Immunohistochemical analysis for acetylcholinesterase and choline acetyltransferase in mouse cerebral cortex after traumatic brain injury

The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylch...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 82; no. 6; pp. 827 - 835
Main Authors HORIO, Tomoyo, OZAWA, Aisa, KAMIIE, Junichi, SAKAUE, Motoharu
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2020
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells’ states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states.
AbstractList The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells' states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states.The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells' states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states.
The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells’ states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states.
The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells’ states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states.
Author SAKAUE, Motoharu
KAMIIE, Junichi
OZAWA, Aisa
HORIO, Tomoyo
Author_xml – sequence: 1
  fullname: HORIO, Tomoyo
  organization: Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
– sequence: 2
  fullname: OZAWA, Aisa
  organization: Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
– sequence: 3
  fullname: KAMIIE, Junichi
  organization: Laboratory of Veterinary Pathology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
– sequence: 4
  fullname: SAKAUE, Motoharu
  organization: Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32321871$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1TAQhi1URE8LO9YoEhsWpPgWJ94glapApUpsYG05Pk7jyLGLnVScR-CtO1HCEVTCC9vyfP_cPGfoJMRgEXpN8AWhkn4YHsZ8QWSJq4o8QzvCeF3WnMkTtMOSiLKmFT5FZzkPGFPChXyBThlllDQ12aHfN-M4h9i7PEXT29EZ7QsdtD9kl4supkIbOx286aN3webJJp0tEPtie9qAKemQu9XqQjHGGS7GJtsm8GhimuyvQnegLwCdRz05U4ANWBeGOR1eoued9tm-2s5z9OPz9ferr-Xtty83V5e3pRGCTiXBDcGaUc5JQxpTsa6We8qrGrOWa9pVvJGY6MbC0gZ3bS1Ey1pjeFfTjrbsHH1c_d7P7Wj3xgbIx6v75EadDipqp_61BNeru_igagjaEAIO3m0OUvw5Q0vU6LKx3utgoWpFmeRUkFo2gL59gg5xTtBdoDiRXFSCVkC9-TujYyp_fgmA9ytgUsw52e6IEKyWIVDLECgi1TIEgNMnuHET9Dsu9Tj_P9GnVTTkSd_ZYwSd4KO8XeGGKrFsm-hoNL1Oygb2CEYU0og
CitedBy_id crossref_primary_10_1021_acschemneuro_0c00720
crossref_primary_10_1007_s00418_022_02164_3
crossref_primary_10_1021_acs_jafc_3c07821
Cites_doi 10.1089/neu.2011.1957
10.1038/s41467-017-00037-1
10.1016/S0166-2236(97)01139-9
10.1017/S1740925X12000014
10.1016/j.brainres.2013.08.031
10.1002/ijc.30398
10.1038/nature21029
10.1177/0192623310385254
10.1016/S0891-0618(02)00100-X
10.1016/j.neulet.2019.01.020
10.1016/j.neurobiolaging.2013.04.027
10.1016/j.nurt.2010.07.002
10.1038/ncomms5486
10.1371/journal.pone.0053376
10.1038/celldisc.2015.2
10.1046/j.1471-4159.2004.02347.x
10.1186/1742-2094-9-98
10.1101/cshperspect.a020628
10.1155/2017/5405104
10.1111/bph.13125
10.1016/j.molimm.2015.07.028
10.1186/s40035-017-0088-2
10.1371/journal.pone.0065936
10.1016/j.neuint.2004.12.007
10.3389/fnins.2016.00458
10.1002/neu.10114
10.1016/j.celrep.2017.04.047
10.1177/12.3.219
ContentType Journal Article
Copyright 2020 by the Japanese Society of Veterinary Science
2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Japanese Society of Veterinary Science 2020
Copyright_xml – notice: 2020 by the Japanese Society of Veterinary Science
– notice: 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Japanese Society of Veterinary Science 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.19-0551
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 835
ExternalDocumentID PMC7324811
32321871
10_1292_jvms_19_0551
article_jvms_82_6_82_19_0551_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
B.T
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c662t-10810a32441818c53f79d245703b4a2f548901a8eeeeac0fb766b3bcc4f72f2b3
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 13:46:23 EDT 2025
Fri Jul 11 16:17:35 EDT 2025
Sun Jun 29 16:22:05 EDT 2025
Mon Jul 21 06:08:11 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Tue Jul 01 04:14:37 EDT 2025
Wed Apr 05 05:44:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords traumatic brain injury
acetylcholinesterase
choline acetyltransferase
acetylcholine
immunohistochemistry
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-10810a32441818c53f79d245703b4a2f548901a8eeeeac0fb766b3bcc4f72f2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.19-0551
PMID 32321871
PQID 2419465625
PQPubID 2028964
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324811
proquest_miscellaneous_2394261798
proquest_journals_2419465625
pubmed_primary_32321871
crossref_primary_10_1292_jvms_19_0551
crossref_citationtrail_10_1292_jvms_19_0551
jstage_primary_article_jvms_82_6_82_19_0551_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2020
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 5. Du, A., Xie, J., Guo, K., Yang, L., Wan, Y., OuYang, Q., Zhang, X., Niu, X., Lu, L., Wu, J. and Zhang, X. 2015. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease. Cell Discov. 1: 15002.
11. Liu, Y., Hu, J., Wu, J., Zhu, C., Hui, Y., Han, Y., Huang, Z., Ellsworth, K. and Fan, W. 2012. α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J. Neuroinflammation 9: 98.
24. Shytle, R. D., Mori, T., Townsend, K., Vendrame, M., Sun, N., Zeng, J., Ehrhart, J., Silver, A. A., Sanberg, P. R. and Tan, J. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J. Neurochem. 89: 337–343.
22. Sharma, G. and Vijayaraghavan, S. 2002. Nicotinic receptor signaling in nonexcitable cells. J. Neurobiol. 53: 524–534.
25. Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A. B. and Aschner, M. 2011. Role of astrocytes in brain function and disease. Toxicol. Pathol. 39: 115–123.
17. Ozawa, A., Kadowaki, E., Haga, Y., Sekiguchi, H., Hemmi, N., Kaneko, T., Maki, T., Sakabe, K., Hara, S., Yamamoto, M., Arishima, K. and Sakaue, M. 2013. Acetylcholine esterase is a regulator of GFAP expression and a target of dichlorvos in astrocytic differentiation of rat glioma C6 cells. Brain Res. 1537: 37–45.
26. Strauss, D. J., Shavelle, R. M. and DeVivo, M. J. 1999. Life tables for people with traumatic brain injury. J. Insur. Med. 31: 104–105.
9. Karve, I. P., Taylor, J. M. and Crack, P. J. 2016. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 173: 692–702.
15. Morizawa, Y. M., Hirayama, Y., Ohno, N., Shibata, S., Shigetomi, E., Sui, Y., Nabekura, J., Sato, K., Okajima, F., Takebayashi, H., Okano, H. and Koizumi, S. 2017. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 8: 28.
13. Luque, M. C., Gutierrez, P. S., Debbas, V., Kalil, J. and Stolf, B. S. 2015. CD100 and plexins B2 and B1 mediate monocyte-endothelial cell adhesion and might take part in atherogenesis. Mol. Immunol. 672 Pt B: 559–567.
16. Mukherjee, S., Baidoo, J., Fried, A., Atwi, D., Dolai, S., Boockvar, J., Symons, M., Ruggieri, R., Raja, K. and Banerjee, P. 2016. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int. J. Cancer 139: 2838–2849.
18. Ozawa, A., Kadowaki, E., Horio, T. and Sakaue, M. 2019. Acetylcholine suppresses the increase of glia fibrillary acidic protein expression via acetylcholine receptors in cAMP-induced astrocytic differentiation of rat C6 glioma cells. Neurosci. Lett. 698: 146–153.
4. Darreh-Shori, T., Vijayaraghavan, S., Aeinehband, S., Piehl, F., Lindblom, R. P., Nilsson, B., Ekdahl, K. N., Långström, B., Almkvist, O. and Nordberg, A. 2013. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer’s disease. Neurobiol. Aging 34: 2465–2481.
28. Taylor, C. A., Bell, J. M., Breiding, M. J. and Xu, L. 2017. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths −United States, 2007 and 2013. MMWR Surveill. Summ. 66: 1–16.
8. Karnovsky, M. J. and Roots, L. 1964. A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12: 219–221.
12. Loane, D. J. and Byrnes, K. R. 2010. Role of microglia in neurotrauma. Neurotherapeutics 7: 366–377.
19. Phatnani, H. and Maniatis, T. 2015. Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7: a020628.
23. Shinozaki, Y., Shibata, K., Yoshida, K., Shigetomi, E., Gachet, C., Ikenaka, K., Tanaka, K. F. and Koizumi, S. 2017. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep. 19: 1151–1164.
6. Graham, A. J., Ray, M. A., Perry, E. K., Jaros, E., Perry, R. H., Volsen, S. G., Bose, S., Evans, N., Lindstrom, J. and Court, J. A. 2003. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J. Chem. Neuroanat. 25: 97–113.
3. Cruz-Haces, M., Tang, J., Acosta, G., Fernandez, J. and Shi, R. 2017. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl. Neurodegener. 6: 20.
21. Saing, T., Dick, M., Nelson, P. T., Kim, R. C., Cribbs, D. H. and Head, E. 2012. Frontal cortex neuropathology in dementia pugilistica. J. Neurotrauma 29: 1054–1070.
29. Vijayaraghavan, S., Karami, A., Aeinehband, S., Behbahani, H., Grandien, A., Nilsson, B., Ekdahl, K. N., Lindblom, R. P., Piehl, F. and Darreh-Shori, T. 2013. Regulated extracellular choline acetyltransferase activity- the plausible missing link of the distant action of acetylcholine in the cholinergic anti-inflammatory pathway. PLoS One 8: e65936.
2. Chen, Z., Jalabi, W., Hu, W., Park, H. J., Gale, J. T., Kidd, G. J., Bernatowicz, R., Gossman, Z. C., Chen, J. T., Dutta, R. and Trapp, B. D. 2014. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun. 5: 4486.
27. Tatsumi, K., Haga, S., Matsuyoshi, H., Inoue, M., Manabe, T., Makinodan, M. and Wanaka, A. 2005. Characterization of cells with proliferative activity after a brain injury. Neurochem. Int. 46: 381–389.
10. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. 2017. Neurotoxic reactive astrocytes are in
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 4. Darreh-Shori, T., Vijayaraghavan, S., Aeinehband, S., Piehl, F., Lindblom, R. P., Nilsson, B., Ekdahl, K. N., Långström, B., Almkvist, O. and Nordberg, A. 2013. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer’s disease. Neurobiol. Aging 34: 2465–2481.
– reference: 1. Acosta, S. A., Tajiri, N., Shinozuka, K., Ishikawa, H., Grimmig, B., Diamond, D. M., Sanberg, P. R., Bickford, P. C., Kaneko, Y. and Borlongan, C. V. 2013. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS One 8: e53376.
– reference: 15. Morizawa, Y. M., Hirayama, Y., Ohno, N., Shibata, S., Shigetomi, E., Sui, Y., Nabekura, J., Sato, K., Okajima, F., Takebayashi, H., Okano, H. and Koizumi, S. 2017. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 8: 28.
– reference: 13. Luque, M. C., Gutierrez, P. S., Debbas, V., Kalil, J. and Stolf, B. S. 2015. CD100 and plexins B2 and B1 mediate monocyte-endothelial cell adhesion and might take part in atherogenesis. Mol. Immunol. 672 Pt B: 559–567.
– reference: 28. Taylor, C. A., Bell, J. M., Breiding, M. J. and Xu, L. 2017. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths −United States, 2007 and 2013. MMWR Surveill. Summ. 66: 1–16.
– reference: 11. Liu, Y., Hu, J., Wu, J., Zhu, C., Hui, Y., Han, Y., Huang, Z., Ellsworth, K. and Fan, W. 2012. α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J. Neuroinflammation 9: 98.
– reference: 9. Karve, I. P., Taylor, J. M. and Crack, P. J. 2016. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 173: 692–702.
– reference: 16. Mukherjee, S., Baidoo, J., Fried, A., Atwi, D., Dolai, S., Boockvar, J., Symons, M., Ruggieri, R., Raja, K. and Banerjee, P. 2016. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int. J. Cancer 139: 2838–2849.
– reference: 29. Vijayaraghavan, S., Karami, A., Aeinehband, S., Behbahani, H., Grandien, A., Nilsson, B., Ekdahl, K. N., Lindblom, R. P., Piehl, F. and Darreh-Shori, T. 2013. Regulated extracellular choline acetyltransferase activity- the plausible missing link of the distant action of acetylcholine in the cholinergic anti-inflammatory pathway. PLoS One 8: e65936.
– reference: 26. Strauss, D. J., Shavelle, R. M. and DeVivo, M. J. 1999. Life tables for people with traumatic brain injury. J. Insur. Med. 31: 104–105.
– reference: 10. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481–487.
– reference: 18. Ozawa, A., Kadowaki, E., Horio, T. and Sakaue, M. 2019. Acetylcholine suppresses the increase of glia fibrillary acidic protein expression via acetylcholine receptors in cAMP-induced astrocytic differentiation of rat C6 glioma cells. Neurosci. Lett. 698: 146–153.
– reference: 17. Ozawa, A., Kadowaki, E., Haga, Y., Sekiguchi, H., Hemmi, N., Kaneko, T., Maki, T., Sakabe, K., Hara, S., Yamamoto, M., Arishima, K. and Sakaue, M. 2013. Acetylcholine esterase is a regulator of GFAP expression and a target of dichlorvos in astrocytic differentiation of rat glioma C6 cells. Brain Res. 1537: 37–45.
– reference: 22. Sharma, G. and Vijayaraghavan, S. 2002. Nicotinic receptor signaling in nonexcitable cells. J. Neurobiol. 53: 524–534.
– reference: 12. Loane, D. J. and Byrnes, K. R. 2010. Role of microglia in neurotrauma. Neurotherapeutics 7: 366–377.
– reference: 14. Marín-Teva, J. L., Cuadros, M. A., Martín-Oliva, D. and Navascués, J. 2011. Microglia and neuronal cell death. Neuron Glia Biol. 7: 25–40.
– reference: 20. Ridet, J. L., Malhotra, S. K., Privat, A. and Gage, F. H. 1997. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20: 570–577.
– reference: 3. Cruz-Haces, M., Tang, J., Acosta, G., Fernandez, J. and Shi, R. 2017. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl. Neurodegener. 6: 20.
– reference: 24. Shytle, R. D., Mori, T., Townsend, K., Vendrame, M., Sun, N., Zeng, J., Ehrhart, J., Silver, A. A., Sanberg, P. R. and Tan, J. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J. Neurochem. 89: 337–343.
– reference: 25. Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A. B. and Aschner, M. 2011. Role of astrocytes in brain function and disease. Toxicol. Pathol. 39: 115–123.
– reference: 27. Tatsumi, K., Haga, S., Matsuyoshi, H., Inoue, M., Manabe, T., Makinodan, M. and Wanaka, A. 2005. Characterization of cells with proliferative activity after a brain injury. Neurochem. Int. 46: 381–389.
– reference: 6. Graham, A. J., Ray, M. A., Perry, E. K., Jaros, E., Perry, R. H., Volsen, S. G., Bose, S., Evans, N., Lindstrom, J. and Court, J. A. 2003. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J. Chem. Neuroanat. 25: 97–113.
– reference: 7. Impellizzeri, D., Campolo, M., Bruschetta, G., Crupi, R., Cordaro, M., Paterniti, I., Cuzzocrea, S. and Esposito, E. 2016. Traumatic brain injury leads to development of Parkinson’s disease related pathology in mice. Front. Neurosci. 10: 458.
– reference: 21. Saing, T., Dick, M., Nelson, P. T., Kim, R. C., Cribbs, D. H. and Head, E. 2012. Frontal cortex neuropathology in dementia pugilistica. J. Neurotrauma 29: 1054–1070.
– reference: 2. Chen, Z., Jalabi, W., Hu, W., Park, H. J., Gale, J. T., Kidd, G. J., Bernatowicz, R., Gossman, Z. C., Chen, J. T., Dutta, R. and Trapp, B. D. 2014. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun. 5: 4486.
– reference: 23. Shinozaki, Y., Shibata, K., Yoshida, K., Shigetomi, E., Gachet, C., Ikenaka, K., Tanaka, K. F. and Koizumi, S. 2017. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep. 19: 1151–1164.
– reference: 30. Xu, H., Wang, Z., Li, J., Wu, H., Peng, Y., Fan, L., Chen, J., Gu, C., Yan, F., Wang, L. and Chen, G. 2017. The polarization states of microglia in TBI: A new paradigm for pharmacological intervention. Neural Plast. 2017: 5405104.
– reference: 5. Du, A., Xie, J., Guo, K., Yang, L., Wan, Y., OuYang, Q., Zhang, X., Niu, X., Lu, L., Wu, J. and Zhang, X. 2015. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease. Cell Discov. 1: 15002.
– reference: 19. Phatnani, H. and Maniatis, T. 2015. Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7: a020628.
– reference: 8. Karnovsky, M. J. and Roots, L. 1964. A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12: 219–221.
– ident: 21
  doi: 10.1089/neu.2011.1957
– ident: 15
  doi: 10.1038/s41467-017-00037-1
– ident: 20
  doi: 10.1016/S0166-2236(97)01139-9
– ident: 14
  doi: 10.1017/S1740925X12000014
– ident: 17
  doi: 10.1016/j.brainres.2013.08.031
– ident: 16
  doi: 10.1002/ijc.30398
– ident: 10
  doi: 10.1038/nature21029
– ident: 25
  doi: 10.1177/0192623310385254
– ident: 6
  doi: 10.1016/S0891-0618(02)00100-X
– ident: 18
  doi: 10.1016/j.neulet.2019.01.020
– ident: 4
  doi: 10.1016/j.neurobiolaging.2013.04.027
– ident: 12
  doi: 10.1016/j.nurt.2010.07.002
– ident: 2
  doi: 10.1038/ncomms5486
– ident: 28
– ident: 1
  doi: 10.1371/journal.pone.0053376
– ident: 5
  doi: 10.1038/celldisc.2015.2
– ident: 24
  doi: 10.1046/j.1471-4159.2004.02347.x
– ident: 11
  doi: 10.1186/1742-2094-9-98
– ident: 19
  doi: 10.1101/cshperspect.a020628
– ident: 30
  doi: 10.1155/2017/5405104
– ident: 9
  doi: 10.1111/bph.13125
– ident: 13
  doi: 10.1016/j.molimm.2015.07.028
– ident: 26
– ident: 3
  doi: 10.1186/s40035-017-0088-2
– ident: 29
  doi: 10.1371/journal.pone.0065936
– ident: 27
  doi: 10.1016/j.neuint.2004.12.007
– ident: 7
  doi: 10.3389/fnins.2016.00458
– ident: 22
  doi: 10.1002/neu.10114
– ident: 23
  doi: 10.1016/j.celrep.2017.04.047
– ident: 8
  doi: 10.1177/12.3.219
SSID ssj0021469
Score 2.2368844
Snippet The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial...
The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 827
SubjectTerms acetylcholine
Acetylcholinesterase
Acetylcholinesterase - metabolism
Acetyltransferase
Anatomy
Animals
Antigens, CD - metabolism
Antigens, Differentiation, Myelomonocytic - metabolism
Astrocytes
Brain - enzymology
Brain - metabolism
Brain Injuries, Traumatic - physiopathology
Cell death
Central nervous system
Cerebral cortex
Cerebral Cortex - enzymology
Cerebral Cortex - metabolism
Choline
choline acetyltransferase
Choline O-acetyltransferase
Choline O-Acetyltransferase - metabolism
Enzymes
Glial cells
Glial Fibrillary Acidic Protein
Immunohistochemistry
Male
Mice, Inbred C57BL
Microglia
Neuroglia - metabolism
Neuroglia - pathology
Neuronal-glial interactions
Traumatic brain injury
Title Immunohistochemical analysis for acetylcholinesterase and choline acetyltransferase in mouse cerebral cortex after traumatic brain injury
URI https://www.jstage.jst.go.jp/article/jvms/82/6/82_19-0551/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/32321871
https://www.proquest.com/docview/2419465625
https://www.proquest.com/docview/2394261798
https://pubmed.ncbi.nlm.nih.gov/PMC7324811
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2020, Vol.82(6), pp.827-835
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fb9MwED5NA6G9IBi_AmMyEjyhjsRJHFsIIYSYNlB5omhvVuzYY1XJtjZD25_Af82d40R02vrQh_prFPnu7Dv77juA141tlMcgbZK7tJwUlpIADC6G3qpSNs401tCB_vS7OJgVX4_Kow0Yuo3GCVzdGNpRP6nZcrF3eX71EQ3-Q-BGUPzd_M_v1R7V4pRUS30H96SKTHRajPcJ1L1axbT36__Ygns5uhWZrLK1venuHN2zY3eT53k9gfK_HWn_AdyPriT71Mv-IWy4dhu2f1J-SyiyZdN4b_4I_h5SGchpIBe2kSKA1ZGPhKHfymrruqsFTQflwVNZ8sohomHxpwjogp_bj560jM4NHLNuSdfPC2Ypc_eShb7jDKEXgQ-WGWpDgfA5yu8xzPa__Ph8MIlNGCZWCN7hMi2ztEa3q0BfQNoy95VqeEHEXaaouceIB12KWjr81Db1phLC5Mbawlfcc5M_gc32tHXPgKUmFSozuZC1x8f52lmB64nFoEhg1NUk8HaYfm0jQzk1ylhoilRQbprkpjOlSW4JvBnRZz0zxy24970kR1S0yR4luRb0FdHjIBW94cqRwM4gfj0op0YNU8Qzx8sEXo3DaJd02VK3DudeU8t5YrtXMoGnvbaMLzDoWwLVmh6NAOL8Xh9pT34F7u8KJSGz7Pmtz3wBW5yOBMIp0Q5sdssL9xL9ps7sYsRw-G03GMY_BiwfgQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunohistochemical+analysis+for+acetylcholinesterase+and+choline+acetyltransferase+in+mouse+cerebral+cortex+after+traumatic+brain+injury&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Horio%2C+Tomoyo&rft.au=Ozawa%2C+Aisa&rft.au=Kamiie%2C+Junichi&rft.au=Sakaue%2C+Motoharu&rft.date=2020&rft.eissn=1347-7439&rft.volume=82&rft.issue=6&rft.spage=827&rft_id=info:doi/10.1292%2Fjvms.19-0551&rft_id=info%3Apmid%2F32321871&rft.externalDocID=32321871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon