Immunohistochemical analysis for acetylcholinesterase and choline acetyltransferase in mouse cerebral cortex after traumatic brain injury
The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylch...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 82; no. 6; pp. 827 - 835 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2020
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells’ states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states. |
---|---|
AbstractList | The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells' states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states.The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells' states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states. The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells’ states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states. The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial cells promote neuronal death. Acetylcholine (ACh), a neurotransmitter synthesized and hydrolyzed by choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), respectively, in the central nervous system, has the potential to regulate glial cells’ states, i.e., non-reactive and reactive states. However, the expression levels of these ACh-related enzymes in areas containing reactive glial cells are unclear. Herein we immunohistochemically investigated the distributions of AChE and ChAT with reactive glial cells in the cryo-injured brain of mice as a traumatic brain injury model. Immunohistochemistry revealed AChE- and ChAT-immunopositive signals in injured areas at 7 days post-injury. The signals were observed in and around glial fibrillary acidic protein (GFAP)- or CD68-immunopositive cells, and the numbers of cells doubly positive for GFAP/AChE, GFAP/ChAT, CD68/AChE, and CD68/ChAT were significantly increased in injured areas compared to sham-operated areas. Enzyme histochemistry for AChE showed intensely positive signals in injured areas. These results suggest that reactive astrocytes and microglia express and secrete AChE and ChAT in brain-injury areas. These glial cells may adjust the ACh concentration around themselves through the regulation of the expression of ACh-related enzymes in order to control their reactive states. |
Author | SAKAUE, Motoharu KAMIIE, Junichi OZAWA, Aisa HORIO, Tomoyo |
Author_xml | – sequence: 1 fullname: HORIO, Tomoyo organization: Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan – sequence: 2 fullname: OZAWA, Aisa organization: Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan – sequence: 3 fullname: KAMIIE, Junichi organization: Laboratory of Veterinary Pathology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan – sequence: 4 fullname: SAKAUE, Motoharu organization: Laboratory of Anatomy II, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32321871$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstu1TAQhi1URE8LO9YoEhsWpPgWJ94glapApUpsYG05Pk7jyLGLnVScR-CtO1HCEVTCC9vyfP_cPGfoJMRgEXpN8AWhkn4YHsZ8QWSJq4o8QzvCeF3WnMkTtMOSiLKmFT5FZzkPGFPChXyBThlllDQ12aHfN-M4h9i7PEXT29EZ7QsdtD9kl4supkIbOx286aN3webJJp0tEPtie9qAKemQu9XqQjHGGS7GJtsm8GhimuyvQnegLwCdRz05U4ANWBeGOR1eoued9tm-2s5z9OPz9ferr-Xtty83V5e3pRGCTiXBDcGaUc5JQxpTsa6We8qrGrOWa9pVvJGY6MbC0gZ3bS1Ey1pjeFfTjrbsHH1c_d7P7Wj3xgbIx6v75EadDipqp_61BNeru_igagjaEAIO3m0OUvw5Q0vU6LKx3utgoWpFmeRUkFo2gL59gg5xTtBdoDiRXFSCVkC9-TujYyp_fgmA9ytgUsw52e6IEKyWIVDLECgi1TIEgNMnuHET9Dsu9Tj_P9GnVTTkSd_ZYwSd4KO8XeGGKrFsm-hoNL1Oygb2CEYU0og |
CitedBy_id | crossref_primary_10_1021_acschemneuro_0c00720 crossref_primary_10_1007_s00418_022_02164_3 crossref_primary_10_1021_acs_jafc_3c07821 |
Cites_doi | 10.1089/neu.2011.1957 10.1038/s41467-017-00037-1 10.1016/S0166-2236(97)01139-9 10.1017/S1740925X12000014 10.1016/j.brainres.2013.08.031 10.1002/ijc.30398 10.1038/nature21029 10.1177/0192623310385254 10.1016/S0891-0618(02)00100-X 10.1016/j.neulet.2019.01.020 10.1016/j.neurobiolaging.2013.04.027 10.1016/j.nurt.2010.07.002 10.1038/ncomms5486 10.1371/journal.pone.0053376 10.1038/celldisc.2015.2 10.1046/j.1471-4159.2004.02347.x 10.1186/1742-2094-9-98 10.1101/cshperspect.a020628 10.1155/2017/5405104 10.1111/bph.13125 10.1016/j.molimm.2015.07.028 10.1186/s40035-017-0088-2 10.1371/journal.pone.0065936 10.1016/j.neuint.2004.12.007 10.3389/fnins.2016.00458 10.1002/neu.10114 10.1016/j.celrep.2017.04.047 10.1177/12.3.219 |
ContentType | Journal Article |
Copyright | 2020 by the Japanese Society of Veterinary Science 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Japanese Society of Veterinary Science 2020 |
Copyright_xml | – notice: 2020 by the Japanese Society of Veterinary Science – notice: 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Japanese Society of Veterinary Science 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.19-0551 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 835 |
ExternalDocumentID | PMC7324811 32321871 10_1292_jvms_19_0551 article_jvms_82_6_82_19_0551_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX B.T CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c662t-10810a32441818c53f79d245703b4a2f548901a8eeeeac0fb766b3bcc4f72f2b3 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 13:46:23 EDT 2025 Fri Jul 11 16:17:35 EDT 2025 Sun Jun 29 16:22:05 EDT 2025 Mon Jul 21 06:08:11 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Tue Jul 01 04:14:37 EDT 2025 Wed Apr 05 05:44:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | traumatic brain injury acetylcholinesterase choline acetyltransferase acetylcholine immunohistochemistry |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c662t-10810a32441818c53f79d245703b4a2f548901a8eeeeac0fb766b3bcc4f72f2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.19-0551 |
PMID | 32321871 |
PQID | 2419465625 |
PQPubID | 2028964 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324811 proquest_miscellaneous_2394261798 proquest_journals_2419465625 pubmed_primary_32321871 crossref_primary_10_1292_jvms_19_0551 crossref_citationtrail_10_1292_jvms_19_0551 jstage_primary_article_jvms_82_6_82_19_0551_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2020 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 5. Du, A., Xie, J., Guo, K., Yang, L., Wan, Y., OuYang, Q., Zhang, X., Niu, X., Lu, L., Wu, J. and Zhang, X. 2015. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease. Cell Discov. 1: 15002. 11. Liu, Y., Hu, J., Wu, J., Zhu, C., Hui, Y., Han, Y., Huang, Z., Ellsworth, K. and Fan, W. 2012. α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J. Neuroinflammation 9: 98. 24. Shytle, R. D., Mori, T., Townsend, K., Vendrame, M., Sun, N., Zeng, J., Ehrhart, J., Silver, A. A., Sanberg, P. R. and Tan, J. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J. Neurochem. 89: 337–343. 22. Sharma, G. and Vijayaraghavan, S. 2002. Nicotinic receptor signaling in nonexcitable cells. J. Neurobiol. 53: 524–534. 25. Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A. B. and Aschner, M. 2011. Role of astrocytes in brain function and disease. Toxicol. Pathol. 39: 115–123. 17. Ozawa, A., Kadowaki, E., Haga, Y., Sekiguchi, H., Hemmi, N., Kaneko, T., Maki, T., Sakabe, K., Hara, S., Yamamoto, M., Arishima, K. and Sakaue, M. 2013. Acetylcholine esterase is a regulator of GFAP expression and a target of dichlorvos in astrocytic differentiation of rat glioma C6 cells. Brain Res. 1537: 37–45. 26. Strauss, D. J., Shavelle, R. M. and DeVivo, M. J. 1999. Life tables for people with traumatic brain injury. J. Insur. Med. 31: 104–105. 9. Karve, I. P., Taylor, J. M. and Crack, P. J. 2016. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 173: 692–702. 15. Morizawa, Y. M., Hirayama, Y., Ohno, N., Shibata, S., Shigetomi, E., Sui, Y., Nabekura, J., Sato, K., Okajima, F., Takebayashi, H., Okano, H. and Koizumi, S. 2017. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 8: 28. 13. Luque, M. C., Gutierrez, P. S., Debbas, V., Kalil, J. and Stolf, B. S. 2015. CD100 and plexins B2 and B1 mediate monocyte-endothelial cell adhesion and might take part in atherogenesis. Mol. Immunol. 672 Pt B: 559–567. 16. Mukherjee, S., Baidoo, J., Fried, A., Atwi, D., Dolai, S., Boockvar, J., Symons, M., Ruggieri, R., Raja, K. and Banerjee, P. 2016. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int. J. Cancer 139: 2838–2849. 18. Ozawa, A., Kadowaki, E., Horio, T. and Sakaue, M. 2019. Acetylcholine suppresses the increase of glia fibrillary acidic protein expression via acetylcholine receptors in cAMP-induced astrocytic differentiation of rat C6 glioma cells. Neurosci. Lett. 698: 146–153. 4. Darreh-Shori, T., Vijayaraghavan, S., Aeinehband, S., Piehl, F., Lindblom, R. P., Nilsson, B., Ekdahl, K. N., Långström, B., Almkvist, O. and Nordberg, A. 2013. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer’s disease. Neurobiol. Aging 34: 2465–2481. 28. Taylor, C. A., Bell, J. M., Breiding, M. J. and Xu, L. 2017. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths −United States, 2007 and 2013. MMWR Surveill. Summ. 66: 1–16. 8. Karnovsky, M. J. and Roots, L. 1964. A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12: 219–221. 12. Loane, D. J. and Byrnes, K. R. 2010. Role of microglia in neurotrauma. Neurotherapeutics 7: 366–377. 19. Phatnani, H. and Maniatis, T. 2015. Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7: a020628. 23. Shinozaki, Y., Shibata, K., Yoshida, K., Shigetomi, E., Gachet, C., Ikenaka, K., Tanaka, K. F. and Koizumi, S. 2017. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep. 19: 1151–1164. 6. Graham, A. J., Ray, M. A., Perry, E. K., Jaros, E., Perry, R. H., Volsen, S. G., Bose, S., Evans, N., Lindstrom, J. and Court, J. A. 2003. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J. Chem. Neuroanat. 25: 97–113. 3. Cruz-Haces, M., Tang, J., Acosta, G., Fernandez, J. and Shi, R. 2017. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl. Neurodegener. 6: 20. 21. Saing, T., Dick, M., Nelson, P. T., Kim, R. C., Cribbs, D. H. and Head, E. 2012. Frontal cortex neuropathology in dementia pugilistica. J. Neurotrauma 29: 1054–1070. 29. Vijayaraghavan, S., Karami, A., Aeinehband, S., Behbahani, H., Grandien, A., Nilsson, B., Ekdahl, K. N., Lindblom, R. P., Piehl, F. and Darreh-Shori, T. 2013. Regulated extracellular choline acetyltransferase activity- the plausible missing link of the distant action of acetylcholine in the cholinergic anti-inflammatory pathway. PLoS One 8: e65936. 2. Chen, Z., Jalabi, W., Hu, W., Park, H. J., Gale, J. T., Kidd, G. J., Bernatowicz, R., Gossman, Z. C., Chen, J. T., Dutta, R. and Trapp, B. D. 2014. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun. 5: 4486. 27. Tatsumi, K., Haga, S., Matsuyoshi, H., Inoue, M., Manabe, T., Makinodan, M. and Wanaka, A. 2005. Characterization of cells with proliferative activity after a brain injury. Neurochem. Int. 46: 381–389. 10. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. 2017. Neurotoxic reactive astrocytes are in 22 23 24 25 26 27 28 29 30 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 4. Darreh-Shori, T., Vijayaraghavan, S., Aeinehband, S., Piehl, F., Lindblom, R. P., Nilsson, B., Ekdahl, K. N., Långström, B., Almkvist, O. and Nordberg, A. 2013. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer’s disease. Neurobiol. Aging 34: 2465–2481. – reference: 1. Acosta, S. A., Tajiri, N., Shinozuka, K., Ishikawa, H., Grimmig, B., Diamond, D. M., Sanberg, P. R., Bickford, P. C., Kaneko, Y. and Borlongan, C. V. 2013. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS One 8: e53376. – reference: 15. Morizawa, Y. M., Hirayama, Y., Ohno, N., Shibata, S., Shigetomi, E., Sui, Y., Nabekura, J., Sato, K., Okajima, F., Takebayashi, H., Okano, H. and Koizumi, S. 2017. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 8: 28. – reference: 13. Luque, M. C., Gutierrez, P. S., Debbas, V., Kalil, J. and Stolf, B. S. 2015. CD100 and plexins B2 and B1 mediate monocyte-endothelial cell adhesion and might take part in atherogenesis. Mol. Immunol. 672 Pt B: 559–567. – reference: 28. Taylor, C. A., Bell, J. M., Breiding, M. J. and Xu, L. 2017. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths −United States, 2007 and 2013. MMWR Surveill. Summ. 66: 1–16. – reference: 11. Liu, Y., Hu, J., Wu, J., Zhu, C., Hui, Y., Han, Y., Huang, Z., Ellsworth, K. and Fan, W. 2012. α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J. Neuroinflammation 9: 98. – reference: 9. Karve, I. P., Taylor, J. M. and Crack, P. J. 2016. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 173: 692–702. – reference: 16. Mukherjee, S., Baidoo, J., Fried, A., Atwi, D., Dolai, S., Boockvar, J., Symons, M., Ruggieri, R., Raja, K. and Banerjee, P. 2016. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int. J. Cancer 139: 2838–2849. – reference: 29. Vijayaraghavan, S., Karami, A., Aeinehband, S., Behbahani, H., Grandien, A., Nilsson, B., Ekdahl, K. N., Lindblom, R. P., Piehl, F. and Darreh-Shori, T. 2013. Regulated extracellular choline acetyltransferase activity- the plausible missing link of the distant action of acetylcholine in the cholinergic anti-inflammatory pathway. PLoS One 8: e65936. – reference: 26. Strauss, D. J., Shavelle, R. M. and DeVivo, M. J. 1999. Life tables for people with traumatic brain injury. J. Insur. Med. 31: 104–105. – reference: 10. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481–487. – reference: 18. Ozawa, A., Kadowaki, E., Horio, T. and Sakaue, M. 2019. Acetylcholine suppresses the increase of glia fibrillary acidic protein expression via acetylcholine receptors in cAMP-induced astrocytic differentiation of rat C6 glioma cells. Neurosci. Lett. 698: 146–153. – reference: 17. Ozawa, A., Kadowaki, E., Haga, Y., Sekiguchi, H., Hemmi, N., Kaneko, T., Maki, T., Sakabe, K., Hara, S., Yamamoto, M., Arishima, K. and Sakaue, M. 2013. Acetylcholine esterase is a regulator of GFAP expression and a target of dichlorvos in astrocytic differentiation of rat glioma C6 cells. Brain Res. 1537: 37–45. – reference: 22. Sharma, G. and Vijayaraghavan, S. 2002. Nicotinic receptor signaling in nonexcitable cells. J. Neurobiol. 53: 524–534. – reference: 12. Loane, D. J. and Byrnes, K. R. 2010. Role of microglia in neurotrauma. Neurotherapeutics 7: 366–377. – reference: 14. Marín-Teva, J. L., Cuadros, M. A., Martín-Oliva, D. and Navascués, J. 2011. Microglia and neuronal cell death. Neuron Glia Biol. 7: 25–40. – reference: 20. Ridet, J. L., Malhotra, S. K., Privat, A. and Gage, F. H. 1997. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20: 570–577. – reference: 3. Cruz-Haces, M., Tang, J., Acosta, G., Fernandez, J. and Shi, R. 2017. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl. Neurodegener. 6: 20. – reference: 24. Shytle, R. D., Mori, T., Townsend, K., Vendrame, M., Sun, N., Zeng, J., Ehrhart, J., Silver, A. A., Sanberg, P. R. and Tan, J. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J. Neurochem. 89: 337–343. – reference: 25. Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A. B. and Aschner, M. 2011. Role of astrocytes in brain function and disease. Toxicol. Pathol. 39: 115–123. – reference: 27. Tatsumi, K., Haga, S., Matsuyoshi, H., Inoue, M., Manabe, T., Makinodan, M. and Wanaka, A. 2005. Characterization of cells with proliferative activity after a brain injury. Neurochem. Int. 46: 381–389. – reference: 6. Graham, A. J., Ray, M. A., Perry, E. K., Jaros, E., Perry, R. H., Volsen, S. G., Bose, S., Evans, N., Lindstrom, J. and Court, J. A. 2003. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J. Chem. Neuroanat. 25: 97–113. – reference: 7. Impellizzeri, D., Campolo, M., Bruschetta, G., Crupi, R., Cordaro, M., Paterniti, I., Cuzzocrea, S. and Esposito, E. 2016. Traumatic brain injury leads to development of Parkinson’s disease related pathology in mice. Front. Neurosci. 10: 458. – reference: 21. Saing, T., Dick, M., Nelson, P. T., Kim, R. C., Cribbs, D. H. and Head, E. 2012. Frontal cortex neuropathology in dementia pugilistica. J. Neurotrauma 29: 1054–1070. – reference: 2. Chen, Z., Jalabi, W., Hu, W., Park, H. J., Gale, J. T., Kidd, G. J., Bernatowicz, R., Gossman, Z. C., Chen, J. T., Dutta, R. and Trapp, B. D. 2014. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun. 5: 4486. – reference: 23. Shinozaki, Y., Shibata, K., Yoshida, K., Shigetomi, E., Gachet, C., Ikenaka, K., Tanaka, K. F. and Koizumi, S. 2017. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep. 19: 1151–1164. – reference: 30. Xu, H., Wang, Z., Li, J., Wu, H., Peng, Y., Fan, L., Chen, J., Gu, C., Yan, F., Wang, L. and Chen, G. 2017. The polarization states of microglia in TBI: A new paradigm for pharmacological intervention. Neural Plast. 2017: 5405104. – reference: 5. Du, A., Xie, J., Guo, K., Yang, L., Wan, Y., OuYang, Q., Zhang, X., Niu, X., Lu, L., Wu, J. and Zhang, X. 2015. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease. Cell Discov. 1: 15002. – reference: 19. Phatnani, H. and Maniatis, T. 2015. Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7: a020628. – reference: 8. Karnovsky, M. J. and Roots, L. 1964. A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12: 219–221. – ident: 21 doi: 10.1089/neu.2011.1957 – ident: 15 doi: 10.1038/s41467-017-00037-1 – ident: 20 doi: 10.1016/S0166-2236(97)01139-9 – ident: 14 doi: 10.1017/S1740925X12000014 – ident: 17 doi: 10.1016/j.brainres.2013.08.031 – ident: 16 doi: 10.1002/ijc.30398 – ident: 10 doi: 10.1038/nature21029 – ident: 25 doi: 10.1177/0192623310385254 – ident: 6 doi: 10.1016/S0891-0618(02)00100-X – ident: 18 doi: 10.1016/j.neulet.2019.01.020 – ident: 4 doi: 10.1016/j.neurobiolaging.2013.04.027 – ident: 12 doi: 10.1016/j.nurt.2010.07.002 – ident: 2 doi: 10.1038/ncomms5486 – ident: 28 – ident: 1 doi: 10.1371/journal.pone.0053376 – ident: 5 doi: 10.1038/celldisc.2015.2 – ident: 24 doi: 10.1046/j.1471-4159.2004.02347.x – ident: 11 doi: 10.1186/1742-2094-9-98 – ident: 19 doi: 10.1101/cshperspect.a020628 – ident: 30 doi: 10.1155/2017/5405104 – ident: 9 doi: 10.1111/bph.13125 – ident: 13 doi: 10.1016/j.molimm.2015.07.028 – ident: 26 – ident: 3 doi: 10.1186/s40035-017-0088-2 – ident: 29 doi: 10.1371/journal.pone.0065936 – ident: 27 doi: 10.1016/j.neuint.2004.12.007 – ident: 7 doi: 10.3389/fnins.2016.00458 – ident: 22 doi: 10.1002/neu.10114 – ident: 23 doi: 10.1016/j.celrep.2017.04.047 – ident: 8 doi: 10.1177/12.3.219 |
SSID | ssj0021469 |
Score | 2.2368844 |
Snippet | The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial... The regulation of glial cells, especially astrocytes and microglia, is important to prevent the exacerbation of a brain injury because over-reactive glial... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 827 |
SubjectTerms | acetylcholine Acetylcholinesterase Acetylcholinesterase - metabolism Acetyltransferase Anatomy Animals Antigens, CD - metabolism Antigens, Differentiation, Myelomonocytic - metabolism Astrocytes Brain - enzymology Brain - metabolism Brain Injuries, Traumatic - physiopathology Cell death Central nervous system Cerebral cortex Cerebral Cortex - enzymology Cerebral Cortex - metabolism Choline choline acetyltransferase Choline O-acetyltransferase Choline O-Acetyltransferase - metabolism Enzymes Glial cells Glial Fibrillary Acidic Protein Immunohistochemistry Male Mice, Inbred C57BL Microglia Neuroglia - metabolism Neuroglia - pathology Neuronal-glial interactions Traumatic brain injury |
Title | Immunohistochemical analysis for acetylcholinesterase and choline acetyltransferase in mouse cerebral cortex after traumatic brain injury |
URI | https://www.jstage.jst.go.jp/article/jvms/82/6/82_19-0551/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/32321871 https://www.proquest.com/docview/2419465625 https://www.proquest.com/docview/2394261798 https://pubmed.ncbi.nlm.nih.gov/PMC7324811 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2020, Vol.82(6), pp.827-835 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fb9MwED5NA6G9IBi_AmMyEjyhjsRJHFsIIYSYNlB5omhvVuzYY1XJtjZD25_Af82d40R02vrQh_prFPnu7Dv77juA141tlMcgbZK7tJwUlpIADC6G3qpSNs401tCB_vS7OJgVX4_Kow0Yuo3GCVzdGNpRP6nZcrF3eX71EQ3-Q-BGUPzd_M_v1R7V4pRUS30H96SKTHRajPcJ1L1axbT36__Ygns5uhWZrLK1venuHN2zY3eT53k9gfK_HWn_AdyPriT71Mv-IWy4dhu2f1J-SyiyZdN4b_4I_h5SGchpIBe2kSKA1ZGPhKHfymrruqsFTQflwVNZ8sohomHxpwjogp_bj560jM4NHLNuSdfPC2Ypc_eShb7jDKEXgQ-WGWpDgfA5yu8xzPa__Ph8MIlNGCZWCN7hMi2ztEa3q0BfQNoy95VqeEHEXaaouceIB12KWjr81Db1phLC5Mbawlfcc5M_gc32tHXPgKUmFSozuZC1x8f52lmB64nFoEhg1NUk8HaYfm0jQzk1ylhoilRQbprkpjOlSW4JvBnRZz0zxy24970kR1S0yR4luRb0FdHjIBW94cqRwM4gfj0op0YNU8Qzx8sEXo3DaJd02VK3DudeU8t5YrtXMoGnvbaMLzDoWwLVmh6NAOL8Xh9pT34F7u8KJSGz7Pmtz3wBW5yOBMIp0Q5sdssL9xL9ps7sYsRw-G03GMY_BiwfgQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunohistochemical+analysis+for+acetylcholinesterase+and+choline+acetyltransferase+in+mouse+cerebral+cortex+after+traumatic+brain+injury&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Horio%2C+Tomoyo&rft.au=Ozawa%2C+Aisa&rft.au=Kamiie%2C+Junichi&rft.au=Sakaue%2C+Motoharu&rft.date=2020&rft.eissn=1347-7439&rft.volume=82&rft.issue=6&rft.spage=827&rft_id=info:doi/10.1292%2Fjvms.19-0551&rft_id=info%3Apmid%2F32321871&rft.externalDocID=32321871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |