Collapsed States of Langmuir Monolayers
Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differen...
Saved in:
Published in | Journal of Oleo Science Vol. 65; no. 5; pp. 385 - 397 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japan Oil Chemists' Society
01.05.2016
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differences that are associated with the structures and mechanical properties of the constituent molecules of the monolayer. The mechanisms and collapsed structures can differ owing to differences in experimental conditions, i.e., temperature, ion-content, the pH of subphase, or compression rate; in addition, the type of constituent molecules, i.e., biological lipids or chemical surfactants, has an effect. In this review, we compare studies concerning several aspects of collapse, from basic concepts and theoretical mechanisms to experimental visualization of the monolayer topography. In addition, techniques often employed to study this subject are discussed in this review. |
---|---|
AbstractList | Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differences that are associated with the structures and mechanical properties of the constituent molecules of the monolayer. The mechanisms and collapsed structures can differ owing to differences in experimental conditions, i.e., temperature, ion-content, the pH of subphase, or compression rate; in addition, the type of constituent molecules, i.e., biological lipids or chemical surfactants, has an effect. In this review, we compare studies concerning several aspects of collapse, from basic concepts and theoretical mechanisms to experimental visualization of the monolayer topography. In addition, techniques often employed to study this subject are discussed in this review. [Abstract]: Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond a certain threshold causes the monolayer to become unstable, which may lead to the formation of collapsed states with topographical differences that are associated with the structures and mechanical properties of the constituent molecules of the monolayer. The mechanisms and collapsed structures can differ owing to differences in experimental conditions, i.e., temperature, ion-content, the pH of subphase, or compression rate; in addition, the type of constituent molecules, i.e., biological lipids or chemical surfactants, has an effect. In this review, we compare studies concerning several aspects of collapse, from basic concepts and theoretical mechanisms to experimental visualization of the monolayer topography. In addition, techniques often employed to study this subject are discussed in this review. |
Author | Phan, Minh Dinh Shin, Kwanwoo Lee, Jumi |
Author_xml | – sequence: 1 fullname: Phan, Minh Dinh organization: Department of Chemistry and Institute of Biological Interfaces, Sogang University – sequence: 2 fullname: Lee, Jumi organization: Department of Chemistry and Institute of Biological Interfaces, Sogang University – sequence: 3 fullname: Shin, Kwanwoo organization: Department of Chemistry and Institute of Biological Interfaces, Sogang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27086998$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1vEzEQxS1URD_gxhlF4gAHUjz2-utYIihIQRyAs2W8k-LVxg727qH_PZOmKVIlLh7L_s17T--cneSSkbGXwC-VVvz9UNoltgZKaHjCzkB2ZimlEid3d7W0TplTdt7awDm9K_OMnQrDrXbOnrE3qzKOYdewX3yfwoRtUTaLdcg32znVxdeSyxhusbbn7OkmjA1f3M8L9vPTxx-rz8v1t-svq6v1MmotJzLWXIDjBqSVnQQuUWJnpFMCrNRCooMIPccOg4NemRikRSNBOA0bQi7Y24PurpY_M7bJb1OLSBkzlrl5sKA5CCuA0NeP0KHMNVM6D8YaTpDbU6_uqfnXFnu_q2kb6q0_VkCAOACxltYqbnxM1EQqeaohjR643_dM4s0fe6ald4-Wjrr_wa8POCVIMYwljynjv7z9YMqItCE4aM85CSganefS0kU6I7QmoY6UPhyUhjaFG3ywDXVKccQ7W6282h9H-4fP-DtUj1n-BbWDqjU |
CitedBy_id | crossref_primary_10_1016_j_molliq_2023_122269 crossref_primary_10_1016_j_colsurfa_2021_126781 crossref_primary_10_1021_acsomega_4c03100 crossref_primary_10_1021_acs_langmuir_2c00208 crossref_primary_10_5650_jos_ess20006 crossref_primary_10_1016_j_colsurfb_2024_114482 crossref_primary_10_3390_surfaces4040027 crossref_primary_10_1016_j_cis_2020_102244 crossref_primary_10_1103_PhysRevE_95_022804 crossref_primary_10_1021_acsami_2c18762 crossref_primary_10_1021_acs_jpcb_9b10938 crossref_primary_10_1016_j_colsurfb_2020_111100 crossref_primary_10_1021_acs_jpcb_7b00949 crossref_primary_10_1021_acs_langmuir_1c02004 crossref_primary_10_1021_acs_langmuir_8b02621 crossref_primary_10_1021_acsearthspacechem_8b00212 crossref_primary_10_1016_j_jqsrt_2020_107396 crossref_primary_10_1016_j_colsurfa_2018_12_025 crossref_primary_10_1016_j_foodhyd_2021_106640 crossref_primary_10_1039_C7CP04256F crossref_primary_10_1016_j_mseb_2021_115094 crossref_primary_10_1016_j_colsurfa_2021_126839 crossref_primary_10_1016_j_abb_2025_110346 crossref_primary_10_3390_coatings12020277 crossref_primary_10_1098_rsif_2016_1028 crossref_primary_10_3390_coatings13091560 crossref_primary_10_1016_j_jcis_2024_04_233 crossref_primary_10_1098_rsif_2023_0559 crossref_primary_10_1021_acsnano_9b08984 crossref_primary_10_1016_j_abb_2024_109913 |
Cites_doi | 10.1021/la703180x 10.1016/0021-9797(80)90190-3 10.1166/jcbi.2014.1028 10.1016/S0006-3495(03)74723-7 10.1021/la026135v 10.1021/la062672u 10.1002/psc.948 10.1021/j150523a028 10.1021/la900096a 10.1021/la036014a 10.1016/0001-8686(91)80053-M 10.1021/la010110z 10.1103/RevModPhys.71.779 10.1103/PhysRevE.72.051930 10.1021/jp9055158 10.1016/j.bpj.2015.03.026 10.1021/la803773y 10.1039/c2sm25913c 10.1039/c2sm25252j 10.1016/j.polymer.2015.10.003 10.1016/j.colsurfa.2008.04.037 10.1016/j.colsurfb.2006.07.006 10.1021/ma991485i 10.1021/jp960417k 10.1021/la700511r 10.1166/sam.2014.2201 10.1021/la001138y 10.1016/S0006-3495(01)75688-3 10.1021/jp012532n 10.1021/la00077a048 10.1103/PhysRevE.67.041604 10.1103/PhysRevE.56.1844 10.1021/j100162a052 10.1152/ajpregu.00496.2004 10.1016/S0006-3495(01)76198-X 10.1209/0295-5075/79/66005 10.1038/281287a0 10.5012/bkcs.2003.24.3.377 10.1006/jcis.1995.1123 10.1103/PhysRevE.63.061602 10.1209/0295-5075/9/5/015 10.1146/annurev.physchem.58.032806.104619 10.1016/S0959-440X(99)80061-X 10.1021/la001799v 10.1021/jp013173z 10.1021/la402044c 10.1021/la0343268 10.1002/bscb.19710800308 10.1021/la00028a026 10.1021/la00092a021 |
ContentType | Journal Article |
Copyright | 2016 by Japan Oil Chemists' Society Copyright Japan Science and Technology Agency 2016 |
Copyright_xml | – notice: 2016 by Japan Oil Chemists' Society – notice: Copyright Japan Science and Technology Agency 2016 |
CorporateAuthor | Sogang University Department of Chemistry and Institute of Biological Interfaces These authors equally contributed to this work |
CorporateAuthor_xml | – name: These authors equally contributed to this work – name: Sogang University – name: Department of Chemistry and Institute of Biological Interfaces |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD F28 FR3 |
DOI | 10.5650/jos.ess15261 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitleList | Technology Research Database Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3352 |
EndPage | 397 |
ExternalDocumentID | 4046249281 27086998 10_5650_jos_ess15261 dj7oleos_2016_006505_004_0385_03972662614 article_jos_65_5_65_ess15261_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 2WC 5GY ACIWK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP DIK DU5 EBS EJD F5P FAC GROUPED_DOAJ GX1 HH5 JMI JSF JSH KQ8 MOJWN OK1 RJT RZJ TKC AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD F28 FR3 |
ID | FETCH-LOGICAL-c663t-336021907138343103e3e473952183623e91c1d0e4ea91d57ca38e7312961f183 |
ISSN | 1345-8957 |
IngestDate | Fri Jul 11 14:05:48 EDT 2025 Mon Jun 30 10:06:20 EDT 2025 Thu Jan 02 22:18:13 EST 2025 Tue Jul 01 03:24:50 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Thu Jul 10 16:15:13 EDT 2025 Wed Apr 05 06:15:34 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c663t-336021907138343103e3e473952183623e91c1d0e4ea91d57ca38e7312961f183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jos/65/5/65_ess15261/_article/-char/en |
PMID | 27086998 |
PQID | 1787028291 |
PQPubID | 1976371 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1816012821 proquest_journals_1787028291 pubmed_primary_27086998 crossref_citationtrail_10_5650_jos_ess15261 crossref_primary_10_5650_jos_ess15261 medicalonline_journals_dj7oleos_2016_006505_004_0385_03972662614 jstage_primary_article_jos_65_5_65_ess15261_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Oleo Science |
PublicationTitleAlternate | J Oleo Sci |
PublicationYear | 2016 |
Publisher | Japan Oil Chemists' Society Japan Science and Technology Agency |
Publisher_xml | – name: Japan Oil Chemists' Society – name: Japan Science and Technology Agency |
References | 4) Luap, C.; Goedel, W. A. Linear viscoelastic behavior of end-tethered polymer monolayers at the air/water interface. Macromolecules 34, 1343-1351 (2001). 39) Viseu, M. I.; Goncalves da Silva, A. M.; Costa, S. M. Reorganization and desorption of catanionic monolayers. Kinetics of π-t and A-t relaxation. Langmuir 17, 1529-1537 (2001). 41) Ding, J.; Takamoto, D. Y.; Von Nahmen, A.; Lipp, M. M.; Lee, K. Y. C.; Waring, A. J.; Zasadzinski, J. A. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys. J. 80, 2262-2272 (2001). 25) Smith, R. D.; Berg, J. C. The collapse of surfactant monolayers at the air-water interface. J. Colloid Interface Sci. 74, 273-286 (1980). 15) Ybert, C.; Lu, W.; Möller, G.; Knobler, C. M. Collapse of a monolayer by three mechanisms. J. Phys. Chem. B 106, 2004-2008 (2002). 17) Nguyen, T.; Gopal, A.; Lee, K.; Witten, T. Surface charge relaxation and the pearling instability of charged surfactant tubes. Phys. Rev. E 72, 051930 (2005). 8) Kim, J. H.; Yim, S.-Y.; Oh, M.-K.; Phan, M. D.; Shin, K. Adsorption behaviors and structural transitions of organic cations on an anionic lipid monolayer at the air-water interface. Soft Matter 8, 6504-6511 (2012). 30) Seok, S.; Kim, T. J.; Hwang, S. Y.; Kim, Y. D.; Vknin, D.; Kim, D. Imaging of collapsed fatty acid films at air-water interfaces. Langmuir 25, 9262-9269 (2009). 7) Choi, D.; Moon, J.; Kim, H.; Sung, B.; Kim, M.; Tae, G,; Satija, S,; Akgun, B.; Yu, C.-J.; Lee, H. Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by X-ray and neutron reflection. Soft Matter 8, 8294-8297 (2012). 10) Lee, K. Y. C. Collapse mechanisms of Langmuir monolayers. Annu. Rev. Phys. Chem. 59, 771-791 (2008). 31) McFate, C.; Ward, D.; Olmsted III, J. Organized collapse of fatty acid monolayers. Langmuir 9, 1036-1039 (1993). 20) Kim, J.; Jung, J.; Phan, M. D.; Kwon, K. H.; Ree, B. J.; Nakayama, S.; Kim, H.; Shin, K.; Matsuoka, H.; Ree, M. Self-Assembly behaviors of a well-defined amphiphilic brush polymer at the air-water interface. Sci. Adv. Mat. 6, 2445-2452 (2014). 1) Brockman, H. Lipid monolayers: why use half a membrane to characterize protein-membrane interaction. Curr. Opin. Struc. Biol. 9, 438-443 (1999). 35) Smith, E. C.; Crane, J. M.; Laderas, T. G.; Hall, S. B. Metastability of a supercompressed fluid monolayer. Biophys. J. 85, 3048-3057 (2003). 23) Diamant, H.; Witten, T.; Ege, C.; Gopal, A.; Lee, K. Topography and instability of monolayers near domain boundaries. Phys. Rev. E 63, 061602 (2001). 11) Hatta, E.; Nagao, J. Topologial manifestations of surface-roughening collapse in Langmuir monolayers. Phys. Rev. E 67, 041604 (2003). 12) Takamoto, D.; Lipp, M.; Von Nahmen, A.; Lee, K. Y. C.; Waring, A.; Zasadzinski, J. Interaction of lung surfactant proteins with anionic phospholipids. Biophys. J. 81, 153-169 (2001). 55) Vaknin, D.; Bu, W.; Satija, S. K.; Travesset, A. Ordering by collapse: Formation of bilyer and trilayer crystls by folding Langmuir monolayers. Langmuir 23, 1888-1897 (2007). 27) González-Delgado, A. M.; Pérez-Morales, M.; Giner-Casares, J. J.; Munoz, E.; Martín-Romero, M. T.; Camacho, L. Reversible collapse of insoluble monolayers: new insights on the influence of the anisotropic line tension of the domain. J. Phys. Chem. B 113, 13249-13256 (2009). 36) Nikomarov, E. A slow collapse of a monolayer spread on an aqueous surface. Langmuir 6, 410-414 (1990). 13) Kundu, S.; Langevin, D. Fatty acid monolayer dissociation and collapse: Effect of pH and cations. Colloid Surf. A: Physicochem. Eng. 325, 81-85 (2008). 24) Kaganer, V. M.; Möhwald, H.; Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71, 779 (1999). 32) Hatta, E.; Suzuki, D.; Nagao, J. Morphology transition and slow dynamics in the collapse of amphiphilic monolayers at the air-water interface. Eur. Phys. J. B-Condens. Matt. Complex Systems 11, 609-614 (1999). 37) Phan, M. D.; Shin, K. Effects of cardiolipin on membrane morphology: A Langmuir monolayer study. Biophys. J. 108, 1977-1986 (2015). 28) Ries Jr, H. E.; Swift, H. Twisted double-layer ribbons and the mechanism for monolayer collapse. Langmuir 3, 853-855 (1987). 29) Joos, P. Effect of the pH on the collapse pressure of fatty acid monolayers evaluation of the surface dissociation constant. Bull. Soc. Chim. Belg. 80, 277-281 (1971). 14) Hatta, E. Sequential collapse transitions in a Langmuir monolayer. Langmuir 20, 4059-4063 (2004). 48) Ariga, K.; Shin, J. S.; Kunitake, T. Interaction of lipid monolayers with aqueous neutral polymers and the consequent monoayer stabilization and improved Langmuir-Blodgett transfer. J. Colloid Interface Sci. 170, 440-448 (1995). 34) Gopal, A. The collapse of phospholipid Langmuir monolayers: Implications for biological surfactant; University of Chicago, Department of Chemistry (2004). 43) Ries Jr, H. E.; Kimball, W. A. Monolayer structure as revealed by electron microscopy. J. Phys. Chem. 59, 94-95 (1955). 53) Gourier, C.; Alba, M.; Braslau, A.; Daillant, J.; Goldmann, M.; Knobler, C.; Rieutord, F.; Zalczer, G. Structure and elastic properties of 10-12 pentacosadiynoic acid Langmuir films. Langmuir 17, 6496-6505 (2001). 9) Phan, M. D.; Shin, K. A Langmuir Monolayer: Ideal Model Membrane to Study Cell. J. Chem. Bio. Interfaces 2, 1-5 (2014). 52) Ibn-Elhaj, M.; Riegler, H.; Möhwald, H.; Schwendler, M.; Helm, C. X-ray reflectivity study of layering transitions and the internal multilayer structure of films of three-block organosiloxane amphiphilic smectic liquid crystals at the air-water interface. Phys. Rev. E 56, 1844 (1997). 19) Kim, J.; Jung, J.; Phan, M. D.; Ree, B. J.; Fujita, S.; Kim, H.; Matsuoka, H.; Shin, K.; Ree, M. Self-assembly behaviours of a lipid-mimic brush polymer in thin films and at air-water interface. Polymer 78, 161-172 (2015). 54) Goto, T. E.; Caseli, L. Understanding the collapse mechanism in Langmuir monolayers through polarization modulation-infrared reflection absorption spectroscopy. Langmuir 29, 9063-9071 (2013). 2) Shin, K.; Rafailovich, M.; Sokolov, J.; Chang, D.; Cox, J.; Lennox, R.; Eisenberg, A.; Gibaud, A.; Huang, J.; Hsu, S. Observation of surface ordering of alkyl side chains in polystyrene/polyelectrolytes diblock copolymer Langmuir films. Langmuir 17, 4955-4961 (2001). 49) Binks, B. Insoluble monolayers of weakly ionizing low molar mass materials and their depositions to form Langmuir-Blodgett multilayers. Adv. Colloid Interface Sci. 34, 343-432 (1991). 6) Tae, G.; Yang, H.; Shin, K.; Satija, S. K.; Torikai, N. X-ray reflectivity study of a transcription-activating factor-derived peptide penetration into the model phospholipid monolayers. J. Pept. Sci. 14, 461-468 (2008). 46) Yun, H.; Choi, Y.-W.; Kim, N. J.; Sohn, D. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface. Bull. Korean. Chem. Soc. 24, 377-383 (2003). 40) Baoukina, S.; Monticelli, L.; Risselada, H. J.; Marrink, S. J.; Tieleman, D. P. The molecular mechanism of lipid monolayer collapse. Proc. Nat. Acad. Sci. U.S.A. 105, 10803-10808 (2008). 22) Angelova, A.; Vollhardt, D.; Ionov, R. 2D-3D transformations of amphiphilic monolayers influenced by intermolecular interactions: A Brewster angle microscopy study. J. Phys. Chem. 100, 10710-10720 (1996). 51) Dubreuil, F.; Daillant, J.; Guenoun, P. Direct topographic measurement of multilayers on water by atomic force microscopy. Langmuir 19, 8409-8415 (2003). 33) Coppock, J. D.; Krishan, K.; Dennin, M.; Mooro, B. G. Fluorescence microscopy imaging of giant folding in a catanionic monolayer. Langmuir 25, 5006-5011 (2009). 5) Nakahara, H.; Lee, S.; Sugihara, G.; Chang, C.-H.; Shibata, O. Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with Surfacten (Surfactant TA). Langmuir 24, 3370-3379 (2008). 38) Lang, C. J.; Postle, A. D.; Orgeig, S.; Possmayer, F.; Bernhard, W.; Panda, A. K.; Jürgens, K. D.; Milsom, W. K.; Nag, K.; Daniels, C. B. Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. Am. J. Physiol-Reg. I 289, R1426-R1439 (2005). 45) Milner, S.; Joanny, J.; Pincus, P. Buckling of Langmuir monolayers. Eur. Phys. Lett. 9, 495 (1989). 44) Ries, H. E. Stable ridges in a collapsing monolayer. Nature 281, 287-289 (1979). 18) Gopal, A.; Lee, K. Y. C. Morphology and collapse transitions in binary phospholipid monolayers. J. Phys. Chem. B 105, 10348-10354 (2001). 21) Gourier, C.; Knobler, C. M.; Daillant, J.; Chatenay, D. Collapse of monolayer of 10, 12-pentacosadiynoic acid: kinetics and structure. Langmuir 18, 9434-9440 (2002). 26) Jones, M. N.; Chapman, D. Micelles, monolayers, and biomembranes. Wiley-Liss, New York (1995). 47) Hoda, K.; Ikeda, Y.; Kawasaki, H.; Yamada, K.; Higuchi, R.; Shibata, O. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol. Colloid Surf. B 52, 57-75 (2006). 50) Matsumoto, Y.; Nakahara, H.; Moroi, Y.; Shibata, O. Langmuir monolayer properties of perfluorinated double long-chain salts with divalent counterions of separate electric charge at the air-water interface. Langmuir 23, 9629-9650 (2007). 3) Sickert, M.; Rondelez, F.; Stone, H. Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. Eur. Phys. Lett. 79, 66005 (2007). 16) Lipp, M.; Lee, K.; Takamoto, D.; Zasadzinski, J.; Waring, A. Coexistence of buckled and flat monolayers. Phys. Rev. Lett. 81, 1650 (1998). 42) Vollhardt, D.; Retter, U. Nucleation in insoluble monolayers. 1. Nucleation and growth model for relaxation of metastable monolayers. J. Phys. Chem 95, 3723-3727 (1991). 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 10) Lee, K. Y. C. Collapse mechanisms of Langmuir monolayers. Annu. Rev. Phys. Chem. 59, 771-791 (2008). – reference: 6) Tae, G.; Yang, H.; Shin, K.; Satija, S. K.; Torikai, N. X-ray reflectivity study of a transcription-activating factor-derived peptide penetration into the model phospholipid monolayers. J. Pept. Sci. 14, 461-468 (2008). – reference: 21) Gourier, C.; Knobler, C. M.; Daillant, J.; Chatenay, D. Collapse of monolayer of 10, 12-pentacosadiynoic acid: kinetics and structure. Langmuir 18, 9434-9440 (2002). – reference: 45) Milner, S.; Joanny, J.; Pincus, P. Buckling of Langmuir monolayers. Eur. Phys. Lett. 9, 495 (1989). – reference: 20) Kim, J.; Jung, J.; Phan, M. D.; Kwon, K. H.; Ree, B. J.; Nakayama, S.; Kim, H.; Shin, K.; Matsuoka, H.; Ree, M. Self-Assembly behaviors of a well-defined amphiphilic brush polymer at the air-water interface. Sci. Adv. Mat. 6, 2445-2452 (2014). – reference: 53) Gourier, C.; Alba, M.; Braslau, A.; Daillant, J.; Goldmann, M.; Knobler, C.; Rieutord, F.; Zalczer, G. Structure and elastic properties of 10-12 pentacosadiynoic acid Langmuir films. Langmuir 17, 6496-6505 (2001). – reference: 55) Vaknin, D.; Bu, W.; Satija, S. K.; Travesset, A. Ordering by collapse: Formation of bilyer and trilayer crystls by folding Langmuir monolayers. Langmuir 23, 1888-1897 (2007). – reference: 9) Phan, M. D.; Shin, K. A Langmuir Monolayer: Ideal Model Membrane to Study Cell. J. Chem. Bio. Interfaces 2, 1-5 (2014). – reference: 8) Kim, J. H.; Yim, S.-Y.; Oh, M.-K.; Phan, M. D.; Shin, K. Adsorption behaviors and structural transitions of organic cations on an anionic lipid monolayer at the air-water interface. Soft Matter 8, 6504-6511 (2012). – reference: 23) Diamant, H.; Witten, T.; Ege, C.; Gopal, A.; Lee, K. Topography and instability of monolayers near domain boundaries. Phys. Rev. E 63, 061602 (2001). – reference: 36) Nikomarov, E. A slow collapse of a monolayer spread on an aqueous surface. Langmuir 6, 410-414 (1990). – reference: 43) Ries Jr, H. E.; Kimball, W. A. Monolayer structure as revealed by electron microscopy. J. Phys. Chem. 59, 94-95 (1955). – reference: 34) Gopal, A. The collapse of phospholipid Langmuir monolayers: Implications for biological surfactant; University of Chicago, Department of Chemistry (2004). – reference: 35) Smith, E. C.; Crane, J. M.; Laderas, T. G.; Hall, S. B. Metastability of a supercompressed fluid monolayer. Biophys. J. 85, 3048-3057 (2003). – reference: 47) Hoda, K.; Ikeda, Y.; Kawasaki, H.; Yamada, K.; Higuchi, R.; Shibata, O. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol. Colloid Surf. B 52, 57-75 (2006). – reference: 52) Ibn-Elhaj, M.; Riegler, H.; Möhwald, H.; Schwendler, M.; Helm, C. X-ray reflectivity study of layering transitions and the internal multilayer structure of films of three-block organosiloxane amphiphilic smectic liquid crystals at the air-water interface. Phys. Rev. E 56, 1844 (1997). – reference: 30) Seok, S.; Kim, T. J.; Hwang, S. Y.; Kim, Y. D.; Vknin, D.; Kim, D. Imaging of collapsed fatty acid films at air-water interfaces. Langmuir 25, 9262-9269 (2009). – reference: 31) McFate, C.; Ward, D.; Olmsted III, J. Organized collapse of fatty acid monolayers. Langmuir 9, 1036-1039 (1993). – reference: 46) Yun, H.; Choi, Y.-W.; Kim, N. J.; Sohn, D. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface. Bull. Korean. Chem. Soc. 24, 377-383 (2003). – reference: 17) Nguyen, T.; Gopal, A.; Lee, K.; Witten, T. Surface charge relaxation and the pearling instability of charged surfactant tubes. Phys. Rev. E 72, 051930 (2005). – reference: 14) Hatta, E. Sequential collapse transitions in a Langmuir monolayer. Langmuir 20, 4059-4063 (2004). – reference: 44) Ries, H. E. Stable ridges in a collapsing monolayer. Nature 281, 287-289 (1979). – reference: 22) Angelova, A.; Vollhardt, D.; Ionov, R. 2D-3D transformations of amphiphilic monolayers influenced by intermolecular interactions: A Brewster angle microscopy study. J. Phys. Chem. 100, 10710-10720 (1996). – reference: 42) Vollhardt, D.; Retter, U. Nucleation in insoluble monolayers. 1. Nucleation and growth model for relaxation of metastable monolayers. J. Phys. Chem 95, 3723-3727 (1991). – reference: 4) Luap, C.; Goedel, W. A. Linear viscoelastic behavior of end-tethered polymer monolayers at the air/water interface. Macromolecules 34, 1343-1351 (2001). – reference: 38) Lang, C. J.; Postle, A. D.; Orgeig, S.; Possmayer, F.; Bernhard, W.; Panda, A. K.; Jürgens, K. D.; Milsom, W. K.; Nag, K.; Daniels, C. B. Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. Am. J. Physiol-Reg. I 289, R1426-R1439 (2005). – reference: 1) Brockman, H. Lipid monolayers: why use half a membrane to characterize protein-membrane interaction. Curr. Opin. Struc. Biol. 9, 438-443 (1999). – reference: 15) Ybert, C.; Lu, W.; Möller, G.; Knobler, C. M. Collapse of a monolayer by three mechanisms. J. Phys. Chem. B 106, 2004-2008 (2002). – reference: 37) Phan, M. D.; Shin, K. Effects of cardiolipin on membrane morphology: A Langmuir monolayer study. Biophys. J. 108, 1977-1986 (2015). – reference: 5) Nakahara, H.; Lee, S.; Sugihara, G.; Chang, C.-H.; Shibata, O. Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with Surfacten (Surfactant TA). Langmuir 24, 3370-3379 (2008). – reference: 51) Dubreuil, F.; Daillant, J.; Guenoun, P. Direct topographic measurement of multilayers on water by atomic force microscopy. Langmuir 19, 8409-8415 (2003). – reference: 16) Lipp, M.; Lee, K.; Takamoto, D.; Zasadzinski, J.; Waring, A. Coexistence of buckled and flat monolayers. Phys. Rev. Lett. 81, 1650 (1998). – reference: 49) Binks, B. Insoluble monolayers of weakly ionizing low molar mass materials and their depositions to form Langmuir-Blodgett multilayers. Adv. Colloid Interface Sci. 34, 343-432 (1991). – reference: 11) Hatta, E.; Nagao, J. Topologial manifestations of surface-roughening collapse in Langmuir monolayers. Phys. Rev. E 67, 041604 (2003). – reference: 3) Sickert, M.; Rondelez, F.; Stone, H. Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. Eur. Phys. Lett. 79, 66005 (2007). – reference: 27) González-Delgado, A. M.; Pérez-Morales, M.; Giner-Casares, J. J.; Munoz, E.; Martín-Romero, M. T.; Camacho, L. Reversible collapse of insoluble monolayers: new insights on the influence of the anisotropic line tension of the domain. J. Phys. Chem. B 113, 13249-13256 (2009). – reference: 25) Smith, R. D.; Berg, J. C. The collapse of surfactant monolayers at the air-water interface. J. Colloid Interface Sci. 74, 273-286 (1980). – reference: 29) Joos, P. Effect of the pH on the collapse pressure of fatty acid monolayers evaluation of the surface dissociation constant. Bull. Soc. Chim. Belg. 80, 277-281 (1971). – reference: 41) Ding, J.; Takamoto, D. Y.; Von Nahmen, A.; Lipp, M. M.; Lee, K. Y. C.; Waring, A. J.; Zasadzinski, J. A. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys. J. 80, 2262-2272 (2001). – reference: 54) Goto, T. E.; Caseli, L. Understanding the collapse mechanism in Langmuir monolayers through polarization modulation-infrared reflection absorption spectroscopy. Langmuir 29, 9063-9071 (2013). – reference: 13) Kundu, S.; Langevin, D. Fatty acid monolayer dissociation and collapse: Effect of pH and cations. Colloid Surf. A: Physicochem. Eng. 325, 81-85 (2008). – reference: 39) Viseu, M. I.; Goncalves da Silva, A. M.; Costa, S. M. Reorganization and desorption of catanionic monolayers. Kinetics of π-t and A-t relaxation. Langmuir 17, 1529-1537 (2001). – reference: 48) Ariga, K.; Shin, J. S.; Kunitake, T. Interaction of lipid monolayers with aqueous neutral polymers and the consequent monoayer stabilization and improved Langmuir-Blodgett transfer. J. Colloid Interface Sci. 170, 440-448 (1995). – reference: 19) Kim, J.; Jung, J.; Phan, M. D.; Ree, B. J.; Fujita, S.; Kim, H.; Matsuoka, H.; Shin, K.; Ree, M. Self-assembly behaviours of a lipid-mimic brush polymer in thin films and at air-water interface. Polymer 78, 161-172 (2015). – reference: 7) Choi, D.; Moon, J.; Kim, H.; Sung, B.; Kim, M.; Tae, G,; Satija, S,; Akgun, B.; Yu, C.-J.; Lee, H. Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by X-ray and neutron reflection. Soft Matter 8, 8294-8297 (2012). – reference: 12) Takamoto, D.; Lipp, M.; Von Nahmen, A.; Lee, K. Y. C.; Waring, A.; Zasadzinski, J. Interaction of lung surfactant proteins with anionic phospholipids. Biophys. J. 81, 153-169 (2001). – reference: 26) Jones, M. N.; Chapman, D. Micelles, monolayers, and biomembranes. Wiley-Liss, New York (1995). – reference: 18) Gopal, A.; Lee, K. Y. C. Morphology and collapse transitions in binary phospholipid monolayers. J. Phys. Chem. B 105, 10348-10354 (2001). – reference: 50) Matsumoto, Y.; Nakahara, H.; Moroi, Y.; Shibata, O. Langmuir monolayer properties of perfluorinated double long-chain salts with divalent counterions of separate electric charge at the air-water interface. Langmuir 23, 9629-9650 (2007). – reference: 33) Coppock, J. D.; Krishan, K.; Dennin, M.; Mooro, B. G. Fluorescence microscopy imaging of giant folding in a catanionic monolayer. Langmuir 25, 5006-5011 (2009). – reference: 24) Kaganer, V. M.; Möhwald, H.; Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71, 779 (1999). – reference: 40) Baoukina, S.; Monticelli, L.; Risselada, H. J.; Marrink, S. J.; Tieleman, D. P. The molecular mechanism of lipid monolayer collapse. Proc. Nat. Acad. Sci. U.S.A. 105, 10803-10808 (2008). – reference: 2) Shin, K.; Rafailovich, M.; Sokolov, J.; Chang, D.; Cox, J.; Lennox, R.; Eisenberg, A.; Gibaud, A.; Huang, J.; Hsu, S. Observation of surface ordering of alkyl side chains in polystyrene/polyelectrolytes diblock copolymer Langmuir films. Langmuir 17, 4955-4961 (2001). – reference: 28) Ries Jr, H. E.; Swift, H. Twisted double-layer ribbons and the mechanism for monolayer collapse. Langmuir 3, 853-855 (1987). – reference: 32) Hatta, E.; Suzuki, D.; Nagao, J. Morphology transition and slow dynamics in the collapse of amphiphilic monolayers at the air-water interface. Eur. Phys. J. B-Condens. Matt. Complex Systems 11, 609-614 (1999). – ident: 5 doi: 10.1021/la703180x – ident: 25 doi: 10.1016/0021-9797(80)90190-3 – ident: 16 – ident: 9 doi: 10.1166/jcbi.2014.1028 – ident: 35 doi: 10.1016/S0006-3495(03)74723-7 – ident: 21 doi: 10.1021/la026135v – ident: 55 doi: 10.1021/la062672u – ident: 6 doi: 10.1002/psc.948 – ident: 43 doi: 10.1021/j150523a028 – ident: 30 doi: 10.1021/la900096a – ident: 26 – ident: 14 doi: 10.1021/la036014a – ident: 49 doi: 10.1016/0001-8686(91)80053-M – ident: 2 doi: 10.1021/la010110z – ident: 34 – ident: 24 doi: 10.1103/RevModPhys.71.779 – ident: 17 doi: 10.1103/PhysRevE.72.051930 – ident: 27 doi: 10.1021/jp9055158 – ident: 37 doi: 10.1016/j.bpj.2015.03.026 – ident: 33 doi: 10.1021/la803773y – ident: 40 – ident: 7 doi: 10.1039/c2sm25913c – ident: 8 doi: 10.1039/c2sm25252j – ident: 19 doi: 10.1016/j.polymer.2015.10.003 – ident: 13 doi: 10.1016/j.colsurfa.2008.04.037 – ident: 47 doi: 10.1016/j.colsurfb.2006.07.006 – ident: 4 doi: 10.1021/ma991485i – ident: 22 doi: 10.1021/jp960417k – ident: 50 doi: 10.1021/la700511r – ident: 20 doi: 10.1166/sam.2014.2201 – ident: 39 doi: 10.1021/la001138y – ident: 12 doi: 10.1016/S0006-3495(01)75688-3 – ident: 18 doi: 10.1021/jp012532n – ident: 28 doi: 10.1021/la00077a048 – ident: 11 doi: 10.1103/PhysRevE.67.041604 – ident: 52 doi: 10.1103/PhysRevE.56.1844 – ident: 42 doi: 10.1021/j100162a052 – ident: 38 doi: 10.1152/ajpregu.00496.2004 – ident: 41 doi: 10.1016/S0006-3495(01)76198-X – ident: 3 doi: 10.1209/0295-5075/79/66005 – ident: 44 doi: 10.1038/281287a0 – ident: 46 doi: 10.5012/bkcs.2003.24.3.377 – ident: 32 – ident: 48 doi: 10.1006/jcis.1995.1123 – ident: 23 doi: 10.1103/PhysRevE.63.061602 – ident: 45 doi: 10.1209/0295-5075/9/5/015 – ident: 10 doi: 10.1146/annurev.physchem.58.032806.104619 – ident: 1 doi: 10.1016/S0959-440X(99)80061-X – ident: 53 doi: 10.1021/la001799v – ident: 15 doi: 10.1021/jp013173z – ident: 54 doi: 10.1021/la402044c – ident: 51 doi: 10.1021/la0343268 – ident: 29 doi: 10.1002/bscb.19710800308 – ident: 31 doi: 10.1021/la00028a026 – ident: 36 doi: 10.1021/la00092a021 |
SSID | ssj0033557 ssib002822091 ssib017172183 ssib050733897 |
Score | 2.1905863 |
SecondaryResourceType | review_article |
Snippet | Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However, compression beyond... [Abstract]: Langmuir monolayers of amphiphilic molecules at an air-water interface can be compressed laterally to achieve high surface density. However,... |
SourceID | proquest pubmed crossref medicalonline jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 385 |
SubjectTerms | Air Collapse Compressing Constituents fluorescence microscopy Hydrogen-Ion Concentration isotherms Langmuir monolayer Lipids Mechanical properties Molecular structure Monolayers Particle Size Surface Properties Surface-Active Agents - chemistry Temperature Topography Water - chemistry water-air interface X-ray reflectivity |
Title | Collapsed States of Langmuir Monolayers |
URI | https://www.jstage.jst.go.jp/article/jos/65/5/65_ess15261/_article/-char/en http://mol.medicalonline.jp/en/journal/download?GoodsID=dj7oleos/2016/006505/004&name=0385-0397e https://www.ncbi.nlm.nih.gov/pubmed/27086998 https://www.proquest.com/docview/1787028291 https://www.proquest.com/docview/1816012821 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Oleo Science, 2016, Vol.65(5), pp.385-397 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB60-qCIeHe1lgiKDyE1l5lc8EUplVLtBWyhbyGXibvLblK6u4g--Nv9TmYySUsLVV9ml-TsMjm3-U7mzDmMvYkAkXGvcjiWB4cXHmwuzBOHc16FIa-kqNoE2f1w55jvnoiTvtFle7pkmW8Wvy49V_IvUsU1yJVOyf6FZM2f4gK-Q74YIWGM15IxRf3Z6cJgRvXCv_4-X03OyFoRtv7UGe6XANCDmWw62zZ8n9RjuEEMh-Neb3ZX84n9VRqqLz8yytWxv4113W792sAL-yQ95dKxFNf2wWRmb6nGcm3Ohs4UHfjDgAsnTlQN6c5hquYOWjHEwPsFqvuOXkgDlXh70UcDQVJS47RZbMKXAz6oYuwXql6X06gBFxYpzT1tgaTAB09pJxNDEgFZ4Kf8JrvlI0IgF7f3e3sYSfpuXwbIiyjU7ZGUoF6VcWJi8wCwq-3D0z2vOiNBc30_nOk59HJ7CgBPlRnuzdWmmipucnWs0mKWowfsvpa19UlpzkN2Y5o9YncHJSgfs3dGhyylQ1ZTWZ0OWb0OPWHHn7ePtnYc3TzDKQAil04QhIBvCb2EiANO3eRkIDltyxIfAHpl4hVe6Uous8QrRVRkQSyjAPgv9CqQPGVrdVPL58wqKRkpi2WcS58jxMxLLE0ydiPperkQcsTsjilpoSvLU4OTWYoIk1iYgoVpx8IRe2uoT1VFlSvoPij-GiptZy1VKFJBQ0dtbtJhRfiGEft4TiipNttFem3NGrH1To79rz1a4Cj7APN7bW7DgGifLatlswJN7IWE-3zQPFPyN8_gR24cJkn84v_n95Ld6Q17na0tz1byFRDyMt8gfCI2WovAuH-49wfnbrOz |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collapsed+States+of+Langmuir+Monolayers&rft.jtitle=Journal+of+Oleo+Science&rft.au=Minh+Dinh+Phan&rft.au=Jumi+Lee&rft.au=Kwanwoo+Shin&rft.date=2016-05-01&rft.pub=Japan+Oil+Chemists%27+Society&rft.issn=1345-8957&rft.volume=65&rft.issue=5&rft.spage=385&rft.epage=397&rft_id=info:doi/10.5650%2Fjos.ess15261&rft.externalDocID=dj7oleos_2016_006505_004_0385_03972662614 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-8957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-8957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-8957&client=summon |