Collapsed States of Langmuir Monolayers

Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differen...

Full description

Saved in:
Bibliographic Details
Published inJournal of Oleo Science Vol. 65; no. 5; pp. 385 - 397
Main Authors Phan, Minh Dinh, Lee, Jumi, Shin, Kwanwoo
Format Journal Article
LanguageEnglish
Published Japan Japan Oil Chemists' Society 01.05.2016
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differences that are associated with the structures and mechanical properties of the constituent molecules of the monolayer. The mechanisms and collapsed structures can differ owing to differences in experimental conditions, i.e., temperature, ion-content, the pH of subphase, or compression rate; in addition, the type of constituent molecules, i.e., biological lipids or chemical surfactants, has an effect. In this review, we compare studies concerning several aspects of collapse, from basic concepts and theoretical mechanisms to experimental visualization of the monolayer topography. In addition, techniques often employed to study this subject are discussed in this review.
AbstractList Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differences that are associated with the structures and mechanical properties of the constituent molecules of the monolayer. The mechanisms and collapsed structures can differ owing to differences in experimental conditions, i.e., temperature, ion-content, the pH of subphase, or compression rate; in addition, the type of constituent molecules, i.e., biological lipids or chemical surfactants, has an effect. In this review, we compare studies concerning several aspects of collapse, from basic concepts and theoretical mechanisms to experimental visualization of the monolayer topography. In addition, techniques often employed to study this subject are discussed in this review.
[Abstract]: Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differences that are associated with the structures and mechanical properties of the constituent molecules of the monolayer. The mechanisms and collapsed structures can differ owing to differences in experimental conditions, i.e., temperature, ion-content, the pH of subphase, or compression rate; in addition, the type of constituent molecules, i.e., biological lipids or chemical surfactants, has an effect. In this review, we compare studies concerning several aspects of collapse, from basic concepts and theoretical mechanisms to experimental visualization of the monolayer topography. In addition, techniques often employed to study this subject are discussed in this review.
Author Phan, Minh Dinh
Shin, Kwanwoo
Lee, Jumi
Author_xml – sequence: 1
  fullname: Phan, Minh Dinh
  organization: Department of Chemistry and Institute of Biological Interfaces, Sogang University
– sequence: 2
  fullname: Lee, Jumi
  organization: Department of Chemistry and Institute of Biological Interfaces, Sogang University
– sequence: 3
  fullname: Shin, Kwanwoo
  organization: Department of Chemistry and Institute of Biological Interfaces, Sogang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27086998$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1vEzEQxS1URD_gxhlF4gAHUjz2-utYIihIQRyAs2W8k-LVxg727qH_PZOmKVIlLh7L_s17T--cneSSkbGXwC-VVvz9UNoltgZKaHjCzkB2ZimlEid3d7W0TplTdt7awDm9K_OMnQrDrXbOnrE3qzKOYdewX3yfwoRtUTaLdcg32znVxdeSyxhusbbn7OkmjA1f3M8L9vPTxx-rz8v1t-svq6v1MmotJzLWXIDjBqSVnQQuUWJnpFMCrNRCooMIPccOg4NemRikRSNBOA0bQi7Y24PurpY_M7bJb1OLSBkzlrl5sKA5CCuA0NeP0KHMNVM6D8YaTpDbU6_uqfnXFnu_q2kb6q0_VkCAOACxltYqbnxM1EQqeaohjR643_dM4s0fe6ald4-Wjrr_wa8POCVIMYwljynjv7z9YMqItCE4aM85CSganefS0kU6I7QmoY6UPhyUhjaFG3ywDXVKccQ7W6282h9H-4fP-DtUj1n-BbWDqjU
CitedBy_id crossref_primary_10_1016_j_molliq_2023_122269
crossref_primary_10_1016_j_colsurfa_2021_126781
crossref_primary_10_1021_acsomega_4c03100
crossref_primary_10_1021_acs_langmuir_2c00208
crossref_primary_10_5650_jos_ess20006
crossref_primary_10_1016_j_colsurfb_2024_114482
crossref_primary_10_3390_surfaces4040027
crossref_primary_10_1016_j_cis_2020_102244
crossref_primary_10_1103_PhysRevE_95_022804
crossref_primary_10_1021_acsami_2c18762
crossref_primary_10_1021_acs_jpcb_9b10938
crossref_primary_10_1016_j_colsurfb_2020_111100
crossref_primary_10_1021_acs_jpcb_7b00949
crossref_primary_10_1021_acs_langmuir_1c02004
crossref_primary_10_1021_acs_langmuir_8b02621
crossref_primary_10_1021_acsearthspacechem_8b00212
crossref_primary_10_1016_j_jqsrt_2020_107396
crossref_primary_10_1016_j_colsurfa_2018_12_025
crossref_primary_10_1016_j_foodhyd_2021_106640
crossref_primary_10_1039_C7CP04256F
crossref_primary_10_1016_j_mseb_2021_115094
crossref_primary_10_1016_j_colsurfa_2021_126839
crossref_primary_10_1016_j_abb_2025_110346
crossref_primary_10_3390_coatings12020277
crossref_primary_10_1098_rsif_2016_1028
crossref_primary_10_3390_coatings13091560
crossref_primary_10_1016_j_jcis_2024_04_233
crossref_primary_10_1098_rsif_2023_0559
crossref_primary_10_1021_acsnano_9b08984
crossref_primary_10_1016_j_abb_2024_109913
Cites_doi 10.1021/la703180x
10.1016/0021-9797(80)90190-3
10.1166/jcbi.2014.1028
10.1016/S0006-3495(03)74723-7
10.1021/la026135v
10.1021/la062672u
10.1002/psc.948
10.1021/j150523a028
10.1021/la900096a
10.1021/la036014a
10.1016/0001-8686(91)80053-M
10.1021/la010110z
10.1103/RevModPhys.71.779
10.1103/PhysRevE.72.051930
10.1021/jp9055158
10.1016/j.bpj.2015.03.026
10.1021/la803773y
10.1039/c2sm25913c
10.1039/c2sm25252j
10.1016/j.polymer.2015.10.003
10.1016/j.colsurfa.2008.04.037
10.1016/j.colsurfb.2006.07.006
10.1021/ma991485i
10.1021/jp960417k
10.1021/la700511r
10.1166/sam.2014.2201
10.1021/la001138y
10.1016/S0006-3495(01)75688-3
10.1021/jp012532n
10.1021/la00077a048
10.1103/PhysRevE.67.041604
10.1103/PhysRevE.56.1844
10.1021/j100162a052
10.1152/ajpregu.00496.2004
10.1016/S0006-3495(01)76198-X
10.1209/0295-5075/79/66005
10.1038/281287a0
10.5012/bkcs.2003.24.3.377
10.1006/jcis.1995.1123
10.1103/PhysRevE.63.061602
10.1209/0295-5075/9/5/015
10.1146/annurev.physchem.58.032806.104619
10.1016/S0959-440X(99)80061-X
10.1021/la001799v
10.1021/jp013173z
10.1021/la402044c
10.1021/la0343268
10.1002/bscb.19710800308
10.1021/la00028a026
10.1021/la00092a021
ContentType Journal Article
Copyright 2016 by Japan Oil Chemists' Society
Copyright Japan Science and Technology Agency 2016
Copyright_xml – notice: 2016 by Japan Oil Chemists' Society
– notice: Copyright Japan Science and Technology Agency 2016
CorporateAuthor Sogang University
Department of Chemistry and Institute of Biological Interfaces
These authors equally contributed to this work
CorporateAuthor_xml – name: These authors equally contributed to this work
– name: Sogang University
– name: Department of Chemistry and Institute of Biological Interfaces
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
F28
FR3
DOI 10.5650/jos.ess15261
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList
Technology Research Database

Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3352
EndPage 397
ExternalDocumentID 4046249281
27086998
10_5650_jos_ess15261
dj7oleos_2016_006505_004_0385_03972662614
article_jos_65_5_65_ess15261_article_char_en
Genre Journal Article
GroupedDBID ---
2WC
5GY
ACIWK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
DIK
DU5
EBS
EJD
F5P
FAC
GROUPED_DOAJ
GX1
HH5
JMI
JSF
JSH
KQ8
MOJWN
OK1
RJT
RZJ
TKC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
F28
FR3
ID FETCH-LOGICAL-c663t-336021907138343103e3e473952183623e91c1d0e4ea91d57ca38e7312961f183
ISSN 1345-8957
IngestDate Fri Jul 11 14:05:48 EDT 2025
Mon Jun 30 10:06:20 EDT 2025
Thu Jan 02 22:18:13 EST 2025
Tue Jul 01 03:24:50 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Thu Jul 10 16:15:13 EDT 2025
Wed Apr 05 06:15:34 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c663t-336021907138343103e3e473952183623e91c1d0e4ea91d57ca38e7312961f183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jos/65/5/65_ess15261/_article/-char/en
PMID 27086998
PQID 1787028291
PQPubID 1976371
PageCount 13
ParticipantIDs proquest_miscellaneous_1816012821
proquest_journals_1787028291
pubmed_primary_27086998
crossref_citationtrail_10_5650_jos_ess15261
crossref_primary_10_5650_jos_ess15261
medicalonline_journals_dj7oleos_2016_006505_004_0385_03972662614
jstage_primary_article_jos_65_5_65_ess15261_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Oleo Science
PublicationTitleAlternate J Oleo Sci
PublicationYear 2016
Publisher Japan Oil Chemists' Society
Japan Science and Technology Agency
Publisher_xml – name: Japan Oil Chemists' Society
– name: Japan Science and Technology Agency
References 4) Luap, C.; Goedel, W. A. Linear viscoelastic behavior of end-tethered polymer monolayers at the air/water interface. Macromolecules 34, 1343-1351 (2001).
39) Viseu, M. I.; Goncalves da Silva, A. M.; Costa, S. M. Reorganization and desorption of catanionic monolayers. Kinetics of π-t and A-t relaxation. Langmuir 17, 1529-1537 (2001).
41) Ding, J.; Takamoto, D. Y.; Von Nahmen, A.; Lipp, M. M.; Lee, K. Y. C.; Waring, A. J.; Zasadzinski, J. A. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys. J. 80, 2262-2272 (2001).
25) Smith, R. D.; Berg, J. C. The collapse of surfactant monolayers at the air-water interface. J. Colloid Interface Sci. 74, 273-286 (1980).
15) Ybert, C.; Lu, W.; Möller, G.; Knobler, C. M. Collapse of a monolayer by three mechanisms. J. Phys. Chem. B 106, 2004-2008 (2002).
17) Nguyen, T.; Gopal, A.; Lee, K.; Witten, T. Surface charge relaxation and the pearling instability of charged surfactant tubes. Phys. Rev. E 72, 051930 (2005).
8) Kim, J. H.; Yim, S.-Y.; Oh, M.-K.; Phan, M. D.; Shin, K. Adsorption behaviors and structural transitions of organic cations on an anionic lipid monolayer at the air-water interface. Soft Matter 8, 6504-6511 (2012).
30) Seok, S.; Kim, T. J.; Hwang, S. Y.; Kim, Y. D.; Vknin, D.; Kim, D. Imaging of collapsed fatty acid films at air-water interfaces. Langmuir 25, 9262-9269 (2009).
7) Choi, D.; Moon, J.; Kim, H.; Sung, B.; Kim, M.; Tae, G,; Satija, S,; Akgun, B.; Yu, C.-J.; Lee, H. Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by X-ray and neutron reflection. Soft Matter 8, 8294-8297 (2012).
10) Lee, K. Y. C. Collapse mechanisms of Langmuir monolayers. Annu. Rev. Phys. Chem. 59, 771-791 (2008).
31) McFate, C.; Ward, D.; Olmsted III, J. Organized collapse of fatty acid monolayers. Langmuir 9, 1036-1039 (1993).
20) Kim, J.; Jung, J.; Phan, M. D.; Kwon, K. H.; Ree, B. J.; Nakayama, S.; Kim, H.; Shin, K.; Matsuoka, H.; Ree, M. Self-Assembly behaviors of a well-defined amphiphilic brush polymer at the air-water interface. Sci. Adv. Mat. 6, 2445-2452 (2014).
1) Brockman, H. Lipid monolayers: why use half a membrane to characterize protein-membrane interaction. Curr. Opin. Struc. Biol. 9, 438-443 (1999).
35) Smith, E. C.; Crane, J. M.; Laderas, T. G.; Hall, S. B. Metastability of a supercompressed fluid monolayer. Biophys. J. 85, 3048-3057 (2003).
23) Diamant, H.; Witten, T.; Ege, C.; Gopal, A.; Lee, K. Topography and instability of monolayers near domain boundaries. Phys. Rev. E 63, 061602 (2001).
11) Hatta, E.; Nagao, J. Topologial manifestations of surface-roughening collapse in Langmuir monolayers. Phys. Rev. E 67, 041604 (2003).
12) Takamoto, D.; Lipp, M.; Von Nahmen, A.; Lee, K. Y. C.; Waring, A.; Zasadzinski, J. Interaction of lung surfactant proteins with anionic phospholipids. Biophys. J. 81, 153-169 (2001).
55) Vaknin, D.; Bu, W.; Satija, S. K.; Travesset, A. Ordering by collapse: Formation of bilyer and trilayer crystls by folding Langmuir monolayers. Langmuir 23, 1888-1897 (2007).
27) González-Delgado, A. M.; Pérez-Morales, M.; Giner-Casares, J. J.; Munoz, E.; Martín-Romero, M. T.; Camacho, L. Reversible collapse of insoluble monolayers: new insights on the influence of the anisotropic line tension of the domain. J. Phys. Chem. B 113, 13249-13256 (2009).
36) Nikomarov, E. A slow collapse of a monolayer spread on an aqueous surface. Langmuir 6, 410-414 (1990).
13) Kundu, S.; Langevin, D. Fatty acid monolayer dissociation and collapse: Effect of pH and cations. Colloid Surf. A: Physicochem. Eng. 325, 81-85 (2008).
24) Kaganer, V. M.; Möhwald, H.; Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71, 779 (1999).
32) Hatta, E.; Suzuki, D.; Nagao, J. Morphology transition and slow dynamics in the collapse of amphiphilic monolayers at the air-water interface. Eur. Phys. J. B-Condens. Matt. Complex Systems 11, 609-614 (1999).
37) Phan, M. D.; Shin, K. Effects of cardiolipin on membrane morphology: A Langmuir monolayer study. Biophys. J. 108, 1977-1986 (2015).
28) Ries Jr, H. E.; Swift, H. Twisted double-layer ribbons and the mechanism for monolayer collapse. Langmuir 3, 853-855 (1987).
29) Joos, P. Effect of the pH on the collapse pressure of fatty acid monolayers evaluation of the surface dissociation constant. Bull. Soc. Chim. Belg. 80, 277-281 (1971).
14) Hatta, E. Sequential collapse transitions in a Langmuir monolayer. Langmuir 20, 4059-4063 (2004).
48) Ariga, K.; Shin, J. S.; Kunitake, T. Interaction of lipid monolayers with aqueous neutral polymers and the consequent monoayer stabilization and improved Langmuir-Blodgett transfer. J. Colloid Interface Sci. 170, 440-448 (1995).
34) Gopal, A. The collapse of phospholipid Langmuir monolayers: Implications for biological surfactant; University of Chicago, Department of Chemistry (2004).
43) Ries Jr, H. E.; Kimball, W. A. Monolayer structure as revealed by electron microscopy. J. Phys. Chem. 59, 94-95 (1955).
53) Gourier, C.; Alba, M.; Braslau, A.; Daillant, J.; Goldmann, M.; Knobler, C.; Rieutord, F.; Zalczer, G. Structure and elastic properties of 10-12 pentacosadiynoic acid Langmuir films. Langmuir 17, 6496-6505 (2001).
9) Phan, M. D.; Shin, K. A Langmuir Monolayer: Ideal Model Membrane to Study Cell. J. Chem. Bio. Interfaces 2, 1-5 (2014).
52) Ibn-Elhaj, M.; Riegler, H.; Möhwald, H.; Schwendler, M.; Helm, C. X-ray reflectivity study of layering transitions and the internal multilayer structure of films of three-block organosiloxane amphiphilic smectic liquid crystals at the air-water interface. Phys. Rev. E 56, 1844 (1997).
19) Kim, J.; Jung, J.; Phan, M. D.; Ree, B. J.; Fujita, S.; Kim, H.; Matsuoka, H.; Shin, K.; Ree, M. Self-assembly behaviours of a lipid-mimic brush polymer in thin films and at air-water interface. Polymer 78, 161-172 (2015).
54) Goto, T. E.; Caseli, L. Understanding the collapse mechanism in Langmuir monolayers through polarization modulation-infrared reflection absorption spectroscopy. Langmuir 29, 9063-9071 (2013).
2) Shin, K.; Rafailovich, M.; Sokolov, J.; Chang, D.; Cox, J.; Lennox, R.; Eisenberg, A.; Gibaud, A.; Huang, J.; Hsu, S. Observation of surface ordering of alkyl side chains in polystyrene/polyelectrolytes diblock copolymer Langmuir films. Langmuir 17, 4955-4961 (2001).
49) Binks, B. Insoluble monolayers of weakly ionizing low molar mass materials and their depositions to form Langmuir-Blodgett multilayers. Adv. Colloid Interface Sci. 34, 343-432 (1991).
6) Tae, G.; Yang, H.; Shin, K.; Satija, S. K.; Torikai, N. X-ray reflectivity study of a transcription-activating factor-derived peptide penetration into the model phospholipid monolayers. J. Pept. Sci. 14, 461-468 (2008).
46) Yun, H.; Choi, Y.-W.; Kim, N. J.; Sohn, D. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface. Bull. Korean. Chem. Soc. 24, 377-383 (2003).
40) Baoukina, S.; Monticelli, L.; Risselada, H. J.; Marrink, S. J.; Tieleman, D. P. The molecular mechanism of lipid monolayer collapse. Proc. Nat. Acad. Sci. U.S.A. 105, 10803-10808 (2008).
22) Angelova, A.; Vollhardt, D.; Ionov, R. 2D-3D transformations of amphiphilic monolayers influenced by intermolecular interactions: A Brewster angle microscopy study. J. Phys. Chem. 100, 10710-10720 (1996).
51) Dubreuil, F.; Daillant, J.; Guenoun, P. Direct topographic measurement of multilayers on water by atomic force microscopy. Langmuir 19, 8409-8415 (2003).
33) Coppock, J. D.; Krishan, K.; Dennin, M.; Mooro, B. G. Fluorescence microscopy imaging of giant folding in a catanionic monolayer. Langmuir 25, 5006-5011 (2009).
5) Nakahara, H.; Lee, S.; Sugihara, G.; Chang, C.-H.; Shibata, O. Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with Surfacten (Surfactant TA). Langmuir 24, 3370-3379 (2008).
38) Lang, C. J.; Postle, A. D.; Orgeig, S.; Possmayer, F.; Bernhard, W.; Panda, A. K.; Jürgens, K. D.; Milsom, W. K.; Nag, K.; Daniels, C. B. Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. Am. J. Physiol-Reg. I 289, R1426-R1439 (2005).
45) Milner, S.; Joanny, J.; Pincus, P. Buckling of Langmuir monolayers. Eur. Phys. Lett. 9, 495 (1989).
44) Ries, H. E. Stable ridges in a collapsing monolayer. Nature 281, 287-289 (1979).
18) Gopal, A.; Lee, K. Y. C. Morphology and collapse transitions in binary phospholipid monolayers. J. Phys. Chem. B 105, 10348-10354 (2001).
21) Gourier, C.; Knobler, C. M.; Daillant, J.; Chatenay, D. Collapse of monolayer of 10, 12-pentacosadiynoic acid: kinetics and structure. Langmuir 18, 9434-9440 (2002).
26) Jones, M. N.; Chapman, D. Micelles, monolayers, and biomembranes. Wiley-Liss, New York (1995).
47) Hoda, K.; Ikeda, Y.; Kawasaki, H.; Yamada, K.; Higuchi, R.; Shibata, O. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol. Colloid Surf. B 52, 57-75 (2006).
50) Matsumoto, Y.; Nakahara, H.; Moroi, Y.; Shibata, O. Langmuir monolayer properties of perfluorinated double long-chain salts with divalent counterions of separate electric charge at the air-water interface. Langmuir 23, 9629-9650 (2007).
3) Sickert, M.; Rondelez, F.; Stone, H. Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. Eur. Phys. Lett. 79, 66005 (2007).
16) Lipp, M.; Lee, K.; Takamoto, D.; Zasadzinski, J.; Waring, A. Coexistence of buckled and flat monolayers. Phys. Rev. Lett. 81, 1650 (1998).
42) Vollhardt, D.; Retter, U. Nucleation in insoluble monolayers. 1. Nucleation and growth model for relaxation of metastable monolayers. J. Phys. Chem 95, 3723-3727 (1991).
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 10) Lee, K. Y. C. Collapse mechanisms of Langmuir monolayers. Annu. Rev. Phys. Chem. 59, 771-791 (2008).
– reference: 6) Tae, G.; Yang, H.; Shin, K.; Satija, S. K.; Torikai, N. X-ray reflectivity study of a transcription-activating factor-derived peptide penetration into the model phospholipid monolayers. J. Pept. Sci. 14, 461-468 (2008).
– reference: 21) Gourier, C.; Knobler, C. M.; Daillant, J.; Chatenay, D. Collapse of monolayer of 10, 12-pentacosadiynoic acid: kinetics and structure. Langmuir 18, 9434-9440 (2002).
– reference: 45) Milner, S.; Joanny, J.; Pincus, P. Buckling of Langmuir monolayers. Eur. Phys. Lett. 9, 495 (1989).
– reference: 20) Kim, J.; Jung, J.; Phan, M. D.; Kwon, K. H.; Ree, B. J.; Nakayama, S.; Kim, H.; Shin, K.; Matsuoka, H.; Ree, M. Self-Assembly behaviors of a well-defined amphiphilic brush polymer at the air-water interface. Sci. Adv. Mat. 6, 2445-2452 (2014).
– reference: 53) Gourier, C.; Alba, M.; Braslau, A.; Daillant, J.; Goldmann, M.; Knobler, C.; Rieutord, F.; Zalczer, G. Structure and elastic properties of 10-12 pentacosadiynoic acid Langmuir films. Langmuir 17, 6496-6505 (2001).
– reference: 55) Vaknin, D.; Bu, W.; Satija, S. K.; Travesset, A. Ordering by collapse: Formation of bilyer and trilayer crystls by folding Langmuir monolayers. Langmuir 23, 1888-1897 (2007).
– reference: 9) Phan, M. D.; Shin, K. A Langmuir Monolayer: Ideal Model Membrane to Study Cell. J. Chem. Bio. Interfaces 2, 1-5 (2014).
– reference: 8) Kim, J. H.; Yim, S.-Y.; Oh, M.-K.; Phan, M. D.; Shin, K. Adsorption behaviors and structural transitions of organic cations on an anionic lipid monolayer at the air-water interface. Soft Matter 8, 6504-6511 (2012).
– reference: 23) Diamant, H.; Witten, T.; Ege, C.; Gopal, A.; Lee, K. Topography and instability of monolayers near domain boundaries. Phys. Rev. E 63, 061602 (2001).
– reference: 36) Nikomarov, E. A slow collapse of a monolayer spread on an aqueous surface. Langmuir 6, 410-414 (1990).
– reference: 43) Ries Jr, H. E.; Kimball, W. A. Monolayer structure as revealed by electron microscopy. J. Phys. Chem. 59, 94-95 (1955).
– reference: 34) Gopal, A. The collapse of phospholipid Langmuir monolayers: Implications for biological surfactant; University of Chicago, Department of Chemistry (2004).
– reference: 35) Smith, E. C.; Crane, J. M.; Laderas, T. G.; Hall, S. B. Metastability of a supercompressed fluid monolayer. Biophys. J. 85, 3048-3057 (2003).
– reference: 47) Hoda, K.; Ikeda, Y.; Kawasaki, H.; Yamada, K.; Higuchi, R.; Shibata, O. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol. Colloid Surf. B 52, 57-75 (2006).
– reference: 52) Ibn-Elhaj, M.; Riegler, H.; Möhwald, H.; Schwendler, M.; Helm, C. X-ray reflectivity study of layering transitions and the internal multilayer structure of films of three-block organosiloxane amphiphilic smectic liquid crystals at the air-water interface. Phys. Rev. E 56, 1844 (1997).
– reference: 30) Seok, S.; Kim, T. J.; Hwang, S. Y.; Kim, Y. D.; Vknin, D.; Kim, D. Imaging of collapsed fatty acid films at air-water interfaces. Langmuir 25, 9262-9269 (2009).
– reference: 31) McFate, C.; Ward, D.; Olmsted III, J. Organized collapse of fatty acid monolayers. Langmuir 9, 1036-1039 (1993).
– reference: 46) Yun, H.; Choi, Y.-W.; Kim, N. J.; Sohn, D. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface. Bull. Korean. Chem. Soc. 24, 377-383 (2003).
– reference: 17) Nguyen, T.; Gopal, A.; Lee, K.; Witten, T. Surface charge relaxation and the pearling instability of charged surfactant tubes. Phys. Rev. E 72, 051930 (2005).
– reference: 14) Hatta, E. Sequential collapse transitions in a Langmuir monolayer. Langmuir 20, 4059-4063 (2004).
– reference: 44) Ries, H. E. Stable ridges in a collapsing monolayer. Nature 281, 287-289 (1979).
– reference: 22) Angelova, A.; Vollhardt, D.; Ionov, R. 2D-3D transformations of amphiphilic monolayers influenced by intermolecular interactions: A Brewster angle microscopy study. J. Phys. Chem. 100, 10710-10720 (1996).
– reference: 42) Vollhardt, D.; Retter, U. Nucleation in insoluble monolayers. 1. Nucleation and growth model for relaxation of metastable monolayers. J. Phys. Chem 95, 3723-3727 (1991).
– reference: 4) Luap, C.; Goedel, W. A. Linear viscoelastic behavior of end-tethered polymer monolayers at the air/water interface. Macromolecules 34, 1343-1351 (2001).
– reference: 38) Lang, C. J.; Postle, A. D.; Orgeig, S.; Possmayer, F.; Bernhard, W.; Panda, A. K.; Jürgens, K. D.; Milsom, W. K.; Nag, K.; Daniels, C. B. Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. Am. J. Physiol-Reg. I 289, R1426-R1439 (2005).
– reference: 1) Brockman, H. Lipid monolayers: why use half a membrane to characterize protein-membrane interaction. Curr. Opin. Struc. Biol. 9, 438-443 (1999).
– reference: 15) Ybert, C.; Lu, W.; Möller, G.; Knobler, C. M. Collapse of a monolayer by three mechanisms. J. Phys. Chem. B 106, 2004-2008 (2002).
– reference: 37) Phan, M. D.; Shin, K. Effects of cardiolipin on membrane morphology: A Langmuir monolayer study. Biophys. J. 108, 1977-1986 (2015).
– reference: 5) Nakahara, H.; Lee, S.; Sugihara, G.; Chang, C.-H.; Shibata, O. Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with Surfacten (Surfactant TA). Langmuir 24, 3370-3379 (2008).
– reference: 51) Dubreuil, F.; Daillant, J.; Guenoun, P. Direct topographic measurement of multilayers on water by atomic force microscopy. Langmuir 19, 8409-8415 (2003).
– reference: 16) Lipp, M.; Lee, K.; Takamoto, D.; Zasadzinski, J.; Waring, A. Coexistence of buckled and flat monolayers. Phys. Rev. Lett. 81, 1650 (1998).
– reference: 49) Binks, B. Insoluble monolayers of weakly ionizing low molar mass materials and their depositions to form Langmuir-Blodgett multilayers. Adv. Colloid Interface Sci. 34, 343-432 (1991).
– reference: 11) Hatta, E.; Nagao, J. Topologial manifestations of surface-roughening collapse in Langmuir monolayers. Phys. Rev. E 67, 041604 (2003).
– reference: 3) Sickert, M.; Rondelez, F.; Stone, H. Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. Eur. Phys. Lett. 79, 66005 (2007).
– reference: 27) González-Delgado, A. M.; Pérez-Morales, M.; Giner-Casares, J. J.; Munoz, E.; Martín-Romero, M. T.; Camacho, L. Reversible collapse of insoluble monolayers: new insights on the influence of the anisotropic line tension of the domain. J. Phys. Chem. B 113, 13249-13256 (2009).
– reference: 25) Smith, R. D.; Berg, J. C. The collapse of surfactant monolayers at the air-water interface. J. Colloid Interface Sci. 74, 273-286 (1980).
– reference: 29) Joos, P. Effect of the pH on the collapse pressure of fatty acid monolayers evaluation of the surface dissociation constant. Bull. Soc. Chim. Belg. 80, 277-281 (1971).
– reference: 41) Ding, J.; Takamoto, D. Y.; Von Nahmen, A.; Lipp, M. M.; Lee, K. Y. C.; Waring, A. J.; Zasadzinski, J. A. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys. J. 80, 2262-2272 (2001).
– reference: 54) Goto, T. E.; Caseli, L. Understanding the collapse mechanism in Langmuir monolayers through polarization modulation-infrared reflection absorption spectroscopy. Langmuir 29, 9063-9071 (2013).
– reference: 13) Kundu, S.; Langevin, D. Fatty acid monolayer dissociation and collapse: Effect of pH and cations. Colloid Surf. A: Physicochem. Eng. 325, 81-85 (2008).
– reference: 39) Viseu, M. I.; Goncalves da Silva, A. M.; Costa, S. M. Reorganization and desorption of catanionic monolayers. Kinetics of π-t and A-t relaxation. Langmuir 17, 1529-1537 (2001).
– reference: 48) Ariga, K.; Shin, J. S.; Kunitake, T. Interaction of lipid monolayers with aqueous neutral polymers and the consequent monoayer stabilization and improved Langmuir-Blodgett transfer. J. Colloid Interface Sci. 170, 440-448 (1995).
– reference: 19) Kim, J.; Jung, J.; Phan, M. D.; Ree, B. J.; Fujita, S.; Kim, H.; Matsuoka, H.; Shin, K.; Ree, M. Self-assembly behaviours of a lipid-mimic brush polymer in thin films and at air-water interface. Polymer 78, 161-172 (2015).
– reference: 7) Choi, D.; Moon, J.; Kim, H.; Sung, B.; Kim, M.; Tae, G,; Satija, S,; Akgun, B.; Yu, C.-J.; Lee, H. Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by X-ray and neutron reflection. Soft Matter 8, 8294-8297 (2012).
– reference: 12) Takamoto, D.; Lipp, M.; Von Nahmen, A.; Lee, K. Y. C.; Waring, A.; Zasadzinski, J. Interaction of lung surfactant proteins with anionic phospholipids. Biophys. J. 81, 153-169 (2001).
– reference: 26) Jones, M. N.; Chapman, D. Micelles, monolayers, and biomembranes. Wiley-Liss, New York (1995).
– reference: 18) Gopal, A.; Lee, K. Y. C. Morphology and collapse transitions in binary phospholipid monolayers. J. Phys. Chem. B 105, 10348-10354 (2001).
– reference: 50) Matsumoto, Y.; Nakahara, H.; Moroi, Y.; Shibata, O. Langmuir monolayer properties of perfluorinated double long-chain salts with divalent counterions of separate electric charge at the air-water interface. Langmuir 23, 9629-9650 (2007).
– reference: 33) Coppock, J. D.; Krishan, K.; Dennin, M.; Mooro, B. G. Fluorescence microscopy imaging of giant folding in a catanionic monolayer. Langmuir 25, 5006-5011 (2009).
– reference: 24) Kaganer, V. M.; Möhwald, H.; Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71, 779 (1999).
– reference: 40) Baoukina, S.; Monticelli, L.; Risselada, H. J.; Marrink, S. J.; Tieleman, D. P. The molecular mechanism of lipid monolayer collapse. Proc. Nat. Acad. Sci. U.S.A. 105, 10803-10808 (2008).
– reference: 2) Shin, K.; Rafailovich, M.; Sokolov, J.; Chang, D.; Cox, J.; Lennox, R.; Eisenberg, A.; Gibaud, A.; Huang, J.; Hsu, S. Observation of surface ordering of alkyl side chains in polystyrene/polyelectrolytes diblock copolymer Langmuir films. Langmuir 17, 4955-4961 (2001).
– reference: 28) Ries Jr, H. E.; Swift, H. Twisted double-layer ribbons and the mechanism for monolayer collapse. Langmuir 3, 853-855 (1987).
– reference: 32) Hatta, E.; Suzuki, D.; Nagao, J. Morphology transition and slow dynamics in the collapse of amphiphilic monolayers at the air-water interface. Eur. Phys. J. B-Condens. Matt. Complex Systems 11, 609-614 (1999).
– ident: 5
  doi: 10.1021/la703180x
– ident: 25
  doi: 10.1016/0021-9797(80)90190-3
– ident: 16
– ident: 9
  doi: 10.1166/jcbi.2014.1028
– ident: 35
  doi: 10.1016/S0006-3495(03)74723-7
– ident: 21
  doi: 10.1021/la026135v
– ident: 55
  doi: 10.1021/la062672u
– ident: 6
  doi: 10.1002/psc.948
– ident: 43
  doi: 10.1021/j150523a028
– ident: 30
  doi: 10.1021/la900096a
– ident: 26
– ident: 14
  doi: 10.1021/la036014a
– ident: 49
  doi: 10.1016/0001-8686(91)80053-M
– ident: 2
  doi: 10.1021/la010110z
– ident: 34
– ident: 24
  doi: 10.1103/RevModPhys.71.779
– ident: 17
  doi: 10.1103/PhysRevE.72.051930
– ident: 27
  doi: 10.1021/jp9055158
– ident: 37
  doi: 10.1016/j.bpj.2015.03.026
– ident: 33
  doi: 10.1021/la803773y
– ident: 40
– ident: 7
  doi: 10.1039/c2sm25913c
– ident: 8
  doi: 10.1039/c2sm25252j
– ident: 19
  doi: 10.1016/j.polymer.2015.10.003
– ident: 13
  doi: 10.1016/j.colsurfa.2008.04.037
– ident: 47
  doi: 10.1016/j.colsurfb.2006.07.006
– ident: 4
  doi: 10.1021/ma991485i
– ident: 22
  doi: 10.1021/jp960417k
– ident: 50
  doi: 10.1021/la700511r
– ident: 20
  doi: 10.1166/sam.2014.2201
– ident: 39
  doi: 10.1021/la001138y
– ident: 12
  doi: 10.1016/S0006-3495(01)75688-3
– ident: 18
  doi: 10.1021/jp012532n
– ident: 28
  doi: 10.1021/la00077a048
– ident: 11
  doi: 10.1103/PhysRevE.67.041604
– ident: 52
  doi: 10.1103/PhysRevE.56.1844
– ident: 42
  doi: 10.1021/j100162a052
– ident: 38
  doi: 10.1152/ajpregu.00496.2004
– ident: 41
  doi: 10.1016/S0006-3495(01)76198-X
– ident: 3
  doi: 10.1209/0295-5075/79/66005
– ident: 44
  doi: 10.1038/281287a0
– ident: 46
  doi: 10.5012/bkcs.2003.24.3.377
– ident: 32
– ident: 48
  doi: 10.1006/jcis.1995.1123
– ident: 23
  doi: 10.1103/PhysRevE.63.061602
– ident: 45
  doi: 10.1209/0295-5075/9/5/015
– ident: 10
  doi: 10.1146/annurev.physchem.58.032806.104619
– ident: 1
  doi: 10.1016/S0959-440X(99)80061-X
– ident: 53
  doi: 10.1021/la001799v
– ident: 15
  doi: 10.1021/jp013173z
– ident: 54
  doi: 10.1021/la402044c
– ident: 51
  doi: 10.1021/la0343268
– ident: 29
  doi: 10.1002/bscb.19710800308
– ident: 31
  doi: 10.1021/la00028a026
– ident: 36
  doi: 10.1021/la00092a021
SSID ssj0033557
ssib002822091
ssib017172183
ssib050733897
Score 2.1905863
SecondaryResourceType review_article
Snippet Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond...
[Abstract]: Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However,...
SourceID proquest
pubmed
crossref
medicalonline
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms Air
Collapse
Compressing
Constituents
fluorescence microscopy
Hydrogen-Ion Concentration
isotherms
Langmuir monolayer
Lipids
Mechanical properties
Molecular structure
Monolayers
Particle Size
Surface Properties
Surface-Active Agents - chemistry
Temperature
Topography
Water - chemistry
water-air interface
X-ray reflectivity
Title Collapsed States of Langmuir Monolayers
URI https://www.jstage.jst.go.jp/article/jos/65/5/65_ess15261/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=dj7oleos/2016/006505/004&name=0385-0397e
https://www.ncbi.nlm.nih.gov/pubmed/27086998
https://www.proquest.com/docview/1787028291
https://www.proquest.com/docview/1816012821
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Oleo Science, 2016, Vol.65(5), pp.385-397
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB60-qCIeHe1lgiKDyE1l5lc8EUplVLtBWyhbyGXibvLblK6u4g--Nv9TmYySUsLVV9ml-TsMjm3-U7mzDmMvYkAkXGvcjiWB4cXHmwuzBOHc16FIa-kqNoE2f1w55jvnoiTvtFle7pkmW8Wvy49V_IvUsU1yJVOyf6FZM2f4gK-Q74YIWGM15IxRf3Z6cJgRvXCv_4-X03OyFoRtv7UGe6XANCDmWw62zZ8n9RjuEEMh-Neb3ZX84n9VRqqLz8yytWxv4113W792sAL-yQ95dKxFNf2wWRmb6nGcm3Ohs4UHfjDgAsnTlQN6c5hquYOWjHEwPsFqvuOXkgDlXh70UcDQVJS47RZbMKXAz6oYuwXql6X06gBFxYpzT1tgaTAB09pJxNDEgFZ4Kf8JrvlI0IgF7f3e3sYSfpuXwbIiyjU7ZGUoF6VcWJi8wCwq-3D0z2vOiNBc30_nOk59HJ7CgBPlRnuzdWmmipucnWs0mKWowfsvpa19UlpzkN2Y5o9YncHJSgfs3dGhyylQ1ZTWZ0OWb0OPWHHn7ePtnYc3TzDKQAil04QhIBvCb2EiANO3eRkIDltyxIfAHpl4hVe6Uous8QrRVRkQSyjAPgv9CqQPGVrdVPL58wqKRkpi2WcS58jxMxLLE0ydiPperkQcsTsjilpoSvLU4OTWYoIk1iYgoVpx8IRe2uoT1VFlSvoPij-GiptZy1VKFJBQ0dtbtJhRfiGEft4TiipNttFem3NGrH1To79rz1a4Cj7APN7bW7DgGifLatlswJN7IWE-3zQPFPyN8_gR24cJkn84v_n95Ld6Q17na0tz1byFRDyMt8gfCI2WovAuH-49wfnbrOz
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collapsed+States+of+Langmuir+Monolayers&rft.jtitle=Journal+of+Oleo+Science&rft.au=Minh+Dinh+Phan&rft.au=Jumi+Lee&rft.au=Kwanwoo+Shin&rft.date=2016-05-01&rft.pub=Japan+Oil+Chemists%27+Society&rft.issn=1345-8957&rft.volume=65&rft.issue=5&rft.spage=385&rft.epage=397&rft_id=info:doi/10.5650%2Fjos.ess15261&rft.externalDocID=dj7oleos_2016_006505_004_0385_03972662614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-8957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-8957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-8957&client=summon