-8 – volume: 35 start-page: 579 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1990 article-title: Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient – a case report publication-title: Ann Rehab Med doi: 10.5535/arm.2011.35.4.579 – volume: 97 start-page: 3109 year: 2007 ident: 10.1016/j.clinph.2017.06.001_b1315 article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex publication-title: J Neurophys doi: 10.1152/jn.01312.2006 – volume: 5 start-page: 430 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0220 article-title: Guidelines for precise and accurate computational models of tDCS publication-title: Brain Stimul doi: 10.1016/j.brs.2011.06.001 – volume: 3 start-page: 6 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1705 article-title: Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation publication-title: Front Int Neurosci – volume: 33 start-page: 9176 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1055 article-title: Differential effects of dual and unihemispheric motor cortex stimulation in older adults publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0055-13.2013 – volume: 30 start-page: e16 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1895 article-title: Electroconvulsive therapy in patients with deep brain stimulators publication-title: J ECT doi: 10.1097/YCT.0000000000000074 – volume: 7 start-page: 28 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0740 article-title: Reduced discomfort during high-definition transcutaneous stimulation using 6% benzocaine publication-title: Front Neuroeng doi: 10.3389/fneng.2014.00028 – volume: 6 start-page: 21583 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0835 article-title: Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells publication-title: Sci Rep doi: 10.1038/srep21583 – volume: 29 start-page: 147 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1740 article-title: Safety of repeated transcranial direct current stimulation in impaired skin a case report publication-title: J ECT doi: 10.1097/YCT.0b013e318279c1a1 – volume: 72 start-page: 208 year: 2007 ident: 10.1016/j.clinph.2017.06.001_b1485 article-title: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2007.01.004 – ident: 10.1016/j.clinph.2017.06.001_b0135 – volume: 21 start-page: 1471 year: 2006 ident: 10.1016/j.clinph.2017.06.001_b0795 article-title: MEP latency shift after implantation of deep brain stimulation systems in the subthalamic nucleus in patients with advanced Parkinson's disease publication-title: Mov Dis doi: 10.1002/mds.20951 – volume: 22 start-page: 391 year: 1999 ident: 10.1016/j.clinph.2017.06.001_b0480 article-title: Pathobiology of ischaemic stroke: an integrated view publication-title: Trends Neurosci doi: 10.1016/S0166-2236(99)01401-0 – volume: 70 start-page: 48 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1215 article-title: The electric field in the cortex during transcranial current stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.034 – volume: 217 start-page: 459 year: 2003 ident: 10.1016/j.clinph.2017.06.001_b1145 article-title: Medical device regulation for manufacturers publication-title: P I Mech Eng H doi: 10.1243/09544110360729090 – volume: 74 start-page: 266 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0515 article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.01.042 – volume: 264 start-page: S27 issue: Suppl. 1 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0170 article-title: A perfect match: noninvasive brain stimulation and psychotherapy publication-title: Eur Arch Psych Clin Neurosci doi: 10.1007/s00406-014-0540-6 – volume: 80 start-page: 432 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0820 article-title: Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites publication-title: Biol Psych doi: 10.1016/j.biopsych.2015.11.008 – volume: 7 start-page: 334 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1440 article-title: Pain treatment using tDCS in a single patient: tele-medicine approach in non-invasive brain simulation publication-title: Brain Stimul doi: 10.1016/j.brs.2013.11.008 – volume: 2015 start-page: 963293 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1400 article-title: Effect of the interindividual variability on computational modeling of transcranial direct current stimulation publication-title: Comp Int Neurosci – volume: 10 start-page: 101 year: 1975 ident: 10.1016/j.clinph.2017.06.001_b0510 article-title: Intracerebral current levels in man during electrosleep therapy publication-title: Biol Psych – ident: 10.1016/j.clinph.2017.06.001_b1915 doi: 10.1137/15M1026481 – volume: 10 start-page: 553 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0370 article-title: Safety and tolerability of transcranial direct current stimulation to stroke patients – a phase I current escalation study publication-title: Brain Stimul doi: 10.1016/j.brs.2017.02.007 – volume: 9 start-page: 525 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0280 article-title: Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES) publication-title: Brain Stimul doi: 10.1016/j.brs.2016.03.001 – volume: 120 start-page: 1183 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b1210 article-title: What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.03.023 – volume: 28 start-page: 356 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0315 article-title: Interactions between transcranial direct current stimulation (tDCS) and pharmacological interventions in the major depressive episode: findings from a naturalistic study publication-title: Eur Psychiat doi: 10.1016/j.eurpsy.2012.09.001 – volume: 154 start-page: 2178 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1975 article-title: Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial publication-title: Pain doi: 10.1016/j.pain.2013.06.045 – volume: 27 start-page: 256 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0670 article-title: Hypomania induction in a patient with bipolar II disorder by transcranial direct current stimulation (tDCS) publication-title: J ECT doi: 10.1097/YCT.0b013e3182012b89 – volume: 592 start-page: 3345 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1495 article-title: Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists publication-title: J Physiol doi: 10.1113/jphysiol.2013.270280 – volume: 29 start-page: 1212 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0395 article-title: Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial publication-title: Clin Rehabil doi: 10.1177/0269215514566997 – volume: 27 start-page: 134 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1810 article-title: Cognitive, mood, and electroencephalographic effects of noninvasive cortical stimulation with weak electrical currents publication-title: J ECT doi: 10.1097/YCT.0b013e3181e631a8 – volume: 34 start-page: 3646 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0765 article-title: Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5308-13.2014 – volume: 219 start-page: 297 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0745 article-title: Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2013.07.016 – volume: 10 start-page: e0143533 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1265 article-title: Entrainment of human alpha oscillations selectively enhances visual conjunction search publication-title: PLoS ONE doi: 10.1371/journal.pone.0143533 – volume: 3 start-page: 90 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1645 article-title: Target optimization in transcranial direct current stimulation publication-title: Front Psych – volume: 73 start-page: 10 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b2030 article-title: Neuroenhancement of the aging brain: restoring skill acquisition in old subjects publication-title: Ann Neurol doi: 10.1002/ana.23761 – volume: 12 start-page: 261 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0160 article-title: Effect of tDCS stimulation for improving working memory on stroke patients' EEG variation publication-title: J Kor Cont Assoc doi: 10.5392/JKCA.2012.12.07.261 – start-page: 127 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1200 – volume: 8 start-page: 590 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1710 article-title: The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS) publication-title: Brain Stimul doi: 10.1016/j.brs.2015.01.401 – volume: 127 start-page: 3425 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0865 article-title: Animal models of transcranial direct current stimulation: methods and mechanisms publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2016.08.016 – volume: 5 start-page: 155 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0895 article-title: Differences in the experience of active and sham transcranial direct current stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2011.02.007 – volume: 37 start-page: 510 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b1820 article-title: Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2009.11.004 – volume: 39 start-page: 890 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0105 article-title: Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition publication-title: J Pain Symp Man doi: 10.1016/j.jpainsymman.2009.09.023 – volume: 52 start-page: 1268 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0455 article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.252 – volume: 55 start-page: 809 year: 2007 ident: 10.1016/j.clinph.2017.06.001_b1065 article-title: In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation publication-title: Neuron doi: 10.1016/j.neuron.2007.07.027 – volume: 8 start-page: 046011 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0485 article-title: Optimized multi-electrode stimulation increases focality and intensity at target publication-title: J Neur Eng doi: 10.1088/1741-2560/8/4/046011 – volume: 23 start-page: 109 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0580 article-title: Transcranial electrical stimulation: what we know and do not know about mechanisms publication-title: Neuroscientist doi: 10.1177/1073858416631966 – volume: 128 start-page: 1109 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b1460 article-title: Safety of repetitive transcranial magnetic stimulation in patients with implanted subdural cortical electrodes. An ex-vivo study and report of a case publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2017.01.021 – volume: 85 start-page: 425 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0915 article-title: Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0000000000001806 – volume: 127 start-page: 189 year: 1955 ident: 10.1016/j.clinph.2017.06.001_b0305 article-title: The site of electrical excitation of the human eye publication-title: J Physiol doi: 10.1113/jphysiol.1955.sp005248 – year: 1860 ident: 10.1016/j.clinph.2017.06.001_b0040 – volume: 7 start-page: 627 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1590 article-title: Broca's area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia publication-title: Brain Stimul doi: 10.1016/j.brs.2014.06.004 – volume: 31 start-page: 784 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1600 article-title: Noninvasive brain stimulation in pediatric attention-deficit hyperactivity disorder (ADHD): a review publication-title: J Child Neurol doi: 10.1177/0883073815615672 – volume: 1 start-page: 97 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b0085 article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans publication-title: Brain Stimul doi: 10.1016/j.brs.2007.10.001 – volume: 33 start-page: 4482 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0855 article-title: The mental cost of cognitive enhancement publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4927-12.2013 – volume: 90 start-page: 191 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0180 article-title: Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories publication-title: Neuron doi: 10.1016/j.neuron.2016.02.031 – volume: 5 start-page: 10289 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0750 article-title: The galvanotactic migration of keratinocytes is enhanced by hypoxic preconditioning publication-title: Sci Rep doi: 10.1038/srep10289 – volume: 4 start-page: 175 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b0660 article-title: Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy publication-title: Brain Stimul doi: 10.1016/j.brs.2011.07.003 – volume: 554 start-page: 94 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b1805 article-title: Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect publication-title: Neurosci Lett doi: 10.1016/j.neulet.2013.08.064 – volume: 97 start-page: 954 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b0120 article-title: Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation publication-title: J Med Assoc Thai – volume: 48 start-page: 5782 year: 2007 ident: 10.1016/j.clinph.2017.06.001_b0995 article-title: Bidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.07-0706 – volume: 2010 start-page: 6821 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0475 article-title: Transcranial magnetic stimulation in the presence of deep brain stimulation implants: induced electrode currents publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 593 start-page: 3645 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1390 article-title: Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation publication-title: J Physiol doi: 10.1113/JP270484 – volume: 37 start-page: 181 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1840 article-title: A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robottherapy for the impaired upper limb insub-acute and chronic stroke publication-title: NeuroRehabilitation doi: 10.3233/NRE-151251 – volume: 28 start-page: 14147 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b1825 article-title: Increasing human brain excitability by transcranial high-frequency random noise stimulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4248-08.2008 – volume: 27 start-page: 2758 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0380 article-title: Transcranial direct-current stimulation can enhance motor learning in children publication-title: Cereb Cor – volume: 1 start-page: 206 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b1310 article-title: Transcranial direct current stimulation: state of the art 2008 publication-title: Brain Stimul doi: 10.1016/j.brs.2008.06.004 – volume: 152 start-page: 142 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0800 article-title: Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.001 – volume: 117 start-page: 455 year: 2006 ident: 10.1016/j.clinph.2017.06.001_b1110 article-title: Safety of rTMS to non-motor cortical areas in healthy participants and patients publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.10.014 – volume: 8 start-page: 132 year: 2014 ident: 10.1016/j.clinph.2017.06.001_b1100 article-title: Best of both worlds: promise of combining brain stimulation and brain connectome publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2014.00132 – volume: 171 start-page: 330 year: 1995 ident: 10.1016/j.clinph.2017.06.001_b0525 article-title: Growth cone neurotransmitter receptor activation modulates electric field-guided nerve growth publication-title: Devel Biol doi: 10.1006/dbio.1995.1285 – volume: 33 start-page: 647 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0990 article-title: A-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect publication-title: Rest Neurol Neurosci – volume: 5 start-page: 484 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b0985 article-title: Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention publication-title: Brain Stimul doi: 10.1016/j.brs.2011.08.008 – volume: 6 start-page: 41 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1045 article-title: ARP2/3 complex is required for directional migration of neural stem cell-derived oligodendrocyte precursors in electric fields publication-title: Stem Cell Res Ther doi: 10.1186/s13287-015-0042-0 – volume: 18 start-page: 157 year: 2013 ident: 10.1016/j.clinph.2017.06.001_b0030 article-title: Short-term and long-term effects of electrical stimulation on skin properties publication-title: Physiother Res Int doi: 10.1002/pri.1543 – year: 1864 ident: 10.1016/j.clinph.2017.06.001_b2025 – volume: 18 start-page: 2701 year: 2008 ident: 10.1016/j.clinph.2017.06.001_b0095 article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura publication-title: Cereb Cortex doi: 10.1093/cercor/bhn032 – volume: 200 start-page: 52 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1075 article-title: Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial publication-title: Br J Psych doi: 10.1192/bjp.bp.111.097634 – volume: 20 start-page: 252 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0345 article-title: Transcranial direct current stimulation combined with integrative speech therapy in a child with cerebral palsy: a case report publication-title: J Bodyw Mov Ther doi: 10.1016/j.jbmt.2015.03.007 – volume: 2016 start-page: 5068127 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1795 article-title: TDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke publication-title: Biomed Res Int doi: 10.1155/2016/5068127 – volume: 140 start-page: 66 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0425 article-title: The right inferior frontal cortex in response inhibition: a tDCS-ERP co-registration study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.11.044 – volume: 2009 start-page: 670 year: 2009 ident: 10.1016/j.clinph.2017.06.001_b0460 article-title: Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode publication-title: Ann Intern Conf IEEE Eng Med Biol Soc – volume: 123 start-page: 2006 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1625 article-title: TDCS possibly stimulates glial cells publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.02.082 – volume: 9 start-page: 26 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b0360 article-title: Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2015.00026 – volume: 11 year: 2017 ident: 10.1016/j.clinph.2017.06.001_b0435 article-title: Moral enhancement using non-invasive brain stimulation publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2017.00077 – volume: 120 start-page: 25 year: 2015 ident: 10.1016/j.clinph.2017.06.001_b1675 article-title: On the importance of electrode parameters for shaping electric field patterns generated by tDCS publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.06.067 – volume: 4 start-page: 38 year: 2011 ident: 10.1016/j.clinph.2017.06.001_b1160 article-title: Reducing procedural pain and discomfort associated with transcranial direct current stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2010.05.002 – volume: 80 start-page: 1 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1980 article-title: An open letter concerning do-it-yourself users of transcranial direct current stimulation publication-title: Ann Neurol doi: 10.1002/ana.24689 – volume: 5 start-page: 435 year: 2012 ident: 10.1016/j.clinph.2017.06.001_b1450 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul doi: 10.1016/j.brs.2011.10.001 – volume: 42 start-page: 211 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1960 article-title: The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals publication-title: J Med Ethics doi: 10.1136/medethics-2015-102704 – volume: 39 start-page: 210 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1665 article-title: Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2015.12.010 – volume: 61 start-page: 4506 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b0020 article-title: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS) publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/12/4506 – volume: 26 start-page: 68 year: 2010 ident: 10.1016/j.clinph.2017.06.001_b0125 article-title: Induction of hypomanic episode with transcranial direct current stimulation publication-title: J ECT doi: 10.1097/YCT.0b013e3181a744bf – volume: 36 start-page: 396 year: 2016 ident: 10.1016/j.clinph.2017.06.001_b1860 article-title: Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2499-15.2016 – volume: 48 start-page: 2356 year: 2007 ident: 10.1016/j.clinph.2017.06.001_b1220 article-title: Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury publication-title: Invest Ophthal Vis Sci doi: 10.1167/iovs.06-1329 – reference: 26923911 - Exp Neurol. 2016 May;279:127-136 – reference: 27147964 - Front Cell Neurosci. 2016 Mar 22;10:72 – reference: 24792908 - Neurobiol Aging. 2014 Oct;35(10):2217-21 – reference: 11180425 - Magn Reson Med. 2001 Feb;45(2):196-201 – reference: 25925328 - J Neurophysiol. 2015 Jul;114(1):440-6 – reference: 15245504 - Eur J Neurosci. 2004 Jul;20(1):313-6 – reference: 25862601 - Brain Stimul. 2015 May-Jun;8(3):590-602 – reference: 19520165 - Neurobiol Dis. 2010 Feb;37(2):243-51 – reference: 23831866 - Pain. 2013 Oct;154(10):2178-84 – reference: 19286295 - Brain Cogn. 2009 Jun;70(1):92-115 – reference: 19620953 - Am J Phys Med Rehabil. 2009 May;88(5):404-9 – reference: 26142274 - Neuroimage. 2015 Oct 15;120:25-35 – reference: 24389501 - Brain Stimul. 2014 Mar-Apr;7(2):334-5 – reference: 14354638 - J Physiol. 1955 Jan 28;127(1):189-200 – reference: 25869110 - Clin EEG Neurosci. 2015 Apr;46(2):169 – reference: 8154217 - Zh Nevrol Psikhiatr Im S S Korsakova. 1993;93(5):43-5 – reference: 24064065 - Brain Stimul. 2014 Jan-Feb;7(1):92-6 – reference: 26156511 - Neurology. 2015 Aug 4;85(5):425-32 – reference: 16427357 - Clin Neurophysiol. 2006 Apr;117(4):845-50 – reference: 23435010 - Stem Cell Res. 2013 May;10(3):349-60 – reference: 25988491 - Sci Rep. 2015 May 19;5:10289 – reference: 25530675 - Behav Neurol. 2014;2014:173073 – reference: 19964238 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:670-3 – reference: 23473040 - Int J Neuropsychopharmacol. 2013 Sep;16(8):1695-706 – reference: 22537864 - Brain Stimul. 2013 Jan;6(1):87-93 – reference: 25855132 - Restor Neurol Neurosci. 2015;33(5):647-62 – reference: 28274831 - Neuroimage. 2017 May 15;152:142-157 – reference: 25468075 - Brain Stimul. 2015 Jan-Feb;8(1):165-6 – reference: 25891021 - J Oral Rehabil. 2015 Oct;42(10):723-32 – reference: 21641021 - Brain Lang. 2011 Oct;119(1):1-5 – reference: 22236710 - J Neurophysiol. 2012 Apr;107(7):1868-80 – reference: 23040278 - Comput Methods Programs Biomed. 2013 Jan;109(1):48-64 – reference: 23366036 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:891-5 – reference: 24760509 - Physiol Rep. 2014 Mar 20;2(3):e00255 – reference: 25442154 - Brain Stimul. 2014 Nov-Dec;7(6):823-31 – reference: 25009493 - Front Aging Neurosci. 2014 Jun 24;6:131 – reference: 25368577 - Front Aging Neurosci. 2014 Oct 20;6:289 – reference: 24021804 - Neurosci Lett. 2013 Oct 25;554:94-8 – reference: 22032743 - Brain Stimul. 2011 Oct;4(4):275-80 – reference: 27185286 - Neurosci Biobehav Rev. 2017 Mar;74(Pt B):330-341 – reference: 24367333 - Front Aging Neurosci. 2013 Dec 06;5:87 – reference: 23954780 - J Neurosci Methods. 2013 Oct 15;219(2):297-311 – reference: 26029083 - Front Hum Neurosci. 2015 May 15;9:265 – reference: 10712466 - J Neurophysiol. 2000 Mar;83(3):1394-402 – reference: 25468234 - Clin Neurophysiol. 2015 Jul;126(7):1392-9 – reference: 26488591 - J Cogn Neurosci. 2016 Feb;28(2):275-81 – reference: 26900961 - PLoS One. 2016 Feb 22;11(2):e0149703 – reference: 21613597 - J Neurophysiol. 2011 Aug;106(2):652-61 – reference: 27989592 - J Neurosci Methods. 2017 Feb 1;277:56-62 – reference: 26879095 - J Child Neurol. 2016 Jun;31(7):918-24 – reference: 27774197 - J Law Biosci. 2015 Jun 02;2(2):292-335 – reference: 27216434 - Ann Neurol. 2016 Jul;80(1):1-4 – reference: 15987799 - Physiol Rev. 2005 Jul;85(3):943-78 – reference: 25448248 - Arch Phys Med Rehabil. 2015 Apr;96(4 Suppl):S129-37 – reference: 22037128 - Brain Stimul. 2012 Apr;5(2):155-62 – reference: 25536713 - J Med Assoc Thai. 2014 Sep;97(9):954-62 – reference: 27108392 - Brain Stimul. 2016 Jul-Aug;9(4):545-52 – reference: 25461825 - Arch Phys Med Rehabil. 2015 Apr;96(4 Suppl):S114-21 – reference: 25522422 - Int J Neuropsychopharmacol. 2014 Dec 07;18(5):null – reference: 23165924 - Physiother Res Int. 2013 Sep;18(3):157-66 – reference: 27486393 - Front Hum Neurosci. 2016 Jul 19;10:361 – reference: 22912618 - Front Psychiatry. 2012 Aug 17;3:74 – reference: 26200716 - Behav Brain Res. 2015 Oct 15;293:125-33 – reference: 25105567 - Res Dev Disabil. 2014 Nov;35(11):2840-8 – reference: 28736118 - Clin Neurophysiol. 2017 Sep;128(9):1770-1771 – reference: 20554472 - Clin Neurophysiol. 2010 Dec;121(12):2165-71 – reference: 17329167 - Clin Neurophysiol. 2007 May;118(5):1166-70 – reference: 26881118 - Neural Plast. 2016;2016:5961362 – reference: 21335303 - IEEE Trans Biomed Eng. 2011 Jun;58(6):1773-80 – reference: 22928032 - PLoS One. 2012;7(8):e43776 – reference: 25637226 - Neuropsychologia. 2015 Jul;74:108-19 – reference: 23097644 - Front Psychiatry. 2012 Oct 22;3:91 – reference: 26608246 - Neuroimage. 2016 Oct 15;140:110-7 – reference: 27053386 - Brain Stimul. 2016 May-Jun;9(3):457-458 – reference: 21684040 - Neurobiol Aging. 2012 Aug;33(8):1682-9 – reference: 20350607 - Neuroimage. 2010 Jul 15;51(4):1310-8 – reference: 23880500 - Neuroimage. 2014 Jan 15;85 Pt 3:1058-68 – reference: 26923418 - Neurobiol Aging. 2016 Mar;39:210-216 – reference: 26111387 - IEEE Trans Biomed Eng. 2016 Jan;63(1):168-75 – reference: 18055832 - Invest Ophthalmol Vis Sci. 2007 Dec;48(12):5782-7 – reference: 18429704 - Annu Rev Biomed Eng. 2008;10:275-309 – reference: 27569587 - Brain Res. 2016 Nov 1;1650:10-20 – reference: 25604912 - Clin Rehabil. 2015 Dec;29(12):1212-23 – reference: 25013302 - J Phys Ther Sci. 2014 Jun;26(6):945-50 – reference: 17785187 - Neuron. 2007 Sep 6;55(5):809-23 – reference: 11897534 - Clin Neurophysiol. 2002 Mar;113(3):341-5 – reference: 26321911 - Front Cell Neurosci. 2015 Aug 11;9:307 – reference: 21206371 - J ECT. 2011 Sep;27(3):256-8 – reference: 23099102 - Neuroimage. 2014 Jan 15;85 Pt 3:1040-7 – reference: 26251227 - Ann N Y Acad Sci. 2015 Sep;1351:127-40 – reference: 20962598 - Am J Phys Med Rehabil. 2010 Nov;89(11):879-86 – reference: 27123448 - Biomed Res Int. 2016;2016:5068127 – reference: 21962982 - Brain Stimul. 2012 Oct;5(4):484-91 – reference: 25613437 - Neuroimage. 2015 Apr 1;109:140-50 – reference: 26350410 - Brain Stimul. 2016 Jan-Feb;9(1):1-7 – reference: 25732105 - Clin Neurophysiol. 2015 Nov;126(11):2189-97 – reference: 24025832 - Nature. 2013 Sep 12;501(7466):167 – reference: 25697590 - Brain Stimul. 2015 May-Jun;8(3):455-64 – reference: 21160123 - NeuroRehabilitation. 2010;27(4):335-41 – reference: 24623779 - J Neurosci. 2014 Mar 12;34(11):4022-6 – reference: 26890096 - Restor Neurol Neurosci. 2016;34(2):215-26 – reference: 23303424 - J ECT. 2013 Jun;29(2):147-8 – reference: 26072125 - Contemp Clin Trials. 2015 Jul;43:231-6 – reference: 20488204 - J Neurosci Methods. 2010 Jul 15;190(2):188-97 – reference: 15351385 - Clin Neurophysiol. 2004 Oct;115(10):2419-23 – reference: 25599302 - Pain. 2015 Jan;156(1):62-71 – reference: 20161507 - Brain Stimul. 2009 Oct;2(4):215-28, 228.e1-3 – reference: 23467363 - J Neurosci. 2013 Mar 6;33(10):4482-6 – reference: 22733164 - Graefes Arch Clin Exp Ophthalmol. 2013 Mar;251(3):1041-3 – reference: 21659696 - J Neural Eng. 2011 Aug;8(4):046011 – reference: 24284464 - NeuroRehabilitation. 2014;34(1):121-7 – reference: 26873962 - Neuroscientist. 2016 Feb 12;:null – reference: 26097454 - Front Aging Neurosci. 2015 Jun 05;7:107 – reference: 26889687 - J Vis Exp. 2016 Feb 04;(108):e53367 – reference: 26696882 - Front Aging Neurosci. 2015 Dec 14;7:230 – reference: 26026283 - Brain Stimul. 2015 Sep-Oct;8(5):906-13 – reference: 24086698 - PLoS One. 2013 Sep 27;8(9):e76112 – reference: 25101009 - Front Psychiatry. 2014 Jul 21;5:86 – reference: 25890209 - Stem Cell Res Ther. 2015 Mar 21;6:41 – reference: 24822247 - Headache. 2014 Apr;54(4):663-74 – reference: 21894658 - Fed Regist. 2011 Aug 23;76(163):52667-8 – reference: 27173384 - J Neural Transm (Vienna). 2016 Oct;123(10 ):1219-34 – reference: 25878904 - Neural Plast. 2015;2015:684025 – reference: 25522391 - Int J Neuropsychopharmacol. 2014 Oct 31;18(2):null – reference: 25073936 - Brain Stimul. 2014 Sep-Oct;7(5):765-7 – reference: 19913097 - Neurobiol Dis. 2010 Mar;37(3):510-8 – reference: 21095849 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6821-4 – reference: 26758832 - J Neurosci. 2016 Jan 13;36(2):396-404 – reference: 26469395 - Pain. 2016 Feb;157(2):429-37 – reference: 26484510 - NeuroRehabilitation. 2015 ;37(2):181-91 – reference: 27774217 - J Law Biosci. 2015 Oct 12;2(3):669-696 – reference: 24553318 - J ECT. 2014 Mar;30(1):62-8 – reference: 20633396 - Brain Stimul. 2008 Oct;1(4):386-7 – reference: 26898606 - Sci Rep. 2016 Feb 22;6:21583 – reference: 28326031 - Front Hum Neurosci. 2017 Mar 07;11:113 – reference: 25126060 - Front Syst Neurosci. 2014 Jul 30;8:132 – reference: 25071479 - Front Syst Neurosci. 2014 Jul 08;8:127 – reference: 23760989 - J Child Neurol. 2014 Feb;29(2):232-9 – reference: 24695720 - J Neurosci. 2014 Apr 2;34(14):5029-37 – reference: 26736856 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :2729-32 – reference: 25285077 - Front Hum Neurosci. 2014 Sep 19;8:739 – reference: 27372845 - Brain Stimul. 2016 Sep-Oct;9(5):641-661 – reference: 25454337 - Clin Neurophysiol. 2015 Jun;126(6):1185-9 – reference: 25253645 - Eur Arch Psychiatry Clin Neurosci. 2014 Nov;264 Suppl 1:S27-33 – reference: 27261431 - Brain Stimul. 2016 Sep-Oct;9(5):671-681 – reference: 28275345 - Front Hum Neurosci. 2017 Feb 22;11:77 – reference: 17460302 - Invest Ophthalmol Vis Sci. 2007 May;48(5):2356-61 – reference: 12701954 - Int J Technol Assess Health Care. 2003 Winter;19(1):228-48 – reference: 17452283 - Brain Res Bull. 2007 May 30;72(4-6):208-14 – reference: 26598772 - Brain Stimul. 2015 Sep-Oct;8(5):993-1006 – reference: 23756431 - J Head Trauma Rehabil. 2014 May-Jun;29(3):E20-9 – reference: 23478342 - Restor Neurol Neurosci. 2013;31(3):275-85 – reference: 21211569 - Neuroimage. 2011 Mar 15;55(2):590-6 – reference: 23415451 - Clin Neurophysiol. 2013 Jun;124(6):1187-95 – reference: 23541726 - Curr Biol. 2013 Apr 8;23 (7):569-74 – reference: 23843514 - J Neurosci. 2013 Jul 10;33(28):11425-31 – reference: 24398722 - Restor Neurol Neurosci. 2014;32(2):301-12 – reference: 26576215 - J Vasc Interv Neurol. 2015 Oct;8(4):43-52 – reference: 21780073 - Rev Neurol. 2011 Aug 16;53(4):209-25 – reference: 20105234 - Eur J Neurosci. 2010 Feb;31(3):593-7 – reference: 25071548 - Front Neuroeng. 2014 Jul 11;7:28 – reference: 19671217 - Int J Neuropsychopharmacol. 2010 Feb;13(1):61-9 – reference: 25852494 - Front Syst Neurosci. 2015 Mar 17;9:26 – reference: 23063889 - Brain Res. 2012 Dec 13;1489:17-26 – reference: 18680573 - Behav Brain Funct. 2008 Aug 04;4:33 – reference: 21035740 - Clin Neurophysiol. 2010 Dec;121(12):1976-8 – reference: 27535462 - Sci Rep. 2016 Aug 18;6:31236 – reference: 19528092 - Brain. 2009 Nov;132(Pt 11):3011-20 – reference: 20633386 - Brain Stimul. 2008 Jul;1(3):206-23 – reference: 25501299 - Graefes Arch Clin Exp Ophthalmol. 2015 Feb;253(2):171-6 – reference: 27551261 - Front Cell Neurosci. 2016 Aug 08;10:188 – reference: 24062685 - Front Aging Neurosci. 2013 Sep 11;5:49 – reference: 15522246 - Biol Psychiatry. 2004 Nov 1;56(9):634-9 – reference: 21586823 - Restor Neurol Neurosci. 2011;29(3):167-75 – reference: 25499471 - Brain Stimul. 2015 Jan-Feb;8(1):76-87 – reference: 28259678 - Clin Neurophysiol. 2017 Jun;128(6):1109-1115 – reference: 24737098 - J Neural Eng. 2014 Jun;11(3):036002 – reference: 12917358 - J Neurosci. 2003 Aug 13;23(19):7255-61 – reference: 27375421 - Front Neurosci. 2016 Jun 07;10:262 – reference: 18372292 - Cereb Cortex. 2008 Nov;18(11):2701-5 – reference: 24625701 - J ECT. 2014 Sep;30(3):e16-8 – reference: 23884951 - J Neurosci. 2013 Jul 24;33(30):12470-8 – reference: 20233439 - BMC Neurosci. 2010 Mar 16;11:38 – reference: 25880098 - Neuromodulation. 2015 Dec;18(8):686-93 – reference: 20530614 - Anesth Analg. 2010 Nov;111(5):1301-7 – reference: 21350028 - J Appl Physiol (1985). 2011 May;110(5):1414-24 – reference: 21986238 - Brain Stimul. 2012 Jul;5(3):432-4 – reference: 23562964 - Neuropsychologia. 2013 Jun;51(7):1234-9 – reference: 23389323 - JAMA Psychiatry. 2013 Apr;70(4):383-91 – reference: 1120172 - Biol Psychiatry. 1975 Feb;10(1):101-4 – reference: 26458516 - Neuroimage. 2016 Oct 15;140:118-25 – reference: 24936185 - Front Aging Neurosci. 2014 Jun 06;6:115 – reference: 26606255 - PLoS One. 2015 Nov 25;10(11):e0143533 – reference: 26619787 - Neuroimage. 2016 Oct 15;140:66-75 – reference: 15661300 - J Neurosci Methods. 2005 Feb 15;141(2):171-98 – reference: 26652115 - Clin Neurophysiol. 2016 Feb;127(2):1031-1048 – reference: 25929230 - J Physiol. 2015 Aug 15;593(16):3645-55 – reference: 20435146 - Neuroimage. 2010 Oct 1;52(4):1268-78 – reference: 22674451 - Internist (Berl). 2012 Sep;53(9):1125-30 – reference: 27093311 - IEEE Trans Biomed Eng. 2017 Jan;64(1):184-195 – reference: 26590479 - Brain Stimul. 2015 Nov-Dec;8(6):1233-5 – reference: 23473936 - Neuroimage. 2013 Jul 15;75:12-19 – reference: 21631313 - Clin Linguist Phon. 2011 Jun;25(6-7):640-54 – reference: 19483641 - J ECT. 2010 Mar;26(1):68-9 – reference: 23982710 - Stroke. 2013 Nov;44(11):3166-74 – reference: 24345389 - Neuroimage. 2014 Apr 1;89:216-25 – reference: 26458959 - Prostate Cancer Prostatic Dis. 2016 Mar;19(1):46-52 – reference: 25018056 - Brain Stimul. 2014 Sep-Oct;7(5):762-4 – reference: 14702983 - Proc Inst Mech Eng H. 2003;217(6):459-67 – reference: 21240273 - Nat Neurosci. 2011 Feb;14(2):217-23 – reference: 26996082 - Neuron. 2016 Apr 6;90(1):191-203 – reference: 25216650 - Brain Stimul. 2014 Sep-Oct;7(5):636-42 – reference: 21095946 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2073-6 – reference: 25922128 - Clin Neurophysiol. 2015 Nov;126(11):2181-8 – reference: 15664172 - Neuron. 2005 Jan 20;45(2):201-6 – reference: 23055986 - Front Psychiatry. 2012 Sep 25;3:84 – reference: 20648973 - Brain Stimul. 2009 Oct;2(4):201-7, 207.e1 – reference: 25413621 - Phys Ther. 2015 Mar;95(3):337-49 – reference: 25234606 - Trials. 2014 Sep 18;15:366 – reference: 26280313 - Exp Brain Res. 2016 Mar;234(3):637-43 – reference: 25963755 - Exp Brain Res. 2015 Aug;233(8):2401-9 – reference: 16045502 - Eur J Neurosci. 2005 Jul;22(2):495-504 – reference: 23034972 - J Child Neurol. 2013 Oct;28(10):1238-44 – reference: 27044999 - Philos Trans A Math Phys Eng Sci. 2016 May 13;374(2067):null – reference: 27210840 - J Bodyw Mov Ther. 2016 Apr;20(2):252-7 – reference: 19109497 - J Neurosci. 2008 Dec 24;28(52):14147-55 – reference: 25849358 - PLoS One. 2015 Apr 07;10(4):e0121904 – reference: 17409245 - J Neurosci. 2007 Apr 4;27(14):3807-12 – reference: 25022472 - Brain Stimul. 2014 Sep-Oct;7(5):627-35 – reference: 19201066 - Neurobiol Aging. 2010 Dec;31(12):2160-8 – reference: 24159560 - Neuroimage Clin. 2013 May 31;2:759-66 – reference: 24907311 - J Physiol. 2014 Aug 15;592(16):3345-69 – reference: 17251360 - J Neurophysiol. 2007 Apr;97(4):3109-17 – reference: 26774968 - Biol Psychiatry. 2016 Sep 15;80(6):432-438 – reference: 23087654 - Front Psychiatry. 2012 Oct 17;3:90 – reference: 21948925 - J Neuropsychiatry Clin Neurosci. 2011 Summer;23(3):E4-5 – reference: 7838369 - Neurosci Behav Physiol. 1994 Sep-Oct;24(5):442-5 – reference: 23850466 - Neuroimage. 2014 Jan 15;85 Pt 3:1048-57 – reference: 21820308 - Curr Biol. 2011 Aug 23;21(16):1403-7 – reference: 22506177 - Ann Rehabil Med. 2011 Aug;35(4):579-82 – reference: 25940845 - Med Biol Eng Comput. 2015 Oct;53(10 ):1085-101 – reference: 25521600 - NMR Biomed. 2015 Feb;28(2):231-9 – reference: 21072168 - PLoS One. 2010 Nov 01;5(11):e13766 – reference: 20019146 - Cereb Cortex. 2010 Aug;20(8):1926-36 – reference: 21641264 - Parkinsonism Relat Disord. 2011 Sep;17(8):647-8 – reference: 23550273 - Front Psychiatry. 2013 Feb 26;3:97 – reference: 18925985 - Int J Neuropsychopharmacol. 2009 Jun;12(5):643-50 – reference: 20434997 - Neuron. 2010 Apr 29;66(2):198-204 – reference: 23392916 - Neurorehabil Neural Repair. 2013 May;27(4):363-9 – reference: 22104190 - J Pain. 2012 Feb;13(2):112-20 – reference: 27653887 - J Neurol Sci. 2016 Oct 15;369:185-190 – reference: 9918361 - Mov Disord. 1999 Jan;14(1):157-8 – reference: 20327943 - Can Med Assoc J. 1964 Sep 12;91(11):619 – reference: 24784477 - Clin Neurophysiol. 2014 Nov;125(11):2260-70 – reference: 26003225 - J Neurol Sci. 2015 Jul 15;354(1-2):103-9 – reference: 22124039 - Restor Neurol Neurosci. 2011;29(6):493-505 – reference: 25295004 - Front Aging Neurosci. 2014 Sep 23;6:253 – reference: 24582373 - Brain Stimul. 2014 May-Jun;7(3):460-7 – reference: 26449209 - Brain Res Bull. 2015 Oct;119(Pt A):25-33 – reference: 22016735 - Front Aging Neurosci. 2011 Oct 12;3:16 – reference: 16703590 - Mov Disord. 2006 Sep;21(9):1471-6 – reference: 19506706 - Front Integr Neurosci. 2009 May 18;3:6 – reference: 26324456 - J Med Ethics. 2016 Apr;42(4):211-5 – reference: 27249078 - J Clin Psychiatry. 2016 May;77(5):689-90 – reference: 17599962 - J Physiol. 2007 Sep 1;583(Pt 2):555-65 – reference: 28220641 - Neuromodulation. 2017 Apr;20(3):215-222 – reference: 15872016 - Brain. 2005 Aug;128(Pt 8):1943-50 – reference: 6781682 - Br Med J (Clin Res Ed). 1981 Mar 21;282(6268):974-6 – reference: 24162796 - J Neural Transm (Vienna). 2014;121(3):221-31 – reference: 27223853 - Phys Med Biol. 2016 Jun 21;61(12 ):4506-21 – reference: 27298740 - Neural Plast. 2016;2016:4274127 – reference: 20938352 - J ECT. 2011 Jun;27(2):134-40 – reference: 25135003 - J Neuroeng Rehabil. 2014 Aug 18;11:124 – reference: 25792098 - Lancet Neurol. 2015 Apr;14(4):388-405 – reference: 24310982 - J Neural Eng. 2014 Feb;11(1):016002 – reference: 25940097 - Neuropsychologia. 2015 Jul;74:152-61 – reference: 26079636 - Disabil Rehabil. 2016;38(7):637-43 – reference: 28279641 - Brain Stimul. 2017 May - Jun;10 (3):553-559 – reference: 26226938 - Brain Stimul. 2015 Nov-Dec;8(6):1085-92 – reference: 27027666 - J Child Adolesc Psychopharmacol. 2016 Sep;26(7):590-7 – reference: 22086257 - J Neural Eng. 2011 Dec;8(6):066017 – reference: 21885255 - Epilepsy Res. 2011 Nov;97(1-2):142-5 – reference: 9754976 - Eur J Appl Physiol Occup Physiol. 1998 Sep;78(4):353-9 – reference: 22949089 - IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):333-45 – reference: 26848997 - Neuroreport. 2016 Mar 23;27(5):295-300 – reference: 27865707 - Neurophysiol Clin. 2016 Dec;46(6):319-398 – reference: 24461998 - Curr Biol. 2014 Feb 3;24(3):333-9 – reference: 27039705 - Neuroimage. 2016 Oct 15;140:99-109 – reference: 24599463 - J Neurosci. 2014 Mar 5;34(10):3646-52 – reference: 26661481 - J Child Neurol. 2016 May;31(6):784-96 – reference: 21286253 - Front Psychol. 2010 Nov 11;1:193 – reference: 19833552 - Clin Neurophysiol. 2009 Dec;120(12):2008-39 – reference: 27166171 - Cereb Cortex. 2017 May 1;27(5):2758-2767 – reference: 28231716 - Am J Psychiatry. 2017 Jul 1;174(7):628-639 – reference: 19964541 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:1596-9 – reference: 15753425 - Neurology. 2005 Mar 8;64(5):872-5 – reference: 27916405 - Brain Stimul. 2017 Mar - Apr;10 (2):260-262 – reference: 27403166 - Stem Cells Int. 2016;2016:2715196 – reference: 26170244 - J Neural Eng. 2015 Aug;12(4):046030 – reference: 22305345 - Brain Stimul. 2012 Oct;5(4):435-53 – reference: 23274187 - Neuroimage. 2013 Apr 15;70:48-58 – reference: 23370061 - Neuroimage. 2013 Jul 1;74:266-75 – reference: 21320389 - Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45 – reference: 19484445 - Jpn J Ophthalmol. 2009 May;53(3):257-66 – reference: 27693941 - Clin Neurophysiol. 2016 Nov;127(11):3425-3454 – reference: 19811944 - Parkinsonism Relat Disord. 2010 Feb;16(2):127-31 – reference: 27000523 - Nat Commun. 2016 Mar 22;7:11100 – reference: 25209456 - Neuromodulation. 2015 Jun;18(4):261-5 – reference: 20633376 - Brain Stimul. 2008 Apr;1(2):97-105 – reference: 23225625 - Ann Neurol. 2013 Jan;73(1):10-5 – reference: 21962978 - Brain Stimul. 2012 Jul;5(3):242-51 – reference: 23851401 - J Vis Exp. 2013 Jun 17;(76):null – reference: 19403329 - Clin Neurophysiol. 2009 Jun;120(6):1161-7 – reference: 25931726 - J Phys Ther Sci. 2015 Mar;27(3):763-8 – reference: 21981853 - Brain Stimul. 2011 Oct;4(4):175-88 – reference: 20700786 - Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2010 Aug;53(8):853-9 – reference: 19386916 - J Neurosci. 2009 Apr 22;29(16):5202-6 – reference: 22480602 - Clin Neurophysiol. 2012 Oct;123(10):2006-9 – reference: 8054244 - Br J Clin Pharmacol. 1994 May;37(5):401-4 – reference: 15056717 - J Neurosci. 2004 Mar 31;24(13):3379-85 – reference: 24796646 - J Vis Exp. 2014 Apr 27;(86):null – reference: 23415937 - Brain Stimul. 2013 Jul;6(4):696-700 – reference: 28119589 - Front Hum Neurosci. 2017 Jan 10;10 :683 – reference: 25071555 - Front Aging Neurosci. 2014 Jul 10;6:146 – reference: 25792428 - J Child Neurol. 2015 Oct;30(12):1604-15 – reference: 7556917 - Dev Biol. 1995 Oct;171(2):330-9 – reference: 24238383 - Tech Vasc Interv Radiol. 2013 Dec;16(4):277-86 – reference: 21981854 - Brain Stimul. 2011 Oct;4(4):189-201 – reference: 27199889 - Front Neurol. 2016 May 04;7:66 – reference: 20471313 - Clin Neurophysiol. 2010 Nov;121(11):1908-14 – reference: 23366836 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4128-31 – reference: 22211744 - Eur J Neurosci. 2012 Jan;35(1):119-24 – reference: 20624597 - Neuron. 2010 Jul 15;67(1):129-43 – reference: 25912048 - Eur J Neurosci. 2015 May;41(11):1475-83 – reference: 10441299 - Trends Neurosci. 1999 Sep;22(9):391-7 – reference: 27704654 - Neuromodulation. 2017 Apr;20(3):248-255 – reference: 22684095 - Neurosci Lett. 2012 Jul 19;521(2):148-51 – reference: 14580622 - Clin Neurophysiol. 2003 Nov;114(11):2220-2; author reply 2222-3 – reference: 16387549 - Clin Neurophysiol. 2006 Feb;117(2):455-71 – reference: 27170126 - J Neurosci. 2016 May 11;36(19):5289-98 – reference: 27322602 - Expert Rev Clin Pharmacol. 2016 Sep;9(9):1245-52 – reference: 20671257 - Stroke. 2010 Sep;41(9):2087-90 – reference: 20471549 - J Pain Symptom Manage. 2010 May;39(5):890-903 – reference: 21398419 - Cephalalgia. 2011 May;31(7):820-8 – reference: 24905627 - Brain Res. 2014 Sep 18;1581:80-8 – reference: 21782547 - Brain Stimul. 2012 Jul;5(3):430-1 – reference: 25861158 - Behav Neurol. 2015;2015:928631 – reference: 24049057 - J Child Neurol. 2014 Oct;29(10):1360-5 – reference: 25870543 - Front Syst Neurosci. 2015 Mar 30;9:54 – reference: 27355577 - PLoS One. 2016 Jun 29;11(6):e0156134 – reference: 11274304 - Neurology. 2001 Mar 27;56(6):716-23 – reference: 21777878 - Brain Stimul. 2011 Jul;4(3):169-74 – reference: 21255753 - Brain Stimul. 2011 Jan;4(1):38-42 – reference: 19440158 - J ECT. 2009 Dec;25(4):256-60 – reference: 22215866 - Br J Psychiatry. 2012 Jan;200(1):52-9 – reference: 24631567 - Neurosci Lett. 2014 May 21;569:6-11 – reference: 25765775 - Dig Surg. 2015;32(2):90-7 – reference: 20923600 - Int J Neuropsychopharmacol. 2011 Apr;14(3):425-6 – reference: 25346688 - Front Aging Neurosci. 2014 Oct 09;6:275 – reference: 27061368 - Brain Stimul. 2016 Jul-Aug;9(4):525-8 – reference: 23123281 - Epilepsy Behav. 2012 Nov;25(3):417-25 – reference: 23237479 - Cortex. 2013 Jul-Aug;49(7):1801-7 – reference: 23367178 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5514-7 – reference: 24620008 - Neuroscientist. 2015 Apr;21(2):185-202 – reference: 25153776 - Brain Stimul. 2014 Nov-Dec;7(6):793-9 – reference: 15914636 - Invest Ophthalmol Vis Sci. 2005 Jun;46(6):2147-55 – reference: 26265912 - Comput Intell Neurosci. 2015;2015:963293 – reference: 24166562 - Neurol Neurochir Pol. 2013 Sep-Oct;47(5):414-22 – reference: 20633432 - Brain Stimul. 2010 Jan;3(1):58-9 – reference: 26503692 - Hum Brain Mapp. 2016 Jan;37(1):94-121 – reference: 2249872 - IEEE Trans Biomed Eng. 1990 Oct;37(10):996-1001 – reference: 22512348 - Headache. 2012 Sep;52(8):1283-95 – reference: 26342753 - Exp Neurol. 2016 Jan;275 Pt 3:316-327 – reference: 18786856 - Clin Neurophysiol. 2008 Nov;119(11):2636-40 – reference: 26213216 - J Neurosci Methods. 2015 Oct 30;254:18-26 – reference: 26562295 - PLoS One. 2015 Nov 12;10(11):e0142740 – reference: 24324410 - Front Syst Neurosci. 2013 Nov 25;7:94 – reference: 24816141 - Nat Neurosci. 2014 Jun;17(6):810-2 – reference: 19423386 - Clin Neurophysiol. 2009 Jun;120(6):1183-7 – reference: 25096637 - Stem Cell Rev. 2015 Feb;11(1):75-86 – reference: 27853926 - J Neural Transm (Vienna). 2017 Jan;124(1):133-144 – reference: 29096212 - Clin Neurophysiol. 2017 Dec;128(12 ):2397-2399 – reference: 23699528 - J Neurosci. 2013 May 22;33(21):9176-83 – reference: 26080310 - Neuroimage. 2015 Sep;118:406-13 – reference: 24760939 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):441-52 – reference: 25797650 - Clin Neurophysiol. 2015 Jun;126(6):1071-107 – reference: 25468071 - Brain Stimul. 2015 Jan-Feb;8(1):163-4 – reference: 23182847 - Eur Psychiatry. 2013 Aug;28(6):356-61 – reference: 27014012 - Front Hum Neurosci. 2016 Mar 10;10:68 – reference: 24176927 - Neuroreport. 2014 Jan 22;25(2):122-6 |
SSID | ssj0007042 |
Score | 2.682817 |
SecondaryResourceType | review_article |
Snippet | •The application of low intensity TES in humans appears to be safe.•The profile of AEs in terms of frequency, magnitude and type is comparable in different... Highlights • The application of low intensity TES in humans appears to be safe. • The profile of AEs in terms of frequency, magnitude and type is comparable in... Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1774 |
SubjectTerms | Adverse events Animals Brain - physiology Burns, Electric - etiology Burns, Electric - prevention & control Humans Neurology Practice Guidelines as Topic - standards Safety tACS tDCS TES Transcranial Direct Current Stimulation - adverse effects Transcranial Direct Current Stimulation - ethics Transcranial Direct Current Stimulation - standards |
Title | Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245717302122 https://www.clinicalkey.es/playcontent/1-s2.0-S1388245717302122 https://dx.doi.org/10.1016/j.clinph.2017.06.001 https://www.ncbi.nlm.nih.gov/pubmed/28709880 https://www.proquest.com/docview/1920195671 https://pubmed.ncbi.nlm.nih.gov/PMC5985830 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQk9Bepo19sQ_kSXskNImduN4bQkOFAS8MiTfLTq5bUEmrNtXUl_3tu4ud0gIT014iJTnHSXxf1v3ujrHPJeUPK0ijHBKNGxSRR07qHMUdEmrDrYdt-tjZeT64lCdX2dUGO-xyYQhWGXS_1-mttg5XeuFv9iZV1btIBHqHMqMwMtUpJz0spSIu3_99C_NQcdtAh4gjou7S51qMF2UfTigkkah9H5X4m3m6737eRVGumKWj5-xZ8Cf5gX_lF2wD6m22dRYi5i_Zzen4F688Tr1Z8IZMU4EHZDvuW-BUBUcxvwltvL7wCzuEZrHHgZDwdrTHR4BWhE990_rxdMFtXfKVwDf_MadaWYSff8Uuj75-PxxEocVCVKCr0US51spSbG5YxlINcwGpVa6wFh0t7ZLUSXRv8tTq0upUQb-kHZiL-7IEUrFCvGab9biGt4yDAuUcPqzUiSyFcKntZ32ArCC8VaF2mOj-rClC_XFqgzEyHdDs2vj1MLQexuPtdli0HDXx9Tceoc-6RTNdbilqQ4MG4pFx6qFxMAsiPTOJmaUmNvfYbnXkGuf-w5yfOq4yKNQUqbE1jOc4l07bRE6FNG88ly2_niLTGrUuzrvGf0sCKhi-fqeufraFwzONKyLid__9xu_ZUzrzGLsPbLOZzuEjOmWN222lbpc9OTj-Njj_A_RCOME |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdQkba9TOwTxj48aY9kTeIkrveG0FAZbV8AiTfLTq5bUEmrNhXqf89d7FTt2MS0lzzEvjix7yu6390x9qWg_GEJcZBBpPAHRWSBTVSG4g4RteFW4yZ9bDjK-lfJj-v0eoedtLkwBKv0ut_p9EZb-ztdv5vdWVl2LyKB3mGSUhiZ6pSjHt6l6lRph-0en533R2uFLMOmhw7ND4igzaBrYF6UgDijqEQkv7rAxN8s1EMP9Hcg5YZlOt1jz71LyY_dW79gO1C9ZE-GPmj-it0Opne8dFD1esVrsk45XpDzuOuCU-YcJf3Wd_L6xi_MGOrVEQcCw5vJEZ8AGhI-d33rp_MVN1XBN2Lf_OeSymURhP41uzr9fnnSD3yXhSBHb6MOMqWkofDcuAgTOc4ExEba3Bj0tZSNYpugh5PFRhVGxRJ6Bf2E2bCXFEBaVog3rFNNK9hnHCRIa_FhhYqSQggbm17aA0hzglzl8oCJdmd17kuQUyeMiW6xZjfanYem89AOcnfAgjXVzJXgeGR-2h6abtNLUSFqtBGP0Mk_0cHCS_VCR3oR61A_4LxNyi3m_Yc1P7dcpVGuKVhjKpgucS0VN7mcEue8dVy2_noKTitUvLjuFv-tJ1DN8O2RqvzV1A5PFZ6ICN_99xt_Yk_7l8OBHpyNzg_ZMxpxkLv3rFPPl_ABfbTafvQyeA-DWzty |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+intensity+transcranial+electric+stimulation%3A+Safety%2C+ethical%2C+legal+regulatory+and+application+guidelines&rft.jtitle=Clinical+neurophysiology&rft.au=Antal%2C+A&rft.au=Alekseichuk%2C+I&rft.au=Bikson%2C+M&rft.au=Brockm%C3%B6ller%2C+J&rft.date=2017-09-01&rft.issn=1872-8952&rft.eissn=1872-8952&rft.volume=128&rft.issue=9&rft.spage=1774&rft_id=info:doi/10.1016%2Fj.clinph.2017.06.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon |