Cytokine-induced memory-like natural killer cells
The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of pr...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 6; pp. 1915 - 1919 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.02.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-γ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naïve hosts can be specifically detected 7-22 days later when they are phenotypically similar to naïve cells and are not constitutively producing IFN-γ. However, they produce significantly more IFN-γ when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naïve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells. |
---|---|
AbstractList | The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-γ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naïve hosts can be specifically detected 7–22 days later when they are phenotypically similar to naïve cells and are not constitutively producing IFN-γ. However, they produce significantly more IFN-γ when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naïve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells. The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN- gamma ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into na¯ve hosts can be specifically detected 7-22 days later when they are phenotypically similar to na¯ve cells and are not constitutively producing IFN- gamma . However, they produce significantly more IFN- gamma when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to na¯ve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells. The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i. e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-γ) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naive hosts can be specifically detected 7-22 days later when they are phenotypically similar to naive cells and are not constitutively producing IFN-γ. However, they produce significantly more IFN-γ when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naive NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-Specific adaptive immune cells. The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-...) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naive hosts can be specifically detected 7-22 days later when they are phenotypically similar to naive cells and are not constitutively producing IFN-... However, they produce significantly more IFN-... when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naive NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells. (ProQuest: ... denotes formulae/symbols omitted.) The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense against pathogens and are thought to respond consistently to infection, regardless of previous exposure, i.e., they do not exhibit memory of prior activation. By contrast, adaptive immune cells display immunologic memory that has 2 basic characteristics, antigen specificity and an amplified response upon subsequent exposure. Whereas adaptive immune cells have rearranged receptor genes to recognize the universe of antigens, natural killer (NK) cells are innate immune lymphocytes with a limited repertoire of germ-line encoded receptors for target recognition. NK cells also produce cytokines such as IFN-gamma (IFN-gamma) to protect the host during the innate response to infection. Herein, we show that cytokine-activated NK cells transferred into naïve hosts can be specifically detected 7-22 days later when they are phenotypically similar to naïve cells and are not constitutively producing IFN-gamma. However, they produce significantly more IFN-gamma when restimulated. This memory-like property is intrinsic to the NK cell. By contrast, memory-like NK cells do not express granzyme B protein and kill targets similarly to naïve NK cells. Thus, these experiments identify an ability of innate immune cells to retain an intrinsic memory of prior activation, a function until now attributed only to antigen-specific adaptive immune cells. |
Author | Yokoyama, Wayne M Elliott, Julie M Keyel, Peter A Yang, Liping Carrero, Javier A Cooper, Megan A |
Author_xml | – sequence: 1 fullname: Cooper, Megan A – sequence: 2 fullname: Elliott, Julie M – sequence: 3 fullname: Keyel, Peter A – sequence: 4 fullname: Yang, Liping – sequence: 5 fullname: Carrero, Javier A – sequence: 6 fullname: Yokoyama, Wayne M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19181844$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFv0zAYxS00xLrCmRNQ7QCnbN9nO3Z8QUIVsEmTOMDOlps4I61jFztB9L-fo1brhnby4f2-p_f8zsiJD94S8hbhAkGyy6036QIqZKgognhBZggKC8EVnJAZAJVFxSk_JWcprQFAlRW8IqeosMKK8xnB5W4Im87bovPNWNtm0ds-xF3huo1deDOM0bjFpnPOxkVtnUuvycvWuGTfHN45uf329dfyqrj58f16-eWmqIWgQ2EEB0BWKiXoqhHQlAJbAMFXDaqs1bblTFalbJlkijaqqWsmBTAlWVk2NZuTz3vf7bjqbVNbP-Qoehu73sSdDqbTTxXf_dZ34a-mgnNkVTb4eDCI4c9o06D7Lk0VjLdhTJoCZZLnjHNy_h-4DmP0uVxmkFOqpMzQ5R6qY0gp2vYhCYKettDTFvq4Rb54_7jAkT98fgY-HYDp8mgntJigUrejc4P9Nzyyep7MwLs9sE5DiA8EB05RqCn9h73emqDNXeySvv2ZyzHAUjEExu4BBI-vxA |
CitedBy_id | crossref_primary_10_3389_fimmu_2015_00264 crossref_primary_10_1097_TP_0000000000004847 crossref_primary_10_1186_s13567_017_0423_8 crossref_primary_10_2217_imt_2017_0013 crossref_primary_10_1038_s12276_023_01133_7 crossref_primary_10_1097_QCO_0000000000000540 crossref_primary_10_1182_blood_2010_03_271361 crossref_primary_10_3390_cancers12030706 crossref_primary_10_1038_icb_2009_91 crossref_primary_10_1182_blood_2009_09_245464 crossref_primary_10_1016_j_omtm_2020_06_014 crossref_primary_10_1128_JVI_00199_15 crossref_primary_10_1189_jlb_1RU0514_241R crossref_primary_10_1146_annurev_immunol_102119_073855 crossref_primary_10_3390_pharmaceutics16010133 crossref_primary_10_3390_cancers13030473 crossref_primary_10_1080_08820139_2024_2337025 crossref_primary_10_1016_j_omto_2022_02_009 crossref_primary_10_1146_annurev_immunol_101819_074948 crossref_primary_10_1016_j_isci_2020_101709 crossref_primary_10_3389_fimmu_2017_00458 crossref_primary_10_2139_ssrn_3351831 crossref_primary_10_1002_bies_201800191 crossref_primary_10_3390_ijms19051379 crossref_primary_10_1111_imr_12968 crossref_primary_10_1016_j_clim_2016_02_003 crossref_primary_10_3389_fimmu_2022_824263 crossref_primary_10_1016_j_coviro_2019_02_005 crossref_primary_10_1038_s41577_019_0139_2 crossref_primary_10_3389_fimmu_2020_582414 crossref_primary_10_3389_fimmu_2022_919973 crossref_primary_10_1038_s41590_020_0593_9 crossref_primary_10_1080_2162402X_2017_1293210 crossref_primary_10_1007_s00251_021_01240_7 crossref_primary_10_1038_s41577_020_0307_4 crossref_primary_10_1080_2162402X_2018_1539617 crossref_primary_10_1016_j_dci_2015_08_002 crossref_primary_10_3389_fcimb_2020_00049 crossref_primary_10_1084_jem_20221140 crossref_primary_10_1084_jem_20212434 crossref_primary_10_1016_j_immuni_2018_03_030 crossref_primary_10_3390_ijms24119521 crossref_primary_10_1016_j_bioactmat_2023_03_018 crossref_primary_10_18632_oncotarget_13007 crossref_primary_10_1038_ncomms10183 crossref_primary_10_1016_j_jim_2023_113439 crossref_primary_10_1016_j_clim_2013_04_003 crossref_primary_10_1097_TP_0b013e3181efcfe9 crossref_primary_10_1093_gerona_gls079 crossref_primary_10_3390_ijms19030794 crossref_primary_10_1038_emm_2014_114 crossref_primary_10_1038_s41467_018_07405_5 crossref_primary_10_1189_jlb_0613312 crossref_primary_10_4049_jimmunol_2200380 crossref_primary_10_1126_sciimmunol_aba6232 crossref_primary_10_1038_s41598_018_37448_z crossref_primary_10_3389_fcimb_2020_00055 crossref_primary_10_4049_jimmunol_1402124 crossref_primary_10_1111_j_1365_2567_2009_03167_x crossref_primary_10_4049_jimmunol_1402001 crossref_primary_10_4049_jimmunol_1700586 crossref_primary_10_4049_jimmunol_0903654 crossref_primary_10_1016_j_immuni_2016_06_017 crossref_primary_10_1111_imr_12710 crossref_primary_10_3109_08916934_2011_606446 crossref_primary_10_1038_nrc_2015_5 crossref_primary_10_1007_s00262_016_1822_9 crossref_primary_10_1093_cei_uxad030 crossref_primary_10_3389_fimmu_2017_00432 crossref_primary_10_4049_jimmunol_1502186 crossref_primary_10_3389_fimmu_2023_1172437 crossref_primary_10_4049_jimmunol_1300497 crossref_primary_10_1007_s00262_018_2247_4 crossref_primary_10_3389_fimmu_2017_01976 crossref_primary_10_3390_vaccines7040187 crossref_primary_10_1016_j_clim_2016_11_010 crossref_primary_10_1038_s41573_019_0052_1 crossref_primary_10_1097_TP_0000000000001490 crossref_primary_10_1158_2326_6066_CIR_20_1002 crossref_primary_10_1016_j_it_2013_07_005 crossref_primary_10_3389_fcimb_2020_00102 crossref_primary_10_4049_jimmunol_1201742 crossref_primary_10_1097_PPO_0000000000000156 crossref_primary_10_1084_jem_20101831 crossref_primary_10_3389_fimmu_2023_1112059 crossref_primary_10_1084_jem_20100986 crossref_primary_10_4049_jimmunol_1800059 crossref_primary_10_1158_2326_6066_CIR_23_0324 crossref_primary_10_3390_cells12040633 crossref_primary_10_1016_j_immuni_2017_10_008 crossref_primary_10_1158_1078_0432_CCR_21_0164 crossref_primary_10_1186_s40164_024_00502_w crossref_primary_10_3389_fimmu_2022_884648 crossref_primary_10_1002_biof_107 crossref_primary_10_1002_eji_201746974 crossref_primary_10_1002_acg2_28 crossref_primary_10_1146_annurev_cancerbio_030518_055653 crossref_primary_10_3390_v16030368 crossref_primary_10_3389_fcimb_2020_00231 crossref_primary_10_1126_sciimmunol_aat9781 crossref_primary_10_1016_j_smim_2019_03_004 crossref_primary_10_1038_nri3044 crossref_primary_10_1128_jvi_00372_22 crossref_primary_10_1111_imr_12652 crossref_primary_10_1128_CVI_00288_10 crossref_primary_10_1007_s12185_024_03778_0 crossref_primary_10_1002_cyto_b_21500 crossref_primary_10_1007_s40291_021_00550_6 crossref_primary_10_1128_IAI_00908_19 crossref_primary_10_1007_s00281_018_0686_9 crossref_primary_10_1016_j_coi_2014_02_006 crossref_primary_10_1038_s41577_020_0285_6 crossref_primary_10_1038_nri3174 crossref_primary_10_3389_fimmu_2020_01512 crossref_primary_10_1002_eji_201141820 crossref_primary_10_1038_s41577_022_00732_1 crossref_primary_10_3390_jcm11195594 crossref_primary_10_1111_imr_12643 crossref_primary_10_3389_fimmu_2020_614250 crossref_primary_10_1002_eji_201445200 crossref_primary_10_1097_MOT_0b013e32832e7158 crossref_primary_10_3389_fimmu_2018_02494 crossref_primary_10_3389_fimmu_2020_01989 crossref_primary_10_1002_eji_201445339 crossref_primary_10_3389_fimmu_2022_858383 crossref_primary_10_5411_wji_v5_i1_16 crossref_primary_10_3389_fmicb_2015_01061 crossref_primary_10_1182_blood_2012_09_457184 crossref_primary_10_1186_s13073_022_01049_3 crossref_primary_10_1073_pnas_1815756115 crossref_primary_10_1038_nri3065 crossref_primary_10_1111_j_1365_294X_2011_05269_x crossref_primary_10_3389_fimmu_2019_01812 crossref_primary_10_1016_j_bbmt_2014_11_681 crossref_primary_10_1182_blood_2013_01_479790 crossref_primary_10_3389_fimmu_2020_613170 crossref_primary_10_1016_j_tem_2020_01_008 crossref_primary_10_1016_j_immuni_2013_02_010 crossref_primary_10_1016_j_jaci_2014_06_006 crossref_primary_10_1073_pnas_2016580118 crossref_primary_10_1016_j_cyto_2021_155773 crossref_primary_10_1007_s00018_015_1911_5 crossref_primary_10_1189_jlb_4A0416_192R crossref_primary_10_1097_CCO_0000000000000968 crossref_primary_10_1084_jem_20160726 crossref_primary_10_3390_vaccines8030394 crossref_primary_10_1371_journal_ppat_1000816 crossref_primary_10_3389_fimmu_2023_1256404 crossref_primary_10_1016_j_smim_2017_08_012 crossref_primary_10_3389_fimmu_2021_616853 crossref_primary_10_1111_imr_13313 crossref_primary_10_1002_ajh_26529 crossref_primary_10_1111_imr_13314 crossref_primary_10_1128_CVI_00688_13 crossref_primary_10_3389_fimmu_2018_02796 crossref_primary_10_3390_cells13050451 crossref_primary_10_1038_emm_2017_42 crossref_primary_10_1016_j_jksus_2023_102717 crossref_primary_10_1186_s12967_018_1613_5 crossref_primary_10_1155_2015_869547 crossref_primary_10_1038_d41586_024_01427_4 crossref_primary_10_1038_ni_3432 crossref_primary_10_3390_ijms241713556 crossref_primary_10_1111_bph_16472 crossref_primary_10_3389_fcimb_2020_00313 crossref_primary_10_1007_s00018_011_0796_1 crossref_primary_10_1586_14760584_2013_814871 crossref_primary_10_1093_intimm_dxr035 crossref_primary_10_1007_s12185_021_03209_4 crossref_primary_10_1152_physrev_00031_2021 crossref_primary_10_1126_sciimmunol_adk4893 crossref_primary_10_1053_j_seminhematol_2020_10_003 crossref_primary_10_1002_eji_200990041 crossref_primary_10_4049_jimmunol_0902194 crossref_primary_10_1038_s41590_019_0430_1 crossref_primary_10_1002_eji_201747177 crossref_primary_10_3389_fimmu_2017_01143 crossref_primary_10_1016_j_immuni_2023_01_016 crossref_primary_10_1155_2022_8724933 crossref_primary_10_1111_j_1365_3083_2010_02407_x crossref_primary_10_1128_JVI_03038_12 crossref_primary_10_3389_fimmu_2022_842746 crossref_primary_10_3389_fcimb_2020_00208 crossref_primary_10_1002_eji_201847931 crossref_primary_10_1039_c5tx00222b crossref_primary_10_4161_hv_29594 crossref_primary_10_1111_j_1365_294X_2011_05315_x crossref_primary_10_1038_s41586_023_06945_1 crossref_primary_10_1101_cshperspect_a029488 crossref_primary_10_1038_nri2674 crossref_primary_10_3389_fimmu_2020_00226 crossref_primary_10_1186_s40164_024_00481_y crossref_primary_10_1016_j_imbio_2015_07_012 crossref_primary_10_1186_1297_9716_42_37 crossref_primary_10_1182_blood_2012_04_419283 crossref_primary_10_1084_jem_20100762 crossref_primary_10_3389_fimmu_2017_00025 crossref_primary_10_3389_fimmu_2017_00268 crossref_primary_10_1111_febs_16073 crossref_primary_10_1182_blood_2017_08_752170 crossref_primary_10_3389_fimmu_2018_00150 crossref_primary_10_1016_j_jcyt_2014_08_003 crossref_primary_10_1016_j_cytogfr_2024_02_001 crossref_primary_10_1084_jem_20111760 crossref_primary_10_2139_ssrn_3920259 crossref_primary_10_3389_fimmu_2024_1383281 crossref_primary_10_1038_s41598_021_85960_6 crossref_primary_10_3390_cells10081955 crossref_primary_10_1016_j_it_2015_03_006 crossref_primary_10_1002_JLB_MA0718_296R crossref_primary_10_3389_fimmu_2022_913215 crossref_primary_10_1016_j_coi_2016_11_003 crossref_primary_10_1016_j_jconrel_2021_12_022 crossref_primary_10_1515_hsz_2023_0317 crossref_primary_10_2217_fvl_14_106 crossref_primary_10_1084_jem_20122248 crossref_primary_10_1016_j_it_2013_02_005 crossref_primary_10_1016_j_smim_2016_03_001 crossref_primary_10_1182_blood_2010_02_269381 crossref_primary_10_1016_j_smim_2016_05_008 crossref_primary_10_1038_ni_2039 crossref_primary_10_1189_jlb_5RU0714_360RR crossref_primary_10_1038_cmi_2013_9 crossref_primary_10_1016_j_alit_2020_11_007 crossref_primary_10_1080_2162402X_2015_1017701 crossref_primary_10_1016_j_micinf_2017_12_008 crossref_primary_10_1038_cmi_2013_8 crossref_primary_10_1038_s43018_023_00589_w crossref_primary_10_1084_jem_20141172 crossref_primary_10_1100_2012_491974 crossref_primary_10_1158_2326_6066_CIR_17_0550 crossref_primary_10_3389_fimmu_2022_886429 crossref_primary_10_1016_j_isci_2020_101171 crossref_primary_10_3390_ijms232112838 crossref_primary_10_3389_fimmu_2022_859177 crossref_primary_10_1155_2011_641702 crossref_primary_10_1111_tri_13073 crossref_primary_10_3389_fimmu_2022_887503 crossref_primary_10_1002_iid3_190 crossref_primary_10_1053_j_seminhematol_2020_11_005 crossref_primary_10_1016_j_transci_2021_103065 crossref_primary_10_1053_j_seminhematol_2020_11_003 crossref_primary_10_1182_blood_2021013972 crossref_primary_10_1002_eji_200939435 crossref_primary_10_1097_TP_0b013e31821578da crossref_primary_10_1016_j_autrev_2017_11_018 crossref_primary_10_1016_j_jtct_2022_06_025 crossref_primary_10_1016_j_reumae_2018_10_020 crossref_primary_10_1126_sciimmunol_aan3796 crossref_primary_10_4049_jimmunol_1500424 crossref_primary_10_1002_JLB_1RI0917_366R crossref_primary_10_1111_j_0105_2896_2010_00891_x crossref_primary_10_3389_fimmu_2018_00445 crossref_primary_10_3389_fimmu_2019_02728 crossref_primary_10_1084_jem_20132459 crossref_primary_10_3389_fimmu_2021_671966 crossref_primary_10_1111_cmi_13261 crossref_primary_10_1038_ni_2032 crossref_primary_10_4049_jimmunol_1601004 crossref_primary_10_1155_2019_8795673 crossref_primary_10_1038_s41467_017_02023_z crossref_primary_10_1016_j_mib_2010_05_011 crossref_primary_10_4049_jimmunol_2000839 crossref_primary_10_1016_j_immuni_2015_08_009 crossref_primary_10_18632_oncotarget_16391 crossref_primary_10_1146_annurev_immunol_020711_075005 crossref_primary_10_1111_bjh_17186 crossref_primary_10_1038_cmi_2015_96 crossref_primary_10_3389_fimmu_2018_00474 crossref_primary_10_3390_vaccines8020281 crossref_primary_10_1111_j_1365_2567_2011_03464_x crossref_primary_10_1080_08830185_2023_2172406 crossref_primary_10_3390_vaccines9101061 crossref_primary_10_1111_imr_13332 crossref_primary_10_1155_2011_861920 crossref_primary_10_1016_j_kint_2021_11_029 crossref_primary_10_3390_ijms25105151 crossref_primary_10_1007_s40778_021_00204_7 crossref_primary_10_1038_s41598_024_62968_2 crossref_primary_10_1111_imr_13319 crossref_primary_10_3389_fimmu_2022_924775 crossref_primary_10_3389_fimmu_2015_00013 crossref_primary_10_3389_fimmu_2019_01414 crossref_primary_10_1111_imr_13326 crossref_primary_10_1038_s41423_019_0212_6 crossref_primary_10_1016_j_jcyt_2018_11_001 crossref_primary_10_1111_imr_13322 crossref_primary_10_1182_bloodadvances_2021005047 crossref_primary_10_1002_eji_201545702 crossref_primary_10_3389_fimmu_2017_01322 crossref_primary_10_1080_2162402X_2015_1115178 crossref_primary_10_4110_in_2022_22_e38 crossref_primary_10_1016_j_molimm_2018_07_022 crossref_primary_10_1016_j_cell_2020_01_022 crossref_primary_10_1093_jleuko_qiac007 crossref_primary_10_3109_07853890_2011_554430 crossref_primary_10_4049_jimmunol_1000844 crossref_primary_10_2217_imt_11_102 crossref_primary_10_3389_fimmu_2018_01509 crossref_primary_10_1016_j_celrep_2019_11_043 crossref_primary_10_1002_eji_201646762 crossref_primary_10_1523_JNEUROSCI_1116_18_2018 crossref_primary_10_1002_cti2_1010 crossref_primary_10_3390_cells13060530 crossref_primary_10_1007_s11899_023_00711_w crossref_primary_10_1158_2326_6066_CIR_19_0404 crossref_primary_10_1016_j_cellimm_2010_03_014 crossref_primary_10_1016_j_ygyno_2019_01_006 crossref_primary_10_4049_jimmunol_1102997 crossref_primary_10_4049_jimmunol_2300672 crossref_primary_10_1016_j_it_2013_04_001 crossref_primary_10_1111_imr_13031 crossref_primary_10_1051_medsci_2013294012 crossref_primary_10_1038_s41423_019_0311_4 crossref_primary_10_1182_blood_2021014906 crossref_primary_10_1007_s00011_018_1174_3 crossref_primary_10_1016_j_coi_2014_04_002 crossref_primary_10_1097_SHK_0000000000002054 crossref_primary_10_1038_icb_2010_162 crossref_primary_10_3390_jof8121268 crossref_primary_10_1038_ni_3838 crossref_primary_10_3389_fmicb_2015_01525 crossref_primary_10_7554_eLife_47605 crossref_primary_10_1016_j_addr_2021_05_031 crossref_primary_10_1016_j_critrevonc_2016_04_020 crossref_primary_10_1097_IN9_0000000000000020 crossref_primary_10_1038_s41598_021_95578_3 crossref_primary_10_3390_cancers13071577 crossref_primary_10_1002_eji_201243101 crossref_primary_10_1146_annurev_immunol_093019_123619 crossref_primary_10_4049_jimmunol_1600199 crossref_primary_10_1039_C8BM00588E crossref_primary_10_1155_2015_478408 crossref_primary_10_1182_blood_2009_11_253286 crossref_primary_10_3389_fonc_2020_561372 crossref_primary_10_1007_s11427_015_4970_9 crossref_primary_10_1158_0008_5472_CAN_23_1097 crossref_primary_10_1038_nri2835 crossref_primary_10_1038_ki_2010_417 crossref_primary_10_1136_jitc_2022_006409 crossref_primary_10_1134_S1068162016060066 crossref_primary_10_1128_JVI_00169_17 crossref_primary_10_1016_j_immuni_2015_09_013 crossref_primary_10_3390_jcm8111802 crossref_primary_10_1111_j_1600_065X_2010_00900_x crossref_primary_10_1126_scitranslmed_aaf2341 crossref_primary_10_1038_leu_2011_135 crossref_primary_10_4049_jimmunol_1801648 crossref_primary_10_4049_jimmunol_1801525 crossref_primary_10_1146_annurev_virology_100220_010653 crossref_primary_10_1371_journal_ppat_1002141 crossref_primary_10_1371_journal_ppat_1004441 crossref_primary_10_3390_vaccines12070721 crossref_primary_10_1111_imr_13255 crossref_primary_10_1186_s13287_021_02655_5 crossref_primary_10_1084_jem_20160552 crossref_primary_10_1016_j_it_2022_08_004 crossref_primary_10_1016_j_smim_2017_09_008 crossref_primary_10_1097_CJI_0000000000000179 crossref_primary_10_1016_j_immuni_2015_02_013 crossref_primary_10_3389_fimmu_2016_00323 crossref_primary_10_1136_jitc_2022_004693 crossref_primary_10_3389_fimmu_2019_02381 crossref_primary_10_3390_cancers11040573 crossref_primary_10_1016_j_vetimm_2012_08_011 crossref_primary_10_1172_JCI145501 crossref_primary_10_1097_PPO_0000000000000517 crossref_primary_10_1038_s41578_021_00413_w crossref_primary_10_1101_cshperspect_a029512 crossref_primary_10_1016_j_jcyt_2013_05_022 crossref_primary_10_1002_cti2_1244 crossref_primary_10_1084_jem_20100479 crossref_primary_10_1016_j_ijpharm_2022_122034 crossref_primary_10_1007_s11904_016_0310_3 crossref_primary_10_1016_j_clim_2014_10_005 crossref_primary_10_3390_biomedicines11030766 crossref_primary_10_1016_j_molmed_2011_07_003 crossref_primary_10_3390_ijms23052782 crossref_primary_10_1002_eji_202350465 crossref_primary_10_3390_immuno1030021 crossref_primary_10_1186_s40425_019_0751_5 crossref_primary_10_3389_fimmu_2018_00737 crossref_primary_10_1016_j_mam_2021_101008 crossref_primary_10_1016_j_immuni_2013_12_011 crossref_primary_10_4049_jimmunol_1100416 crossref_primary_10_1371_journal_pone_0151721 crossref_primary_10_1038_s41598_018_37395_9 crossref_primary_10_3389_fimmu_2023_1130442 crossref_primary_10_1111_imr_12090 crossref_primary_10_1038_pr_2013_214 crossref_primary_10_1016_j_it_2016_09_005 crossref_primary_10_1016_j_it_2015_07_004 crossref_primary_10_1016_j_jaci_2013_07_006 crossref_primary_10_1371_journal_pmed_1000107 crossref_primary_10_1002_wsbm_1543 crossref_primary_10_1038_s41598_021_83005_6 crossref_primary_10_1007_s00262_022_03161_0 crossref_primary_10_1111_j_0105_2896_2010_00904_x crossref_primary_10_1016_j_bbmt_2016_11_018 crossref_primary_10_4049_jimmunol_2000430 crossref_primary_10_3390_cancers14225657 crossref_primary_10_3390_cancers13164129 crossref_primary_10_1016_j_jaci_2022_09_022 crossref_primary_10_1177_17534259211001512 crossref_primary_10_1038_s41423_020_00574_8 crossref_primary_10_1002_eji_201747128 crossref_primary_10_1111_cod_13871 crossref_primary_10_3390_cells13020134 crossref_primary_10_4049_jimmunol_2300843 crossref_primary_10_1007_s00018_014_1676_2 crossref_primary_10_1080_14712598_2023_2174015 crossref_primary_10_1038_nri_2015_9 crossref_primary_10_3389_fimmu_2024_1361194 crossref_primary_10_1186_s40364_022_00364_6 crossref_primary_10_1016_j_cellsig_2015_05_012 crossref_primary_10_1016_j_coi_2018_05_013 crossref_primary_10_1371_journal_ppat_1003548 crossref_primary_10_1126_science_aaz8777 crossref_primary_10_1073_pnas_1722374115 crossref_primary_10_1111_imcb_12658 crossref_primary_10_1126_science_1198687 crossref_primary_10_1016_j_coi_2010_11_008 crossref_primary_10_4049_jimmunol_1003046 crossref_primary_10_1016_j_celrep_2024_113786 crossref_primary_10_1158_1078_0432_CCR_21_0851 crossref_primary_10_1093_jleuko_qiac003 crossref_primary_10_1097_COH_0b013e3283499df7 crossref_primary_10_1084_jem_20140798 crossref_primary_10_1371_journal_ppat_1011159 crossref_primary_10_4161_onci_23811 crossref_primary_10_1093_intimm_dxad029 crossref_primary_10_3389_fimmu_2017_00967 crossref_primary_10_1051_medsci_2009256_7559 crossref_primary_10_1084_jem_20120944 crossref_primary_10_1097_MOT_0000000000000707 crossref_primary_10_1007_s00262_011_1122_3 crossref_primary_10_1111_imm_12447 crossref_primary_10_1016_j_jaci_2009_11_020 crossref_primary_10_1371_journal_pone_0036011 crossref_primary_10_1016_j_jhep_2018_11_009 crossref_primary_10_2147_IDR_S407742 crossref_primary_10_1016_j_coi_2019_12_001 crossref_primary_10_1016_j_immuni_2016_05_008 crossref_primary_10_3390_microorganisms8070989 crossref_primary_10_1002_JLB_MR0718_303R crossref_primary_10_1016_j_immuni_2011_11_016 crossref_primary_10_1155_2016_1376595 crossref_primary_10_1016_j_bbmt_2014_01_006 crossref_primary_10_1007_s11596_013_1150_7 crossref_primary_10_1016_j_coi_2017_08_002 crossref_primary_10_1016_j_addr_2021_113860 crossref_primary_10_1016_j_ijid_2023_02_018 crossref_primary_10_1172_JCI66381 crossref_primary_10_3389_fimmu_2020_00918 crossref_primary_10_1172_JCI90387 crossref_primary_10_3389_fonc_2022_1077053 crossref_primary_10_4049_jimmunol_0901644 crossref_primary_10_1080_2162402X_2016_1274478 crossref_primary_10_3389_fimmu_2021_732135 crossref_primary_10_3389_fimmu_2022_953849 crossref_primary_10_4049_jimmunol_1201528 crossref_primary_10_1038_s41423_020_00530_6 crossref_primary_10_1016_j_reuma_2018_10_012 crossref_primary_10_1038_s41590_022_01342_8 crossref_primary_10_1016_j_chom_2011_04_006 crossref_primary_10_1007_s00281_014_0441_9 crossref_primary_10_4049_jimmunol_2000196 crossref_primary_10_3389_fimmu_2022_1005517 crossref_primary_10_1016_j_xcrm_2022_100783 crossref_primary_10_1093_discim_kyad003 crossref_primary_10_1016_j_blre_2023_101073 crossref_primary_10_1016_j_imlet_2020_02_012 crossref_primary_10_1002_eji_201646819 crossref_primary_10_1016_j_jneuroim_2020_577353 crossref_primary_10_1016_j_healun_2021_03_018 crossref_primary_10_3389_fimmu_2021_648580 crossref_primary_10_3390_cancers13164037 crossref_primary_10_1172_JCI162581 crossref_primary_10_1182_blood_2022016200 crossref_primary_10_1038_embor_2009_203 crossref_primary_10_1084_jem_20130417 crossref_primary_10_1111_imm_12898 crossref_primary_10_1016_j_biopha_2023_115718 crossref_primary_10_1002_wsbm_1486 crossref_primary_10_1016_j_chom_2012_06_006 crossref_primary_10_1038_ncomms11686 crossref_primary_10_1002_eji_201141760 crossref_primary_10_1016_j_imbio_2022_152304 crossref_primary_10_3390_vaccines8040677 crossref_primary_10_1007_s13402_023_00909_3 crossref_primary_10_1155_2014_205796 crossref_primary_10_1158_0008_5472_CAN_10_3025 crossref_primary_10_1038_s41598_017_09259_1 crossref_primary_10_1038_s41590_018_0082_6 crossref_primary_10_1016_j_isci_2022_105137 crossref_primary_10_1038_s41568_022_00491_0 crossref_primary_10_1016_j_immuni_2016_06_024 crossref_primary_10_3389_fimmu_2022_803995 crossref_primary_10_4049_jimmunol_1003351 crossref_primary_10_1016_j_ymthe_2022_02_012 crossref_primary_10_3390_cancers12020316 crossref_primary_10_3389_fimmu_2023_1328094 crossref_primary_10_1186_s12977_018_0450_1 crossref_primary_10_1097_MOT_0b013e32833b7903 crossref_primary_10_4049_jimmunol_1502049 crossref_primary_10_1182_blood_2020006619 crossref_primary_10_1016_j_cub_2009_02_023 crossref_primary_10_1080_2162402X_2017_1317411 crossref_primary_10_1084_jem_20151998 crossref_primary_10_4049_jimmunol_2000186 crossref_primary_10_1080_2162402X_2016_1219009 crossref_primary_10_3389_fimmu_2017_00930 crossref_primary_10_1016_j_ygeno_2020_09_031 crossref_primary_10_1016_j_ajpath_2013_06_030 crossref_primary_10_1371_journal_ppat_1009132 crossref_primary_10_1016_j_it_2016_01_005 crossref_primary_10_1002_eji_201545497 crossref_primary_10_1016_j_chom_2018_12_006 crossref_primary_10_1371_journal_pone_0032821 crossref_primary_10_1016_j_cub_2013_07_015 crossref_primary_10_1038_mi_2016_105 crossref_primary_10_1002_hep_28122 crossref_primary_10_1186_s12885_015_1264_3 crossref_primary_10_26508_lsa_202000723 crossref_primary_10_1371_journal_pone_0121258 crossref_primary_10_1016_j_neo_2023_100940 crossref_primary_10_1186_1742_4690_7_84 crossref_primary_10_1158_2159_8290_CD_20_0312 crossref_primary_10_1002_JLB_1MA0720_654RR crossref_primary_10_1093_brain_aws159 crossref_primary_10_1016_j_biologicals_2012_07_006 crossref_primary_10_4049_jimmunol_1200008 crossref_primary_10_1007_s11427_016_0334_2 crossref_primary_10_3390_ijms20184514 crossref_primary_10_1038_s41590_021_00909_1 crossref_primary_10_1016_j_it_2017_03_005 crossref_primary_10_4049_jimmunol_1401990 crossref_primary_10_1007_s13238_019_0647_7 crossref_primary_10_1084_jem_20201731 crossref_primary_10_1097_MOT_0b013e32833bfb33 crossref_primary_10_1016_j_bbrc_2022_04_018 crossref_primary_10_4049_jimmunol_1600973 crossref_primary_10_1128_JVI_00731_19 crossref_primary_10_3390_antib3010001 |
Cites_doi | 10.1056/NEJM198906293202605 10.1038/ni1332 10.1038/ni1583 10.1016/S1074-7613(00)80605-6 10.1182/blood-2001-12-0293 10.1016/j.immuni.2007.04.010 10.1016/j.coi.2007.10.005 10.1084/jem.191.8.1341 10.1016/j.coi.2008.03.005 10.1016/S095279150200002X 10.1016/S0952-7915(00)00241-7 10.1146/annurev.immunol.23.021704.115526 10.1084/jem.20021836 10.4049/jimmunol.164.10.5215 10.4049/jimmunol.176.3.1517 10.1084/jem.20030630 10.1016/j.immuni.2007.03.006 10.1038/425037a 10.1038/ni796 10.1016/j.it.2003.10.012 10.1016/j.it.2005.02.001 10.1038/nri1055 10.1016/j.coi.2006.05.002 10.4049/jimmunol.181.3.1627 10.1146/annurev.immunol.20.083001.084359 10.1084/jem.20031051 10.1097/ACI.0b013e3280106b65 10.1038/ni880 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 10, 2009 2009 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 10, 2009 – notice: 2009 by The National Academy of Sciences of the USA |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.0813192106 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | CrossRef AIDS and Cancer Research Abstracts Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 1919 |
ExternalDocumentID | 1645329351 10_1073_pnas_0813192106 19181844 106_6_1915 40421697 US201301593103 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI051345 – fundername: NIAID NIH HHS grantid: AI51345 – fundername: Howard Hughes Medical Institute – fundername: NICHD NIH HHS grantid: T32 HD043010 – fundername: NIAID NIH HHS grantid: R37 AI034385 – fundername: NIAID NIH HHS grantid: AI33903 – fundername: NIAID NIH HHS grantid: R01 AI034385 – fundername: NIAID NIH HHS grantid: AI34385 – fundername: NIAID NIH HHS grantid: R01 AI033903 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ADACV AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c662t-a64001359962bd60d561f0064bd19640cef437857f37392d9dcc3760397355dc3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:17:52 EDT 2024 Fri Oct 25 02:23:31 EDT 2024 Thu Oct 10 20:17:43 EDT 2024 Fri Dec 06 01:06:48 EST 2024 Sat Sep 28 07:55:04 EDT 2024 Thu May 30 15:50:00 EDT 2019 Wed Nov 11 00:29:08 EST 2020 Tue Dec 10 23:05:35 EST 2024 Wed Dec 27 19:41:54 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c662t-a64001359962bd60d561f0064bd19640cef437857f37392d9dcc3760397355dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed by Wayne M. Yokoyama, December 23, 2008 Author contributions: M.A.C., J.M.E., P.A.K., J.A.C., and W.M.Y. designed research; M.A.C., J.M.E., P.A.K., L.Y., J.A.C., and W.M.Y. performed research; M.A.C., J.M.E., P.A.K., J.A.C., and W.M.Y. analyzed data; and M.A.C. and W.M.Y. wrote the paper. |
OpenAccessLink | https://doi.org/10.1073/pnas.0813192106 |
PMID | 19181844 |
PQID | 201422977 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | proquest_journals_201422977 crossref_primary_10_1073_pnas_0813192106 pubmed_primary_19181844 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2644138 pnas_primary_106_6_1915_fulltext jstor_primary_40421697 proquest_miscellaneous_20237401 pnas_primary_106_6_1915 fao_agris_US201301593103 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2009-02-10 |
PublicationDateYYYYMMDD | 2009-02-10 |
PublicationDate_xml | – month: 02 year: 2009 text: 2009-02-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences – name: National Acad Sciences |
References | 11861602 - Annu Rev Immunol. 2002;20:197-216 12496964 - Nat Immunol. 2003 Feb;4(2):175-81 17088643 - Curr Opin Allergy Clin Immunol. 2006 Dec;6(6):399-409 18083507 - Curr Opin Immunol. 2008 Feb;20(1):39-48 16424180 - J Immunol. 2006 Feb 1;176(3):1517-24 15797508 - Trends Immunol. 2005 Apr;26(4):186-92 12695489 - J Exp Med. 2003 Apr 21;197(8):977-84 12955131 - Nature. 2003 Sep 4;425(6953):37-8 14530376 - J Exp Med. 2003 Oct 6;198(7):1069-76 17398124 - Immunity. 2007 Apr;26(4):503-17 17540585 - Immunity. 2007 Jun;26(6):798-811 12669021 - Nat Rev Immunol. 2003 Apr;3(4):304-16 14698284 - Trends Immunol. 2004 Jan;25(1):47-52 11498302 - Curr Opin Immunol. 2001 Aug;13(4):458-64 10799881 - J Immunol. 2000 May 15;164(10):5215-20 16765573 - Curr Opin Immunol. 2006 Aug;18(4):391-8 18641298 - J Immunol. 2008 Aug 1;181(3):1627-31 16617337 - Nat Immunol. 2006 May;7(5):507-16 18439809 - Curr Opin Immunol. 2008 Jun;20(3):344-52 15771571 - Annu Rev Immunol. 2005;23:225-74 12495732 - Curr Opin Immunol. 2003 Feb;15(1):45-51 2543925 - N Engl J Med. 1989 Jun 29;320(26):1731-5 9729043 - Immunity. 1998 Aug;9(2):229-37 17969445 - Curr Top Microbiol Immunol. 2007;316:97-117 18425104 - Nat Immunol. 2008 May;9(5):481-5 10770801 - J Exp Med. 2000 Apr 17;191(8):1341-54 18727489 - Curr Top Microbiol Immunol. 2008;321:101-22 14623912 - J Exp Med. 2003 Nov 17;198(10):1583-93 12393617 - Blood. 2002 Nov 15;100(10):3633-8 12006976 - Nat Immunol. 2002 Jun;3(6):523-8 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_30_2 e_1_3_3_10_2 Young HA (e_1_3_3_23_2) 2007; 316 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 Scalzo AA (e_1_3_3_11_2) 2008; 321 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_1_2 doi: 10.1056/NEJM198906293202605 – ident: e_1_3_3_14_2 doi: 10.1038/ni1332 – volume: 316 start-page: 97 year: 2007 ident: e_1_3_3_23_2 article-title: IFN-gamma: Recent advances in understanding regulation of expression, biological functions, and clinical applications publication-title: Curr Top Microbiol Immunol contributor: fullname: Young HA – ident: e_1_3_3_4_2 doi: 10.1038/ni1583 – ident: e_1_3_3_21_2 doi: 10.1016/S1074-7613(00)80605-6 – ident: e_1_3_3_15_2 doi: 10.1182/blood-2001-12-0293 – ident: e_1_3_3_18_2 doi: 10.1016/j.immuni.2007.04.010 – ident: e_1_3_3_3_2 doi: 10.1016/j.coi.2007.10.005 – ident: e_1_3_3_30_2 doi: 10.1084/jem.191.8.1341 – ident: e_1_3_3_10_2 doi: 10.1016/j.coi.2008.03.005 – ident: e_1_3_3_6_2 doi: 10.1016/S095279150200002X – ident: e_1_3_3_5_2 doi: 10.1016/S0952-7915(00)00241-7 – ident: e_1_3_3_9_2 doi: 10.1146/annurev.immunol.23.021704.115526 – ident: e_1_3_3_17_2 doi: 10.1084/jem.20021836 – ident: e_1_3_3_28_2 doi: 10.4049/jimmunol.164.10.5215 – ident: e_1_3_3_16_2 doi: 10.4049/jimmunol.176.3.1517 – ident: e_1_3_3_22_2 doi: 10.1084/jem.20030630 – ident: e_1_3_3_19_2 doi: 10.1016/j.immuni.2007.03.006 – ident: e_1_3_3_25_2 doi: 10.1038/425037a – ident: e_1_3_3_29_2 doi: 10.1038/ni796 – ident: e_1_3_3_13_2 doi: 10.1016/j.it.2003.10.012 – ident: e_1_3_3_26_2 doi: 10.1016/j.it.2005.02.001 – ident: e_1_3_3_8_2 doi: 10.1038/nri1055 – ident: e_1_3_3_7_2 doi: 10.1016/j.coi.2006.05.002 – ident: e_1_3_3_20_2 doi: 10.4049/jimmunol.181.3.1627 – volume: 321 start-page: 101 year: 2008 ident: e_1_3_3_11_2 article-title: Cmv1 and natural killer cell responses to murine cytomegalovirus infection publication-title: Curr Top Microbiol Immunol contributor: fullname: Scalzo AA – ident: e_1_3_3_24_2 doi: 10.1146/annurev.immunol.20.083001.084359 – ident: e_1_3_3_27_2 doi: 10.1084/jem.20031051 – ident: e_1_3_3_2_2 doi: 10.1097/ACI.0b013e3280106b65 – ident: e_1_3_3_12_2 doi: 10.1038/ni880 |
SSID | ssj0009580 |
Score | 2.5526614 |
Snippet | The mammalian immune response to infection is mediated by 2 broad arms, the innate and adaptive immune systems. Innate immune cells are a first-line defense... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1915 |
SubjectTerms | Adoptive transfer Animals Antigens Biological Sciences Cells Cytokines Cytokines - immunology Granzymes - analysis Immune system Immunity, Innate Immunologic Memory Infections Innate immunity Interferon-gamma - biosynthesis Killer Cells, Natural - immunology Killer Cells, Natural - transplantation Lymphocyte Activation - immunology Lymphocyte Transfusion Lymphocytes Memory Mice Mice, Knockout Natural killer cells Pathogens Receptors |
Title | Cytokine-induced memory-like natural killer cells |
URI | https://www.jstor.org/stable/40421697 http://www.pnas.org/content/106/6/1915.abstract https://www.ncbi.nlm.nih.gov/pubmed/19181844 https://www.proquest.com/docview/201422977 https://search.proquest.com/docview/20237401 https://pubmed.ncbi.nlm.nih.gov/PMC2644138 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5RJhbEm_AoGRjKkD4cx3FGVIEqJBASVGKzYjuBqm1a0TLw77lzk5YiWNgiObajO9vf59z5M8AlQobOeUcHcWRlgM86kCalKHuatGUeIig5tc8H0evzu5foZQOi6iyMS9o3etAsRuNmMXhzuZXTsWlVeWKtx_uuA_FQtmpQQ_ittuhLpV25OHfCcPnljFd6PnHYmhbprIkYGJIIWNvdXpQgwknO11CplqeTKj2RNE-x1m_882ca5Tdcut2B7ZJQ-teLD9-FjazYg91yys78RqkrfbUPne7nfDJEVhngPhw9av0xpdl-BqPBMPOdwic2NHSHA336oT87gP7tzXO3F5Q3JgRGCDYPUsGJ05HkCtNWtC2yo5xYh7YkvNU2Wc7R_FGMTkBiZBNrDGXFIClB3mFNeAibxaTIjsE3edYxLDFSCiR1mkljcbIzjfunNIkM96BRWUxNF8IYygW041CRxdTKzh4co0VV-orLluo_MQqWIouiG848OHRmXjbBcRHpiCT24Mi1smpaKKHQXZEH_h8lKi_zZTw4rbylyik5U9gtZwzprgcXy1KcS2TPtMgmH_QKC-mGQurceXbVSTlOPIjXfL58gVS610tw8Dq17nKwnvy75ilsLUJYDDHzDDbn7x_ZOTKhua4TDkV1N_6_AO4oAkc |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB0VOMAFwS4fgd0lhz10D2kbx3Gc46oClQWqlbaVuFmxnUBVmla0HPj3zLhJS1e7F26RHI-jGY_nOTN-BviOIUMXPNRBElsZ4LMOpMkoy56lHVlEGJQc22df9Ib8131834C4PgvjivaNHrXKp0mrHD262srZxLTrOrH277uuC-KRbG_BThwlaVhv0ldcu3J58oThAswZrxl9kqg9K7N5C6NgRDRgHXd_UYoxTnK-EZe2imxaFygS6yn2-hcC_buQ8l1kujqA_QpS-j-Xn34Ijbz8BIeV0879ZsUs_eMzhN3XxXSMuDLAnTja1PoTKrR9DZ5G49x3HJ8oaOyOB_r0S39-BMOry0G3F1R3JgRGCLYIMsEJ1RHpCtNWdCzio4Jwh7ZEvdUxecHRAHGCZkBoZFNrDNXFICxB5GFNdAzb5bTMT8E3RR4alhopBcI6zaSx6O5M4w4qS2PDPWjWGlOzJTWGcintJFKkMbXWswenqFGVPeDCpYZ_GKVLEUfRHWceHDs1r0RwXEZCkSYenDgpa9FCCYXmij3w_9OiiqpixoPz2lqqcsq5wmE5Ywh4PbhYtaI3kT6zMp--0CssojsKaXBn2fUg1TzxINmw-eoF4unebMHp6_i6q-l69uGeF7DbG9zdqtvr_s057C0TWgwj6BfYXjy_5F8RFy30N-cFb5oiBLY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4tICEuCFge4ZnDHuCQpnUcxzmiQsUuLEJaKnGzYjuBqjStaDnw75lxk5YiuOwtkmM7mvF4PmfG3wD8QpehC97SQRJbGeCzDqTJKMqepU1ZROiUHNvnrbjq8j8P8cOHUl8uad_oXqN8HjTK3pPLrRwNTFjniYV3f9vOiUcyHNkiXIKVOMJFVh_UZ3y7cnr7hOEmzBmvWX2SKByV2biBnjAiKrCmq2GUop-TnC_4pqUiG9ZJisR8ir2-QqGfkyk_eKfOBqxXsNI_n37-JvzIyy3YrAx37J9W7NJnP6HVfpsM-4gtAzyNo16tP6Bk27fgudfPfcfziQP13RVBn37rj7eh27m8b18FVd2EwAjBJkEmOCE7Il5h2oqmRYxUEPbQlui3miYvOCohTlAVCI9sao2h3BiEJog-rIl2YLkclvke-KbIW4alRkqB0E4zaSyaPNN4isrS2HAPTmuJqdGUHkO5sHYSKZKYmsvZgz2UqMoecfNS3X-MQqaIpajOmQc7TsyzIThuJS2RJh7sulHmQwslFKor9sD_pkUVVdaMBwe1tlRlmGOF03LGEPR6cDJrRYsieWZlPnylV1hEdQppcqfZ-STVOvEgWdD57AXi6l5swSXsOLurJbv_3z1PYPXuoqNuft9eH8DaNKbF0IkewvLk5TU_Qmg00cfOCN4BdzsFyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytokine-Induced+Memory-like+Natural+Killer+Cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cooper%2C+Megan+A.&rft.au=Elliott%2C+Julie+M.&rft.au=Keyel%2C+Peter+A.&rft.au=Yang%2C+Liping&rft.date=2009-02-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=106&rft.issue=6&rft.spage=1915&rft.epage=1919&rft_id=info:doi/10.1073%2Fpnas.0813192106&rft.externalDocID=40421697 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F6.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F6.cover.gif |