Injectable alginate-microencapsulated canine adipose tissue-derived mesenchymal stem cells for enhanced viable cell retention

The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells (cASCs) and evaluate their suitability for clinical use, including viability, proliferation and in vivo cell retention. Alginate microbeads were...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 79; no. 3; pp. 492 - 501
Main Authors KOH, Eunji, JUNG, Yun Chan, WOO, Heung-Myong, KANG, Byung-Jae
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2017
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells (cASCs) and evaluate their suitability for clinical use, including viability, proliferation and in vivo cell retention. Alginate microbeads were formed by vibrational technology and the production of injectable microbeads was performed using various parameters with standard methodology. Microbead toxicity was tested in an animal model. Encapsulated cASCs were evaluated for viability and proliferation in vitro. HEK-293 cells, with or without microencapsulation, were injected into the subcutaneous tissue of mice and were tracked using in vivo bioluminescent imaging to evaluate the retention of transplanted cells. The optimized injectable microbeads were of uniform size and approximately 250 µm in diameter. There was no strong evidence of in vivo toxicity for the alginate beads. The cells remained viable after encapsulation, and there was evidence of in vitro proliferation within the microcapsules. In vivo bioluminescent imaging showed that alginate encapsulation improved the retention of transplanted cells and the encapsulated cells remained viable in vivo for 7 days. Encapsulation enhances the retention of viable cells in vivo and might represent a potential strategy to increase the therapeutic potency and efficacy of stem cells.
AbstractList The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells (cASCs) and evaluate their suitability for clinical use, including viability, proliferation and in vivo cell retention. Alginate microbeads were formed by vibrational technology and the production of injectable microbeads was performed using various parameters with standard methodology. Microbead toxicity was tested in an animal model. Encapsulated cASCs were evaluated for viability and proliferation in vitro. HEK-293 cells, with or without microencapsulation, were injected into the subcutaneous tissue of mice and were tracked using in vivo bioluminescent imaging to evaluate the retention of transplanted cells. The optimized injectable microbeads were of uniform size and approximately 250 µm in diameter. There was no strong evidence of in vivo toxicity for the alginate beads. The cells remained viable after encapsulation, and there was evidence of in vitro proliferation within the microcapsules. In vivo bioluminescent imaging showed that alginate encapsulation improved the retention of transplanted cells and the encapsulated cells remained viable in vivo for 7 days. Encapsulation enhances the retention of viable cells in vivo and might represent a potential strategy to increase the therapeutic potency and efficacy of stem cells.
The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells (cASCs) and evaluate their suitability for clinical use, including viability, proliferation and in vivo cell retention. Alginate microbeads were formed by vibrational technology and the production of injectable microbeads was performed using various parameters with standard methodology. Microbead toxicity was tested in an animal model. Encapsulated cASCs were evaluated for viability and proliferation in vitro . HEK-293 cells, with or without microencapsulation, were injected into the subcutaneous tissue of mice and were tracked using in vivo bioluminescent imaging to evaluate the retention of transplanted cells. The optimized injectable microbeads were of uniform size and approximately 250 µ m in diameter. There was no strong evidence of in vivo toxicity for the alginate beads. The cells remained viable after encapsulation, and there was evidence of in vitro proliferation within the microcapsules. In vivo bioluminescent imaging showed that alginate encapsulation improved the retention of transplanted cells and the encapsulated cells remained viable in vivo for 7 days. Encapsulation enhances the retention of viable cells in vivo and might represent a potential strategy to increase the therapeutic potency and efficacy of stem cells.
Author KOH, Eunji
JUNG, Yun Chan
WOO, Heung-Myong
KANG, Byung-Jae
Author_xml – sequence: 1
  fullname: KOH, Eunji
  organization: College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
– sequence: 2
  fullname: JUNG, Yun Chan
  organization: KPC, Gwangju 12773, Republic of Korea
– sequence: 3
  fullname: WOO, Heung-Myong
  organization: College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
– sequence: 4
  fullname: KANG, Byung-Jae
  organization: College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28070061$$D View this record in MEDLINE/PubMed
BookMark eNpdkUuLFDEUhYOMOD2jO9dS4MaFNeZVSWUjjIOPgQE3ug7p1E13mqqkTVINs_C_m7LbRt0kcM_HuY9zhS5CDIDQS4JvCFX03e4w5RsiWsw78QStCOOylZypC7TCqtYl7fAlusp5hzElXKhn6JL2WGIsyAr9vA87sMWsR2jMuPHBFGgnb1OEYM0-z2MtDI01wYdKDH4fMzTF5zxDO0Dyh6pOkCu9fZzM2OQCU2NhHHPjYmogbE2wlTn43z0WpUlQIBQfw3P01Jkxw4vTf42-f_r47e5L-_D18_3d7UNrhaCldbiXves5M7brpWQglVwzyfngOkUV7qzq5JoLRjpDuHRDLwfpnMQDlYo6ya7R-6Pvfl5PMNjaPZlR75OfTHrU0Xj9rxL8Vm_iQXesZ0QsBm9OBin-mCEXPfm87GICxDlr0neSSVqnrejr_9BdnFOo62lKmRKk55RV6u2RqpfOOYE7D0OwXnLVS66aCL3kWvFXfy9whv8EWYEPR2CXi9nAGTCpeDvC0U0qzZbn5HoW7dYkDYH9AjuruzE
CitedBy_id crossref_primary_10_3390_polym10090997
crossref_primary_10_1016_j_mtbio_2023_100581
crossref_primary_10_1016_j_ijbiomac_2018_11_115
crossref_primary_10_1080_09205063_2017_1399002
crossref_primary_10_1111_1541_4337_12547
crossref_primary_10_3390_ma14102600
crossref_primary_10_1016_j_eurpolymj_2019_07_032
crossref_primary_10_1021_acsbiomaterials_2c00228
crossref_primary_10_1155_2018_2791632
crossref_primary_10_1002_jbm_b_34119
crossref_primary_10_1002_jcp_28348
crossref_primary_10_1002_chem_201802205
Cites_doi 10.1016/j.jconrel.2014.05.010
10.46582/jsrm.1002007
10.1016/j.tvjl.2014.09.024
10.1098/rsif.2014.0817
10.1016/j.biomaterials.2010.05.078
10.1016/j.jconrel.2008.08.010
10.1016/j.bbrc.2006.06.072
10.1089/ten.tec.2008.0582
10.3390/ma6041285
10.1371/journal.pone.0023212
10.1002/term.1680
10.4142/jvs.2012.13.3.299
10.1007/s11095-009-9884-4
10.1371/journal.pone.0107001
10.1096/fj.12-213611
10.1371/journal.pone.0113609
10.1161/JAHA.113.000367
10.1371/journal.pone.0062032
10.3727/096368912X637497
10.1111/wrr.12044
10.1016/j.msec.2013.11.048
10.1016/j.tiv.2014.09.014
10.1292/jvms.12-0065
ContentType Journal Article
Copyright 2017 by the Japanese Society of Veterinary Science
Copyright Japan Science and Technology Agency Mar 2017
2017 The Japanese Society of Veterinary Science 2017
Copyright_xml – notice: 2017 by the Japanese Society of Veterinary Science
– notice: Copyright Japan Science and Technology Agency Mar 2017
– notice: 2017 The Japanese Society of Veterinary Science 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.16-0456
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 501
ExternalDocumentID 10_1292_jvms_16_0456
28070061
article_jvms_79_3_79_16_0456_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PGMZT
AAYXX
B.T
CITATION
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c662t-f0878f843ac58773e797b3744df592905c957b46315a147fd87d7ff70d2792f73
IEDL.DBID RPM
ISSN 0916-7250
IngestDate Tue Sep 17 20:29:30 EDT 2024
Fri Aug 16 22:24:40 EDT 2024
Thu Oct 10 20:42:53 EDT 2024
Fri Aug 23 00:42:14 EDT 2024
Sat Sep 28 08:35:22 EDT 2024
Wed Apr 05 08:57:02 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-f0878f843ac58773e797b3744df592905c957b46315a147fd87d7ff70d2792f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383167/
PMID 28070061
PQID 2239618423
PQPubID 2028964
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5383167
proquest_miscellaneous_1857372662
proquest_journals_2239618423
crossref_primary_10_1292_jvms_16_0456
pubmed_primary_28070061
jstage_primary_article_jvms_79_3_79_16_0456_article_char_en
PublicationCentury 2000
PublicationDate 20170000
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 20170000
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2017
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 21. Volk, S. W. and Theoret, C. 2013. Translating stem cell therapies: the role of companion animals in regenerative medicine. Wound Repair Regen. 21: 382–394.
14. Linero, I. and Chaparro, O. 2014. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLOS ONE 9: e107001.
7. Jitraruch, S., Dhawan, A., Hughes, R. D., Filippi, C., Soong, D., Philippeos, C., Lehec, S. C., Heaton, N. D., Longhi, M. S. and Mitry, R. R. 2014. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLOS ONE 9: e113609.
11. Lee, C. S., Nicolini, A. M., Watkins, E. A., Burnsed, O. A., Boyan, B. D. and Schwartz, Z. 2014. Adipose stem cell microbeads as production sources for chondrogenic growth factors. J. Stem Cells Regen. Med. 10: 38–48.
20. Sun, J. and Tan, H. 2013. Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6: 1285–1309.
1. Abbah, S. A., Lu, W. W., Chan, D., Cheung, K. M., Liu, W. G., Zhao, F., Li, Z. Y., Leong, J. C. and Luk, K. D. 2006. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem. Biophys. Res. Commun. 347: 185–191.
2. Bhat, A., Hoch, A. I., Decaris, M. L. and Leach, J. K. 2013. Alginate hydrogels containing cell-interactive beads for bone formation. FASEB J. 27: 4844–4852.
8. Kang, B. J., Ryu, H. H., Park, S. S., Koyama, Y., Kikuchi, M., Woo, H. M., Kim, W. H. and Kweon, O. K. 2012. Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton’s jelly for treating bone defects. J. Vet. Sci. 13: 299–310.
10. Landázuri, N., Levit, R. D., Joseph, G., Ortega-Legaspi, J. M., Flores, C. A., Weiss, D., Sambanis, A., Weber, C. J., Safley, S. A. and Taylor, W. R. 2016. Alginate microencapsulation of human mesenchymal stem cells as a strategy to enhance paracrine-mediated vascular recovery after hindlimb ischaemia. J. Tissue Eng. Regen. Med. 10: 222–232.
17. Penolazzi, L., Tavanti, E., Vecchiatini, R., Lambertini, E., Vesce, F., Gambari, R., Mazzitelli, S., Mancuso, F., Luca, G., Nastruzzi, C. and Piva, R. 2010. Encapsulation of mesenchymal stem cells from Wharton’s jelly in alginate microbeads. Tissue Eng. Part C Methods 16: 141–155.
19. Serra, M., Correia, C., Malpique, R., Brito, C., Jensen, J., Bjorquist, P., Carrondo, M. J. and Alves, P. M. 2011. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS ONE 6: e23212.
22. Whitworth, D. J. and Banks, T. A. 2014. Stem cell therapies for treating osteoarthritis: prescient or premature? Vet. J. 202: 416–424.
23. Yu, J., Du, K. T., Fang, Q., Gu, Y., Mihardja, S. S., Sievers, R. E., Wu, J. C. and Lee, R. J. 2010. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31: 7012–7020.
12. Lee, J. and Lee, K. Y. 2009. Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm. Res. 26: 1739–1744.
9. Kim, P. H., Yim, H. G., Choi, Y. J., Kang, B. J., Kim, J., Kwon, S. M., Kim, B. S., Hwang, N. S. and Cho, J. Y. 2014. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J. Control. Release 187: 1–13.
3. Bonnier, F., Keating, M. E., Wróbel, T. P., Majzner, K., Baranska, M., Garcia-Munoz, A., Blanco, A. and Byrne, H. J. 2015. Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicol. In Vitro 29: 124–131.
15. Murua, A., Portero, A., Orive, G., Hernández, R. M., de Castro, M. and Pedraz, J. L. 2008. Cell microencapsulation technology: towards clinical application. J. Control. Release 132: 76–83.
6. Gryshkov, O., Pogozhykh, D., Zernetsch, H., Hofmann, N., Mueller, T. and Glasmacher, B. 2014. Process engineering of high voltage alginate encapsulation of mesenchymal stem cells. Mater. Sci. Eng. C 36: 77–83.
18. Ryu, H. H., Kang, B. J., Park, S. S., Kim, Y., Sung, G. J., Woo, H. M., Kim, W. H. and Kweon, O. K. 2012. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J. Vet. Med. Sci. 74: 1617–1630.
4. Capone, S. H., Dufresne, M., Rechel, M., Fleury, M. J., Salsac, A. V., Paullier, P., Daujat-Chavanieu, M. and Legallais, C. 2013. Impact of alginate composition: from bead mechanical properties to encapsulated HepG2/C3A cell activities for in vivo implantation. PLoS ONE 8: e62032.
16. Paul, A., Chen, G., Khan, A., Rao, V. T., Shum-Tim, D. and Prakash, S. 2012. Genipin-cross-linked microencapsulated human adipose stem cells augment transplant retention resulting in attenuation of chronically infarcted rat heart fibrosis and cardiac dysfunction. Cell Transplant. 21: 2735–2751.
5. Gasperini, L., Mano, J. F. and Reis, R. L. 2014. Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 11: 20140817.
13. Levit, R. D., Landázuri, N., Phelps, E. A., Brown, M. E., García, A. J., Davis, M. E., Joseph, G., Long, R., Safley, S. A., Suever, J. D., Lyle, A. N., Weber, C. J. and Taylor, W. R. 2013. Cellular encapsulation enhances cardiac repair. J. Am. Heart Assoc. 2: e000367.
11
22
12
23
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – ident: 9
  doi: 10.1016/j.jconrel.2014.05.010
– ident: 11
  doi: 10.46582/jsrm.1002007
– ident: 22
  doi: 10.1016/j.tvjl.2014.09.024
– ident: 5
  doi: 10.1098/rsif.2014.0817
– ident: 23
  doi: 10.1016/j.biomaterials.2010.05.078
– ident: 15
  doi: 10.1016/j.jconrel.2008.08.010
– ident: 1
  doi: 10.1016/j.bbrc.2006.06.072
– ident: 17
  doi: 10.1089/ten.tec.2008.0582
– ident: 20
  doi: 10.3390/ma6041285
– ident: 19
  doi: 10.1371/journal.pone.0023212
– ident: 10
  doi: 10.1002/term.1680
– ident: 8
  doi: 10.4142/jvs.2012.13.3.299
– ident: 12
  doi: 10.1007/s11095-009-9884-4
– ident: 14
  doi: 10.1371/journal.pone.0107001
– ident: 2
  doi: 10.1096/fj.12-213611
– ident: 7
  doi: 10.1371/journal.pone.0113609
– ident: 13
  doi: 10.1161/JAHA.113.000367
– ident: 4
  doi: 10.1371/journal.pone.0062032
– ident: 16
  doi: 10.3727/096368912X637497
– ident: 21
  doi: 10.1111/wrr.12044
– ident: 6
  doi: 10.1016/j.msec.2013.11.048
– ident: 3
  doi: 10.1016/j.tiv.2014.09.014
– ident: 18
  doi: 10.1292/jvms.12-0065
SSID ssj0021469
Score 2.242692
Snippet The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells...
SourceID pubmedcentral
proquest
crossref
pubmed
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 492
SubjectTerms Adipose tissue
Adipose Tissue - cytology
alginate
Alginates
Alginates - toxicity
Alginic acid
Animal models
Animal tissues
Animals
Biocompatible Materials
canine
Capsules - administration & dosage
Capsules - chemistry
Capsules - toxicity
Cell Proliferation
Cell Separation - veterinary
Cell Survival
Dogs - anatomy & histology
Encapsulation
Glucuronic Acid - toxicity
HEK293 Cells
Hexuronic Acids - toxicity
Humans
injectable
Male
mesenchymal stem cell
Mesenchymal Stem Cell Transplantation - veterinary
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchyme
Mice
Mice, Inbred ICR
Microcapsules
Microencapsulation
Microspheres
Rats
Rats, Sprague-Dawley
Retention
Stem cell transplantation
Stem cells
Surgery
Toxicity
Toxicity testing
Viability
SummonAdditionalLinks – databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfG4IEXBOOrY6AgwWNGr0nqVhNCCDENpPHEob1VbZpwN931trvuxB7432envYqbJl76UDtNZDvNz4ljA7yzypTkBThZ5bGR2mkvS4VeqtrGlutaUTOOtviRnoz19zNztgObaqO9AFd3unZcT2q8nB3-ubz-RBP-Y8iNkCcfztfz1eGIHGMCA_fgfqKVZls_1cN5Alev7rLuERvSqt-HwN9uvbU4PTgnfPbb3QU9b0dQ_rMkHT-GRz2WFJ875T-BHdfswd4vDnAJt2zFaX9w_hT-fmt4w4XvSYlyxrUYWifnHIxHVlqSpzyjF7UgORO7KOvpxWLlRBu0Imv63pqoc76pZCfXc-qU8z8L3vVfCYK9wjWTEEog1tPQB1PEkgE5K_4ZjI-__vxyIvvKC9KmadJKH2eY-Uyr0poMUTnMsVKode0N4anY2NxgpVM1MuVIo68zrNF7jGvOR-hRPYfdZtG4lyCs1xWhSE8_MmpO_IiEYGJvq5zsxCcRvN-IvLjoEmwU7JiQagpWTTFKC1ZNBEedPgaufmp1XJgXih8990Dku2v0A4jgYKPEYmNjBSGjUO8mURG8Hcg0vVhGZeMWV9R7ZriQD0klghedzocBcCIhhoAR4JY1DAycunub0kwnIYU3LTOcgmD__8N6BQ8TRhFhx-cAdtvllXtNGKit3gTzvgHdNgqr
  priority: 102
  providerName: Scholars Portal
Title Injectable alginate-microencapsulated canine adipose tissue-derived mesenchymal stem cells for enhanced viable cell retention
URI https://www.jstage.jst.go.jp/article/jvms/79/3/79_16-0456/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/28070061
https://www.proquest.com/docview/2239618423
https://search.proquest.com/docview/1857372662
https://pubmed.ncbi.nlm.nih.gov/PMC5383167
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2017, Vol.79(3), pp.492-501
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaigMXBOWVUiojwdG7SWxnEnFCFVVbtIgDRb1FiWOzW22yq266Egf-OzPOQ13UUy85ZMZx5JmJv3HmwdhHI3WBXoAVZRZqoaxyopDghKxMaKivFQ6jaIvvyfmVurzW13tMD7kwPmjflItJs6wnzWLuYyvXtZkOcWLTH7NTNFJK4J7us32QcnDRey8LTb8rsBclAnCD76Pd4yye3mzrzQRvE4yhKsAp6nuYRDtb0pMbRGW_7UOA8_-4yXsb0dlz9qxHkPxL96Yv2J5tDtnhLwpr8bm1fNb_Ln_J_l40dMxC2VG8WFIHhtaKmkLwUDcL9I-XeKPiuLrIzotqsV5tLG-9LESFz9sitab8JDP_U-OkVPWZ01n_hiPY5baZ-wACvl34OYjCbwmGk7hfsauzrz9Pz0Xfb0GYJIlb4cIUUpcqWRidAkgLGZQSlKqcRhQVapNpKFUiI11EClyVQgXOQVhRFUIH8jU7aFaNfcu4capE7Ojw84XDkR8AcUvoTJmhdrg4YJ-GJc_XXVmNnNwRlFJOUsqjJCcpBexzJ4-Rq9eDjguyXNKl5x6JlLGGZh-w40GIeW-amxzxkO9yE8uAfRjJaFS0RkVjV3c4e6qpfQ-uSsDedDIfX2DQmoDBjjaMDFSwe5eCeuwLd_d6e_Toke_Y05hghT8COmYH7e2dfY-gqC1P0B24-IbXmUpPvEH8A9xUEr4
link.rule.ids 230,315,733,786,790,891,2236,4043,24346,27954,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VgkQvPMqjhgKLBMd1_FqvLU6ookqhqTi0VW-Wvd4lKbETNU4kkPjvzKwfIhUXuFiRZ9Yb78x4v7HnAfBOhSJHL0DzIvUEj3RkeB5Kw8NSeYr6WuEwirY4i8cX0ecrcbUDos-FsUH7qpi59bxy69nUxlYuKzXq48RGXydHaKSUwD26A3fxZyB6J73zs9D42xJ7fswlbvFdvHuQBqPrTbVy8TQBGaoDnKDGe7G_tSndu0Zc9k3_DXLejpz8Yys6fgiX_U20ESjf3XVTuOrnrfqO_3yXj-BBB07Zx5b8GHZ0vQ_7lxQxY9N22aT7Ev8Efp3U9AaHEq9YPqfmDo3mFUX3odrn6HrP8UTJUHDIzvJytlysNGusmHmJ19sgtaLUJzX9UeGkVFCa0WeEFUMczXQ9tbEJbDOzcxCF3RDCJ016ChfHn86Pxrxr5cBVHAcNN14iE5NEYa5EImWoZSqLUEZRaQQCNE-oVMgiikNf5H4kTZnIUhojvZIKHBoZPoPdelHrA2DKRAXCUoNPRhyO_FIiJPKMKlJUPBM48L6XZbZsK3Zk5Omg-DMSf-bHGYnfgQ-toAeubvFbLplmIR067oFIyXD4RHHgsNeOrLP6VYZQyzbQCUIH3g5ktFdao7zWizXOngjqDISr4sDzVpmGP9CrowNyS80GBqoFvk1B5bE1wTtlefHfI9_A_fH55DQ7PTn78hL2AkIv9k3TIew2N2v9CrFXU7y2lvYbluQy4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQYgLj_IKFDASHJ2XkzgRJ1RYtUCrHiiquESJY7NbNtlVN7sSSPx3ZpyHuhWnXiJtZhxv4s_2N8k8AN4qERdoBWheZn7MIx0ZXghpuKiUr6iuFTYjb4vj5OA0-nwWn10q9WWd9lU5c5t57TazqfWtXNbKG_zEvJOjfZykFMDtLSvj3YRb-DOUg6He21q4AHRp9oKES9zme5_3MAu98029cvE0kRnKBZwi6v0k2NqYbp8jN_up_0c7r3pPXtqOJvfhx3AjnRfKL3fdlq76cyXH47Xu9AHc60kq-9CpPIQbutmF3e_kOWPDd9lR_0X-Efw9bOhNDgVgsWJORR5azWvy8kP4F2iCz_FExXAAUZ0V1Wy5WGnW2uHmFV5vg9KaQqDU9HeNnVJiaUafE1YM-TTTzdT6KLDNzPZBEnZBTJ8Q9RhOJ5--7R_wvqQDV0kSttz4qUxNGolCxamUQstMlkJGUWViJGp-rLJYllEigrgIImmqVFbSGOlXlOjQSPEEdppFo58BUyYqkZ4aXCGxOepLidTIN6rMEIAmdODdMJ75ssvckZPFgxDICQJ5kOQEAQfed4M9avUD0GnJLBd06LVHIQXF4criwN6AkLyf_ascKZctpBMKB96MYpy39IyKRi_W2HsaU4UgfCoOPO0ANf6BAZIOyC2ojQqUE3xbggCyucF7wDy_dsvXcOfk4yT_enj85QXcDYnE2BdOe7DTXqz1S6RgbfnKTrZ_ANE1Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Injectable+alginate-microencapsulated+canine+adipose+tissue-derived+mesenchymal+stem+cells+for+enhanced+viable+cell+retention&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=KOH%2C+Eunji&rft.au=Yun+Chan+JUNG&rft.au=WOO%2C+Heung-Myong&rft.au=Byung-Jae+KANG&rft.date=2017&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=79&rft.issue=3&rft.spage=492&rft_id=info:doi/10.1292%2Fjvms.16-0456&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon