Cytokine-induced memory-like natural killer cells

The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of pr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 6; pp. 1915 - 1919
Main Authors Cooper, Megan A, Elliott, Julie M, Keyel, Peter A, Yang, Liping, Carrero, Javier A, Yokoyama, Wayne M
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.02.2009
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-γ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naïve hosts can be specifically detected 7-22 days later when they are phenotypically similar to naïve cells and are not constitutively producing IFN-γ. However, they produce significantly more IFN-γ when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naïve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells.
AbstractList The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-γ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naïve hosts can be specifically detected 7–22 days later when they are phenotypically similar to naïve cells and are not constitutively producing IFN-γ. However, they produce significantly more IFN-γ when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naïve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells.
The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN- gamma ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into na¯ve hosts can be specifically detected 7-22 days later when they are phenotypically similar to na¯ve cells and are not constitutively producing IFN- gamma . However, they produce significantly more IFN- gamma when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to na¯ve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells.
The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i. e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-γ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naive hosts can be specifically detected 7-22 days later when they are phenotypically similar to naive cells and are not constitutively producing IFN-γ. However, they produce significantly more IFN-γ when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naive NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-Specific adaptive immune cells.
The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-...) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naive hosts can be specifically detected 7-22 days later when they are phenotypically similar to naive cells and are not constitutively producing IFN-... However, they produce significantly more IFN-... when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naive NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells. (ProQuest: ... denotes formulae/symbols omitted.)
The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-gamma) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naïve hosts can be specifically detected 7-22 days later when they are phenotypically similar to naïve cells and are not constitutively producing IFN-gamma. However, they produce significantly more IFN-gamma when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naïve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells.
Author Yokoyama, Wayne M
Elliott, Julie M
Keyel, Peter A
Yang, Liping
Carrero, Javier A
Cooper, Megan A
Author_xml – sequence: 1
  fullname: Cooper, Megan A
– sequence: 2
  fullname: Elliott, Julie M
– sequence: 3
  fullname: Keyel, Peter A
– sequence: 4
  fullname: Yang, Liping
– sequence: 5
  fullname: Carrero, Javier A
– sequence: 6
  fullname: Yokoyama, Wayne M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19181844$$D View this record in MEDLINE/PubMed
BookMark eNptkcFv0zAYxS00xLrCmRNQ7QCnbN9nO3Z8QUIVsEmTOMDOlps4I61jFztB9L-fo1brhnby4f2-p_f8zsiJD94S8hbhAkGyy6036QIqZKgognhBZggKC8EVnJAZAJVFxSk_JWcprQFAlRW8IqeosMKK8xnB5W4Im87bovPNWNtm0ds-xF3huo1deDOM0bjFpnPOxkVtnUuvycvWuGTfHN45uf329dfyqrj58f16-eWmqIWgQ2EEB0BWKiXoqhHQlAJbAMFXDaqs1bblTFalbJlkijaqqWsmBTAlWVk2NZuTz3vf7bjqbVNbP-Qoehu73sSdDqbTTxXf_dZ34a-mgnNkVTb4eDCI4c9o06D7Lk0VjLdhTJoCZZLnjHNy_h-4DmP0uVxmkFOqpMzQ5R6qY0gp2vYhCYKettDTFvq4Rb54_7jAkT98fgY-HYDp8mgntJigUrejc4P9Nzyyep7MwLs9sE5DiA8EB05RqCn9h73emqDNXeySvv2ZyzHAUjEExu4BBI-vxA
CitedBy_id crossref_primary_10_3389_fimmu_2015_00264
crossref_primary_10_1097_TP_0000000000004847
crossref_primary_10_1186_s13567_017_0423_8
crossref_primary_10_2217_imt_2017_0013
crossref_primary_10_1038_s12276_023_01133_7
crossref_primary_10_1097_QCO_0000000000000540
crossref_primary_10_1182_blood_2010_03_271361
crossref_primary_10_3390_cancers12030706
crossref_primary_10_1038_icb_2009_91
crossref_primary_10_1182_blood_2009_09_245464
crossref_primary_10_1016_j_omtm_2020_06_014
crossref_primary_10_1128_JVI_00199_15
crossref_primary_10_1189_jlb_1RU0514_241R
crossref_primary_10_1146_annurev_immunol_102119_073855
crossref_primary_10_3390_pharmaceutics16010133
crossref_primary_10_3390_cancers13030473
crossref_primary_10_1080_08820139_2024_2337025
crossref_primary_10_1016_j_omto_2022_02_009
crossref_primary_10_1146_annurev_immunol_101819_074948
crossref_primary_10_1016_j_isci_2020_101709
crossref_primary_10_3389_fimmu_2017_00458
crossref_primary_10_2139_ssrn_3351831
crossref_primary_10_1002_bies_201800191
crossref_primary_10_3390_ijms19051379
crossref_primary_10_1111_imr_12968
crossref_primary_10_1016_j_clim_2016_02_003
crossref_primary_10_3389_fimmu_2022_824263
crossref_primary_10_1016_j_coviro_2019_02_005
crossref_primary_10_1038_s41577_019_0139_2
crossref_primary_10_3389_fimmu_2020_582414
crossref_primary_10_3389_fimmu_2022_919973
crossref_primary_10_1038_s41590_020_0593_9
crossref_primary_10_1080_2162402X_2017_1293210
crossref_primary_10_1007_s00251_021_01240_7
crossref_primary_10_1038_s41577_020_0307_4
crossref_primary_10_1080_2162402X_2018_1539617
crossref_primary_10_1016_j_dci_2015_08_002
crossref_primary_10_3389_fcimb_2020_00049
crossref_primary_10_1084_jem_20221140
crossref_primary_10_1084_jem_20212434
crossref_primary_10_1016_j_immuni_2018_03_030
crossref_primary_10_3390_ijms24119521
crossref_primary_10_1016_j_bioactmat_2023_03_018
crossref_primary_10_18632_oncotarget_13007
crossref_primary_10_1038_ncomms10183
crossref_primary_10_1016_j_jim_2023_113439
crossref_primary_10_1016_j_clim_2013_04_003
crossref_primary_10_1097_TP_0b013e3181efcfe9
crossref_primary_10_1093_gerona_gls079
crossref_primary_10_3390_ijms19030794
crossref_primary_10_1038_emm_2014_114
crossref_primary_10_1038_s41467_018_07405_5
crossref_primary_10_1189_jlb_0613312
crossref_primary_10_4049_jimmunol_2200380
crossref_primary_10_1126_sciimmunol_aba6232
crossref_primary_10_1038_s41598_018_37448_z
crossref_primary_10_3389_fcimb_2020_00055
crossref_primary_10_4049_jimmunol_1402124
crossref_primary_10_1111_j_1365_2567_2009_03167_x
crossref_primary_10_4049_jimmunol_1402001
crossref_primary_10_4049_jimmunol_1700586
crossref_primary_10_4049_jimmunol_0903654
crossref_primary_10_1016_j_immuni_2016_06_017
crossref_primary_10_1111_imr_12710
crossref_primary_10_3109_08916934_2011_606446
crossref_primary_10_1038_nrc_2015_5
crossref_primary_10_1007_s00262_016_1822_9
crossref_primary_10_1093_cei_uxad030
crossref_primary_10_3389_fimmu_2017_00432
crossref_primary_10_4049_jimmunol_1502186
crossref_primary_10_3389_fimmu_2023_1172437
crossref_primary_10_4049_jimmunol_1300497
crossref_primary_10_1007_s00262_018_2247_4
crossref_primary_10_3389_fimmu_2017_01976
crossref_primary_10_3390_vaccines7040187
crossref_primary_10_1016_j_clim_2016_11_010
crossref_primary_10_1038_s41573_019_0052_1
crossref_primary_10_1097_TP_0000000000001490
crossref_primary_10_1158_2326_6066_CIR_20_1002
crossref_primary_10_1016_j_it_2013_07_005
crossref_primary_10_3389_fcimb_2020_00102
crossref_primary_10_4049_jimmunol_1201742
crossref_primary_10_1097_PPO_0000000000000156
crossref_primary_10_1084_jem_20101831
crossref_primary_10_3389_fimmu_2023_1112059
crossref_primary_10_1084_jem_20100986
crossref_primary_10_4049_jimmunol_1800059
crossref_primary_10_1158_2326_6066_CIR_23_0324
crossref_primary_10_3390_cells12040633
crossref_primary_10_1016_j_immuni_2017_10_008
crossref_primary_10_1158_1078_0432_CCR_21_0164
crossref_primary_10_1186_s40164_024_00502_w
crossref_primary_10_3389_fimmu_2022_884648
crossref_primary_10_1002_biof_107
crossref_primary_10_1002_eji_201746974
crossref_primary_10_1002_acg2_28
crossref_primary_10_1146_annurev_cancerbio_030518_055653
crossref_primary_10_3390_v16030368
crossref_primary_10_3389_fcimb_2020_00231
crossref_primary_10_1126_sciimmunol_aat9781
crossref_primary_10_1016_j_smim_2019_03_004
crossref_primary_10_1038_nri3044
crossref_primary_10_1128_jvi_00372_22
crossref_primary_10_1111_imr_12652
crossref_primary_10_1128_CVI_00288_10
crossref_primary_10_1007_s12185_024_03778_0
crossref_primary_10_1002_cyto_b_21500
crossref_primary_10_1007_s40291_021_00550_6
crossref_primary_10_1128_IAI_00908_19
crossref_primary_10_1007_s00281_018_0686_9
crossref_primary_10_1016_j_coi_2014_02_006
crossref_primary_10_1038_s41577_020_0285_6
crossref_primary_10_1038_nri3174
crossref_primary_10_3389_fimmu_2020_01512
crossref_primary_10_1002_eji_201141820
crossref_primary_10_1038_s41577_022_00732_1
crossref_primary_10_3390_jcm11195594
crossref_primary_10_1111_imr_12643
crossref_primary_10_3389_fimmu_2020_614250
crossref_primary_10_1002_eji_201445200
crossref_primary_10_1097_MOT_0b013e32832e7158
crossref_primary_10_3389_fimmu_2018_02494
crossref_primary_10_3389_fimmu_2020_01989
crossref_primary_10_1002_eji_201445339
crossref_primary_10_3389_fimmu_2022_858383
crossref_primary_10_5411_wji_v5_i1_16
crossref_primary_10_3389_fmicb_2015_01061
crossref_primary_10_1182_blood_2012_09_457184
crossref_primary_10_1186_s13073_022_01049_3
crossref_primary_10_1073_pnas_1815756115
crossref_primary_10_1038_nri3065
crossref_primary_10_1111_j_1365_294X_2011_05269_x
crossref_primary_10_3389_fimmu_2019_01812
crossref_primary_10_1016_j_bbmt_2014_11_681
crossref_primary_10_1182_blood_2013_01_479790
crossref_primary_10_3389_fimmu_2020_613170
crossref_primary_10_1016_j_tem_2020_01_008
crossref_primary_10_1016_j_immuni_2013_02_010
crossref_primary_10_1016_j_jaci_2014_06_006
crossref_primary_10_1073_pnas_2016580118
crossref_primary_10_1016_j_cyto_2021_155773
crossref_primary_10_1007_s00018_015_1911_5
crossref_primary_10_1189_jlb_4A0416_192R
crossref_primary_10_1097_CCO_0000000000000968
crossref_primary_10_1084_jem_20160726
crossref_primary_10_3390_vaccines8030394
crossref_primary_10_1371_journal_ppat_1000816
crossref_primary_10_3389_fimmu_2023_1256404
crossref_primary_10_1016_j_smim_2017_08_012
crossref_primary_10_3389_fimmu_2021_616853
crossref_primary_10_1111_imr_13313
crossref_primary_10_1002_ajh_26529
crossref_primary_10_1111_imr_13314
crossref_primary_10_1128_CVI_00688_13
crossref_primary_10_3389_fimmu_2018_02796
crossref_primary_10_3390_cells13050451
crossref_primary_10_1038_emm_2017_42
crossref_primary_10_1016_j_jksus_2023_102717
crossref_primary_10_1186_s12967_018_1613_5
crossref_primary_10_1155_2015_869547
crossref_primary_10_1038_d41586_024_01427_4
crossref_primary_10_1038_ni_3432
crossref_primary_10_3390_ijms241713556
crossref_primary_10_1111_bph_16472
crossref_primary_10_3389_fcimb_2020_00313
crossref_primary_10_1007_s00018_011_0796_1
crossref_primary_10_1586_14760584_2013_814871
crossref_primary_10_1093_intimm_dxr035
crossref_primary_10_1007_s12185_021_03209_4
crossref_primary_10_1152_physrev_00031_2021
crossref_primary_10_1126_sciimmunol_adk4893
crossref_primary_10_1053_j_seminhematol_2020_10_003
crossref_primary_10_1002_eji_200990041
crossref_primary_10_4049_jimmunol_0902194
crossref_primary_10_1038_s41590_019_0430_1
crossref_primary_10_1002_eji_201747177
crossref_primary_10_3389_fimmu_2017_01143
crossref_primary_10_1016_j_immuni_2023_01_016
crossref_primary_10_1155_2022_8724933
crossref_primary_10_1111_j_1365_3083_2010_02407_x
crossref_primary_10_1128_JVI_03038_12
crossref_primary_10_3389_fimmu_2022_842746
crossref_primary_10_3389_fcimb_2020_00208
crossref_primary_10_1002_eji_201847931
crossref_primary_10_1039_c5tx00222b
crossref_primary_10_4161_hv_29594
crossref_primary_10_1111_j_1365_294X_2011_05315_x
crossref_primary_10_1038_s41586_023_06945_1
crossref_primary_10_1101_cshperspect_a029488
crossref_primary_10_1038_nri2674
crossref_primary_10_3389_fimmu_2020_00226
crossref_primary_10_1186_s40164_024_00481_y
crossref_primary_10_1016_j_imbio_2015_07_012
crossref_primary_10_1186_1297_9716_42_37
crossref_primary_10_1182_blood_2012_04_419283
crossref_primary_10_1084_jem_20100762
crossref_primary_10_3389_fimmu_2017_00025
crossref_primary_10_3389_fimmu_2017_00268
crossref_primary_10_1111_febs_16073
crossref_primary_10_1182_blood_2017_08_752170
crossref_primary_10_3389_fimmu_2018_00150
crossref_primary_10_1016_j_jcyt_2014_08_003
crossref_primary_10_1016_j_cytogfr_2024_02_001
crossref_primary_10_1084_jem_20111760
crossref_primary_10_2139_ssrn_3920259
crossref_primary_10_3389_fimmu_2024_1383281
crossref_primary_10_1038_s41598_021_85960_6
crossref_primary_10_3390_cells10081955
crossref_primary_10_1016_j_it_2015_03_006
crossref_primary_10_1002_JLB_MA0718_296R
crossref_primary_10_3389_fimmu_2022_913215
crossref_primary_10_1016_j_coi_2016_11_003
crossref_primary_10_1016_j_jconrel_2021_12_022
crossref_primary_10_1515_hsz_2023_0317
crossref_primary_10_2217_fvl_14_106
crossref_primary_10_1084_jem_20122248
crossref_primary_10_1016_j_it_2013_02_005
crossref_primary_10_1016_j_smim_2016_03_001
crossref_primary_10_1182_blood_2010_02_269381
crossref_primary_10_1016_j_smim_2016_05_008
crossref_primary_10_1038_ni_2039
crossref_primary_10_1189_jlb_5RU0714_360RR
crossref_primary_10_1038_cmi_2013_9
crossref_primary_10_1016_j_alit_2020_11_007
crossref_primary_10_1080_2162402X_2015_1017701
crossref_primary_10_1016_j_micinf_2017_12_008
crossref_primary_10_1038_cmi_2013_8
crossref_primary_10_1038_s43018_023_00589_w
crossref_primary_10_1084_jem_20141172
crossref_primary_10_1100_2012_491974
crossref_primary_10_1158_2326_6066_CIR_17_0550
crossref_primary_10_3389_fimmu_2022_886429
crossref_primary_10_1016_j_isci_2020_101171
crossref_primary_10_3390_ijms232112838
crossref_primary_10_3389_fimmu_2022_859177
crossref_primary_10_1155_2011_641702
crossref_primary_10_1111_tri_13073
crossref_primary_10_3389_fimmu_2022_887503
crossref_primary_10_1002_iid3_190
crossref_primary_10_1053_j_seminhematol_2020_11_005
crossref_primary_10_1016_j_transci_2021_103065
crossref_primary_10_1053_j_seminhematol_2020_11_003
crossref_primary_10_1182_blood_2021013972
crossref_primary_10_1002_eji_200939435
crossref_primary_10_1097_TP_0b013e31821578da
crossref_primary_10_1016_j_autrev_2017_11_018
crossref_primary_10_1016_j_jtct_2022_06_025
crossref_primary_10_1016_j_reumae_2018_10_020
crossref_primary_10_1126_sciimmunol_aan3796
crossref_primary_10_4049_jimmunol_1500424
crossref_primary_10_1002_JLB_1RI0917_366R
crossref_primary_10_1111_j_0105_2896_2010_00891_x
crossref_primary_10_3389_fimmu_2018_00445
crossref_primary_10_3389_fimmu_2019_02728
crossref_primary_10_1084_jem_20132459
crossref_primary_10_3389_fimmu_2021_671966
crossref_primary_10_1111_cmi_13261
crossref_primary_10_1038_ni_2032
crossref_primary_10_4049_jimmunol_1601004
crossref_primary_10_1155_2019_8795673
crossref_primary_10_1038_s41467_017_02023_z
crossref_primary_10_1016_j_mib_2010_05_011
crossref_primary_10_4049_jimmunol_2000839
crossref_primary_10_1016_j_immuni_2015_08_009
crossref_primary_10_18632_oncotarget_16391
crossref_primary_10_1146_annurev_immunol_020711_075005
crossref_primary_10_1111_bjh_17186
crossref_primary_10_1038_cmi_2015_96
crossref_primary_10_3389_fimmu_2018_00474
crossref_primary_10_3390_vaccines8020281
crossref_primary_10_1111_j_1365_2567_2011_03464_x
crossref_primary_10_1080_08830185_2023_2172406
crossref_primary_10_3390_vaccines9101061
crossref_primary_10_1111_imr_13332
crossref_primary_10_1155_2011_861920
crossref_primary_10_1016_j_kint_2021_11_029
crossref_primary_10_3390_ijms25105151
crossref_primary_10_1007_s40778_021_00204_7
crossref_primary_10_1038_s41598_024_62968_2
crossref_primary_10_1111_imr_13319
crossref_primary_10_3389_fimmu_2022_924775
crossref_primary_10_3389_fimmu_2015_00013
crossref_primary_10_3389_fimmu_2019_01414
crossref_primary_10_1111_imr_13326
crossref_primary_10_1038_s41423_019_0212_6
crossref_primary_10_1016_j_jcyt_2018_11_001
crossref_primary_10_1111_imr_13322
crossref_primary_10_1182_bloodadvances_2021005047
crossref_primary_10_1002_eji_201545702
crossref_primary_10_3389_fimmu_2017_01322
crossref_primary_10_1080_2162402X_2015_1115178
crossref_primary_10_4110_in_2022_22_e38
crossref_primary_10_1016_j_molimm_2018_07_022
crossref_primary_10_1016_j_cell_2020_01_022
crossref_primary_10_1093_jleuko_qiac007
crossref_primary_10_3109_07853890_2011_554430
crossref_primary_10_4049_jimmunol_1000844
crossref_primary_10_2217_imt_11_102
crossref_primary_10_3389_fimmu_2018_01509
crossref_primary_10_1016_j_celrep_2019_11_043
crossref_primary_10_1002_eji_201646762
crossref_primary_10_1523_JNEUROSCI_1116_18_2018
crossref_primary_10_1002_cti2_1010
crossref_primary_10_3390_cells13060530
crossref_primary_10_1007_s11899_023_00711_w
crossref_primary_10_1158_2326_6066_CIR_19_0404
crossref_primary_10_1016_j_cellimm_2010_03_014
crossref_primary_10_1016_j_ygyno_2019_01_006
crossref_primary_10_4049_jimmunol_1102997
crossref_primary_10_4049_jimmunol_2300672
crossref_primary_10_1016_j_it_2013_04_001
crossref_primary_10_1111_imr_13031
crossref_primary_10_1051_medsci_2013294012
crossref_primary_10_1038_s41423_019_0311_4
crossref_primary_10_1182_blood_2021014906
crossref_primary_10_1007_s00011_018_1174_3
crossref_primary_10_1016_j_coi_2014_04_002
crossref_primary_10_1097_SHK_0000000000002054
crossref_primary_10_1038_icb_2010_162
crossref_primary_10_3390_jof8121268
crossref_primary_10_1038_ni_3838
crossref_primary_10_3389_fmicb_2015_01525
crossref_primary_10_7554_eLife_47605
crossref_primary_10_1016_j_addr_2021_05_031
crossref_primary_10_1016_j_critrevonc_2016_04_020
crossref_primary_10_1097_IN9_0000000000000020
crossref_primary_10_1038_s41598_021_95578_3
crossref_primary_10_3390_cancers13071577
crossref_primary_10_1002_eji_201243101
crossref_primary_10_1146_annurev_immunol_093019_123619
crossref_primary_10_4049_jimmunol_1600199
crossref_primary_10_1039_C8BM00588E
crossref_primary_10_1155_2015_478408
crossref_primary_10_1182_blood_2009_11_253286
crossref_primary_10_3389_fonc_2020_561372
crossref_primary_10_1007_s11427_015_4970_9
crossref_primary_10_1158_0008_5472_CAN_23_1097
crossref_primary_10_1038_nri2835
crossref_primary_10_1038_ki_2010_417
crossref_primary_10_1136_jitc_2022_006409
crossref_primary_10_1134_S1068162016060066
crossref_primary_10_1128_JVI_00169_17
crossref_primary_10_1016_j_immuni_2015_09_013
crossref_primary_10_3390_jcm8111802
crossref_primary_10_1111_j_1600_065X_2010_00900_x
crossref_primary_10_1126_scitranslmed_aaf2341
crossref_primary_10_1038_leu_2011_135
crossref_primary_10_4049_jimmunol_1801648
crossref_primary_10_4049_jimmunol_1801525
crossref_primary_10_1146_annurev_virology_100220_010653
crossref_primary_10_1371_journal_ppat_1002141
crossref_primary_10_1371_journal_ppat_1004441
crossref_primary_10_3390_vaccines12070721
crossref_primary_10_1111_imr_13255
crossref_primary_10_1186_s13287_021_02655_5
crossref_primary_10_1084_jem_20160552
crossref_primary_10_1016_j_it_2022_08_004
crossref_primary_10_1016_j_smim_2017_09_008
crossref_primary_10_1097_CJI_0000000000000179
crossref_primary_10_1016_j_immuni_2015_02_013
crossref_primary_10_3389_fimmu_2016_00323
crossref_primary_10_1136_jitc_2022_004693
crossref_primary_10_3389_fimmu_2019_02381
crossref_primary_10_3390_cancers11040573
crossref_primary_10_1016_j_vetimm_2012_08_011
crossref_primary_10_1172_JCI145501
crossref_primary_10_1097_PPO_0000000000000517
crossref_primary_10_1038_s41578_021_00413_w
crossref_primary_10_1101_cshperspect_a029512
crossref_primary_10_1016_j_jcyt_2013_05_022
crossref_primary_10_1002_cti2_1244
crossref_primary_10_1084_jem_20100479
crossref_primary_10_1016_j_ijpharm_2022_122034
crossref_primary_10_1007_s11904_016_0310_3
crossref_primary_10_1016_j_clim_2014_10_005
crossref_primary_10_3390_biomedicines11030766
crossref_primary_10_1016_j_molmed_2011_07_003
crossref_primary_10_3390_ijms23052782
crossref_primary_10_1002_eji_202350465
crossref_primary_10_3390_immuno1030021
crossref_primary_10_1186_s40425_019_0751_5
crossref_primary_10_3389_fimmu_2018_00737
crossref_primary_10_1016_j_mam_2021_101008
crossref_primary_10_1016_j_immuni_2013_12_011
crossref_primary_10_4049_jimmunol_1100416
crossref_primary_10_1371_journal_pone_0151721
crossref_primary_10_1038_s41598_018_37395_9
crossref_primary_10_3389_fimmu_2023_1130442
crossref_primary_10_1111_imr_12090
crossref_primary_10_1038_pr_2013_214
crossref_primary_10_1016_j_it_2016_09_005
crossref_primary_10_1016_j_it_2015_07_004
crossref_primary_10_1016_j_jaci_2013_07_006
crossref_primary_10_1371_journal_pmed_1000107
crossref_primary_10_1002_wsbm_1543
crossref_primary_10_1038_s41598_021_83005_6
crossref_primary_10_1007_s00262_022_03161_0
crossref_primary_10_1111_j_0105_2896_2010_00904_x
crossref_primary_10_1016_j_bbmt_2016_11_018
crossref_primary_10_4049_jimmunol_2000430
crossref_primary_10_3390_cancers14225657
crossref_primary_10_3390_cancers13164129
crossref_primary_10_1016_j_jaci_2022_09_022
crossref_primary_10_1177_17534259211001512
crossref_primary_10_1038_s41423_020_00574_8
crossref_primary_10_1002_eji_201747128
crossref_primary_10_1111_cod_13871
crossref_primary_10_3390_cells13020134
crossref_primary_10_4049_jimmunol_2300843
crossref_primary_10_1007_s00018_014_1676_2
crossref_primary_10_1080_14712598_2023_2174015
crossref_primary_10_1038_nri_2015_9
crossref_primary_10_3389_fimmu_2024_1361194
crossref_primary_10_1186_s40364_022_00364_6
crossref_primary_10_1016_j_cellsig_2015_05_012
crossref_primary_10_1016_j_coi_2018_05_013
crossref_primary_10_1371_journal_ppat_1003548
crossref_primary_10_1126_science_aaz8777
crossref_primary_10_1073_pnas_1722374115
crossref_primary_10_1111_imcb_12658
crossref_primary_10_1126_science_1198687
crossref_primary_10_1016_j_coi_2010_11_008
crossref_primary_10_4049_jimmunol_1003046
crossref_primary_10_1016_j_celrep_2024_113786
crossref_primary_10_1158_1078_0432_CCR_21_0851
crossref_primary_10_1093_jleuko_qiac003
crossref_primary_10_1097_COH_0b013e3283499df7
crossref_primary_10_1084_jem_20140798
crossref_primary_10_1371_journal_ppat_1011159
crossref_primary_10_4161_onci_23811
crossref_primary_10_1093_intimm_dxad029
crossref_primary_10_3389_fimmu_2017_00967
crossref_primary_10_1051_medsci_2009256_7559
crossref_primary_10_1084_jem_20120944
crossref_primary_10_1097_MOT_0000000000000707
crossref_primary_10_1007_s00262_011_1122_3
crossref_primary_10_1111_imm_12447
crossref_primary_10_1016_j_jaci_2009_11_020
crossref_primary_10_1371_journal_pone_0036011
crossref_primary_10_1016_j_jhep_2018_11_009
crossref_primary_10_2147_IDR_S407742
crossref_primary_10_1016_j_coi_2019_12_001
crossref_primary_10_1016_j_immuni_2016_05_008
crossref_primary_10_3390_microorganisms8070989
crossref_primary_10_1002_JLB_MR0718_303R
crossref_primary_10_1016_j_immuni_2011_11_016
crossref_primary_10_1155_2016_1376595
crossref_primary_10_1016_j_bbmt_2014_01_006
crossref_primary_10_1007_s11596_013_1150_7
crossref_primary_10_1016_j_coi_2017_08_002
crossref_primary_10_1016_j_addr_2021_113860
crossref_primary_10_1016_j_ijid_2023_02_018
crossref_primary_10_1172_JCI66381
crossref_primary_10_3389_fimmu_2020_00918
crossref_primary_10_1172_JCI90387
crossref_primary_10_3389_fonc_2022_1077053
crossref_primary_10_4049_jimmunol_0901644
crossref_primary_10_1080_2162402X_2016_1274478
crossref_primary_10_3389_fimmu_2021_732135
crossref_primary_10_3389_fimmu_2022_953849
crossref_primary_10_4049_jimmunol_1201528
crossref_primary_10_1038_s41423_020_00530_6
crossref_primary_10_1016_j_reuma_2018_10_012
crossref_primary_10_1038_s41590_022_01342_8
crossref_primary_10_1016_j_chom_2011_04_006
crossref_primary_10_1007_s00281_014_0441_9
crossref_primary_10_4049_jimmunol_2000196
crossref_primary_10_3389_fimmu_2022_1005517
crossref_primary_10_1016_j_xcrm_2022_100783
crossref_primary_10_1093_discim_kyad003
crossref_primary_10_1016_j_blre_2023_101073
crossref_primary_10_1016_j_imlet_2020_02_012
crossref_primary_10_1002_eji_201646819
crossref_primary_10_1016_j_jneuroim_2020_577353
crossref_primary_10_1016_j_healun_2021_03_018
crossref_primary_10_3389_fimmu_2021_648580
crossref_primary_10_3390_cancers13164037
crossref_primary_10_1172_JCI162581
crossref_primary_10_1182_blood_2022016200
crossref_primary_10_1038_embor_2009_203
crossref_primary_10_1084_jem_20130417
crossref_primary_10_1111_imm_12898
crossref_primary_10_1016_j_biopha_2023_115718
crossref_primary_10_1002_wsbm_1486
crossref_primary_10_1016_j_chom_2012_06_006
crossref_primary_10_1038_ncomms11686
crossref_primary_10_1002_eji_201141760
crossref_primary_10_1016_j_imbio_2022_152304
crossref_primary_10_3390_vaccines8040677
crossref_primary_10_1007_s13402_023_00909_3
crossref_primary_10_1155_2014_205796
crossref_primary_10_1158_0008_5472_CAN_10_3025
crossref_primary_10_1038_s41598_017_09259_1
crossref_primary_10_1038_s41590_018_0082_6
crossref_primary_10_1016_j_isci_2022_105137
crossref_primary_10_1038_s41568_022_00491_0
crossref_primary_10_1016_j_immuni_2016_06_024
crossref_primary_10_3389_fimmu_2022_803995
crossref_primary_10_4049_jimmunol_1003351
crossref_primary_10_1016_j_ymthe_2022_02_012
crossref_primary_10_3390_cancers12020316
crossref_primary_10_3389_fimmu_2023_1328094
crossref_primary_10_1186_s12977_018_0450_1
crossref_primary_10_1097_MOT_0b013e32833b7903
crossref_primary_10_4049_jimmunol_1502049
crossref_primary_10_1182_blood_2020006619
crossref_primary_10_1016_j_cub_2009_02_023
crossref_primary_10_1080_2162402X_2017_1317411
crossref_primary_10_1084_jem_20151998
crossref_primary_10_4049_jimmunol_2000186
crossref_primary_10_1080_2162402X_2016_1219009
crossref_primary_10_3389_fimmu_2017_00930
crossref_primary_10_1016_j_ygeno_2020_09_031
crossref_primary_10_1016_j_ajpath_2013_06_030
crossref_primary_10_1371_journal_ppat_1009132
crossref_primary_10_1016_j_it_2016_01_005
crossref_primary_10_1002_eji_201545497
crossref_primary_10_1016_j_chom_2018_12_006
crossref_primary_10_1371_journal_pone_0032821
crossref_primary_10_1016_j_cub_2013_07_015
crossref_primary_10_1038_mi_2016_105
crossref_primary_10_1002_hep_28122
crossref_primary_10_1186_s12885_015_1264_3
crossref_primary_10_26508_lsa_202000723
crossref_primary_10_1371_journal_pone_0121258
crossref_primary_10_1016_j_neo_2023_100940
crossref_primary_10_1186_1742_4690_7_84
crossref_primary_10_1158_2159_8290_CD_20_0312
crossref_primary_10_1002_JLB_1MA0720_654RR
crossref_primary_10_1093_brain_aws159
crossref_primary_10_1016_j_biologicals_2012_07_006
crossref_primary_10_4049_jimmunol_1200008
crossref_primary_10_1007_s11427_016_0334_2
crossref_primary_10_3390_ijms20184514
crossref_primary_10_1038_s41590_021_00909_1
crossref_primary_10_1016_j_it_2017_03_005
crossref_primary_10_4049_jimmunol_1401990
crossref_primary_10_1007_s13238_019_0647_7
crossref_primary_10_1084_jem_20201731
crossref_primary_10_1097_MOT_0b013e32833bfb33
crossref_primary_10_1016_j_bbrc_2022_04_018
crossref_primary_10_4049_jimmunol_1600973
crossref_primary_10_1128_JVI_00731_19
crossref_primary_10_3390_antib3010001
Cites_doi 10.1056/NEJM198906293202605
10.1038/ni1332
10.1038/ni1583
10.1016/S1074-7613(00)80605-6
10.1182/blood-2001-12-0293
10.1016/j.immuni.2007.04.010
10.1016/j.coi.2007.10.005
10.1084/jem.191.8.1341
10.1016/j.coi.2008.03.005
10.1016/S095279150200002X
10.1016/S0952-7915(00)00241-7
10.1146/annurev.immunol.23.021704.115526
10.1084/jem.20021836
10.4049/jimmunol.164.10.5215
10.4049/jimmunol.176.3.1517
10.1084/jem.20030630
10.1016/j.immuni.2007.03.006
10.1038/425037a
10.1038/ni796
10.1016/j.it.2003.10.012
10.1016/j.it.2005.02.001
10.1038/nri1055
10.1016/j.coi.2006.05.002
10.4049/jimmunol.181.3.1627
10.1146/annurev.immunol.20.083001.084359
10.1084/jem.20031051
10.1097/ACI.0b013e3280106b65
10.1038/ni880
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 10, 2009
2009 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright National Academy of Sciences Feb 10, 2009
– notice: 2009 by The National Academy of Sciences of the USA
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.0813192106
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList CrossRef
AIDS and Cancer Research Abstracts

Virology and AIDS Abstracts



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 1919
ExternalDocumentID 1645329351
10_1073_pnas_0813192106
19181844
106_6_1915
40421697
US201301593103
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI051345
– fundername: NIAID NIH HHS
  grantid: AI51345
– fundername: Howard Hughes Medical Institute
– fundername: NICHD NIH HHS
  grantid: T32 HD043010
– fundername: NIAID NIH HHS
  grantid: R37 AI034385
– fundername: NIAID NIH HHS
  grantid: AI33903
– fundername: NIAID NIH HHS
  grantid: R01 AI034385
– fundername: NIAID NIH HHS
  grantid: AI34385
– fundername: NIAID NIH HHS
  grantid: R01 AI033903
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ADACV
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c662t-a64001359962bd60d561f0064bd19640cef437857f37392d9dcc3760397355dc3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:17:52 EDT 2024
Fri Oct 25 02:23:31 EDT 2024
Thu Oct 10 20:17:43 EDT 2024
Fri Dec 06 01:06:48 EST 2024
Sat Sep 28 07:55:04 EDT 2024
Thu May 30 15:50:00 EDT 2019
Wed Nov 11 00:29:08 EST 2020
Tue Dec 10 23:05:35 EST 2024
Wed Dec 27 19:41:54 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-a64001359962bd60d561f0064bd19640cef437857f37392d9dcc3760397355dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by Wayne M. Yokoyama, December 23, 2008
Author contributions: M.A.C., J.M.E., P.A.K., J.A.C., and W.M.Y. designed research; M.A.C., J.M.E., P.A.K., L.Y., J.A.C., and W.M.Y. performed research; M.A.C., J.M.E., P.A.K., J.A.C., and W.M.Y. analyzed data; and M.A.C. and W.M.Y. wrote the paper.
OpenAccessLink https://doi.org/10.1073/pnas.0813192106
PMID 19181844
PQID 201422977
PQPubID 42026
PageCount 5
ParticipantIDs proquest_journals_201422977
crossref_primary_10_1073_pnas_0813192106
pubmed_primary_19181844
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2644138
pnas_primary_106_6_1915_fulltext
jstor_primary_40421697
proquest_miscellaneous_20237401
pnas_primary_106_6_1915
fao_agris_US201301593103
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2009-02-10
PublicationDateYYYYMMDD 2009-02-10
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-10
  day: 10
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
– name: National Acad Sciences
References 11861602 - Annu Rev Immunol. 2002;20:197-216
12496964 - Nat Immunol. 2003 Feb;4(2):175-81
17088643 - Curr Opin Allergy Clin Immunol. 2006 Dec;6(6):399-409
18083507 - Curr Opin Immunol. 2008 Feb;20(1):39-48
16424180 - J Immunol. 2006 Feb 1;176(3):1517-24
15797508 - Trends Immunol. 2005 Apr;26(4):186-92
12695489 - J Exp Med. 2003 Apr 21;197(8):977-84
12955131 - Nature. 2003 Sep 4;425(6953):37-8
14530376 - J Exp Med. 2003 Oct 6;198(7):1069-76
17398124 - Immunity. 2007 Apr;26(4):503-17
17540585 - Immunity. 2007 Jun;26(6):798-811
12669021 - Nat Rev Immunol. 2003 Apr;3(4):304-16
14698284 - Trends Immunol. 2004 Jan;25(1):47-52
11498302 - Curr Opin Immunol. 2001 Aug;13(4):458-64
10799881 - J Immunol. 2000 May 15;164(10):5215-20
16765573 - Curr Opin Immunol. 2006 Aug;18(4):391-8
18641298 - J Immunol. 2008 Aug 1;181(3):1627-31
16617337 - Nat Immunol. 2006 May;7(5):507-16
18439809 - Curr Opin Immunol. 2008 Jun;20(3):344-52
15771571 - Annu Rev Immunol. 2005;23:225-74
12495732 - Curr Opin Immunol. 2003 Feb;15(1):45-51
2543925 - N Engl J Med. 1989 Jun 29;320(26):1731-5
9729043 - Immunity. 1998 Aug;9(2):229-37
17969445 - Curr Top Microbiol Immunol. 2007;316:97-117
18425104 - Nat Immunol. 2008 May;9(5):481-5
10770801 - J Exp Med. 2000 Apr 17;191(8):1341-54
18727489 - Curr Top Microbiol Immunol. 2008;321:101-22
14623912 - J Exp Med. 2003 Nov 17;198(10):1583-93
12393617 - Blood. 2002 Nov 15;100(10):3633-8
12006976 - Nat Immunol. 2002 Jun;3(6):523-8
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_30_2
e_1_3_3_10_2
Young HA (e_1_3_3_23_2) 2007; 316
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
Scalzo AA (e_1_3_3_11_2) 2008; 321
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_1_2
  doi: 10.1056/NEJM198906293202605
– ident: e_1_3_3_14_2
  doi: 10.1038/ni1332
– volume: 316
  start-page: 97
  year: 2007
  ident: e_1_3_3_23_2
  article-title: IFN-gamma: Recent advances in understanding regulation of expression, biological functions, and clinical applications
  publication-title: Curr Top Microbiol Immunol
  contributor:
    fullname: Young HA
– ident: e_1_3_3_4_2
  doi: 10.1038/ni1583
– ident: e_1_3_3_21_2
  doi: 10.1016/S1074-7613(00)80605-6
– ident: e_1_3_3_15_2
  doi: 10.1182/blood-2001-12-0293
– ident: e_1_3_3_18_2
  doi: 10.1016/j.immuni.2007.04.010
– ident: e_1_3_3_3_2
  doi: 10.1016/j.coi.2007.10.005
– ident: e_1_3_3_30_2
  doi: 10.1084/jem.191.8.1341
– ident: e_1_3_3_10_2
  doi: 10.1016/j.coi.2008.03.005
– ident: e_1_3_3_6_2
  doi: 10.1016/S095279150200002X
– ident: e_1_3_3_5_2
  doi: 10.1016/S0952-7915(00)00241-7
– ident: e_1_3_3_9_2
  doi: 10.1146/annurev.immunol.23.021704.115526
– ident: e_1_3_3_17_2
  doi: 10.1084/jem.20021836
– ident: e_1_3_3_28_2
  doi: 10.4049/jimmunol.164.10.5215
– ident: e_1_3_3_16_2
  doi: 10.4049/jimmunol.176.3.1517
– ident: e_1_3_3_22_2
  doi: 10.1084/jem.20030630
– ident: e_1_3_3_19_2
  doi: 10.1016/j.immuni.2007.03.006
– ident: e_1_3_3_25_2
  doi: 10.1038/425037a
– ident: e_1_3_3_29_2
  doi: 10.1038/ni796
– ident: e_1_3_3_13_2
  doi: 10.1016/j.it.2003.10.012
– ident: e_1_3_3_26_2
  doi: 10.1016/j.it.2005.02.001
– ident: e_1_3_3_8_2
  doi: 10.1038/nri1055
– ident: e_1_3_3_7_2
  doi: 10.1016/j.coi.2006.05.002
– ident: e_1_3_3_20_2
  doi: 10.4049/jimmunol.181.3.1627
– volume: 321
  start-page: 101
  year: 2008
  ident: e_1_3_3_11_2
  article-title: Cmv1 and natural killer cell responses to murine cytomegalovirus infection
  publication-title: Curr Top Microbiol Immunol
  contributor:
    fullname: Scalzo AA
– ident: e_1_3_3_24_2
  doi: 10.1146/annurev.immunol.20.083001.084359
– ident: e_1_3_3_27_2
  doi: 10.1084/jem.20031051
– ident: e_1_3_3_2_2
  doi: 10.1097/ACI.0b013e3280106b65
– ident: e_1_3_3_12_2
  doi: 10.1038/ni880
SSID ssj0009580
Score 2.5526614
Snippet The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1915
SubjectTerms Adoptive transfer
Animals
Antigens
Biological Sciences
Cells
Cytokines
Cytokines - immunology
Granzymes - analysis
Immune system
Immunity, Innate
Immunologic Memory
Infections
Innate immunity
Interferon-gamma - biosynthesis
Killer Cells, Natural - immunology
Killer Cells, Natural - transplantation
Lymphocyte Activation - immunology
Lymphocyte Transfusion
Lymphocytes
Memory
Mice
Mice, Knockout
Natural killer cells
Pathogens
Receptors
Title Cytokine-induced memory-like natural killer cells
URI https://www.jstor.org/stable/40421697
http://www.pnas.org/content/106/6/1915.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19181844
https://www.proquest.com/docview/201422977
https://search.proquest.com/docview/20237401
https://pubmed.ncbi.nlm.nih.gov/PMC2644138
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5RJhbEm_AoGRjKkD4cx3FGVIEqJBASVGKzYjuBqm1a0TLw77lzk5YiWNgiObajO9vf59z5M8AlQobOeUcHcWRlgM86kCalKHuatGUeIig5tc8H0evzu5foZQOi6iyMS9o3etAsRuNmMXhzuZXTsWlVeWKtx_uuA_FQtmpQQ_ittuhLpV25OHfCcPnljFd6PnHYmhbprIkYGJIIWNvdXpQgwknO11CplqeTKj2RNE-x1m_882ca5Tdcut2B7ZJQ-teLD9-FjazYg91yys78RqkrfbUPne7nfDJEVhngPhw9av0xpdl-BqPBMPOdwic2NHSHA336oT87gP7tzXO3F5Q3JgRGCDYPUsGJ05HkCtNWtC2yo5xYh7YkvNU2Wc7R_FGMTkBiZBNrDGXFIClB3mFNeAibxaTIjsE3edYxLDFSCiR1mkljcbIzjfunNIkM96BRWUxNF8IYygW041CRxdTKzh4co0VV-orLluo_MQqWIouiG848OHRmXjbBcRHpiCT24Mi1smpaKKHQXZEH_h8lKi_zZTw4rbylyik5U9gtZwzprgcXy1KcS2TPtMgmH_QKC-mGQurceXbVSTlOPIjXfL58gVS610tw8Dq17nKwnvy75ilsLUJYDDHzDDbn7x_ZOTKhua4TDkV1N_6_AO4oAkc
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB0VOMAFwS4fgd0lhz10D2kbx3Gc46oClQWqlbaVuFmxnUBVmla0HPj3zLhJS1e7F26RHI-jGY_nOTN-BviOIUMXPNRBElsZ4LMOpMkoy56lHVlEGJQc22df9Ib8131834C4PgvjivaNHrXKp0mrHD262srZxLTrOrH277uuC-KRbG_BThwlaVhv0ldcu3J58oThAswZrxl9kqg9K7N5C6NgRDRgHXd_UYoxTnK-EZe2imxaFygS6yn2-hcC_buQ8l1kujqA_QpS-j-Xn34Ijbz8BIeV0879ZsUs_eMzhN3XxXSMuDLAnTja1PoTKrR9DZ5G49x3HJ8oaOyOB_r0S39-BMOry0G3F1R3JgRGCLYIMsEJ1RHpCtNWdCzio4Jwh7ZEvdUxecHRAHGCZkBoZFNrDNXFICxB5GFNdAzb5bTMT8E3RR4alhopBcI6zaSx6O5M4w4qS2PDPWjWGlOzJTWGcintJFKkMbXWswenqFGVPeDCpYZ_GKVLEUfRHWceHDs1r0RwXEZCkSYenDgpa9FCCYXmij3w_9OiiqpixoPz2lqqcsq5wmE5Ywh4PbhYtaI3kT6zMp--0CssojsKaXBn2fUg1TzxINmw-eoF4unebMHp6_i6q-l69uGeF7DbG9zdqtvr_s057C0TWgwj6BfYXjy_5F8RFy30N-cFb5oiBLY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4tICEuCFge4ZnDHuCQpnUcxzmiQsUuLEJaKnGzYjuBqjStaDnw75lxk5YiuOwtkmM7mvF4PmfG3wD8QpehC97SQRJbGeCzDqTJKMqepU1ZROiUHNvnrbjq8j8P8cOHUl8uad_oXqN8HjTK3pPLrRwNTFjniYV3f9vOiUcyHNkiXIKVOMJFVh_UZ3y7cnr7hOEmzBmvWX2SKByV2biBnjAiKrCmq2GUop-TnC_4pqUiG9ZJisR8ir2-QqGfkyk_eKfOBqxXsNI_n37-JvzIyy3YrAx37J9W7NJnP6HVfpsM-4gtAzyNo16tP6Bk27fgudfPfcfziQP13RVBn37rj7eh27m8b18FVd2EwAjBJkEmOCE7Il5h2oqmRYxUEPbQlui3miYvOCohTlAVCI9sao2h3BiEJog-rIl2YLkclvke-KbIW4alRkqB0E4zaSyaPNN4isrS2HAPTmuJqdGUHkO5sHYSKZKYmsvZgz2UqMoecfNS3X-MQqaIpajOmQc7TsyzIThuJS2RJh7sulHmQwslFKor9sD_pkUVVdaMBwe1tlRlmGOF03LGEPR6cDJrRYsieWZlPnylV1hEdQppcqfZ-STVOvEgWdD57AXi6l5swSXsOLurJbv_3z1PYPXuoqNuft9eH8DaNKbF0IkewvLk5TU_Qmg00cfOCN4BdzsFyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytokine-Induced+Memory-like+Natural+Killer+Cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cooper%2C+Megan+A.&rft.au=Elliott%2C+Julie+M.&rft.au=Keyel%2C+Peter+A.&rft.au=Yang%2C+Liping&rft.date=2009-02-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=106&rft.issue=6&rft.spage=1915&rft.epage=1919&rft_id=info:doi/10.1073%2Fpnas.0813192106&rft.externalDocID=40421697
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F6.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F6.cover.gif