Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism
Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resist...
Saved in:
Published in | PLoS neglected tropical diseases Vol. 8; no. 6; p. e2948 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. |
---|---|
AbstractList |
Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains.Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4′-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. Aedes aegypti inhabits tropical and subtropical regions worldwide and is the major vector of dengue and yellow fevers, and a secondary vector of chikungunya fever. Dengue fever is epidemic in more than 110 countries and causes up to 100 million infections annually. As there is no efficient vaccine or medicine currently available, vector control remains the primary solution for reducing the number of cases of this disease and relies heavily on the use of insecticides. Intensive and long-term use of insecticides has resulted in the worldwide emergence of mosquitoes with resistance to these chemicals. Here we newly identified two P450s, which have the ability to detoxify pyrethroid insecticide and are over produced in the resistant A. aegypti strain. Our study showed there were at least four P450 isozymes associated with resistance and target site insensitivity. These findings may lead to the development of more accurate monitoring systems in the field and also assist to identify new target sites for insecticides that are effective against resistant insects. |
Audience | Academic |
Author | Komagata, Osamu Ng, Lee Ching Itokawa, Kentaro Tomita, Takashi Kobayashi, Mutsuo Shono, Toshio Kasai, Shinji |
AuthorAffiliation | 1 Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan 2 Environmental Health Institute, National Environmental Agency, Singapore Mahidol University, Thailand |
AuthorAffiliation_xml | – name: 1 Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan – name: Mahidol University, Thailand – name: 2 Environmental Health Institute, National Environmental Agency, Singapore |
Author_xml | – sequence: 1 givenname: Shinji surname: Kasai fullname: Kasai, Shinji – sequence: 2 givenname: Osamu surname: Komagata fullname: Komagata, Osamu – sequence: 3 givenname: Kentaro surname: Itokawa fullname: Itokawa, Kentaro – sequence: 4 givenname: Toshio surname: Shono fullname: Shono, Toshio – sequence: 5 givenname: Lee Ching surname: Ng fullname: Ng, Lee Ching – sequence: 6 givenname: Mutsuo surname: Kobayashi fullname: Kobayashi, Mutsuo – sequence: 7 givenname: Takashi surname: Tomita fullname: Tomita, Takashi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24945250$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1rFDEUhgep2A_9B6IBQbzorslMkkl6ISz1q9Bi0eptyEzO7KbMJtskU9h_4M82092WrojkYsKZ531zTvIeFnvOOyiKlwRPSVWT99d-CE7305VLZooxLiUVT4oDIis2KeuK7T3a7xeHMV5jzCQT5FmxX1JJWcnwQfH7AtqFdjYuI_IdulwHSIvgrUHfIdqYtGsBWYfSAtBHcPMB0IWPN4NNHv2CNvlwjGZgICIN8_Uq2RN0pcMcEvphE6AzF8FFm-ytTetjdAkOUtDJeneMtDPoApJufJ-Pf1487XQf4cX2e1T8_Pzp6vTr5Pzbl7PT2fmk5bxMk4bpUlcl6bq65obJrhNAuJSmYZ0mJQWOheSiNqaGRpSlHKtGVqUWLeH5Qo6K1xvfVe-j2l5iVITRmnGJmcjE2YYwXl-rVbBLHdbKa6vuCj7MlQ7Jtj0o2nW4AVFzApqCbLQxwoBhXFAsa02z14ftaUOzBNOCy-P3O6a7f5xdqLm_VRTzqi6rbPBuaxD8zQAxqaWNLfS9duCHse9K0roSYpzszQad69yadZ3Pju2Iq1klKlJzTnmmpv-g8jKwtG2OWGdzfUfw9pFgAbpPi-j7YXzEuAu-ejzrw5D3YcsA3QBt8DEG6B4QgtWY6fvnUGOm1TbTWXbyl6y16S5DuXPb_1_8BwzsAS8 |
CitedBy_id | crossref_primary_10_1002_ps_6682 crossref_primary_10_1088_1755_1315_711_1_012014 crossref_primary_10_1371_journal_pntd_0009871 crossref_primary_10_1371_journal_pone_0243992 crossref_primary_10_1186_s13071_016_1713_0 crossref_primary_10_1186_s13071_017_2096_6 crossref_primary_10_1371_journal_pntd_0012768 crossref_primary_10_1016_j_pestbp_2014_12_018 crossref_primary_10_1371_journal_pntd_0007291 crossref_primary_10_3390_insects12040276 crossref_primary_10_1155_2018_2410819 crossref_primary_10_1186_s13071_020_04304_x crossref_primary_10_1093_jee_toy100 crossref_primary_10_1016_j_etap_2015_09_023 crossref_primary_10_1002_ps_6602 crossref_primary_10_1186_s13071_021_04785_4 crossref_primary_10_1371_journal_pntd_0005799 crossref_primary_10_52707_1081_1710_49_1_53 crossref_primary_10_1002_ps_6324 crossref_primary_10_1016_j_pestbp_2023_105752 crossref_primary_10_3389_ffwsc_2023_1302240 crossref_primary_10_55905_cuadv16n5_071 crossref_primary_10_1016_j_onehlt_2024_100684 crossref_primary_10_1371_journal_pntd_0007852 crossref_primary_10_1371_journal_pntd_0004226 crossref_primary_10_1016_j_pestbp_2020_104666 crossref_primary_10_1186_s13071_017_2416_x crossref_primary_10_1021_acs_jafc_4c12301 crossref_primary_10_1371_journal_pntd_0003085 crossref_primary_10_1016_j_actatropica_2018_05_008 crossref_primary_10_1093_jme_tjad015 crossref_primary_10_1371_journal_pbio_3000796 crossref_primary_10_1371_journal_pone_0149738 crossref_primary_10_1016_j_aspen_2015_11_001 crossref_primary_10_3389_fphys_2022_988907 crossref_primary_10_1186_s13071_020_04503_6 crossref_primary_10_3390_molecules27238433 crossref_primary_10_1021_acs_jafc_4c05737 crossref_primary_10_3390_insects11080529 crossref_primary_10_1016_j_actatropica_2024_107178 crossref_primary_10_1002_ps_5369 crossref_primary_10_1371_journal_pgen_1009606 crossref_primary_10_1002_ps_5763 crossref_primary_10_1016_j_actatropica_2018_07_031 crossref_primary_10_1101_gr_189225_115 crossref_primary_10_1186_s13071_021_04867_3 crossref_primary_10_1074_jbc_RA117_001589 crossref_primary_10_1111_imb_12575 crossref_primary_10_1016_j_pestbp_2019_07_011 crossref_primary_10_1186_s40538_018_0120_5 crossref_primary_10_18474_JES23_80 crossref_primary_10_1111_imb_12571 crossref_primary_10_1016_j_inoche_2017_07_018 crossref_primary_10_1007_s42690_020_00219_3 crossref_primary_10_1186_s13071_018_2899_0 crossref_primary_10_1016_j_pestbp_2023_105577 crossref_primary_10_1016_j_pestbp_2024_106020 crossref_primary_10_1584_jpestics_J16_01 crossref_primary_10_3389_fbioe_2017_00084 crossref_primary_10_1093_jme_tjy037 crossref_primary_10_24072_pcjournal_497 crossref_primary_10_1016_j_pestbp_2021_104823 crossref_primary_10_1007_s11356_019_07332_y crossref_primary_10_1016_j_bjp_2015_02_010 crossref_primary_10_1007_s42690_020_00343_0 crossref_primary_10_1109_TCBB_2018_2837095 crossref_primary_10_3390_insects10090265 crossref_primary_10_1007_s00436_016_5238_4 crossref_primary_10_1002_ps_5829 crossref_primary_10_3390_insects6030658 crossref_primary_10_1186_s13071_019_3472_1 crossref_primary_10_1093_jme_tjab137 crossref_primary_10_1016_j_ibmb_2016_08_008 crossref_primary_10_1038_s41598_023_36926_3 crossref_primary_10_3390_ijms26051854 crossref_primary_10_1016_j_crpvbd_2021_100041 crossref_primary_10_1016_j_pestbp_2019_03_022 crossref_primary_10_1016_j_pestbp_2021_105005 crossref_primary_10_1111_mve_12602 crossref_primary_10_1186_s40249_016_0220_z crossref_primary_10_1371_journal_pntd_0005526 crossref_primary_10_1002_ps_6597 crossref_primary_10_1371_journal_pntd_0009205 crossref_primary_10_1016_j_ecoenv_2017_04_056 crossref_primary_10_1126_sciadv_abq7345 crossref_primary_10_1016_j_pestbp_2015_01_004 crossref_primary_10_1016_j_actatropica_2016_06_019 crossref_primary_10_1371_journal_pone_0218079 crossref_primary_10_1371_journal_pntd_0010780 crossref_primary_10_1111_eva_12787 crossref_primary_10_3390_insects12100866 crossref_primary_10_1111_eva_13194 crossref_primary_10_1111_mec_15430 crossref_primary_10_1371_journal_pntd_0009393 crossref_primary_10_1371_journal_pntd_0009271 crossref_primary_10_1371_journal_pone_0278779 crossref_primary_10_4103_1995_7645_378561 crossref_primary_10_1080_16549716_2017_1350394 crossref_primary_10_1093_jme_tjaa238 crossref_primary_10_1111_mve_12197 crossref_primary_10_1016_j_jspr_2024_102422 crossref_primary_10_1007_s11356_022_20870_2 crossref_primary_10_1093_jisesa_ieaa060 crossref_primary_10_1371_journal_pntd_0007818 crossref_primary_10_1016_j_pestbp_2023_105710 crossref_primary_10_3389_fcimb_2023_1128577 crossref_primary_10_3389_ffunb_2024_1456964 crossref_primary_10_1134_S1022795420040158 crossref_primary_10_1016_j_ijbiomac_2023_127024 crossref_primary_10_1007_s00203_022_02975_x crossref_primary_10_1186_s13071_022_05192_z crossref_primary_10_1002_ps_7462 crossref_primary_10_1016_j_pestbp_2015_01_014 crossref_primary_10_1584_jpestics_W16_05 crossref_primary_10_1016_j_aquatox_2021_105860 crossref_primary_10_2807_1560_7917_ES_2019_24_5_1700847 crossref_primary_10_1186_s13071_016_1802_0 crossref_primary_10_3390_ijerph15020220 crossref_primary_10_1080_09670874_2022_2094489 crossref_primary_10_3390_genes12060828 crossref_primary_10_1016_j_ibmb_2021_103637 crossref_primary_10_1186_s13071_019_3590_9 crossref_primary_10_1080_09670874_2021_1985652 crossref_primary_10_1016_j_actatropica_2024_107413 crossref_primary_10_1016_j_pestbp_2025_106357 crossref_primary_10_1111_mve_12580 crossref_primary_10_17660_ActaHortic_2017_1169_14 crossref_primary_10_1371_journal_pntd_0009549 crossref_primary_10_1016_j_pestbp_2023_105422 crossref_primary_10_1371_journal_pntd_0005625 crossref_primary_10_1371_journal_ppat_1009382 crossref_primary_10_3390_insects9020043 crossref_primary_10_1098_rspb_2020_0838 crossref_primary_10_3389_fmicb_2022_990978 crossref_primary_10_1016_j_pestbp_2022_105051 crossref_primary_10_1016_j_arabjc_2023_105345 crossref_primary_10_1038_s41598_023_43676_9 crossref_primary_10_1371_journal_pone_0144586 crossref_primary_10_1186_s13071_022_05493_3 crossref_primary_10_1016_j_aspen_2024_102210 crossref_primary_10_1371_journal_pntd_0005611 crossref_primary_10_1016_j_envres_2016_05_003 crossref_primary_10_1016_j_asoc_2017_01_046 crossref_primary_10_1007_s42690_020_00271_z crossref_primary_10_4103_0972_9062_374235 crossref_primary_10_1016_j_actatropica_2023_106919 crossref_primary_10_1186_s40249_022_01013_8 crossref_primary_10_1093_jme_tjx143 crossref_primary_10_1371_journal_pntd_0011604 crossref_primary_10_1371_journal_pntd_0008154 crossref_primary_10_3389_fphys_2024_1498313 crossref_primary_10_1002_arch_21686 crossref_primary_10_1016_j_pestbp_2019_08_005 crossref_primary_10_1186_s13071_017_2232_3 crossref_primary_10_1186_s13071_019_3591_8 crossref_primary_10_1186_s41182_021_00321_3 crossref_primary_10_1186_s13071_016_1887_5 crossref_primary_10_1371_journal_pone_0125970 crossref_primary_10_3390_genes14081626 crossref_primary_10_1038_s41598_021_83465_w crossref_primary_10_1111_eva_12867 crossref_primary_10_1371_journal_pntd_0006933 crossref_primary_10_1016_j_bmc_2019_115252 crossref_primary_10_1080_00218839_2016_1196015 crossref_primary_10_1002_ps_4771 crossref_primary_10_1021_acsinfecdis_3c00161 crossref_primary_10_1016_j_pestbp_2016_03_005 |
Cites_doi | 10.1016/j.ibmb.2004.03.018 10.3201/eid1206.051210 10.1016/j.ibmb.2007.09.007 10.1046/j.1365-2915.2003.00412.x 10.1016/B0-44-451924-6/00073-9 10.1603/ME13113 10.47102/annals-acadmedsg.V37N7p538 10.1111/j.1432-1033.2004.04025.x 10.1042/bj0610359 10.1146/annurev.ento.45.1.371 10.1371/journal.pntd.0000531 10.1016/j.ibmb.2010.06.001 10.1016/0048-3575(78)90070-6 10.1016/0965-1748(94)00066-Q 10.7883/yoken.64.217 10.1006/pest.1993.1026 10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S 10.1016/S0965-1748(99)00038-7 10.1006/meth.2001.1262 10.1303/aez.2010.275 10.1002/ps.1225 10.1042/bj3490863 10.1038/hdy.1995.51 10.1016/j.ibmb.2011.04.002 10.1038/nm1144 10.1016/j.actatropica.2008.08.004 10.1016/j.ibmb.2010.01.006 10.1093/jee/65.2.349 10.4269/ajtmh.2010.09-0623 10.1093/genetics/53.6.1177 10.1046/j.1095-8312.2003.00178.x 10.1371/journal.pgen.1000998 10.1146/annurev.ento.51.110104.151104 10.1584/jpestics.19.43 10.1534/genetics.108.087924 10.1603/0022-0493-94.5.1209 10.1111/j.1365-2583.2007.00774.x 10.1021/jf60222a059 10.1126/science.1138878 10.1016/j.pestbp.2012.05.008 10.1016/j.pestbp.2009.10.005 10.1126/science.1074170 10.1016/0048-3575(90)90047-6 10.1371/journal.pntd.0001692 10.1002/ps.2780170302 10.1371/journal.pntd.0000527 10.3201/eid1605.091006 10.1016/j.ibmb.2009.01.001 10.1073/pnas.1305118110 10.1186/1471-2164-10-494 10.1111/j.1365-2583.2006.00662.x 10.1038/hdy.2013.40 10.1006/pest.1995.1020 10.1016/B0-44-451924-6/00049-1 10.1128/CMR.11.3.480 10.1016/S0966-842X(01)02288-0 10.1371/journal.pgen.1000286 10.1093/bmb/ldq019 10.1016/j.pestbp.2013.02.007 10.1371/journal.pntd.0002052 10.1016/j.pestbp.2012.07.003 10.1584/jpestics.18.3_271 10.1371/journal.pgen.1000999 10.1016/j.ibmb.2010.09.005 10.1584/jpestics.10.141 10.1016/j.ibmb.2006.09.004 10.1111/j.1365-2583.2011.01113.x 10.1006/pest.1999.2462 10.1371/journal.pntd.0001595 10.1016/j.ibmb.2012.06.003 10.3201/eid0102.952004 10.1016/j.pt.2009.02.007 10.1093/jee/82.6.1559 10.1016/j.pestbp.2007.06.006 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Kasai et al 2014 Kasai et al 2014 Kasai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, et al. (2014) Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism. PLoS Negl Trop Dis 8(6): e2948. doi:10.1371/journal.pntd.0002948 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Kasai et al 2014 Kasai et al – notice: 2014 Kasai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, et al. (2014) Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism. PLoS Negl Trop Dis 8(6): e2948. doi:10.1371/journal.pntd.0002948 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1371/journal.pntd.0002948 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Pyrethroid Resistance in Aedes aegypti |
EISSN | 1935-2735 |
ExternalDocumentID | 1547569058 oai_doaj_org_article_4ff0be8761ea4e9badd8ded5684097a4 PMC4063723 A383176646 24945250 10_1371_journal_pntd_0002948 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8C1 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD ECGQY EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW ITC KQ8 M1P M48 O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM SV3 TR2 TUS UKHRP CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PV9 RIG RZL WOQ PMFND 7X8 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c662t-b5a2a321ff776d59ff8e1699db5fa124e6089687dd7eb8229fa12d932a8c16193 |
IEDL.DBID | M48 |
ISSN | 1935-2735 1935-2727 |
IngestDate | Fri Nov 26 17:13:53 EST 2021 Wed Aug 27 01:27:36 EDT 2025 Thu Aug 21 14:25:44 EDT 2025 Thu Jul 10 18:26:05 EDT 2025 Tue Jun 17 21:32:23 EDT 2025 Tue Jun 10 20:29:09 EDT 2025 Thu May 22 20:53:29 EDT 2025 Mon Jul 21 06:03:36 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Tue Jul 01 03:41:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c662t-b5a2a321ff776d59ff8e1699db5fa124e6089687dd7eb8229fa12d932a8c16193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: SK TT. Performed the experiments: SK OK. Analyzed the data: SK OK KI. Contributed reagents/materials/analysis tools: TS LCN MK. Wrote the paper: SK KI OK LCN TS MK TT. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pntd.0002948 |
PMID | 24945250 |
PQID | 1539473889 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1547569058 doaj_primary_oai_doaj_org_article_4ff0be8761ea4e9badd8ded5684097a4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4063723 proquest_miscellaneous_1539473889 gale_infotracmisc_A383176646 gale_infotracacademiconefile_A383176646 gale_healthsolutions_A383176646 pubmed_primary_24945250 crossref_primary_10_1371_journal_pntd_0002948 crossref_citationtrail_10_1371_journal_pntd_0002948 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS neglected tropical diseases |
PublicationTitleAlternate | PLoS Negl Trop Dis |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | DJ Gubler (ref3) 1995; 1 W Sun (ref78) 2006; 15 KT Goh (ref9) 1997; 26 LM Field (ref70) 2003; 79 T Shono (ref15) 1985; 10 DL Bull (ref67) 1990; 38 DJ Gubler (ref2) 2002; 10 GP García (ref21) 2009; 3 MC Hardstone (ref60) 2007; 89 C Chang (ref19) 2009; 39 VA Timoshevskiy (ref75) 2013; 7 R Poupardin (ref58) 2012; 114–115 T Shono (ref42) 1979; 27 T Mahmood (ref48) 1993; 18 J Whitehorn (ref4) 2010; 95 SST Lee (ref49) 1989; 82 JM Schmidt (ref73) 2010; 6 YP Sun (ref53) 1972; 65 K Saavedra-Rodriguez (ref56) 2012; 21 K Itokawa (ref63) 2011; 41 ref43 MJ Donnelly (ref80) 2009; 25 J Hemingway (ref7) 2004; 34 Z Hu (ref26) 2011; 41 S Marcombe (ref28) 2009; 10 N Pavlidi (ref76) 2012; 104 E Funaki (ref47) 1994; 19 W Hickey (ref45) 1966; 53 H Sanchez-Arroyo (ref64) 2001; 94 L Willoughby (ref79) 2006; 36 H Kawada (ref22) 2009; 3 V Bariami (ref57) 2012; 6 AF Harris (ref23) 2010; 83 S Kasai (ref44) 1998; 37 S Kasai (ref46) 2011; 64 BKW Koh (ref12) 2008; 37 LM Field (ref71) 2000; 349 O Komagata (ref37) 2010; 40 V Nene (ref55) 2007; 316 T Shono (ref68) 1978; 9 SM Valles (ref41) 2000; 66 M Amichot (ref35) 2004; 271 K Itokawa (ref74) 2013; 111 JS Mackenzie (ref1) 2004; 10 AM Puinean (ref40) 2010; 6 K Saavedra-Rodriguez (ref17) 2007; 16 ref31 L Kennaugh (ref52) 1993; 45 BJ Stevenson (ref59) 2012; 63 ref33 ref77 KJ Livak (ref50) 2001; 25 C Brengues (ref25) 2003; 17 R Srisawat (ref16) 2010; 45 DJ Gubler (ref5) 1998; 11 J Yanola (ref20) 2010; 96 EE Ooi (ref10) 2006; 12 T Tomita (ref34) 1995; 25 RV Gunning (ref54) 1995; 51 X Li (ref32) 2007; 52 C Strode (ref30) 2008; 38 M Ahmad (ref39) 2006; 62 CS Wilding (ref61) 2012; 42 P Müller (ref38) 2008; 4 ref69 FPW Winteringham (ref66) 1955; 61 S Rajatileka (ref18) 2008; 108 FD Rinkevich (ref14) 2013; 106 CL Qiao (ref72) 1995; 74 Y Du (ref27) 2013; 110 SY Koou (ref13) 2014; 51 J Hemingway (ref6) 2000; 45 PJ Daborn (ref36) 2002; 297 K Itokawa (ref62) 2010; 40 KS Lee (ref11) 2010; 16 JG Scott (ref29) 1999; 29 BF Stone (ref51) 1968; 38 J Vontas (ref8) 2012; 104 K Saavedra-Rodriguez (ref24) 2008; 180 JG Scott (ref65) 1986; 17 |
References_xml | – volume: 34 start-page: 653 year: 2004 ident: ref7 article-title: The molecular basis of insecticide resistance in mosquitoes publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2004.03.018 – volume: 12 start-page: 887 year: 2006 ident: ref10 article-title: Dengue prevention and 35 years of vector control in Singapore publication-title: Emerg Infect Dis doi: 10.3201/eid1206.051210 – volume: 38 start-page: 113 year: 2008 ident: ref30 article-title: Genomic analysis of detoxification genes in the mosquito Aedes aegypti publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2007.09.007 – volume: 17 start-page: 87 year: 2003 ident: ref25 article-title: Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene publication-title: Med Vet Entomol doi: 10.1046/j.1365-2915.2003.00412.x – ident: ref69 doi: 10.1016/B0-44-451924-6/00073-9 – volume: 51 start-page: 170 year: 2014 ident: ref13 article-title: Pyrethroid resistance in Aedes aegypti larvae (Diptera: Culicidae) from Singapre publication-title: J Med Entomol doi: 10.1603/ME13113 – volume: 37 start-page: 538 year: 2008 ident: ref12 article-title: The 2005 dengue epidemic in Singapore: epidemiology, prevention and control publication-title: Ann Acad Med Singapore doi: 10.47102/annals-acadmedsg.V37N7p538 – volume: 271 start-page: 1250 year: 2004 ident: ref35 article-title: Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.2004.04025.x – ident: ref43 – volume: 61 start-page: 359 year: 1955 ident: ref66 article-title: Absorption and metabolism of [14C]pyrethroids by the adult housefly, Musca domestica L., in vivo publication-title: Biochem J doi: 10.1042/bj0610359 – volume: 45 start-page: 371 year: 2000 ident: ref6 article-title: Insecticide resistance in insect vectors of human diseases publication-title: Annu Rev Entomol doi: 10.1146/annurev.ento.45.1.371 – volume: 3 start-page: e531 year: 2009 ident: ref21 article-title: Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000531 – volume: 40 start-page: 631 year: 2010 ident: ref62 article-title: Genomic structures of Cyp9m10 in pyrethroid resistant and susceptible strains of Culex quinquefasciatus publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2010.06.001 – volume: 9 start-page: 96 year: 1978 ident: ref68 article-title: Metabolism of permethrin isomers in American cockroach adults, house fly adults, and cabbage looper larvae publication-title: Pestic Biochem Physiol doi: 10.1016/0048-3575(78)90070-6 – volume: 25 start-page: 275 year: 1995 ident: ref34 article-title: cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly publication-title: Insect Biochem Mol Biol doi: 10.1016/0965-1748(94)00066-Q – volume: 64 start-page: 217 year: 2011 ident: ref46 article-title: First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus publication-title: Jpn J Infect Dis doi: 10.7883/yoken.64.217 – volume: 45 start-page: 234 year: 1993 ident: ref52 article-title: A piperonyl butoxide synergizable resistance to permethrin in Helicoverpa armigera which is not due to increased detoxification by cytochrome P450 publication-title: Pestic Biochem Physiol doi: 10.1006/pest.1993.1026 – volume: 37 start-page: 47 year: 1998 ident: ref44 article-title: P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae publication-title: Arch Insect Biochem Physiol doi: 10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S – volume: 29 start-page: 757 year: 1999 ident: ref29 article-title: Cytochrome P450 and insecticide resistance publication-title: Insect Biochem Mol Biol doi: 10.1016/S0965-1748(99)00038-7 – volume: 25 start-page: 402 year: 2001 ident: ref50 article-title: Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCt method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 45 start-page: 275 year: 2010 ident: ref16 article-title: Point mutations in domain II of the voltage-gated sodium channel gene in deltamethrin-resistant Aedes aegypti (Diptera:Culicidae) publication-title: Appl Entomol Zool doi: 10.1303/aez.2010.275 – volume: 26 start-page: 664 year: 1997 ident: ref9 article-title: Dengue-a re-emerging infectious disease in Singapore publication-title: Ann Acad Med Singapore – volume: 62 start-page: 805 year: 2006 ident: ref39 article-title: Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan publication-title: Pest manag Sci doi: 10.1002/ps.1225 – volume: 349 start-page: 863 year: 2000 ident: ref71 article-title: Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer) publication-title: Biochem J doi: 10.1042/bj3490863 – volume: 74 start-page: 339 year: 1995 ident: ref72 article-title: The same esterase B1 haplotype is amplified in insecticide-resistant mosquitoes of the Culex pipiens complex from the Americas and China publication-title: Heredity doi: 10.1038/hdy.1995.51 – volume: 41 start-page: 503 year: 2011 ident: ref63 article-title: Cis-acting mutation and duplication: History of mlecular evolution in a P450 haplotype responsible for insecticide resistance in Culex quinquefasciatus publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2011.04.002 – volume: 38 start-page: 325 year: 1968 ident: ref51 article-title: A formula for determining degree of dominance in case of monofactorial inheritance of resistance to chemicals publication-title: Bull World Health Organ – volume: 10 start-page: S98 year: 2004 ident: ref1 article-title: Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses publication-title: Nat Med doi: 10.1038/nm1144 – volume: 108 start-page: 54 year: 2008 ident: ref18 article-title: Development and application of a simple colorimetric assay reveals widespread distribution of sodium channel mutations in Thai populations of Aedes aegypti publication-title: Acta Trop doi: 10.1016/j.actatropica.2008.08.004 – volume: 40 start-page: 146 year: 2010 ident: ref37 article-title: Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2010.01.006 – volume: 65 start-page: 349 year: 1972 ident: ref53 article-title: Quasi-synergism and penetration of insecticides publication-title: J Econ Entomol doi: 10.1093/jee/65.2.349 – volume: 83 start-page: 277 year: 2010 ident: ref23 article-title: Pyrethroid resistance in Aedes aegypti from Grand Cayman publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2010.09-0623 – volume: 53 start-page: 1177 year: 1966 ident: ref45 article-title: Genetic distortion of sex ratio in a mosquito, Aedes aegypti publication-title: Genetics doi: 10.1093/genetics/53.6.1177 – volume: 79 start-page: 107 year: 2003 ident: ref70 article-title: Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene exression in clonal lineages publication-title: Biol J Linnean Soc doi: 10.1046/j.1095-8312.2003.00178.x – volume: 6 start-page: e1000998 year: 2010 ident: ref73 article-title: Copy number variation and transposable elements feature in recent, ongoing adaptation at the cyp6g1 locus publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000998 – volume: 52 start-page: 231 year: 2007 ident: ref32 article-title: Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics publication-title: Ann Rev Entomol doi: 10.1146/annurev.ento.51.110104.151104 – volume: 19 start-page: 43 year: 1994 ident: ref47 article-title: In vitro and in vivo metabolism of fenvalerate in pyrethroid resistant houseflies publication-title: J Pesticide Sci doi: 10.1584/jpestics.19.43 – volume: 180 start-page: 1137 year: 2008 ident: ref24 article-title: Quantitative trait loci mapping of genome regions controlling permethrin resistance in the mosquito Aedes aegypti publication-title: Genetics doi: 10.1534/genetics.108.087924 – volume: 94 start-page: 1209 year: 2001 ident: ref64 article-title: Effects of the synergists piperonyl butoxide and S,S,S-tributyl phosphorotrithioate on propoxure pharmacokinetics in Blattella germanica (Blattodea: Blattellidae) publication-title: J Econ Entomol doi: 10.1603/0022-0493-94.5.1209 – volume: 16 start-page: 785 year: 2007 ident: ref17 article-title: A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti publication-title: Insect Mol Biol doi: 10.1111/j.1365-2583.2007.00774.x – volume: 27 start-page: 316 year: 1979 ident: ref42 article-title: Metabolism of trans- and cis-permethrin, trans- and cis-cypermethrin, and decamethrin by microsomal enzymes publication-title: J Agric Food Chem doi: 10.1021/jf60222a059 – volume: 316 start-page: 1718 year: 2007 ident: ref55 article-title: Genome sequence of Aedes aegypti, a major arbovirus vector publication-title: Sicnece doi: 10.1126/science.1138878 – volume: 104 start-page: 126 year: 2012 ident: ref8 article-title: Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2012.05.008 – volume: 96 start-page: 127 year: 2010 ident: ref20 article-title: A novel F1552/C1552 point mutation in the Aedes aegypti voltage-gated sodium channel gene associated with permethrin resistance publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2009.10.005 – volume: 297 start-page: 2253 year: 2002 ident: ref36 article-title: A single P450 allele associated with insecticide resistance in Drosophila publication-title: Science doi: 10.1126/science.1074170 – volume: 38 start-page: 140 year: 1990 ident: ref67 article-title: In vivo and in vitro fate of fenvalerate in house flies publication-title: Pestic Biochem Physiol doi: 10.1016/0048-3575(90)90047-6 – ident: ref33 – volume: 6 start-page: e1692 year: 2012 ident: ref57 article-title: Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti publication-title: PLoS Neglected Tropical Diseases doi: 10.1371/journal.pntd.0001692 – volume: 17 start-page: 195 year: 1986 ident: ref65 article-title: Mechanisms responsible for high levels of permethrin resistance in the house fly publication-title: Pestic Sci doi: 10.1002/ps.2780170302 – volume: 114–115 start-page: 114 year: 2012 ident: ref58 article-title: Do pollutants affect insecticide-driven gene selection in mosquitoes? Experimental evidence from transcriptomics publication-title: Aquat Toxicol – volume: 3 start-page: e527 year: 2009 ident: ref22 article-title: Widespread distribution of a newly found point mutation in voltage-gated sodium channel in pyrethroid-resistant Aedes aegypti populations in Vietnam publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000527 – volume: 16 start-page: 847 year: 2010 ident: ref11 article-title: Dengue virus surveillance for early warning, Singapore publication-title: Emerg Infect Dis doi: 10.3201/eid1605.091006 – volume: 39 start-page: 272 year: 2009 ident: ref19 article-title: A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2009.01.001 – volume: 110 start-page: 11785 year: 2013 ident: ref27 article-title: Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel publication-title: PNAS doi: 10.1073/pnas.1305118110 – volume: 10 start-page: 494 year: 2009 ident: ref28 article-title: Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies) publication-title: BMC Genomics doi: 10.1186/1471-2164-10-494 – volume: 15 start-page: 455 year: 2006 ident: ref78 article-title: Genome-wide analysis of phenobarbital-inducible genes in Drosophila melanogaster publication-title: Insect Mol Biol doi: 10.1111/j.1365-2583.2006.00662.x – volume: 111 start-page: 216 year: 2013 ident: ref74 article-title: Global spread and genetic variants of the two CYP9M10 haplotype forms associated with insecticide resistance in Culex quinquefascaitus Say publication-title: Heredity doi: 10.1038/hdy.2013.40 – volume: 51 start-page: 205 year: 1995 ident: ref54 article-title: Metabolism of esfenvalerate by pyrethroid-susceptible and -resistant australian Helicoverpa armigera (Lepidoptera: Noctuidae) publication-title: Pestic Biochem Physiol doi: 10.1006/pest.1995.1020 – ident: ref31 doi: 10.1016/B0-44-451924-6/00049-1 – volume: 11 start-page: 480 year: 1998 ident: ref5 article-title: Dengue and dengue hemorrhagic fever publication-title: Clin Microbiol Rev doi: 10.1128/CMR.11.3.480 – volume: 10 start-page: 100 year: 2002 ident: ref2 article-title: Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century publication-title: Trends Microbiol doi: 10.1016/S0966-842X(01)02288-0 – volume: 4 start-page: e1000286 year: 2008 ident: ref38 article-title: Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000286 – volume: 95 start-page: 161 year: 2010 ident: ref4 article-title: Dengue publication-title: Br Med Bull doi: 10.1093/bmb/ldq019 – volume: 106 start-page: 93 year: 2013 ident: ref14 article-title: Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2013.02.007 – volume: 7 start-page: e2052 year: 2013 ident: ref75 article-title: An integrated linkage, chromosome, and genome map for the yellow fever mosquito Aedes aegypti publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0002052 – volume: 104 start-page: 132 year: 2012 ident: ref76 article-title: Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2012.07.003 – volume: 18 start-page: 271 year: 1993 ident: ref48 article-title: In vivo studies on the mechanism of pyrethroid resistance in the German cockroach publication-title: J Pesticide Sci doi: 10.1584/jpestics.18.3_271 – volume: 6 start-page: e1000999 year: 2010 ident: ref40 article-title: Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000999 – volume: 41 start-page: 9 year: 2011 ident: ref26 article-title: A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2010.09.005 – volume: 10 start-page: 141 year: 1985 ident: ref15 article-title: Pyrethroid resistance: importance of the kdr-type mechanism publication-title: J Pestic Sci doi: 10.1584/jpestics.10.141 – volume: 36 start-page: 934 year: 2006 ident: ref79 article-title: A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2006.09.004 – volume: 21 start-page: 61 year: 2012 ident: ref56 article-title: Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti publication-title: Insect Mol Biol doi: 10.1111/j.1365-2583.2011.01113.x – volume: 66 start-page: 195 year: 2000 ident: ref41 article-title: Mechanisms responsible for cypermethrin resistance in a strain of German cockroach, Blattella germanica publication-title: Pestic Biochem Physiol doi: 10.1006/pest.1999.2462 – volume: 63 start-page: e1595 year: 2012 ident: ref59 article-title: Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance publication-title: PLoS Neglected Tropical Diseases doi: 10.1371/journal.pntd.0001595 – volume: 42 start-page: 699 year: 2012 ident: ref61 article-title: A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: Functional characterisation and signatures of selection publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2012.06.003 – ident: ref77 – volume: 1 start-page: 55 year: 1995 ident: ref3 article-title: Dengue/dengue hemorrhagic fever: the emergence of a global health problem publication-title: Emerg Infect Dis doi: 10.3201/eid0102.952004 – volume: 25 start-page: 213 year: 2009 ident: ref80 article-title: Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? publication-title: Trends Parasitol doi: 10.1016/j.pt.2009.02.007 – volume: 82 start-page: 1559 year: 1989 ident: ref49 article-title: An improved method for preparation, stabilization, and storage of house fly (Diptera: Musciadae) microsomes publication-title: J Econ Entomol doi: 10.1093/jee/82.6.1559 – volume: 89 start-page: 175 year: 2007 ident: ref60 article-title: Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2007.06.006 |
SSID | ssj0059581 |
Score | 2.507833 |
Snippet | Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold... Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold... Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2948 |
SubjectTerms | Aedes - enzymology Aedes - genetics Alleles Animals Biology and Life Sciences Cytochrome P-450 Enzyme System - genetics Dengue fever Female Gene Dosage Gene Knockdown Techniques Gene mutations Genetic aspects Genetic Association Studies Genotype Identification and classification Inactivation, Metabolic Insect Proteins - genetics Insecticide resistance Insecticide Resistance - genetics Insecticides Insecticides - metabolism Larva - enzymology Larva - genetics Male Metabolism Metabolites Mosquito Control Mosquitoes Permethrin - metabolism Sequence Analysis, DNA |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQD4gL4r1ZFjASEpeGbeNXzK0gViukcmKlvUVOPYZKbRo2LRL_gJ_NjJ1WDULaC9dk3Moz4_E38fgbxt4UpZOycDIXEFwuTSlyJ4POIQRce7r2KvZPmX_Rl1fy87W6Pmr1RTVhiR44Ke5chjCpAcdNwUmwNa7H0oNXRFJijYtMoLjn7ZOpFIOVVbE9KaITunFVmP7SnDDT895G79pm64m9sLDU--doU4rc_YcIPWpXm-5f8PPvKsqjbeniAbvf40k-S_N4yO5A84jdnfcn5o_Z7znQ3d5lt-74JvD21w1QZ4Sl55hnE3ZEo_NlwxEHcgxB33bA15vuxw4XOv8Zv-iP-Qw8dNzFjmXL9zwVj3M6dsaRHVXApxYUY95i5Ox5eMfcNZ6vYYtetsK_f8KuLj59_XiZ990X8oXWxTavlSucKKYhGKO9smg8mGprfa2CQ1QAelJaXRrvDdREG09PPcJBVy4QRlrxlI2aTQMnjGsVCgNoOAwgshTgMGiAC0Fh8oO_V2dM7NVfLXpqcuqQsarieZvBFCVpsyKjVb3RMpYfRrWJmuMW-Q9k2YMsEWvHB-huVe9u1W3ulrFX5BdVuqV6CA_VDDN94tqUOmNvowQFCJzEwvX3HFAVRLU1kDwbSOLCXgxen5Dv7efSVYh2jdJ2onAqr_f-WNEoKpRrYLMjGWGlEWVpM_Ys-edhwphpx1PsjJmB5w40MnzTLL9HynGEfcIU4vR_qPA5u4eoU6Z6uzM22t7s4AUiu239Mi7iPzfNUF4 priority: 102 providerName: Directory of Open Access Journals |
Title | Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24945250 https://www.proquest.com/docview/1539473889 https://pubmed.ncbi.nlm.nih.gov/PMC4063723 https://doaj.org/article/4ff0be8761ea4e9badd8ded5684097a4 http://dx.doi.org/10.1371/journal.pntd.0002948 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZtCmMvY7_rrcs0GOwlLo0lWdJgjLS0lEHKGAvkzcjRqQskdhonY_0P9mfvJDtmHh3bix_sk82dvjt9sqQ7Qt4mynCeGB4zcCbmUrHYcJfG4Bz6XppbEeqnjK_Sywn_NBXTPbKr2doYsLpzaufrSU3Wi-MfN7cf0eE_hKoNcrhrdLwqNtbnI0w0V_vkAMcm6V11zNt1BaFFKFuKrMWfxGKiOUz3t7d0BquQ07-N3L3VoqzuoqV_7q78bbi6eEgeNDyTjmpgPCJ7UDwm98bNSvoT8nMM_szvvFpWtHR0dbsGXzFhbinOvz2nRDDQeUGRH1IMTddboMuyutliAKDfw5_-AR2BhYqaUMls_p7Wm8qpX47GlpXfGV-XphhQNCk0-XkH1BSWLmGD6Fvg55-SycX517PLuKnKEM_SNNnEuTCJYcnQOSlTKzR2KgxTrW0unEG2AOmJ0qmS1krIfTp5f9ciTTRqhvRSs2ekV5QFHBKaCpdIsFZhYOGKgcFgAsY5gZMifF8eEbYzfzZrUpb7yhmLLKzDSZy61NbMfKdlTadFJG5breqUHf-QP_U928r6hNvhRrm-zhr_zbhzJzkgfIdgOOgchwVlwQqfK0dLwyPy2uMiq0-vtmEjGzFUDkHP04i8CxIeyqjEzDTnH9AUPgVXR_KoI4kOP-s8PvTY2-lSZciCpUj1iUBV3uzwmPlWfgNdAeXWyzDNJVNKR-R5jc9WYZyBh9XtiMgOcjsW6T4p5t9CKnKkg0wm7MV_fPcluY9kk9fb7I5Ib7PewiskdJu8T_blVOJVnQ375OD0_Orzl374OdIP3vsL4z9SuQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+pyrethroid+resistance+in+the+dengue+mosquito+vector%2C+Aedes+aegypti%3A+target+site+insensitivity%2C+penetration%2C+and+metabolism&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Kasai%2C+Shinji&rft.au=Komagata%2C+Osamu&rft.au=Itokawa%2C+Kentaro&rft.au=Shono%2C+Toshio&rft.date=2014-06-01&rft.issn=1935-2735&rft.eissn=1935-2735&rft.volume=8&rft.issue=6&rft.spage=e2948&rft_id=info:doi/10.1371%2Fjournal.pntd.0002948&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon |