Normalized Cut Group Clustering of Resting-State fMRI Data

Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional c...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 3; no. 4; p. e2001
Main Authors van den Heuvel, Martijn, Mandl, Rene, Hulshoff Pol, Hilleke
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.04.2008
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
AbstractList Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks.BACKGROUNDFunctional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks.We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner.METHODOLOGY/PRINCIPAL FINDINGSWe report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner.An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.CONCLUSIONS/SIGNIFICANCEAn optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.
Audience Academic
Author van den Heuvel, Martijn
Hulshoff Pol, Hilleke
Mandl, Rene
AuthorAffiliation Freie Universitaet Berlin, Germany
Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
AuthorAffiliation_xml – name: Freie Universitaet Berlin, Germany
– name: Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
Author_xml – sequence: 1
  givenname: Martijn
  surname: van den Heuvel
  fullname: van den Heuvel, Martijn
– sequence: 2
  givenname: Rene
  surname: Mandl
  fullname: Mandl, Rene
– sequence: 3
  givenname: Hilleke
  surname: Hulshoff Pol
  fullname: Hulshoff Pol, Hilleke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18431486$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9v0zAUxSM0xP7AN0AQCWkSDym24zjJHpCmDkalwaRu4tVy7OvWlRt3toMYnx6XdtBOCKE8xLr53XN9T85xdtC7HrLsJUYjXNb43cINvhd2tErlEUKIIISfZEe4LUnBCCoPds6H2XEIC4SqsmHsWXaIG1pi2rCj7OyL80thzQ9Q-XiI-aV3wyof2yFE8Kaf5U7nUwgxHYubKCLk-vN0kl-IKJ5nT7WwAV5s3yfZ7ccPt-NPxdX15WR8flVIxkgsMKJaaSBEIllXtWzrThNMcCNBVqQSClOFoaQdqA5potKlpewE1S0wJGV5kr3eyK6sC3y7deC4XGs0DNeJmGwI5cSCr7xZCn_PnTD8V8H5GRc-GmmBS4SSbEsxIkAr1Xa66aDGqiOUYdSRpPV-O23olqAk9NELuye6_6U3cz5z3zghLa6qJgmcbgW8uxuSc3xpggRrRQ9uCJy1mJQtWYNvHoF_3220oWYiXd_02qWpMj0KlkamX69Nqp_TmrCqJO16gbd7DYmJ8D3OxBACn9xM_5-9_rrPnu6wcxA2zoOzQzSuD_vgq10Hf1v3kLkE0A0gvQvBg_6DIL6O9oMRfB1tvo12ajt71CZNCmQanxwx9t_NPwHOAv56
CitedBy_id crossref_primary_10_1073_pnas_1204185109
crossref_primary_10_1142_S0218001420570049
crossref_primary_10_1002_hbm_22285
crossref_primary_10_1007_s12559_021_09982_y
crossref_primary_10_1017_S1355617715000703
crossref_primary_10_1109_ACCESS_2023_3277731
crossref_primary_10_1002_hbm_22839
crossref_primary_10_3389_fnins_2018_00334
crossref_primary_10_1016_j_euroneuro_2021_05_013
crossref_primary_10_1002_hbm_20893
crossref_primary_10_1016_j_is_2015_04_007
crossref_primary_10_1053_j_semperi_2009_10_008
crossref_primary_10_1016_j_neuroimage_2009_12_119
crossref_primary_10_1016_j_neubiorev_2017_09_025
crossref_primary_10_1186_1471_2202_15_78
crossref_primary_10_3389_fenvs_2023_1201942
crossref_primary_10_3389_fnhum_2016_00364
crossref_primary_10_1155_2012_412512
crossref_primary_10_3389_fnhum_2024_1404759
crossref_primary_10_1007_s12021_021_09514_x
crossref_primary_10_1371_journal_pone_0049847
crossref_primary_10_1371_journal_pone_0117179
crossref_primary_10_3389_fnimg_2022_963125
crossref_primary_10_1016_j_psiq_2011_05_001
crossref_primary_10_1016_j_bandc_2008_12_009
crossref_primary_10_1007_s00429_013_0700_x
crossref_primary_10_1007_s00429_015_0999_6
crossref_primary_10_1016_j_neuroimage_2017_10_028
crossref_primary_10_1016_j_neuroimage_2023_120010
crossref_primary_10_1002_jnr_25242
crossref_primary_10_1016_j_bspc_2018_11_007
crossref_primary_10_1016_j_neuroimage_2016_04_006
crossref_primary_10_3389_fnana_2015_00097
crossref_primary_10_1002_hbm_22188
crossref_primary_10_1371_journal_pone_0040370
crossref_primary_10_3389_fnins_2015_00275
crossref_primary_10_1016_j_comppsych_2024_152487
crossref_primary_10_1016_j_sigpro_2020_107834
crossref_primary_10_1007_s10072_011_0636_y
crossref_primary_10_1109_TBME_2014_2369495
crossref_primary_10_1109_TMI_2013_2259248
crossref_primary_10_1152_jn_00891_2011
crossref_primary_10_1007_s41109_018_0078_z
crossref_primary_10_1109_TBME_2017_2737785
crossref_primary_10_1007_s11065_014_9248_7
crossref_primary_10_1371_journal_pone_0118175
crossref_primary_10_1177_1971400915576311
crossref_primary_10_1016_j_neuroimage_2015_05_017
crossref_primary_10_1016_j_neuroimage_2023_120006
crossref_primary_10_1016_j_jneumeth_2016_04_001
crossref_primary_10_1371_journal_pone_0076315
crossref_primary_10_1016_j_clinph_2014_04_004
crossref_primary_10_3389_fncom_2023_1132160
crossref_primary_10_1080_23273798_2016_1248452
crossref_primary_10_1016_j_neuroimage_2023_120026
crossref_primary_10_1152_jn_00411_2021
crossref_primary_10_1016_j_brainres_2020_146853
crossref_primary_10_1038_s41598_020_68683_y
crossref_primary_10_1002_hbm_25563
crossref_primary_10_3389_fnins_2015_00383
crossref_primary_10_1016_j_imu_2022_100876
crossref_primary_10_1016_j_mri_2019_05_031
crossref_primary_10_1016_j_brainresbull_2020_06_007
crossref_primary_10_1016_j_neuroimage_2022_119418
crossref_primary_10_1016_j_neuroimage_2013_03_053
crossref_primary_10_1016_j_neuroimage_2011_11_088
crossref_primary_10_1109_TAFFC_2022_3220291
crossref_primary_10_1007_s12021_012_9142_5
crossref_primary_10_1097_MD_0000000000021125
crossref_primary_10_3389_fnbeh_2015_00200
crossref_primary_10_1371_journal_pcbi_1002374
crossref_primary_10_1145_3161602
crossref_primary_10_1007_s00062_022_01170_1
crossref_primary_10_1016_j_jneumeth_2020_108628
crossref_primary_10_1109_TCBB_2015_2476787
crossref_primary_10_1089_brain_2017_0576
crossref_primary_10_1093_cercor_bhq186
crossref_primary_10_1089_neu_2017_5212
crossref_primary_10_1016_j_neuroimage_2015_07_041
crossref_primary_10_1093_cercor_bhr393
crossref_primary_10_1002_hbm_20737
crossref_primary_10_3389_fnhum_2019_00203
crossref_primary_10_1093_cercor_bhr269
crossref_primary_10_1002_hbm_23568
crossref_primary_10_1007_s10334_010_0228_5
crossref_primary_10_1053_j_semperi_2015_01_008
crossref_primary_10_1016_j_nbas_2023_100105
crossref_primary_10_1016_j_neuroimage_2010_10_046
crossref_primary_10_1016_j_neuroimage_2012_01_142
crossref_primary_10_1109_TMI_2011_2173699
crossref_primary_10_1016_j_nic_2014_07_009
crossref_primary_10_1016_j_patcog_2016_09_024
crossref_primary_10_1203_PDR_0b013e3181b1bd84
crossref_primary_10_1016_j_neuroimage_2013_03_035
crossref_primary_10_1364_BOE_387919
crossref_primary_10_1016_j_jneumeth_2016_11_014
crossref_primary_10_3389_fneur_2022_844606
crossref_primary_10_1016_j_euroneuro_2019_03_010
crossref_primary_10_1016_j_physleta_2010_08_011
crossref_primary_10_1016_j_neuroimage_2014_11_008
crossref_primary_10_1016_j_neuroimage_2015_07_054
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_24835_1607_0763_2018_5_6_13
crossref_primary_10_1523_JNEUROSCI_2128_13_2013
crossref_primary_10_1016_j_neuroimage_2013_04_073
crossref_primary_10_1002_hbm_23676
crossref_primary_10_1038_s41598_019_45670_6
crossref_primary_10_1371_journal_pone_0036222
crossref_primary_10_1109_TMI_2015_2480864
crossref_primary_10_1103_PhysRevE_96_032413
crossref_primary_10_3390_e21121156
crossref_primary_10_1162_netn_a_00062
crossref_primary_10_1016_j_neuroimage_2020_116678
crossref_primary_10_1159_000442424
crossref_primary_10_1016_j_media_2013_03_007
crossref_primary_10_1016_j_neuroimage_2012_06_011
crossref_primary_10_1371_journal_pone_0094423
crossref_primary_10_1016_j_neuroimage_2016_08_011
crossref_primary_10_1523_JNEUROSCI_1634_14_2014
crossref_primary_10_1002_hbm_21280
crossref_primary_10_1371_journal_pone_0074298
crossref_primary_10_1371_journal_pcbi_1006807
crossref_primary_10_1111_j_1749_6632_2009_04420_x
crossref_primary_10_1007_s10479_024_05868_y
crossref_primary_10_1016_j_neuroimage_2013_05_081
crossref_primary_10_1088_2632_072X_adab5c
crossref_primary_10_7717_peerj_784
crossref_primary_10_1371_journal_pone_0123950
crossref_primary_10_1007_s10548_014_0357_7
crossref_primary_10_1007_s12474_011_0002_0
crossref_primary_10_1016_j_neuroimage_2013_09_071
crossref_primary_10_3389_fnhum_2019_00112
crossref_primary_10_1016_j_neuroimage_2012_06_026
crossref_primary_10_1016_j_sleep_2016_07_018
crossref_primary_10_1016_j_neuroimage_2024_120755
crossref_primary_10_3389_fnhum_2014_01022
crossref_primary_10_3389_fnhum_2016_00659
crossref_primary_10_1002_jmri_24642
crossref_primary_10_1007_s12021_012_9169_7
crossref_primary_10_1111_cgf_14575
crossref_primary_10_1093_cercor_bhx179
crossref_primary_10_1016_j_jneumeth_2014_09_004
crossref_primary_10_1111_j_1460_9568_2010_07279_x
crossref_primary_10_1017_S1461145711000526
crossref_primary_10_1186_s12868_015_0193_z
crossref_primary_10_1371_journal_pone_0207385
crossref_primary_10_1007_s12264_013_1339_6
crossref_primary_10_23736_S0022_4707_24_15947_6
crossref_primary_10_1016_j_neuroimage_2008_12_017
crossref_primary_10_3389_fnsys_2022_885304
crossref_primary_10_1016_j_neuroimage_2008_08_010
crossref_primary_10_1186_1753_4631_4_S1_S9
crossref_primary_10_1002_hbm_25381
crossref_primary_10_1016_j_neuroimage_2019_01_044
crossref_primary_10_1093_cercor_bhn256
crossref_primary_10_1002_hbm_21333
crossref_primary_10_1016_j_neuroimage_2017_02_084
crossref_primary_10_1038_nmeth_2482
crossref_primary_10_1002_brb3_626
crossref_primary_10_1016_j_neuroimage_2017_08_068
crossref_primary_10_1089_brain_2014_0253
crossref_primary_10_1371_journal_pone_0145906
crossref_primary_10_1002_hbm_21250
crossref_primary_10_1016_j_neuroimage_2016_03_047
crossref_primary_10_1007_s10618_012_0291_9
crossref_primary_10_1016_j_neuroimage_2013_04_006
crossref_primary_10_1007_s10439_011_0258_9
crossref_primary_10_1016_j_neuroimage_2017_01_077
crossref_primary_10_1002_sim_9209
crossref_primary_10_1016_j_neuroimage_2017_01_072
crossref_primary_10_1016_j_neuroimage_2017_07_027
crossref_primary_10_3389_fnins_2020_629667
crossref_primary_10_1007_s11682_020_00287_6
crossref_primary_10_1371_journal_pone_0085880
crossref_primary_10_1016_j_neuri_2023_100148
crossref_primary_10_1016_j_media_2016_02_009
crossref_primary_10_1016_j_neuroimage_2017_07_029
crossref_primary_10_1016_j_artmed_2020_101997
crossref_primary_10_1038_s41386_021_01066_7
crossref_primary_10_1523_JNEUROSCI_2964_08_2008
crossref_primary_10_1016_j_artmed_2020_101872
crossref_primary_10_1002_hbm_23549
crossref_primary_10_1007_s11336_015_9441_5
crossref_primary_10_1016_j_media_2014_10_011
crossref_primary_10_1016_j_neubiorev_2014_05_009
crossref_primary_10_1093_cercor_bhab273
crossref_primary_10_1016_j_pscychresns_2016_04_008
crossref_primary_10_1089_brain_2018_0591
crossref_primary_10_1109_JBHI_2018_2868918
crossref_primary_10_1016_j_nicl_2017_10_018
crossref_primary_10_1016_j_neuroimage_2017_04_014
crossref_primary_10_1038_s41598_017_03420_6
crossref_primary_10_1523_JNEUROSCI_3980_15_2016
crossref_primary_10_1016_j_neuroimage_2011_05_090
crossref_primary_10_1109_TBME_2015_2399495
crossref_primary_10_1029_2019MS001654
crossref_primary_10_3389_fnhum_2018_00166
crossref_primary_10_3174_ajnr_A3263
crossref_primary_10_1016_j_dcn_2018_02_001
crossref_primary_10_1016_j_neuroimage_2012_03_021
crossref_primary_10_1523_JNEUROSCI_3377_10_2010
crossref_primary_10_3389_fnins_2019_00585
crossref_primary_10_1371_journal_pone_0067478
crossref_primary_10_1016_j_pacs_2018_01_003
crossref_primary_10_3389_fnagi_2018_00107
crossref_primary_10_1162_NECO_a_00877
crossref_primary_10_1016_j_neuroimage_2021_118513
crossref_primary_10_1017_S0954579418000342
crossref_primary_10_1371_journal_pone_0098769
crossref_primary_10_1016_j_mri_2014_04_004
crossref_primary_10_1002_brb3_777
crossref_primary_10_1016_j_neuroimage_2014_06_001
crossref_primary_10_1371_journal_pone_0157443
crossref_primary_10_1016_j_neuron_2009_03_024
crossref_primary_10_1093_cercor_bhs072
crossref_primary_10_1016_j_eswa_2022_117249
crossref_primary_10_1089_brain_2015_0338
crossref_primary_10_1016_j_mri_2010_02_008
crossref_primary_10_1089_brain_2020_0852
crossref_primary_10_3390_brainsci12091159
crossref_primary_10_1007_s00701_011_0985_6
crossref_primary_10_1007_s00429_009_0208_6
crossref_primary_10_1002_hbm_22662
crossref_primary_10_1186_1471_2202_13_S1_P168
crossref_primary_10_1371_journal_pone_0145668
crossref_primary_10_1093_scan_nsab048
crossref_primary_10_1016_j_neuroimage_2010_05_047
crossref_primary_10_1007_s12021_013_9177_2
crossref_primary_10_1371_journal_pone_0226481
crossref_primary_10_1016_j_euroneuro_2010_03_008
crossref_primary_10_1088_1741_2552_abfd46
crossref_primary_10_1002_hbm_22532
crossref_primary_10_1007_s10548_009_0113_6
crossref_primary_10_1089_brain_2016_0420
crossref_primary_10_1007_s00422_009_0350_5
crossref_primary_10_1016_j_expneurol_2009_01_025
crossref_primary_10_1007_s11682_013_9280_x
crossref_primary_10_1089_brain_2011_0062
crossref_primary_10_1109_JSTSP_2016_2595103
crossref_primary_10_1007_s12559_018_9585_6
crossref_primary_10_1016_j_eswa_2020_113513
crossref_primary_10_1007_s00213_011_2622_8
crossref_primary_10_1371_journal_pone_0137278
crossref_primary_10_3389_fnhum_2014_00204
crossref_primary_10_1227_NEU_0000000000000307
crossref_primary_10_3390_brainsci8060107
crossref_primary_10_1016_j_neuroimage_2013_11_009
crossref_primary_10_1038_s41598_017_12993_1
crossref_primary_10_1038_s41598_020_63552_0
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1007_s11682_019_00139_y
crossref_primary_10_1007_s11135_021_01227_2
crossref_primary_10_1155_2012_608501
crossref_primary_10_1089_brain_2014_0229
crossref_primary_10_1016_j_cobeha_2023_101302
crossref_primary_10_1016_j_neuroimage_2010_02_082
crossref_primary_10_1111_bdi_12512
Cites_doi 10.1073/pnas.0601417103
10.1073/pnas.0135058100
10.1016/j.neulet.2003.10.063
10.1126/science.1131295
10.1016/j.schres.2006.06.028
10.1002/hbm.20022
10.1002/hbm.20113
10.1038/jcbfm.1993.4
10.1523/JNEUROSCI.5587-06.2007
10.1073/pnas.0308627101
10.1016/j.neuroimage.2003.09.056
10.1006/nimg.2000.0654
10.1093/schbul/sbm052
10.1073/pnas.98.2.676
10.1016/j.neuroimage.2007.02.041
10.1016/S0730-725X(02)00503-9
10.1098/rstb.2005.1645
10.1016/j.neuroimage.2005.08.035
10.1073/pnas.0704320104
10.1097/00004728-199403000-00005
10.1016/j.neuroimage.2005.06.054
10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7
10.1093/schbul/sbm043
10.1016/S1053-8119(03)00097-1
10.1093/cercor/bhi016
10.1016/j.neuroimage.2006.12.001
10.1016/j.clinph.2007.08.010
10.1016/j.mri.2006.10.017
10.1038/nrn2201
10.1126/science.1144677
10.1098/rstb.2005.1634
10.1002/hbm.1048
10.1038/35094500
10.1002/1522-2594(200006)43:6<779::AID-MRM1>3.0.CO;2-4
10.1016/j.neuroimage.2007.08.027
10.1002/mrm.1910340409
10.1016/j.neulet.2007.02.081
10.1097/01.wnr.0000198434.06518.b8
10.1016/j.neuroimage.2007.01.010
10.1016/j.biopsych.2006.09.020
10.1002/hbm.20160
10.1126/science.1099745
10.1006/nimg.1998.0358
ContentType Journal Article
Copyright COPYRIGHT 2008 Public Library of Science
2008 van den Heuvel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
van den Heuvel et al. 2008
Copyright_xml – notice: COPYRIGHT 2008 Public Library of Science
– notice: 2008 van den Heuvel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: van den Heuvel et al. 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0002001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE




MEDLINE - Academic
Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Group Clustering of RS fMRI
EISSN 1932-6203
ExternalDocumentID 1312188617
oai_doaj_org_article_c009e694102e45d9bf8be71db24610b2
PMC2291558
2900627781
A472653292
18431486
10_1371_journal_pone_0002001
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c662t-104fdfe22c0c757c97bf21218cec525ad14d1e34bedb0f2d193ccba4f9e60cc3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:49 EST 2021
Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 18:24:24 EDT 2025
Mon Jul 21 09:44:52 EDT 2025
Fri Jul 25 10:27:48 EDT 2025
Tue Jun 10 21:31:19 EDT 2025
Fri Jun 27 03:58:30 EDT 2025
Fri Jun 27 04:02:18 EDT 2025
Thu May 22 20:58:01 EDT 2025
Mon Jul 21 06:02:55 EDT 2025
Tue Jul 01 03:30:56 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-104fdfe22c0c757c97bf21218cec525ad14d1e34bedb0f2d193ccba4f9e60cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: Mv HH RM. Performed the experiments: Mv. Analyzed the data: Mv. Contributed reagents/materials/analysis tools: Mv. Wrote the paper: Mv HH RM.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0002001
PMID 18431486
PQID 1312188617
PQPubID 1436336
ParticipantIDs plos_journals_1312188617
doaj_primary_oai_doaj_org_article_c009e694102e45d9bf8be71db24610b2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2291558
proquest_miscellaneous_69123928
proquest_journals_1312188617
gale_infotracacademiconefile_A472653292
gale_incontextgauss_ISR_A472653292
gale_incontextgauss_IOV_A472653292
gale_healthsolutions_A472653292
pubmed_primary_18431486
crossref_primary_10_1371_journal_pone_0002001
crossref_citationtrail_10_1371_journal_pone_0002001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-04-23
PublicationDateYYYYMMDD 2008-04-23
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-23
  day: 23
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2008
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RT Knight (ref30) 2007; 316
X Golay (ref46) 2000; 43
DL Collins (ref48) 1994; 18
R Salvador (ref25) 2005; 360
FT Sun (ref45) 2004; 21
S Micheloyannis (ref39) 2006; 87
D Cordes (ref11) 2001; 22
DA Gusnard (ref4) 2001; 2
M Liang (ref38) 2006; 17
P Williamson (ref41) 2007; 33
RL Buckner (ref32) 2007; 37
JS Damoiseaux (ref8) 2006; 103
ME Raichle (ref5) 2001; 98
R Salvador (ref19) 2005; 15
MD Greicius (ref34) 2004; 101
SA Rombouts (ref35) 2005; 26
J Shi (ref20) 2000; 22
BB Biswal (ref10) 1997; 10
M De Luca (ref2) 2006; 29
D Cordes (ref15) 2002; 20
JC Reijneveld (ref43) 2007; 118
V Kiviniemi (ref13) 2003; 19
CJ Stam (ref44) 2004; 355
R Salvador (ref40) 2007; 35
MD Fox (ref7) 2007; 8
NF Ramsey (ref47) 1998; 8
RO Duda (ref29) 2001
MJ Lowe (ref9) 2000; 12
MF Mason (ref22) 2007; 315
CF Beckmann (ref17) 2005; 360
J Ylipaavalniemi (ref28) 2008; 39
D Cordes (ref6) 2000; 21
G Buzsaki (ref31) 2004; 304
Y Zhou (ref42) 2007; 417
P Fransson (ref21) 2005; 26
MD Greicius (ref3) 2003; 100
B Thirion (ref16) 2006; 29
RL Bluhm (ref37) 2007; 33
N Correa (ref27) 2007; 25
VD Calhoun (ref18) 2001; 14
JS Damoiseaux (ref26) 2007
WW Seeley (ref24) 2007; 27
VG van de Ven (ref14) 2004; 22
MD Greicius (ref36) 2007; 62
KJ Friston (ref12) 1993; 13
B Biswal (ref1) 1995; 34
NU Dosenbach (ref23) 2007; 104
ME Raichle (ref33) 2007; 37
16407773 - Neuroreport. 2006 Feb 6;17(2):209-13
17540281 - Magn Reson Imaging. 2007 Jun;25(5):684-94
17900977 - Clin Neurophysiol. 2007 Nov;118(11):2317-31
17210143 - Biol Psychiatry. 2007 Sep 1;62(5):429-37
17719799 - Neuroimage. 2007 Oct 1;37(4):1083-90; discussion 1097-9
16129624 - Neuroimage. 2006 Jan 1;29(1):321-7
11498421 - AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33
15195284 - Hum Brain Mapp. 2004 Jul;22(3):165-78
11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51
9758738 - Neuroimage. 1998 Oct;8(3):240-8
17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56
11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94
15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42
10861870 - Magn Reson Med. 2000 Jun;43(6):779-86
17569852 - Science. 2007 Jun 15;316(5831):1578-9
16087438 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):937-46
17931888 - Neuroimage. 2008 Jan 1;39(1):169-80
16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
14980567 - Neuroimage. 2004 Feb;21(2):647-58
11034865 - Neuroimage. 2000 Nov;12(5):582-7
8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
18063564 - Cereb Cortex. 2008 Aug;18(8):1856-64
12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
15954139 - Hum Brain Mapp. 2005 Dec;26(4):231-9
17240167 - Neuroimage. 2007 Mar;35(1):83-8
11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14
14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8
17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003
16875801 - Schizophr Res. 2006 Oct;87(1-3):60-6
15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29
17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
17234951 - Science. 2007 Jan 19;315(5810):393-5
12165349 - Magn Reson Imaging. 2002 May;20(4):305-17
17368915 - Neuroimage. 2007 Oct 1;37(4):1091-6; discussion 1097-9
16260155 - Neuroimage. 2006 Feb 15;29(4):1359-67
17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12
9430343 - NMR Biomed. 1997 Jun-Aug;10(4-5):165-70
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
17399900 - Neurosci Lett. 2007 May 7;417(3):297-302
16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
15218136 - Science. 2004 Jun 25;304(5679):1926-9
12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60
17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8
11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44
References_xml – volume: 103
  start-page: 13848
  year: 2006
  ident: ref8
  article-title: Consistent resting-state networks across healthy subjects.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0601417103
– volume: 100
  start-page: 253
  year: 2003
  ident: ref3
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0135058100
– volume: 22
  start-page: 17
  year: 2000
  ident: ref20
  article-title: Normalized cuts and image segmentation.
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
– volume: 355
  start-page: 25
  year: 2004
  ident: ref44
  article-title: Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2003.10.063
– volume: 315
  start-page: 393
  year: 2007
  ident: ref22
  article-title: Wandering minds: the default network and stimulus-independent thought.
  publication-title: Science
  doi: 10.1126/science.1131295
– volume: 87
  start-page: 60
  year: 2006
  ident: ref39
  article-title: Small-world networks and disturbed functional connectivity in schizophrenia.
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2006.06.028
– volume: 22
  start-page: 165
  year: 2004
  ident: ref14
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20022
– volume: 26
  start-page: 15
  year: 2005
  ident: ref21
  article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20113
– volume: 13
  start-page: 5
  year: 1993
  ident: ref12
  article-title: Functional connectivity: the principal-component analysis of large (PET) data sets.
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1993.4
– volume: 27
  start-page: 2349
  year: 2007
  ident: ref24
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 101
  start-page: 4637
  year: 2004
  ident: ref34
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0308627101
– volume: 21
  start-page: 647
  year: 2004
  ident: ref45
  article-title: Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.09.056
– volume: 12
  start-page: 582
  year: 2000
  ident: ref9
  article-title: Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0654
– volume: 33
  start-page: 1004
  year: 2007
  ident: ref37
  article-title: Spontaneous Low-Frequency Fluctuations in the BOLD Signal in Schizophrenic Patients: Anomalies in the Default Network.
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbm052
– volume: 98
  start-page: 676
  year: 2001
  ident: ref5
  article-title: A default mode of brain function.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.98.2.676
– volume: 37
  start-page: 1083
  year: 2007
  ident: ref33
  article-title: A default mode of brain function: A brief history of an evolving idea.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.041
– volume: 20
  start-page: 305
  year: 2002
  ident: ref15
  article-title: Hierarchical clustering to measure connectivity in fMRI resting-state data.
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(02)00503-9
– volume: 360
  start-page: 937
  year: 2005
  ident: ref25
  article-title: Undirected graphs of frequency-dependent functional connectivity in whole brain networks.
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1645
– volume: 22
  start-page: 1326
  year: 2001
  ident: ref11
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data.
  publication-title: AJNR Am J Neuroradiol
– volume: 29
  start-page: 1359
  year: 2006
  ident: ref2
  article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.035
– volume: 104
  start-page: 11073
  year: 2007
  ident: ref23
  article-title: Distinct brain networks for adaptive and stable task control in humans.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0704320104
– year: 2007
  ident: ref26
  article-title: Reduced resting-state brain activity in the “default network” in normal aging.
  publication-title: Cereb Cortex
– volume: 18
  start-page: 192
  year: 1994
  ident: ref48
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-199403000-00005
– volume: 29
  start-page: 321
  year: 2006
  ident: ref16
  article-title: Detection of signal synchronizations in resting-state fMRI datasets.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.054
– volume: 10
  start-page: 165
  year: 1997
  ident: ref10
  article-title: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps.
  publication-title: NMR Biomed
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7
– volume: 33
  start-page: 994
  year: 2007
  ident: ref41
  article-title: Are Anticorrelated Networks in the Brain Relevant to Schizophrenia?
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbm043
– volume: 19
  start-page: 253
  year: 2003
  ident: ref13
  article-title: Independent component analysis of nondeterministic fMRI signal sources.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00097-1
– volume: 15
  start-page: 1332
  year: 2005
  ident: ref19
  article-title: Neurophysiological architecture of functional magnetic resonance images of human brain.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhi016
– volume: 35
  start-page: 83
  year: 2007
  ident: ref40
  article-title: Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.12.001
– volume: 118
  start-page: 2317
  year: 2007
  ident: ref43
  article-title: The application of graph theoretical analysis to complex networks in the brain.
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.08.010
– start-page: 654
  year: 2001
  ident: ref29
  article-title: Pattern Recognition: John Wiley & Sons, Inc.
– volume: 21
  start-page: 1636
  year: 2000
  ident: ref6
  article-title: Mapping functionally related regions of brain with functional connectivity MR imaging.
  publication-title: AJNR Am J Neuroradiol
– volume: 25
  start-page: 684
  year: 2007
  ident: ref27
  article-title: Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2006.10.017
– volume: 8
  start-page: 700
  year: 2007
  ident: ref7
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2201
– volume: 316
  start-page: 1578
  year: 2007
  ident: ref30
  article-title: Neuroscience. Neural networks debunk phrenology.
  publication-title: Science
  doi: 10.1126/science.1144677
– volume: 360
  start-page: 1001
  year: 2005
  ident: ref17
  article-title: Investigations into resting-state connectivity using independent component analysis.
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1634
– volume: 14
  start-page: 140
  year: 2001
  ident: ref18
  article-title: A method for making group inferences from functional MRI data using independent component analysis.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1048
– volume: 2
  start-page: 685
  year: 2001
  ident: ref4
  article-title: Searching for a baseline: functional imaging and the resting human brain.
  publication-title: Nat Rev Neurosci
  doi: 10.1038/35094500
– volume: 43
  start-page: 779
  year: 2000
  ident: ref46
  article-title: PRESTO-SENSE: an ultrafast whole-brain fMRI technique.
  publication-title: Magn Reson Med
  doi: 10.1002/1522-2594(200006)43:6<779::AID-MRM1>3.0.CO;2-4
– volume: 39
  start-page: 169
  year: 2008
  ident: ref28
  article-title: Analyzing consistency of independent components: an fMRI illustration.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.027
– volume: 34
  start-page: 537
  year: 1995
  ident: ref1
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340409
– volume: 417
  start-page: 297
  year: 2007
  ident: ref42
  article-title: Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI.
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2007.02.081
– volume: 17
  start-page: 209
  year: 2006
  ident: ref38
  article-title: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging.
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000198434.06518.b8
– volume: 37
  start-page: 1091
  year: 2007
  ident: ref32
  article-title: Unrest at rest: Default activity and spontaneous network correlations.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.010
– volume: 62
  start-page: 429
  year: 2007
  ident: ref36
  article-title: Resting-State Functional Connectivity in Major Depression: Abnormally Increased Contributions from Subgenual Cingulate Cortex and Thalamus.
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.09.020
– volume: 26
  start-page: 231
  year: 2005
  ident: ref35
  article-title: Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20160
– volume: 304
  start-page: 1926
  year: 2004
  ident: ref31
  article-title: Neuronal oscillations in cortical networks.
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 8
  start-page: 240
  year: 1998
  ident: ref47
  article-title: Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative assessment with a graded motor activation procedure.
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0358
– reference: 17719799 - Neuroimage. 2007 Oct 1;37(4):1083-90; discussion 1097-9
– reference: 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8
– reference: 17240167 - Neuroimage. 2007 Mar;35(1):83-8
– reference: 17540281 - Magn Reson Imaging. 2007 Jun;25(5):684-94
– reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5
– reference: 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302
– reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
– reference: 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8
– reference: 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60
– reference: 15218136 - Science. 2004 Jun 25;304(5679):1926-9
– reference: 11034865 - Neuroimage. 2000 Nov;12(5):582-7
– reference: 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29
– reference: 17900977 - Clin Neurophysiol. 2007 Nov;118(11):2317-31
– reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
– reference: 12165349 - Magn Reson Imaging. 2002 May;20(4):305-17
– reference: 17368915 - Neuroimage. 2007 Oct 1;37(4):1091-6; discussion 1097-9
– reference: 16087438 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):937-46
– reference: 10861870 - Magn Reson Med. 2000 Jun;43(6):779-86
– reference: 14980567 - Neuroimage. 2004 Feb;21(2):647-58
– reference: 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14
– reference: 16875801 - Schizophr Res. 2006 Oct;87(1-3):60-6
– reference: 17569852 - Science. 2007 Jun 15;316(5831):1578-9
– reference: 11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44
– reference: 16129624 - Neuroimage. 2006 Jan 1;29(1):321-7
– reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
– reference: 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
– reference: 9430343 - NMR Biomed. 1997 Jun-Aug;10(4-5):165-70
– reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
– reference: 16407773 - Neuroreport. 2006 Feb 6;17(2):209-13
– reference: 17931888 - Neuroimage. 2008 Jan 1;39(1):169-80
– reference: 11498421 - AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33
– reference: 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51
– reference: 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42
– reference: 16260155 - Neuroimage. 2006 Feb 15;29(4):1359-67
– reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94
– reference: 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12
– reference: 15954139 - Hum Brain Mapp. 2005 Dec;26(4):231-9
– reference: 17210143 - Biol Psychiatry. 2007 Sep 1;62(5):429-37
– reference: 15195284 - Hum Brain Mapp. 2004 Jul;22(3):165-78
– reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
– reference: 18063564 - Cereb Cortex. 2008 Aug;18(8):1856-64
– reference: 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003
– reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
– reference: 9758738 - Neuroimage. 1998 Oct;8(3):240-8
SSID ssj0053866
Score 2.4342477
Snippet Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions...
Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest....
BACKGROUND: Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest....
Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest....
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2001
SubjectTerms Adult
Attention
Brain
Brain mapping
Brain research
Cluster Analysis
Clustering
Data processing
Female
Functional magnetic resonance imaging
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Methods
Networks
Neural networks
Neuroimaging
Neurons
Neuroscience
Neuroscience/Cognitive Neuroscience
Neurosciences
NMR
Nuclear magnetic resonance
Principal components analysis
Psychiatry
Radiology and Medical Imaging/Magnetic Resonance Imaging
Rest
Rest - physiology
Schizophrenia
Sensorimotor integration
Sensory integration
Visual perception
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBQi2EBBzSbhzHjrkVxKpFokiloN6s-FUqrZIV2Vz49YwfCQ2qVA7covWslHzz8Fie-QahV7qxDCynyY2wLqdUkRxiHpxSXGlEraljsUD2lB1_o58uqotro758TVikB47AHWpIAqzvtlwSSysjlKuV5YVRnghtqUL0hT1vPEzFGAxezFhqlCt5cZj0crDpWnsQbt_SEJhxIwp8_VNUXmzWXX9Tyvl35eS1rWh1H91LOSQ-iu--g-7Y9gHaSV7a4zeJSvrtQ_Tu1Kek66tf1mA9bHHo4cB6PXh6BNi0cOewH84Bj3loLcKrz2cn2JeNPkLnq4_nH47zNC0h14yRLcRT6oyzhOil5hXXgisH-1JRa6srUjWmoKawJVXWqKUjBjI3rVVDHcC71Lp8jBYtwLOLsBKFZdYWHKIhZdTWHNy-YVSUoiJCqQyVI3JSJyZxP9BiLcP1GIcTRQRCerxlwjtD-fSvTWTSuEX-vVfKJOt5sMMPYB0yWYe8zToytO9VKmNT6eTN8ohywqqSCJB4GSQ8F0bri20um6Hv5cmX7_8g9PVsJvQ6CbkO4NBNanCAb_IcWzPJXW9h42f3AIJXVA3ZZIb2Rqu7eXl_WoY44C93mtZ2Qy-ZgBxEkDpDT6KJ_gG5hiSR1ixDfGa8M2TnK-3Vj8A0TogfH1A__R-qeIbuxlobmpNyDy22Pwf7HBK6rXoRfPc3cr9Icg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDhUYICTik3TiOE3NBZWFpkSjSUlBvVvzaVlolS5Nc-us7kzgpiyrgup5Im3l-scffEPJKF5aD5xSREdZFjCkaQc6DrxSXGJFr5njfIHvMD3-wL6fpqd9wq31b5ZATu0RtKo175PtxEkM1yqHgvl__inBqFJ6u-hEat8mdGCoNtnTl889DJoZY5txfl0uyeN9bZ29dlXavO4Pzo2CGctSx9o-5ebJeVfVNwPPP_snfCtL8PrnnkWR40Jt-i9yy5QOy5WO1Dt94Qum3D8m7YwSmq_NLa8JZ24TdflM4W7VIkgClK6xcuEC2jXIZdeAzdF8XR-HHoikekZP5p5PZYeRnJkSac9pAVmXOOEupnuoszbTIlKOoOW11StPCxMzENmHKGjV11AB-01oVzAmwmdbJYzIpQT3bJFQittzaOIOcyDizeQbBX3AmEpFSoVRAkkFzUns-cRxrsZLdIVkG3xW9IiTqW3p9ByQan1r3fBr_kP-ARhllkQ27-6G6WEofXFIDULR4I3dKLUuNUC5XNouNQrK8qaIB2UWTyv5q6RjT8oBllKcJFSDxspNARowSW26WRVvX8ujbz_8Q-r7YEHrthVwF6tCFv-YA74RMWxuS2-hhw2vX8trFA7IzeN3Ny7vjMmQDPOIpSlu1teQCkIigeUCe9C56reQcoCLLeUCyDefd0OzmSnl-1vGNU4pDBPKnf_9Tz8jdvpeGRTTZIZPmorXPAbA16kUXlVcqBD-m
  priority: 102
  providerName: ProQuest
Title Normalized Cut Group Clustering of Resting-State fMRI Data
URI https://www.ncbi.nlm.nih.gov/pubmed/18431486
https://www.proquest.com/docview/1312188617
https://www.proquest.com/docview/69123928
https://pubmed.ncbi.nlm.nih.gov/PMC2291558
https://doaj.org/article/c009e694102e45d9bf8be71db24610b2
http://dx.doi.org/10.1371/journal.pone.0002001
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd-GCGF8LjC5CSMAhVeM4doyE0FZaNqQVVDa0WxQ7dplUJaVpJeDA3857iRtWVATi4kPyfMjP78ux3-8R8lRnhoPmZEEujQ0YUzQAnwe7FBvlMtHM8uaC7JifXLB3l_HlDln3bHUAVlu3dthP6mIx63398u01GPyrumuDCNeTevOyML36bA0LunYhNgnsaXDG2nMFsG7OXQHdn2YijWgCYZVhefW1WFVT-reOuzOfldW2rPT3y5XXotXoNrnl0kz_qNGLPbJjijtkzxly5T93bNMv7pKXY8xaZ1ffTe4PVku__hnlD2YrZFCAuOaX1p8gFUcxDerM1Ldnk1P_TbbM7pHz0fB8cBK4hgqB5pwuweUym1tDqe5rEQsthbIQusJEGx3TOMtDlocmYsrkqm9pDsmd1ipjVsKCah3dJ50CkNonvpKh4caEAhwm48wkAjxDxpmMZEylUh6J1sil2pGNY8-LWVqfoAnYdDRApAh96qD3SNDOmjdkG3-RP8ZFaWWRKrt-UC6mqbO8VEMWabBct08Ni3OpbKKMCHOFTHp9RT1yiEuaNnWnrcGnR0xQHkdUgsSTWgLpMgq8jzPNVlWVnr7_9A9CHycbQs-ckC0BDp25Ggj4JqTh2pDcRw1bf3YFIOBCJZBweuRgrXXbXx-2r8FV4PlPVphyVaVcQpoiaeKRB42K_gLZKbxHxIbybiC7-aa4-lyTkVOKHQaSh_898xG52dzBYQGNDkhnuViZx5DoLVWX3BCXAsZkEOI4etslu8fD8YdJt_510q1tG8cfw5896Fkb
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPhaYFALgYCHbI3jODESQqOjtGwr0ihob1b8VSZVSVlaIfif-B85J05H0QS87LW-RPX5_LtzfPc7hJ6o3DCwnDzU3NiQUklCwDw4pdhY80xRy5oE2TEbfqLvT5KTDfSzrYVxaZUtJtZArUvlvpHvRnEE3igDh_t6_jV0XaPc7WrbQqMxiwPz_Rsc2apXo31Y36eEDN5O-sPQdxUIFWNkAbhDrbaGENVTaZIqnkpL3LuVUQlJch1RHZmYSqNlzxINEY5SMqeWw6yUiuG1V9BVGoMjd4Xpg3ct8AN0MOar8-I02vXGsDMvC7NTX_n5zjOt96ubBKxcQWc-K6uL4tw_0zV_83-Dm-iGD1zxXmNpm2jDFLfQpoeGCj_3_NUvbqOXYxcHz05_GI37ywWuP2_h_mzpOBnAU-LS4mNH7lFMwzrWxfboeIT380V-B00uQ5l3UacA9WwhLHlkmDFRChBMGTVZCliTM8pjnhAuZYDiVnNCefpy10VjJuo7uRSOMY0ihNO38PoOULh6at7Qd_xD_o1blJWsI9-ufyjPpsLvZaEgLjWuALhHDE00lzaTJo20dNx8PUkC1HVLKppK1hWEiD2aEpbEhIPE41rCEXAULsNnmi-rSow-fP4PoY_Ha0LPvJAtQR0q91UVMCdH7LUmueUsrJ12Jc53VIC2W6u7eLi7GgbwcTdKeWHKZSUYh8CHkyxA9xoTPVdyBpEpzViA0jXjXdPs-khx-qWmNyfE9SzI7v_9T3XRteHk6FAcjsYHD9D1Jo2HhiTeRp3F2dI8hFhxIR_VOxQjccmI8AvZU330
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkRAviPFrgUEtBAIesjaO48RICI2WamVQUBlob1bs2GVSlZSlEYL_jP-Oc-JkFE3Ay17rS1ufz9-d47vvEHqkUs3AclI_49r4lEriA-bBKcWEGU8UNaxJkJ2xg0_0zXF0vIV-trUwNq2yxcQaqLNC2XfkgyAMwBsl4HAHxqVFfBhPXq6--raDlL1pbdtpNCZyqL9_g-Nb-WI6hrV-TMjk9dHowHcdBnzFGFkDBlGTGU2IGqo4ihWPpSH2d5RWEYnSLKBZoEMqdSaHhmQQ7SglU2o4zFCpEL72Eroch3Fit1gy6rJLAEYYc5V6YRwMnGHsrYpc79XXf64LTesJ64YBnVvorZZFeV7M-2fq5m--cHIdXXNBLN5vrG4bben8Btp2MFHip47L-tlN9HxmY-LlyQ-d4VG1xvWrLjxaVpafAbwmLgyeW6KPfOHXcS827-ZTPE7X6S10dBHKvI16OahnB2HJA820DmKAY8qoTkC_JGWUhzwiXEoPha3mhHJU5rajxlLU93MxHGkaRQirb-H07SG_e2rVUHn8Q_6VXZRO1hJx1x8Upwvh9rVQEKNqWww8JJpGGZcmkToOMml5-oaSeKhvl1Q0Va0dnIh9GhMWhYSDxMNawpJx5NasF2lVlmL6_vN_CH2cbwg9cUKmAHWo1FVYwJwsydeG5I61sHbapTjbXR7aba3u_OF-NwxAZG-X0lwXVSkYhyCIk8RDdxoTPVNyAlEqTZiH4g3j3dDs5kh-8qWmOifE9i9I7v79T_XRFcAC8XY6O7yHrjYZPdQn4S7qrU8rfR_CxrV8UG9QjMQFA8IvKGOB9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normalized+Cut+Group+Clustering+of+Resting-State+fMRI+Data&rft.jtitle=PloS+one&rft.au=van+den+Heuvel%2C+Martijn&rft.au=Mandl%2C+Rene&rft.au=Hulshoff+Pol%2C+Hilleke&rft.date=2008-04-23&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=3&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0002001&rft_id=info%3Apmid%2F18431486&rft.externalDocID=PMC2291558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon