Bridging scales in cancer progression: Mapping genotype to phenotype using neural networks

In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evo...

Full description

Saved in:
Bibliographic Details
Published inSeminars in cancer biology Vol. 30; pp. 30 - 41
Main Authors Gerlee, Philip, Kim, Eunjung, Anderson, Alexander R.A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2015
Subjects
Online AccessGet full text
ISSN1044-579X
1096-3650
1096-3650
DOI10.1016/j.semcancer.2014.04.013

Cover

Abstract In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the micro-environment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions.
AbstractList In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the micro-environment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions.
In this review we summarize our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the microenvironment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions.
In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the micro-environment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions.In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the micro-environment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions.
Abstract In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the micro-environment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions.
Author Gerlee, Philip
Kim, Eunjung
Anderson, Alexander R.A.
Author_xml – sequence: 1
  givenname: Philip
  surname: Gerlee
  fullname: Gerlee, Philip
  email: philip.gerlee@moffitt.org
– sequence: 2
  givenname: Eunjung
  surname: Kim
  fullname: Kim, Eunjung
– sequence: 3
  givenname: Alexander R.A.
  orcidid: 0000-0002-2536-4383
  surname: Anderson
  fullname: Anderson, Alexander R.A.
  email: alexander.anderson@moffitt.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24830623$$D View this record in MEDLINE/PubMed
https://research.chalmers.se/publication/226967$$DView record from Swedish Publication Index
BookMark eNqNkt1u1DAQhSNURH_gFSCX3Oxix46TIFFUKgpIRVwUJMTNyHEmu95m7WAnrfbtO2G7Fa2EqGTJHs2Zb8aac5jsOe8wSV5xNueMqzerecS10c5gmGeMyzmjw8WT5ICzSs2Eytne9JZylhfVz_3kMMYVY6ySXD5L9jNZCqYycZD8-hBss7BukUajO4ypdemWm_bBLwLGaL17m37VfT-pFuj8sOkxHXzaL3fBGKecwzHojq7h2ofL-Dx52uou4ovb-yj5cfbx--nn2fm3T19OT85nRqlsmIm6wUZqwXJe6LKttCx53VRKNNqoNhcUZaWRhcxFXWU1IqpacZmrTNf0oUYcJRdbbrzGfqyhD3atwwa8tkDzow5mCWapuzWGCBGB5YZLmbWgMhQgK5GDbssWaqnbAplSqBVRj7dUQq6xMegG-tw9-P2Ms0tY-CugOUVZcgK8vgUE_3vEOMDaRoNdpx36MQJXeSF4ySpB0pd_97prslsTCd5tBSb4GAO2YOygB9oMtbYdcAaTLWAFd7aAyRbA6PCpvnhQv2vx_8qTbSXSBq8sZaOxSLLGBjQDNN4-gnH8gGE66yz57RI3GFd-DI4MAhxiBgwuJttOruWSHKv-AN7_G_CoEW4AyrUEvQ
CitedBy_id crossref_primary_10_1007_s12672_025_02064_7
crossref_primary_10_1177_1073274820946804
crossref_primary_10_1371_journal_pbio_2002930
crossref_primary_10_3390_cancers15153796
crossref_primary_10_1534_genetics_116_193474
crossref_primary_10_1098_rsif_2019_0332
crossref_primary_10_1007_s11831_020_09405_5
crossref_primary_10_2217_pme_15_5
crossref_primary_10_4137_CIN_S19343
crossref_primary_10_1371_journal_pcbi_1007360
crossref_primary_10_1016_j_semcancer_2014_06_005
Cites_doi 10.1093/bioinformatics/bts514
10.1056/NEJMoa1113205
10.1016/j.neucom.2003.10.017
10.1103/PhysRevE.65.021907
10.1038/nrc2329
10.1093/carcin/21.3.485
10.1007/s11538-009-9399-5
10.1016/j.jtbi.2006.12.004
10.1038/nrc3599
10.1038/376307a0
10.1016/S0022-5193(05)80268-1
10.7326/0003-4819-115-11-843
10.1002/glia.20334
10.1016/j.jtbi.2009.03.005
10.1038/nrc3287
10.1038/sj.onc.1210025
10.1186/1471-2105-7-S1-S7
10.1016/j.cell.2013.03.019
10.1016/j.jtbi.2007.01.027
10.1074/jbc.M104391200
10.1002/emmm.201101131
10.1038/nrc3447
10.1007/978-4-431-54394-7_8
10.1158/1078-0432.CCR-09-1070
10.1002/1097-0142(19941201)74:11<2944::AID-CNCR2820741109>3.0.CO;2-F
10.1038/nrc2808
10.1093/imammb/dqi005
10.1016/j.jtbi.2006.06.034
10.1093/carcin/bgp261
10.1038/cddis.2013.249
10.1038/nature03095
10.1056/NEJMoa1103782
10.1073/pnas.0907676107
10.1016/j.cell.2006.09.042
10.1038/nrm2805
10.3934/mbe.2010.7.385
10.1016/S0140-6736(12)60868-X
10.1038/jid.2009.177
10.1016/j.jtbi.2007.10.038
10.1002/int.4550080406
10.1098/rsfs.2013.0020
10.1073/pnas.1203559109
10.1016/j.jtbi.2013.08.016
10.1016/j.biosystems.2008.10.007
10.1111/j.1755-148X.2010.00786.x
10.1038/nrc1276
10.1056/NEJMoa1002011
10.1038/msb.2011.71
10.1038/msb.2011.17
10.1158/0008-5472.CAN-13-1720
10.1016/j.jtbi.2012.07.026
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
F1S
DOI 10.1016/j.semcancer.2014.04.013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1096-3650
EndPage 41
ExternalDocumentID oai_research_chalmers_se_05c1442f_62e3_4935_af8f_b4af7e066ea6
PMC4533881
24830623
10_1016_j_semcancer_2014_04_013
S1044579X14000613
1_s2_0_S1044579X14000613
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA151924
– fundername: NCI NIH HHS
  grantid: U01CA151924
– fundername: NCI NIH HHS
  grantid: U54 CA143970
– fundername: NCI NIH HHS
  grantid: U54 CA113007
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IH2
IHE
J1W
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UDS
UNMZH
XPP
Z5R
ZMT
ZU3
~G-
0SF
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c662t-3bded4a30517a8f9a481bd963dac6f5381b28c47453b92beee6b614562ab009d3
IEDL.DBID AIKHN
ISSN 1044-579X
1096-3650
IngestDate Thu Aug 21 06:26:54 EDT 2025
Thu Aug 21 14:35:20 EDT 2025
Thu Sep 04 23:11:47 EDT 2025
Mon Jul 21 05:49:13 EDT 2025
Thu Apr 24 22:55:27 EDT 2025
Tue Jul 01 00:25:34 EDT 2025
Fri Feb 23 02:17:49 EST 2024
Sun Feb 23 10:18:42 EST 2025
Tue Aug 26 20:02:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Evolution
Microenvironment
Neural network
Drug resistance
Genotype to phenotype map
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-3bded4a30517a8f9a481bd963dac6f5381b28c47453b92beee6b614562ab009d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2536-4383
OpenAccessLink http://doi.org/10.1016/j.semcancer.2014.04.013
PMID 24830623
PQID 1657318093
PQPubID 23479
PageCount 12
ParticipantIDs swepub_primary_oai_research_chalmers_se_05c1442f_62e3_4935_af8f_b4af7e066ea6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4533881
proquest_miscellaneous_1657318093
pubmed_primary_24830623
crossref_citationtrail_10_1016_j_semcancer_2014_04_013
crossref_primary_10_1016_j_semcancer_2014_04_013
elsevier_sciencedirect_doi_10_1016_j_semcancer_2014_04_013
elsevier_clinicalkeyesjournals_1_s2_0_S1044579X14000613
elsevier_clinicalkey_doi_10_1016_j_semcancer_2014_04_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Seminars in cancer biology
PublicationTitleAlternate Semin Cancer Biol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gerlee, Anderson (bib0160) 2009; 95
Anderson, Quaranta (bib0005) 2008; 8
Haykin (bib0090) 1999
Leung, Engeler, Frank (bib0075) 1990; 1
Kim, Kim, Lee (bib0220) 2010; 363
Craene, Berx (bib0040) 2013; 13
Farin, Suzuki, Weiker, Goldman, Bruce, Canoll (bib0270) 2006; 53
Ferreira, Martins, Vilela (bib0175) 2002; 65
Flaherty, Puzanov, Kim, Ribas, McArthur, Sosman (bib0215) 2010; 363
Cokol, Chua, Tasan, Mutlu, Weinstein, Suzuki (bib0055) 2011; 7
Nelander, Wang, Nilsson, She, Pratilas, Rosen (bib0145) 2008; 4
Ellis, Hicklin (bib0015) 2009; 15
Jörnsten, Abenius, Kling, Schmidt, Johansson, Nordling (bib0250) 2011; 7
Saunders, Simpson, Thompson, Hill, Endo-Munoz, Leggatt (bib0025) 2012; 4
Vohradsky (bib0135) 2001; 276
Gerlee, Anderson (bib0115) 2009; 259
Popławski, Agero, Gens, Swat, Glazier, Anderson (bib0180) 2009; 71
Al-Mamun, Brown, Hossain, Fall, Wagstaff, Bass (bib0150) 2013; 337
Noman, Palafox, Iba (bib0205) 2014
Romero, Arnold (bib0190) 2009; 10
Weaver, Workman, Stormo (bib0290) 1999
Gerlinger, Rowan, Horswell, Larkin, Endesfelder, Gronroos (bib0010) 2012; 366
Cavallaro, Christofori (bib0285) 2004; 4
Zhang, Athale, Deisboeck (bib0070) 2007; 244
Lieberman, Slack, Pandolfi, Chinnaiyan, Agami, Mendell (bib0035) 2013; 153
Hauschild, Grob, Demidov, Jouary, Gutzmer, Millward (bib0230) 2012; 380
Oyama, Okawa, Nakagawa, Takaoka, Andl, Kim (bib0255) 2007; 26
Basanta, Anderson (bib0045) 2013; 3
Scott, Kuhn, Anderson (bib0050) 2012; 12
Smalley (bib0210) 2010; 130
Sawyers (bib0185) 2004; 432
Macklin, Lowengrub (bib0170) 2007; 245
Byrne (bib0060) 2010; 10
Kazmi, Hossain, Phillips, Al-Mamun, Bass (bib0155) 2012; 313
Kreeger, Lauffenburger (bib0030) 2010; 31
Bray (bib0130) 1995; 376
Margolin, Nemenman, Basso, Wiggins, Stolovitzky, Favera (bib0245) 2006; 7
Narayanan, Keedwell, Gamalielsson, Tatineni (bib0140) 2004; 61
Beckman, Schemmann, Yeang (bib0195) 2012; 109
Hill, Lu, Molina, Heiser, Spellman, Speed (bib0240) 2012; 28
Vaira, Fedele, Pyne, Fasoli, Zadra, Bailey (bib0275) 2010; 107
Gerlee, Anderson (bib0110) 2008; 250
Floyd, Lo, Yun, Sullivan, Kornguth (bib0085) 1994; 74
Baxt (bib0080) 1991; 115
Yao (bib0095) 1993; 8
Bray (bib0125) 1990; 143
Vörsmann, Groeber, Walles, Busch, Beissert, Walczak (bib0265) 2013; 4
Holohan, Van Schaeybroeck, Longley, Johnston (bib0020) 2013; 13
Anderson (bib0065) 2005; 22
Chapman, Hauschild, Robert, Haanen, Ascierto, Larkin (bib0225) 2011; 364
Lowe, Lin (bib0280) 2000; 21
Noman, Palafox, Iba (bib0200) 2013; 6
Gerlee, Anderson (bib0105) 2007; 246
Anderson, Weaver, Cummings, Quaranta (bib0165) 2006; 127
Meyer (bib0100) 1998; 3
Gerlee, Anderson (bib0120) 2010; 7
Kim, Rebecca, Fedorenko, Messina, Mathew, Maria-Engler (bib0235) 2013; 73
Brohem, Cardeal, Tiago, Soengas, Barros, Maria-Engler (bib0260) 2011; 24
Cavallaro (10.1016/j.semcancer.2014.04.013_bib0285) 2004; 4
Jörnsten (10.1016/j.semcancer.2014.04.013_bib0250) 2011; 7
Scott (10.1016/j.semcancer.2014.04.013_bib0050) 2012; 12
Al-Mamun (10.1016/j.semcancer.2014.04.013_bib0150) 2013; 337
Gerlee (10.1016/j.semcancer.2014.04.013_bib0120) 2010; 7
Weaver (10.1016/j.semcancer.2014.04.013_bib0290) 1999
Hauschild (10.1016/j.semcancer.2014.04.013_bib0230) 2012; 380
Noman (10.1016/j.semcancer.2014.04.013_bib0200) 2013; 6
Gerlee (10.1016/j.semcancer.2014.04.013_bib0105) 2007; 246
Anderson (10.1016/j.semcancer.2014.04.013_bib0005) 2008; 8
Gerlinger (10.1016/j.semcancer.2014.04.013_bib0010) 2012; 366
Kreeger (10.1016/j.semcancer.2014.04.013_bib0030) 2010; 31
Brohem (10.1016/j.semcancer.2014.04.013_bib0260) 2011; 24
Gerlee (10.1016/j.semcancer.2014.04.013_bib0115) 2009; 259
Saunders (10.1016/j.semcancer.2014.04.013_bib0025) 2012; 4
Baxt (10.1016/j.semcancer.2014.04.013_bib0080) 1991; 115
Lieberman (10.1016/j.semcancer.2014.04.013_bib0035) 2013; 153
Yao (10.1016/j.semcancer.2014.04.013_bib0095) 1993; 8
Vörsmann (10.1016/j.semcancer.2014.04.013_bib0265) 2013; 4
Sawyers (10.1016/j.semcancer.2014.04.013_bib0185) 2004; 432
Beckman (10.1016/j.semcancer.2014.04.013_bib0195) 2012; 109
Vaira (10.1016/j.semcancer.2014.04.013_bib0275) 2010; 107
Macklin (10.1016/j.semcancer.2014.04.013_bib0170) 2007; 245
Hill (10.1016/j.semcancer.2014.04.013_bib0240) 2012; 28
Flaherty (10.1016/j.semcancer.2014.04.013_bib0215) 2010; 363
Byrne (10.1016/j.semcancer.2014.04.013_bib0060) 2010; 10
Bray (10.1016/j.semcancer.2014.04.013_bib0125) 1990; 143
Kim (10.1016/j.semcancer.2014.04.013_bib0220) 2010; 363
Oyama (10.1016/j.semcancer.2014.04.013_bib0255) 2007; 26
Romero (10.1016/j.semcancer.2014.04.013_bib0190) 2009; 10
Popławski (10.1016/j.semcancer.2014.04.013_bib0180) 2009; 71
Zhang (10.1016/j.semcancer.2014.04.013_bib0070) 2007; 244
Leung (10.1016/j.semcancer.2014.04.013_bib0075) 1990; 1
Margolin (10.1016/j.semcancer.2014.04.013_bib0245) 2006; 7
Floyd (10.1016/j.semcancer.2014.04.013_bib0085) 1994; 74
Kim (10.1016/j.semcancer.2014.04.013_bib0235) 2013; 73
Kazmi (10.1016/j.semcancer.2014.04.013_bib0155) 2012; 313
Craene (10.1016/j.semcancer.2014.04.013_bib0040) 2013; 13
Basanta (10.1016/j.semcancer.2014.04.013_bib0045) 2013; 3
Narayanan (10.1016/j.semcancer.2014.04.013_bib0140) 2004; 61
Gerlee (10.1016/j.semcancer.2014.04.013_bib0160) 2009; 95
Gerlee (10.1016/j.semcancer.2014.04.013_bib0110) 2008; 250
Ferreira (10.1016/j.semcancer.2014.04.013_bib0175) 2002; 65
Nelander (10.1016/j.semcancer.2014.04.013_bib0145) 2008; 4
Lowe (10.1016/j.semcancer.2014.04.013_bib0280) 2000; 21
Vohradsky (10.1016/j.semcancer.2014.04.013_bib0135) 2001; 276
Anderson (10.1016/j.semcancer.2014.04.013_bib0065) 2005; 22
Cokol (10.1016/j.semcancer.2014.04.013_bib0055) 2011; 7
Haykin (10.1016/j.semcancer.2014.04.013_bib0090) 1999
Noman (10.1016/j.semcancer.2014.04.013_bib0205) 2014
Ellis (10.1016/j.semcancer.2014.04.013_bib0015) 2009; 15
Smalley (10.1016/j.semcancer.2014.04.013_bib0210) 2010; 130
Bray (10.1016/j.semcancer.2014.04.013_bib0130) 1995; 376
Chapman (10.1016/j.semcancer.2014.04.013_bib0225) 2011; 364
Farin (10.1016/j.semcancer.2014.04.013_bib0270) 2006; 53
Meyer (10.1016/j.semcancer.2014.04.013_bib0100) 1998; 3
Anderson (10.1016/j.semcancer.2014.04.013_bib0165) 2006; 127
Holohan (10.1016/j.semcancer.2014.04.013_bib0020) 2013; 13
References_xml – volume: 74
  start-page: 2944
  year: 1994
  end-page: 2998
  ident: bib0085
  article-title: Prediction of breast cancer malignancy using an artificial neural network
  publication-title: Cancer
– volume: 143
  start-page: 215
  year: 1990
  end-page: 231
  ident: bib0125
  article-title: Intracellular signalling as a parallel distributed process
  publication-title: J Theor Biol
– volume: 22
  start-page: 163
  year: 2005
  end-page: 186
  ident: bib0065
  article-title: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion
  publication-title: Math Med Biol
– volume: 250
  start-page: 705
  year: 2008
  end-page: 722
  ident: bib0110
  article-title: A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype
  publication-title: J Theor Biol
– volume: 259
  start-page: 67
  year: 2009
  end-page: 83
  ident: bib0115
  article-title: Evolution of cell motility in an individual-based model of tumour growth
  publication-title: J Theor Biol
– volume: 53
  start-page: 799
  year: 2006
  end-page: 808
  ident: bib0270
  article-title: Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis
  publication-title: Glia
– volume: 65
  start-page: 1
  year: 2002
  end-page: 8
  ident: bib0175
  article-title: Reaction-diffusion model for the growth of avascular tumor
  publication-title: Phys Rev E
– volume: 366
  start-page: 883
  year: 2012
  end-page: 892
  ident: bib0010
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N Engl J Med
– volume: 13
  start-page: 714
  year: 2013
  end-page: 726
  ident: bib0020
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat Rev Cancer
– volume: 4
  start-page: 118
  year: 2004
  end-page: 132
  ident: bib0285
  article-title: Cell adhesion and signaling by cadherins and ig-cams in cancer
  publication-title: Nat Cancer Rev
– volume: 432
  start-page: 294
  year: 2004
  end-page: 297
  ident: bib0185
  article-title: Targeted cancer therapy
  publication-title: Nature
– volume: 246
  start-page: 583
  year: 2007
  end-page: 603
  ident: bib0105
  article-title: An evolutionary hybrid cellular automaton model of solid tumour growth
  publication-title: J Theor Biol
– volume: 31
  start-page: 2
  year: 2010
  end-page: 8
  ident: bib0030
  article-title: Cancer systems biology: a network modeling perspective
  publication-title: Carcinogenesis
– volume: 3
  year: 2013
  ident: bib0045
  article-title: Exploiting ecological principles to better understand cancer progression and treatment
  publication-title: Interface Focus
– start-page: 112
  year: 1999
  end-page: 123
  ident: bib0290
  article-title: Modeling regulatory networks with weight matrices
  publication-title: Pac Symp Biocomput
– volume: 153
  start-page: 9
  year: 2013
  end-page: 10
  ident: bib0035
  article-title: Noncoding rnas and cancer
  publication-title: Cell
– volume: 363
  year: 2010
  ident: bib0220
  article-title: Inhibition of mutated braf in melanoma
  publication-title: N Engl J Med
– volume: 95
  start-page: 166
  year: 2009
  end-page: 174
  ident: bib0160
  article-title: Modelling evolutionary cell behaviour using neural networks: application to tumour growth
  publication-title: BioSystems
– volume: 15
  start-page: 7471
  year: 2009
  end-page: 7478
  ident: bib0015
  article-title: Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology
  publication-title: Clin Cancer Res
– volume: 10
  start-page: 866
  year: 2009
  end-page: 876
  ident: bib0190
  article-title: Exploring protein fitness landscapes by directed evolution
  publication-title: Nat Rev Mol Cell Biol
– year: 2014
  ident: bib0205
  article-title: Inferring genetic networks with a recurrent neural network model using differential evolution in Springer handbook of bio-/neuroinformatics
– volume: 7
  start-page: 385
  year: 2010
  end-page: 400
  ident: bib0120
  article-title: Diffusion-limited tumour growth: simulations and analysis
  publication-title: MBE
– volume: 13
  start-page: 97
  year: 2013
  end-page: 110
  ident: bib0040
  article-title: Regulatory networks defining emt during cancer initiation and progression
  publication-title: Nat Rev Cancer
– volume: 376
  start-page: 307
  year: 1995
  end-page: 312
  ident: bib0130
  article-title: Protein molecules as computational elements in living cells
  publication-title: Nature
– volume: 24
  start-page: 35
  year: 2011
  end-page: 50
  ident: bib0260
  article-title: Artificial skin in perspective: concepts and applications
  publication-title: Pigment Cell Melanoma Res
– volume: 4
  start-page: e719
  year: 2013
  ident: bib0265
  article-title: Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing
  publication-title: Cell Death Dis
– volume: 8
  start-page: 227
  year: 2008
  end-page: 234
  ident: bib0005
  article-title: Integrative mathematical oncology
  publication-title: Nat Rev Cancer
– volume: 28
  start-page: 2804
  year: 2012
  end-page: 2810
  ident: bib0240
  article-title: Bayesian inference of signaling network topology in a cancer cell line
  publication-title: Bioinformatics
– volume: 245
  start-page: 677
  year: 2007
  end-page: 704
  ident: bib0170
  article-title: Nonlinear simulation of the effect of microenvironment on tumor growth
  publication-title: J Theor Biol
– volume: 364
  start-page: 2507
  year: 2011
  end-page: 2516
  ident: bib0225
  article-title: BRIM-3 Study Group, improved survival with vemurafenib in melanoma with braf v600e mutation
  publication-title: N Engl J Med
– volume: 276
  start-page: 36168
  year: 2001
  end-page: 36173
  ident: bib0135
  article-title: Neural model of the genetic network
  publication-title: J Biol Chem
– volume: 8
  start-page: 539
  year: 1993
  end-page: 567
  ident: bib0095
  article-title: Review of evolutionary artificial networks
  publication-title: Int J Intell Syst
– volume: 12
  start-page: 445
  year: 2012
  end-page: 446
  ident: bib0050
  article-title: Unifying metastasis – integrating intravasation, circulation and end-organ colonization
  publication-title: Nat Rev Cancer
– volume: 1
  start-page: 15
  year: 1990
  end-page: 20
  ident: bib0075
  article-title: Fingerprint processing using backpropagation neural networks
  publication-title: Proceedings of the International Joint Conference on Neural Networks I
– volume: 7
  start-page: 1
  year: 2011
  end-page: 17
  ident: bib0250
  article-title: Network modeling of the transcriptional effects of copy number aberrations in glioblastoma
  publication-title: Mol Syst Biol
– volume: 6
  start-page: 93
  year: 2013
  end-page: 103
  ident: bib0200
  article-title: Reconstruction of Gene regulatory networks from gene expression data using decoupled recurrent neural network model
  publication-title: Nat Comput Beyond Process Inform Commun Technol
– volume: 21
  start-page: 485
  year: 2000
  end-page: 495
  ident: bib0280
  article-title: Apoptosis in cancer
  publication-title: Carcinogenesis
– volume: 4
  start-page: 675
  year: 2012
  end-page: 684
  ident: bib0025
  article-title: Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives
  publication-title: EMBO Mol Med
– volume: 7
  start-page: S7
  year: 2006
  ident: bib0245
  article-title: Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
  publication-title: BMC Bioinformatics
– volume: 313
  start-page: 142
  year: 2012
  end-page: 152
  ident: bib0155
  article-title: Avascular tumour growth dynamics and the constraints of protein binding for drug transportation
  publication-title: J Theor Biol
– volume: 337
  start-page: 150
  year: 2013
  end-page: 160
  ident: bib0150
  article-title: A hybrid computational model for the effects of maspin on cancer cell dynamics
  publication-title: J Theor Biol
– volume: 71
  start-page: 1189
  year: 2009
  end-page: 1227
  ident: bib0180
  article-title: Front instabilities and invasiveness of simulated avascular tumors
  publication-title: Bull Math Biol
– year: 1999
  ident: bib0090
  article-title: Neural networks: a comprehensive foundation
– volume: 130
  start-page: 28
  year: 2010
  end-page: 37
  ident: bib0210
  article-title: Understanding melanoma signaling networks as the basis for molecular targeted therapy
  publication-title: J Invest Dermatol
– volume: 127
  start-page: 905
  year: 2006
  end-page: 915
  ident: bib0165
  article-title: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment
  publication-title: Cell
– volume: 363
  start-page: 809
  year: 2010
  end-page: 819
  ident: bib0215
  article-title: Inhibition of mutated, activated braf in metastatic melanoma
  publication-title: N Engl J Med
– volume: 26
  start-page: 2353
  year: 2007
  end-page: 2364
  ident: bib0255
  article-title: Akt induces senescence in primary esophageal epithelial cells but is permissive for differentiation as revealed in organotypic culture
  publication-title: Oncogene
– volume: 61
  start-page: 217
  year: 2004
  end-page: 240
  ident: bib0140
  article-title: Single-layer artificial neural networks for gene expression analysis
  publication-title: Neurocomputing
– volume: 3
  start-page: 2418
  year: 1998
  end-page: 2423
  ident: bib0100
  article-title: Evolutionary approaches to neural control in mobile robots
  publication-title: Syst Man, Cybern
– volume: 7
  start-page: 1
  year: 2011
  end-page: 9
  ident: bib0055
  article-title: Systematic exploration of synergistic drug pairs
  publication-title: Mol Syst Biol
– volume: 107
  start-page: 8352
  year: 2010
  end-page: 8356
  ident: bib0275
  article-title: Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors
  publication-title: Proc Natl Acad Sci USA
– volume: 115
  start-page: 843
  year: 1991
  end-page: 848
  ident: bib0080
  article-title: Use of an artificial neural network for the diagnosis of myocardial infarction
  publication-title: Ann Intern Med
– volume: 109
  start-page: 14586
  year: 2012
  end-page: 14591
  ident: bib0195
  article-title: Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer
  publication-title: Proc Natl Acad Sci
– volume: 73
  start-page: 6874
  year: 2013
  end-page: 6885
  ident: bib0235
  article-title: Senescent fibroblasts in melanoma initiation and progression: an integrated theoretical, experimental, and clinical approach
  publication-title: Cancer Res
– volume: 380
  start-page: 358
  year: 2012
  end-page: 365
  ident: bib0230
  article-title: Dabrafenib in braf-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial
  publication-title: Lancet
– volume: 244
  start-page: 96
  year: 2007
  end-page: 107
  ident: bib0070
  article-title: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer
  publication-title: J Theor Biol
– volume: 4
  year: 2008
  ident: bib0145
  article-title: Models from experiments: combinatorial drug perturbations of cancer cells
  publication-title: Mol Syst Biol
– volume: 10
  start-page: 221
  year: 2010
  end-page: 230
  ident: bib0060
  article-title: Dissecting cancer through mathematics: from the cell to the animal model
  publication-title: Nat Rev Cancer
– volume: 28
  start-page: 2804
  issue: 21
  year: 2012
  ident: 10.1016/j.semcancer.2014.04.013_bib0240
  article-title: Bayesian inference of signaling network topology in a cancer cell line
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts514
– volume: 366
  start-page: 883
  issue: 10
  year: 2012
  ident: 10.1016/j.semcancer.2014.04.013_bib0010
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113205
– volume: 61
  start-page: 217
  year: 2004
  ident: 10.1016/j.semcancer.2014.04.013_bib0140
  article-title: Single-layer artificial neural networks for gene expression analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.10.017
– volume: 65
  start-page: 1
  issue: 2
  year: 2002
  ident: 10.1016/j.semcancer.2014.04.013_bib0175
  article-title: Reaction-diffusion model for the growth of avascular tumor
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.65.021907
– volume: 8
  start-page: 227
  issue: 3
  year: 2008
  ident: 10.1016/j.semcancer.2014.04.013_bib0005
  article-title: Integrative mathematical oncology
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2329
– volume: 21
  start-page: 485
  year: 2000
  ident: 10.1016/j.semcancer.2014.04.013_bib0280
  article-title: Apoptosis in cancer
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/21.3.485
– volume: 71
  start-page: 1189
  issue: 5
  year: 2009
  ident: 10.1016/j.semcancer.2014.04.013_bib0180
  article-title: Front instabilities and invasiveness of simulated avascular tumors
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-009-9399-5
– volume: 245
  start-page: 677
  issue: 4
  year: 2007
  ident: 10.1016/j.semcancer.2014.04.013_bib0170
  article-title: Nonlinear simulation of the effect of microenvironment on tumor growth
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2006.12.004
– volume: 13
  start-page: 714
  issue: 10
  year: 2013
  ident: 10.1016/j.semcancer.2014.04.013_bib0020
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3599
– volume: 376
  start-page: 307
  year: 1995
  ident: 10.1016/j.semcancer.2014.04.013_bib0130
  article-title: Protein molecules as computational elements in living cells
  publication-title: Nature
  doi: 10.1038/376307a0
– volume: 143
  start-page: 215
  year: 1990
  ident: 10.1016/j.semcancer.2014.04.013_bib0125
  article-title: Intracellular signalling as a parallel distributed process
  publication-title: J Theor Biol
  doi: 10.1016/S0022-5193(05)80268-1
– volume: 4
  issue: 216
  year: 2008
  ident: 10.1016/j.semcancer.2014.04.013_bib0145
  article-title: Models from experiments: combinatorial drug perturbations of cancer cells
  publication-title: Mol Syst Biol
– volume: 115
  start-page: 843
  year: 1991
  ident: 10.1016/j.semcancer.2014.04.013_bib0080
  article-title: Use of an artificial neural network for the diagnosis of myocardial infarction
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-115-11-843
– volume: 53
  start-page: 799
  issue: 8
  year: 2006
  ident: 10.1016/j.semcancer.2014.04.013_bib0270
  article-title: Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis
  publication-title: Glia
  doi: 10.1002/glia.20334
– volume: 259
  start-page: 67
  issue: 1
  year: 2009
  ident: 10.1016/j.semcancer.2014.04.013_bib0115
  article-title: Evolution of cell motility in an individual-based model of tumour growth
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2009.03.005
– volume: 12
  start-page: 445
  issue: 7
  year: 2012
  ident: 10.1016/j.semcancer.2014.04.013_bib0050
  article-title: Unifying metastasis – integrating intravasation, circulation and end-organ colonization
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3287
– start-page: 112
  year: 1999
  ident: 10.1016/j.semcancer.2014.04.013_bib0290
  article-title: Modeling regulatory networks with weight matrices
  publication-title: Pac Symp Biocomput
– volume: 26
  start-page: 2353
  issue: 16
  year: 2007
  ident: 10.1016/j.semcancer.2014.04.013_bib0255
  article-title: Akt induces senescence in primary esophageal epithelial cells but is permissive for differentiation as revealed in organotypic culture
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210025
– year: 2014
  ident: 10.1016/j.semcancer.2014.04.013_bib0205
– volume: 7
  start-page: S7
  issue: Suppl. 1
  year: 2006
  ident: 10.1016/j.semcancer.2014.04.013_bib0245
  article-title: Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-S1-S7
– volume: 153
  start-page: 9
  issue: 1
  year: 2013
  ident: 10.1016/j.semcancer.2014.04.013_bib0035
  article-title: Noncoding rnas and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.019
– volume: 246
  start-page: 583
  issue: 4
  year: 2007
  ident: 10.1016/j.semcancer.2014.04.013_bib0105
  article-title: An evolutionary hybrid cellular automaton model of solid tumour growth
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2007.01.027
– volume: 276
  start-page: 36168
  year: 2001
  ident: 10.1016/j.semcancer.2014.04.013_bib0135
  article-title: Neural model of the genetic network
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M104391200
– volume: 4
  start-page: 675
  issue: 8
  year: 2012
  ident: 10.1016/j.semcancer.2014.04.013_bib0025
  article-title: Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives
  publication-title: EMBO Mol Med
  doi: 10.1002/emmm.201101131
– volume: 3
  start-page: 2418
  year: 1998
  ident: 10.1016/j.semcancer.2014.04.013_bib0100
  article-title: Evolutionary approaches to neural control in mobile robots
  publication-title: Syst Man, Cybern
– volume: 13
  start-page: 97
  issue: 2
  year: 2013
  ident: 10.1016/j.semcancer.2014.04.013_bib0040
  article-title: Regulatory networks defining emt during cancer initiation and progression
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3447
– volume: 6
  start-page: 93
  year: 2013
  ident: 10.1016/j.semcancer.2014.04.013_bib0200
  article-title: Reconstruction of Gene regulatory networks from gene expression data using decoupled recurrent neural network model
  publication-title: Nat Comput Beyond Process Inform Commun Technol
  doi: 10.1007/978-4-431-54394-7_8
– volume: 15
  start-page: 7471
  issue: 24
  year: 2009
  ident: 10.1016/j.semcancer.2014.04.013_bib0015
  article-title: Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-1070
– volume: 74
  start-page: 2944
  year: 1994
  ident: 10.1016/j.semcancer.2014.04.013_bib0085
  article-title: Prediction of breast cancer malignancy using an artificial neural network
  publication-title: Cancer
  doi: 10.1002/1097-0142(19941201)74:11<2944::AID-CNCR2820741109>3.0.CO;2-F
– volume: 10
  start-page: 221
  issue: 3
  year: 2010
  ident: 10.1016/j.semcancer.2014.04.013_bib0060
  article-title: Dissecting cancer through mathematics: from the cell to the animal model
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2808
– volume: 22
  start-page: 163
  issue: 2
  year: 2005
  ident: 10.1016/j.semcancer.2014.04.013_bib0065
  article-title: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion
  publication-title: Math Med Biol
  doi: 10.1093/imammb/dqi005
– volume: 244
  start-page: 96
  issue: 1
  year: 2007
  ident: 10.1016/j.semcancer.2014.04.013_bib0070
  article-title: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2006.06.034
– volume: 1
  start-page: 15
  year: 1990
  ident: 10.1016/j.semcancer.2014.04.013_bib0075
  article-title: Fingerprint processing using backpropagation neural networks
  publication-title: Proceedings of the International Joint Conference on Neural Networks I
– volume: 31
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.semcancer.2014.04.013_bib0030
  article-title: Cancer systems biology: a network modeling perspective
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp261
– volume: 4
  start-page: e719
  year: 2013
  ident: 10.1016/j.semcancer.2014.04.013_bib0265
  article-title: Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2013.249
– volume: 432
  start-page: 294
  issue: 7015
  year: 2004
  ident: 10.1016/j.semcancer.2014.04.013_bib0185
  article-title: Targeted cancer therapy
  publication-title: Nature
  doi: 10.1038/nature03095
– volume: 364
  start-page: 2507
  issue: 26
  year: 2011
  ident: 10.1016/j.semcancer.2014.04.013_bib0225
  article-title: BRIM-3 Study Group, improved survival with vemurafenib in melanoma with braf v600e mutation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1103782
– volume: 107
  start-page: 8352
  issue: 18
  year: 2010
  ident: 10.1016/j.semcancer.2014.04.013_bib0275
  article-title: Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0907676107
– volume: 127
  start-page: 905
  year: 2006
  ident: 10.1016/j.semcancer.2014.04.013_bib0165
  article-title: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.042
– volume: 10
  start-page: 866
  issue: 12
  year: 2009
  ident: 10.1016/j.semcancer.2014.04.013_bib0190
  article-title: Exploring protein fitness landscapes by directed evolution
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2805
– volume: 7
  start-page: 385
  issue: 2
  year: 2010
  ident: 10.1016/j.semcancer.2014.04.013_bib0120
  article-title: Diffusion-limited tumour growth: simulations and analysis
  publication-title: MBE
  doi: 10.3934/mbe.2010.7.385
– volume: 380
  start-page: 358
  issue: 9839
  year: 2012
  ident: 10.1016/j.semcancer.2014.04.013_bib0230
  article-title: Dabrafenib in braf-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60868-X
– volume: 130
  start-page: 28
  issue: 1
  year: 2010
  ident: 10.1016/j.semcancer.2014.04.013_bib0210
  article-title: Understanding melanoma signaling networks as the basis for molecular targeted therapy
  publication-title: J Invest Dermatol
  doi: 10.1038/jid.2009.177
– volume: 250
  start-page: 705
  issue: 4
  year: 2008
  ident: 10.1016/j.semcancer.2014.04.013_bib0110
  article-title: A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2007.10.038
– volume: 8
  start-page: 539
  year: 1993
  ident: 10.1016/j.semcancer.2014.04.013_bib0095
  article-title: Review of evolutionary artificial networks
  publication-title: Int J Intell Syst
  doi: 10.1002/int.4550080406
– volume: 3
  issue: 4
  year: 2013
  ident: 10.1016/j.semcancer.2014.04.013_bib0045
  article-title: Exploiting ecological principles to better understand cancer progression and treatment
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2013.0020
– volume: 109
  start-page: 14586
  issue: 36
  year: 2012
  ident: 10.1016/j.semcancer.2014.04.013_bib0195
  article-title: Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1203559109
– volume: 337
  start-page: 150
  year: 2013
  ident: 10.1016/j.semcancer.2014.04.013_bib0150
  article-title: A hybrid computational model for the effects of maspin on cancer cell dynamics
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2013.08.016
– volume: 95
  start-page: 166
  issue: 2
  year: 2009
  ident: 10.1016/j.semcancer.2014.04.013_bib0160
  article-title: Modelling evolutionary cell behaviour using neural networks: application to tumour growth
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2008.10.007
– volume: 24
  start-page: 35
  issue: 1
  year: 2011
  ident: 10.1016/j.semcancer.2014.04.013_bib0260
  article-title: Artificial skin in perspective: concepts and applications
  publication-title: Pigment Cell Melanoma Res
  doi: 10.1111/j.1755-148X.2010.00786.x
– volume: 4
  start-page: 118
  year: 2004
  ident: 10.1016/j.semcancer.2014.04.013_bib0285
  article-title: Cell adhesion and signaling by cadherins and ig-cams in cancer
  publication-title: Nat Cancer Rev
  doi: 10.1038/nrc1276
– volume: 363
  start-page: 809
  issue: 9
  year: 2010
  ident: 10.1016/j.semcancer.2014.04.013_bib0215
  article-title: Inhibition of mutated, activated braf in metastatic melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1002011
– volume: 7
  start-page: 1
  year: 2011
  ident: 10.1016/j.semcancer.2014.04.013_bib0055
  article-title: Systematic exploration of synergistic drug pairs
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.71
– year: 1999
  ident: 10.1016/j.semcancer.2014.04.013_bib0090
– volume: 7
  start-page: 1
  year: 2011
  ident: 10.1016/j.semcancer.2014.04.013_bib0250
  article-title: Network modeling of the transcriptional effects of copy number aberrations in glioblastoma
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.17
– volume: 73
  start-page: 6874
  issue: 23
  year: 2013
  ident: 10.1016/j.semcancer.2014.04.013_bib0235
  article-title: Senescent fibroblasts in melanoma initiation and progression: an integrated theoretical, experimental, and clinical approach
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-1720
– volume: 313
  start-page: 142
  year: 2012
  ident: 10.1016/j.semcancer.2014.04.013_bib0155
  article-title: Avascular tumour growth dynamics and the constraints of protein binding for drug transportation
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2012.07.026
– volume: 363
  issue: 23
  year: 2010
  ident: 10.1016/j.semcancer.2014.04.013_bib0220
  article-title: Inhibition of mutated braf in melanoma
  publication-title: N Engl J Med
SSID ssj0009414
Score 2.1940682
SecondaryResourceType review_article
Snippet In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise...
Abstract In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to...
In this review we summarize our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Disease Progression
Drug resistance
Evolution
Evolution, Molecular
Genotype
Genotype to phenotype map
Hematology, Oncology and Palliative Medicine
Humans
Microenvironment
Models, Theoretical
Neoplasms
Neural network
Neural Networks, Computer
Phenotype
Title Bridging scales in cancer progression: Mapping genotype to phenotype using neural networks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1044579X14000613
https://www.clinicalkey.es/playcontent/1-s2.0-S1044579X14000613
https://dx.doi.org/10.1016/j.semcancer.2014.04.013
https://www.ncbi.nlm.nih.gov/pubmed/24830623
https://www.proquest.com/docview/1657318093
https://pubmed.ncbi.nlm.nih.gov/PMC4533881
https://research.chalmers.se/publication/226967
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLe2TkJcEGzAysdkJMQtNPFXkt3KxFQ-tgtMqrhYtuOsRSydSHfgwt_Oe7FTFBU0JKRe0vop7vvwey_5-WdCXkpWl8xZl1Q-84nAULSQxxLrc19jwS18h7Y4V7ML8X4u5zvkpN8Lg7DKuPaHNb1breM3k6jNyfVyOfkEjYSQeTmHFgETMd8le4yXSo7I3vTdh9n5b-5d0VF84_gEBQYwr9ZfOdQvcoNmoqM9zfjfktR2EbqNpRwwjnZZ6vQ-uRfLSzoN_-AB2fHNPjmYNtBaX_2gr2gH-OyepO-TO2fxvfoB-fIG921BFqMt2My3dNnQMF_aAbgCeccxPTNI53BJkdkVH97S9YoiSCxcIIb-kiJDJkyhCfjy9iG5OH37-WSWxFMXEqcUWyfcVr4ShiN5lynq0giobCuI08o4VcP6mFlWOJELyW3JrPdeWcjxYFcDIVxW_BEZNavGHxIqcgcFYO1sKZlQLC28gAJFFSmrubHGjYnq1axdpCTHkzG-6R579lVv7KPRPjqFT8bHJN0IXgdWjttFit6Out90Csukhsxxu2j-J1HfxnBvdaZbplO95ZJjcryRHHj1v932Re9uGmIeX-SYxq9u4HZK5hyJ12DM4-B-GzUwUUAXyHDSA8fcDEA-8eEvzXLR8YqDRXlRZGPyMbjwQCRyTy20W3QH-7QwaZ1KBw05q7VinmtRcqlNXdTaClPnHqpZb9ST_9HBU3IXrmSAyT8jo_X3G_8cqsC1PSK7r39mRzHWfwHHil_3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfGkIALgo2P8mkkxC00sR0n2W1MTAXaXdikiotlO_ZaxNKJdAcu_O28ZydFUUFDQuoljZ9ivQ-_95Kffybkdc58xayxSe0ylwgMRQN5LDGucB4LbuEC2uJETs7Ex3k-3yFH_V4YhFV2a39c08Nq3f0z7rQ5vlwux5-hkRB5Uc2hRcBEzG-QmyLnBeL63v78jfOoRCD4xtEJDh-AvFp3YVG7yAyaiUB6mvG_pajtEnQbSTngGw056vgeudsVl_Qwzv8-2XHNHtk_bKCxvvhB39AA9wzv0ffIrVn3VX2ffHmHu7Ygh9EWLOZaumxonC8N8K1I3XFAZxrJHM4p8rriq1u6XlGEiMULRNCfU-THhCk0EV3ePiBnx-9PjyZJd-ZCYqVk64Sb2tVCc6Tu0qWvtIC6toYorbWVHlbHzLDSigI0bSpmnHPSQIYHq2oI4KrmD8lus2rcY0JFYaH889ZUOROSpaUTUJ7IMmWea6PtiMhezcp2hOR4LsY31SPPvqqNfRTaR6Xwy_iIpBvBy8jJcb1I2dtR9VtOYZFUkDeuFy3-JOraLthblamWqVRtOeSIHGwkBz79b4991bubgojHzzi6casreJzMC460azDmUXS_jRqYKKEHZDjpgWNuBiCb-PBOs1wEVnGwKC_LbESm0YUHIh3z1ELZRTjWp4VJqzS30I4zryRzXImK50r70isjtC8c1LJOyyf_o4OX5PbkdDZV0w8nn56SO3Anj4D5Z2R3_f3KPYd6cG1ehHj_BdZ0YMI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridging+scales+in+cancer+progression%3A+Mapping+genotype+to+phenotype+using+neural+networks&rft.jtitle=Seminars+in+cancer+biology&rft.au=Gerlee%2C+Philip&rft.au=Kim%2C+Eunjung&rft.au=Anderson%2C+Alexander+R.A.&rft.date=2015-02-01&rft.pub=Elsevier+Ltd&rft.issn=1044-579X&rft.eissn=1096-3650&rft.volume=30&rft.spage=30&rft.epage=41&rft_id=info:doi/10.1016%2Fj.semcancer.2014.04.013&rft.externalDocID=S1044579X14000613
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F1044579X%2FS1044579X14X00088%2Fcov150h.gif