Efficient Face Recognition Using Expert Search Techniques Under Difficult Lighting Conditions
Making face recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. Data preprocessing thus becomes an important and emerging topic in many data-driven applications such as image processing and bioinformatics. D...
Saved in:
Published in | I-manager's Journal on Pattern Recognition Vol. 2; no. 2; pp. 19 - 33 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Nagercoil
iManager Publications
15.08.2015
|
Online Access | Get full text |
Cover
Loading…
Abstract | Making face recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. Data preprocessing thus becomes an important and emerging topic in many data-driven applications such as image processing and bioinformatics. Dimensionality reduction provides an efficient way for data abstraction and representation as well as feature extraction. It aims to detect intrinsic structures of data and to extract a reduced number of variables (dimensions) that capture and retain the main features of the high-dimensional data. For instance, images contain a large number of pixel values and are presented as high-dimensional arrays. The computationally efficient combination of the most successful local appearance descriptors, like Local Binary Pattern (LBP) with its extension Local Ternary Patterns (LTP) for facial appearance and Gabor filter to encode facial shape over a range of coarser scales are implemented. Here, a data mining approach for dimensionality reduction provides an efficient way for data abstraction and representation as well as feature extraction. It aims to detect intrinsic structures of data and to extract a reduced number of variables (dimensions) that capture and retain the main features of the highdimensional data. The resulting method provides state-of-the-art performance on different data sets that are widely used for testing recognition under difficult illumination conditions: Ex-tended Yale-B, CAS-PEAL-R1. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions by comparing with previously published methods, achieving a face verification rate of 89.1% at 0.2% false accept rate. |
---|---|
AbstractList | Making face recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. Data preprocessing thus becomes an important and emerging topic in many data-driven applications such as image processing and bioinformatics. Dimensionality reduction provides an efficient way for data abstraction and representation as well as feature extraction. It aims to detect intrinsic structures of data and to extract a reduced number of variables (dimensions) that capture and retain the main features of the high-dimensional data. For instance, images contain a large number of pixel values and are presented as high-dimensional arrays. The computationally efficient combination of the most successful local appearance descriptors, like Local Binary Pattern (LBP) with its extension Local Ternary Patterns (LTP) for facial appearance and Gabor filter to encode facial shape over a range of coarser scales are implemented. Here, a data mining approach for dimensionality reduction provides an efficient way for data abstraction and representation as well as feature extraction. It aims to detect intrinsic structures of data and to extract a reduced number of variables (dimensions) that capture and retain the main features of the highdimensional data. The resulting method provides state-of-the-art performance on different data sets that are widely used for testing recognition under difficult illumination conditions: Ex-tended Yale-B, CAS-PEAL-R1. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions by comparing with previously published methods, achieving a face verification rate of 89.1% at 0.2% false accept rate. |
Author | Rama Devi, K. Y. Kumar, P. V. Raju, Basava |
Author_xml | – sequence: 1 givenname: Basava surname: Raju fullname: Raju, Basava – sequence: 2 givenname: K. Y. surname: Rama Devi fullname: Rama Devi, K. Y. – sequence: 3 givenname: P. V. surname: Kumar fullname: Kumar, P. V. |
BookMark | eNotUE1LAzEUDFLBWnv0HvC8Nd-7OUptVSgI2oIXCTGbtCk1WZMt6L83a2UObw4z84a5BKMQgwXgGqMZEYKy232XZqSAciHOwJhQjiqMydto4ExWtcTkAkxz3iOEiJRENnQM3hfOeeNt6OFSGwtfrInb4HsfA9xkH7Zw8d3Z1MNXq5PZwbU1u-C_jjbDTWhtgvd-CDgeerjy210_OOYxtH8J-QqcO33Idvp_J2C9XKznj9Xq-eFpfreqTKletdwI42RthEUOa9IUVlNGiCRGGo0-BMHcUcYp5lLXrmVSm1bUpa9sGsboBNycYrsUh2q92sdjCuWjwg2uuUSkpkVVnVQmxZyTdapL_lOnH4WR-ttQlQ0VKRg2pL-3_Gae |
Cites_doi | 10.1109/TPAMI.2005.92 10.1109/AFGR.2004.1301540 10.1109/CVPR.2003.1211333 10.1109/34.598229 10.1109/34.541411 10.1109/cvpr.2005.177 10.1016/0031-3203(95)00067-4 10.1109/TPAMI.2003.1177153 10.1109/83.913594 10.1109/cvpr.2005.268 10.1145/954339.954342 10.1109/34.368145 10.1109/TIP.2006.884956 10.1016/0042-6989(80)90065-6 |
ContentType | Journal Article |
Copyright | 2015 i-manager publications. All rights reserved. |
Copyright_xml | – notice: 2015 i-manager publications. All rights reserved. |
CorporateAuthor | H.O.D, Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad Research Scholar, Jawaharlal Nehru Technological University, Kakinada, AP, India Professor, Department of Computer Science and Engineering, Osmania University, Hyderabad, Telangana |
CorporateAuthor_xml | – name: H.O.D, Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad – name: Professor, Department of Computer Science and Engineering, Osmania University, Hyderabad, Telangana – name: Research Scholar, Jawaharlal Nehru Technological University, Kakinada, AP, India |
DBID | AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.26634/jpr.2.2.3566 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest Computing Computer Science Database ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computing (Alumni Edition) ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2350-112X |
EndPage | 33 |
ExternalDocumentID | 4174286961 10_26634_jpr_2_2_3566 |
GroupedDBID | 3V. 8FE 8FG AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- M0N P62 PQQKQ PROAC 7XB 8AL 8FK JQ2 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c663-d5c6cf97c6e0f1a287c67342292c9ca0b6215f3453159a7fd49acd67ace988443 |
IEDL.DBID | BENPR |
ISSN | 2349-7912 |
IngestDate | Thu Oct 10 20:12:25 EDT 2024 Fri Aug 23 02:18:41 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c663-d5c6cf97c6e0f1a287c67342292c9ca0b6215f3453159a7fd49acd67ace988443 |
PQID | 1817590273 |
PQPubID | 2042732 |
PageCount | 15 |
ParticipantIDs | proquest_journals_1817590273 crossref_primary_10_26634_jpr_2_2_3566 |
PublicationCentury | 2000 |
PublicationDate | 2015-08-15 |
PublicationDateYYYYMMDD | 2015-08-15 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Nagercoil |
PublicationPlace_xml | – name: Nagercoil |
PublicationTitle | I-manager's Journal on Pattern Recognition |
PublicationYear | 2015 |
Publisher | iManager Publications |
Publisher_xml | – name: iManager Publications |
References | ref13 ref12 ref15 ref14 Zhao (ref0) 2003 Dalal (ref7) 2005 ref2 ref1 Phillips (ref10) 2005 ref8 ref9 Zhang (ref11) 2007 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref6 doi: 10.1109/TPAMI.2005.92 – ident: ref13 doi: 10.1109/AFGR.2004.1301540 – ident: ref4 – ident: ref12 doi: 10.1109/CVPR.2003.1211333 – ident: ref3 doi: 10.1109/34.598229 – ident: ref5 – ident: ref8 doi: 10.1109/34.541411 – start-page: 886 year: 2005 ident: ref7 article-title: Histograms of oriented gradients for human detection publication-title: Proceedings of CVPR Washington DC doi: 10.1109/cvpr.2005.177 contributor: fullname: Dalal – ident: ref14 doi: 10.1016/0031-3203(95)00067-4 – ident: ref1 doi: 10.1109/TPAMI.2003.1177153 – ident: ref9 doi: 10.1109/83.913594 – start-page: 947 year: 2005 ident: ref10 article-title: Overview of the face recognition grand challenge publication-title: Proceedings CVPR San Diego CA doi: 10.1109/cvpr.2005.268 contributor: fullname: Phillips – start-page: 399 year: 2003 ident: ref0 article-title: "Face recognition: A literature survey", ACM Computing publication-title: Surveys Vol 34 No 4 doi: 10.1145/954339.954342 contributor: fullname: Zhao – ident: ref2 doi: 10.1109/34.368145 – start-page: 57 year: 2007 ident: ref11 article-title: "Histogram of gabor phase patterns (HGPP): A novel object representation approach for face recognition", IEEE Trans publication-title: Image Process Vol 16 No 1 doi: 10.1109/TIP.2006.884956 contributor: fullname: Zhang – ident: ref15 doi: 10.1016/0042-6989(80)90065-6 |
SSID | ssj0002992983 |
Score | 1.9687387 |
Snippet | Making face recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems.... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 19 |
Title | Efficient Face Recognition Using Expert Search Techniques Under Difficult Lighting Conditions |
URI | https://www.proquest.com/docview/1817590273 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXVgQCBCFUnlAbKGJP-J4QlAaKgQVqorUBUWJHQ8MTWnL_-fOSfhYkMcokvUud893vrwj5JLnoUsKKwNeMhmIxEbgcwb7n0SZ5KGxTuEPzs_TePIqHhdy0RTcNk1bZRsTfaC2lcEa-RCYSKHUiOI3q48Ap0bh7WozQmOXdBlkCqxDunfj6cvsu8oCwZZpr8XJuNCozchqoU3gJS6G76v1NYPFpVdJ_EVMf-OyJ5v0gOw3p0R6W5v1kOyUyyPyNvZyD8ASNM1NSWdt70-1pP7mn3rd4i2tW4jpvJVn3VA_3YjeY30GpTboE6bk-Maowitr_PSOyTwdz0eToJmOEBjYe2CliY3TysRl6KIcEh8TKy4Y08xok4dFDGTuuAAfkzpXzgqdGxsr2J9OEiH4Ceksq2V5SihkDAyQioxxhdAhL8DpXcStglRRF4L1yFWLTLaqNTAyyB08hBlAmDFYCGGP9FvcssYVNtmP4c7-f3xO9uA0IrFgG8k-6WzXn-UFMP62GJDdJH0YNMb9AmmBq1o |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDLAgECAeBTwgttDEduJ4Qqg0FGg7oCB1QVFixwNDUtry_7lzEh4L8mhFsu5y9_ke_o6QK577Ni5M6PGShZ6ITQA2p7H_SZRx7mtjJT5wns6i8at4mofzNuG2atsqO5_oHLWpNebIB4BEEqlGJL9dfHg4NQqrq-0IjU2yJTgADb4UTx6-cyzgaplyTJyMC4XMjKyh2QRU4mLwvljeMFg8dByJv2Dpr1d2UJPskd32jkjvGqXuk42yOiBvI0f2ABhBk1yX9KXr_Kkr6ur-1LEWr2nTQEzTjpx1Rd1sI3qP2Rkk2qATDMjxi2GNBWv88Q5JmozS4dhrZyN4Gs7umVBH2iqpo9K3QQ5hj44kF4wpppXO_SICKLdcgIWFKpfWCJVrE0k4n4pjIfgR6VV1VR4TCvECA0kFWttCKJ8XYPI24EZCoKgKwU7IdSeZbNEwYGQQOTgRZiDCjMFCEZ6Qfie3rDWEVfajttP_ty_J9jidTrLJ4-z5jOzAvSTE1G0Q9klvvfwszwH718WFU_AXoOKr_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Face+Recognition+Using+Expert+Search+Techniques+Under+Difficult+Lighting+Conditions&rft.jtitle=I-manager%27s+Journal+on+Pattern+Recognition&rft.au=Raju%2C+Basava&rft.au=Rama+Devi%2C+K.+Y.&rft.au=Kumar%2C+P.+V.&rft.date=2015-08-15&rft.issn=2349-7912&rft.eissn=2350-112X&rft.volume=2&rft.issue=2&rft.spage=19&rft.epage=33&rft_id=info:doi/10.26634%2Fjpr.2.2.3566&rft.externalDBID=n%2Fa&rft.externalDocID=10_26634_jpr_2_2_3566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-7912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-7912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-7912&client=summon |