Efficient Face Recognition Using Expert Search Techniques Under Difficult Lighting Conditions

Making face recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. Data preprocessing thus becomes an important and emerging topic in many data-driven applications such as image processing and bioinformatics. D...

Full description

Saved in:
Bibliographic Details
Published inI-manager's Journal on Pattern Recognition Vol. 2; no. 2; pp. 19 - 33
Main Authors Raju, Basava, Rama Devi, K. Y., Kumar, P. V.
Format Journal Article
LanguageEnglish
Published Nagercoil iManager Publications 15.08.2015
Online AccessGet full text

Cover

Loading…
Abstract Making face recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. Data preprocessing thus becomes an important and emerging topic in many data-driven applications such as image processing and bioinformatics. Dimensionality reduction provides an efficient way for data abstraction and representation as well as feature extraction. It aims to detect intrinsic structures of data and to extract a reduced number of variables (dimensions) that capture and retain the main features of the high-dimensional data. For instance, images contain a large number of pixel values and are presented as high-dimensional arrays. The computationally efficient combination of the most successful local appearance descriptors, like Local Binary Pattern (LBP) with its extension Local Ternary Patterns (LTP) for facial appearance and Gabor filter to encode facial shape over a range of coarser scales are implemented. Here, a data mining approach for dimensionality reduction provides an efficient way for data abstraction and representation as well as feature extraction. It aims to detect intrinsic structures of data and to extract a reduced number of variables (dimensions) that capture and retain the main features of the highdimensional data. The resulting method provides state-of-the-art performance on different data sets that are widely used for testing recognition under difficult illumination conditions: Ex-tended Yale-B, CAS-PEAL-R1. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions by comparing with previously published methods, achieving a face verification rate of 89.1% at 0.2% false accept rate.
AbstractList Making face recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. Data preprocessing thus becomes an important and emerging topic in many data-driven applications such as image processing and bioinformatics. Dimensionality reduction provides an efficient way for data abstraction and representation as well as feature extraction. It aims to detect intrinsic structures of data and to extract a reduced number of variables (dimensions) that capture and retain the main features of the high-dimensional data. For instance, images contain a large number of pixel values and are presented as high-dimensional arrays. The computationally efficient combination of the most successful local appearance descriptors, like Local Binary Pattern (LBP) with its extension Local Ternary Patterns (LTP) for facial appearance and Gabor filter to encode facial shape over a range of coarser scales are implemented. Here, a data mining approach for dimensionality reduction provides an efficient way for data abstraction and representation as well as feature extraction. It aims to detect intrinsic structures of data and to extract a reduced number of variables (dimensions) that capture and retain the main features of the highdimensional data. The resulting method provides state-of-the-art performance on different data sets that are widely used for testing recognition under difficult illumination conditions: Ex-tended Yale-B, CAS-PEAL-R1. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions by comparing with previously published methods, achieving a face verification rate of 89.1% at 0.2% false accept rate.
Author Rama Devi, K. Y.
Kumar, P. V.
Raju, Basava
Author_xml – sequence: 1
  givenname: Basava
  surname: Raju
  fullname: Raju, Basava
– sequence: 2
  givenname: K. Y.
  surname: Rama Devi
  fullname: Rama Devi, K. Y.
– sequence: 3
  givenname: P. V.
  surname: Kumar
  fullname: Kumar, P. V.
BookMark eNotUE1LAzEUDFLBWnv0HvC8Nd-7OUptVSgI2oIXCTGbtCk1WZMt6L83a2UObw4z84a5BKMQgwXgGqMZEYKy232XZqSAciHOwJhQjiqMydto4ExWtcTkAkxz3iOEiJRENnQM3hfOeeNt6OFSGwtfrInb4HsfA9xkH7Zw8d3Z1MNXq5PZwbU1u-C_jjbDTWhtgvd-CDgeerjy210_OOYxtH8J-QqcO33Idvp_J2C9XKznj9Xq-eFpfreqTKletdwI42RthEUOa9IUVlNGiCRGGo0-BMHcUcYp5lLXrmVSm1bUpa9sGsboBNycYrsUh2q92sdjCuWjwg2uuUSkpkVVnVQmxZyTdapL_lOnH4WR-ttQlQ0VKRg2pL-3_Gae
Cites_doi 10.1109/TPAMI.2005.92
10.1109/AFGR.2004.1301540
10.1109/CVPR.2003.1211333
10.1109/34.598229
10.1109/34.541411
10.1109/cvpr.2005.177
10.1016/0031-3203(95)00067-4
10.1109/TPAMI.2003.1177153
10.1109/83.913594
10.1109/cvpr.2005.268
10.1145/954339.954342
10.1109/34.368145
10.1109/TIP.2006.884956
10.1016/0042-6989(80)90065-6
ContentType Journal Article
Copyright 2015 i-manager publications. All rights reserved.
Copyright_xml – notice: 2015 i-manager publications. All rights reserved.
CorporateAuthor H.O.D, Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad
Research Scholar, Jawaharlal Nehru Technological University, Kakinada, AP, India
Professor, Department of Computer Science and Engineering, Osmania University, Hyderabad, Telangana
CorporateAuthor_xml – name: H.O.D, Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad
– name: Professor, Department of Computer Science and Engineering, Osmania University, Hyderabad, Telangana
– name: Research Scholar, Jawaharlal Nehru Technological University, Kakinada, AP, India
DBID AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.26634/jpr.2.2.3566
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest Computing
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computing (Alumni Edition)
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2350-112X
EndPage 33
ExternalDocumentID 4174286961
10_26634_jpr_2_2_3566
GroupedDBID 3V.
8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
M0N
P62
PQQKQ
PROAC
7XB
8AL
8FK
JQ2
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c663-d5c6cf97c6e0f1a287c67342292c9ca0b6215f3453159a7fd49acd67ace988443
IEDL.DBID BENPR
ISSN 2349-7912
IngestDate Thu Oct 10 20:12:25 EDT 2024
Fri Aug 23 02:18:41 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663-d5c6cf97c6e0f1a287c67342292c9ca0b6215f3453159a7fd49acd67ace988443
PQID 1817590273
PQPubID 2042732
PageCount 15
ParticipantIDs proquest_journals_1817590273
crossref_primary_10_26634_jpr_2_2_3566
PublicationCentury 2000
PublicationDate 2015-08-15
PublicationDateYYYYMMDD 2015-08-15
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Nagercoil
PublicationPlace_xml – name: Nagercoil
PublicationTitle I-manager's Journal on Pattern Recognition
PublicationYear 2015
Publisher iManager Publications
Publisher_xml – name: iManager Publications
References ref13
ref12
ref15
ref14
Zhao (ref0) 2003
Dalal (ref7) 2005
ref2
ref1
Phillips (ref10) 2005
ref8
ref9
Zhang (ref11) 2007
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/TPAMI.2005.92
– ident: ref13
  doi: 10.1109/AFGR.2004.1301540
– ident: ref4
– ident: ref12
  doi: 10.1109/CVPR.2003.1211333
– ident: ref3
  doi: 10.1109/34.598229
– ident: ref5
– ident: ref8
  doi: 10.1109/34.541411
– start-page: 886
  year: 2005
  ident: ref7
  article-title: Histograms of oriented gradients for human detection
  publication-title: Proceedings of CVPR Washington DC
  doi: 10.1109/cvpr.2005.177
  contributor:
    fullname: Dalal
– ident: ref14
  doi: 10.1016/0031-3203(95)00067-4
– ident: ref1
  doi: 10.1109/TPAMI.2003.1177153
– ident: ref9
  doi: 10.1109/83.913594
– start-page: 947
  year: 2005
  ident: ref10
  article-title: Overview of the face recognition grand challenge
  publication-title: Proceedings CVPR San Diego CA
  doi: 10.1109/cvpr.2005.268
  contributor:
    fullname: Phillips
– start-page: 399
  year: 2003
  ident: ref0
  article-title: "Face recognition: A literature survey", ACM Computing
  publication-title: Surveys Vol 34 No 4
  doi: 10.1145/954339.954342
  contributor:
    fullname: Zhao
– ident: ref2
  doi: 10.1109/34.368145
– start-page: 57
  year: 2007
  ident: ref11
  article-title: "Histogram of gabor phase patterns (HGPP): A novel object representation approach for face recognition", IEEE Trans
  publication-title: Image Process Vol 16 No 1
  doi: 10.1109/TIP.2006.884956
  contributor:
    fullname: Zhang
– ident: ref15
  doi: 10.1016/0042-6989(80)90065-6
SSID ssj0002992983
Score 1.9687387
Snippet Making face recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems....
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 19
Title Efficient Face Recognition Using Expert Search Techniques Under Difficult Lighting Conditions
URI https://www.proquest.com/docview/1817590273
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXVgQCBCFUnlAbKGJP-J4QlAaKgQVqorUBUWJHQ8MTWnL_-fOSfhYkMcokvUud893vrwj5JLnoUsKKwNeMhmIxEbgcwb7n0SZ5KGxTuEPzs_TePIqHhdy0RTcNk1bZRsTfaC2lcEa-RCYSKHUiOI3q48Ap0bh7WozQmOXdBlkCqxDunfj6cvsu8oCwZZpr8XJuNCozchqoU3gJS6G76v1NYPFpVdJ_EVMf-OyJ5v0gOw3p0R6W5v1kOyUyyPyNvZyD8ASNM1NSWdt70-1pP7mn3rd4i2tW4jpvJVn3VA_3YjeY30GpTboE6bk-Maowitr_PSOyTwdz0eToJmOEBjYe2CliY3TysRl6KIcEh8TKy4Y08xok4dFDGTuuAAfkzpXzgqdGxsr2J9OEiH4Ceksq2V5SihkDAyQioxxhdAhL8DpXcStglRRF4L1yFWLTLaqNTAyyB08hBlAmDFYCGGP9FvcssYVNtmP4c7-f3xO9uA0IrFgG8k-6WzXn-UFMP62GJDdJH0YNMb9AmmBq1o
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDLAgECAeBTwgttDEduJ4Qqg0FGg7oCB1QVFixwNDUtry_7lzEh4L8mhFsu5y9_ke_o6QK577Ni5M6PGShZ6ITQA2p7H_SZRx7mtjJT5wns6i8at4mofzNuG2atsqO5_oHLWpNebIB4BEEqlGJL9dfHg4NQqrq-0IjU2yJTgADb4UTx6-cyzgaplyTJyMC4XMjKyh2QRU4mLwvljeMFg8dByJv2Dpr1d2UJPskd32jkjvGqXuk42yOiBvI0f2ABhBk1yX9KXr_Kkr6ur-1LEWr2nTQEzTjpx1Rd1sI3qP2Rkk2qATDMjxi2GNBWv88Q5JmozS4dhrZyN4Gs7umVBH2iqpo9K3QQ5hj44kF4wpppXO_SICKLdcgIWFKpfWCJVrE0k4n4pjIfgR6VV1VR4TCvECA0kFWttCKJ8XYPI24EZCoKgKwU7IdSeZbNEwYGQQOTgRZiDCjMFCEZ6Qfie3rDWEVfajttP_ty_J9jidTrLJ4-z5jOzAvSTE1G0Q9klvvfwszwH718WFU_AXoOKr_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Face+Recognition+Using+Expert+Search+Techniques+Under+Difficult+Lighting+Conditions&rft.jtitle=I-manager%27s+Journal+on+Pattern+Recognition&rft.au=Raju%2C+Basava&rft.au=Rama+Devi%2C+K.+Y.&rft.au=Kumar%2C+P.+V.&rft.date=2015-08-15&rft.issn=2349-7912&rft.eissn=2350-112X&rft.volume=2&rft.issue=2&rft.spage=19&rft.epage=33&rft_id=info:doi/10.26634%2Fjpr.2.2.3566&rft.externalDBID=n%2Fa&rft.externalDocID=10_26634_jpr_2_2_3566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-7912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-7912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-7912&client=summon