Normalized Cut Group Clustering of Resting-State fMRI Data
Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional c...
Saved in:
Published in | PloS one Vol. 3; no. 4; p. e2001 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
23.04.2008
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks.
We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner.
An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain. |
---|---|
AbstractList | Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain. Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain. Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain. Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain. Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks.BACKGROUNDFunctional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks.We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner.METHODOLOGY/PRINCIPAL FINDINGSWe report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner.An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.CONCLUSIONS/SIGNIFICANCEAn optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain. |
Audience | Academic |
Author | van den Heuvel, Martijn Hulshoff Pol, Hilleke Mandl, Rene |
AuthorAffiliation | Freie Universitaet Berlin, Germany Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands |
AuthorAffiliation_xml | – name: Freie Universitaet Berlin, Germany – name: Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands |
Author_xml | – sequence: 1 givenname: Martijn surname: van den Heuvel fullname: van den Heuvel, Martijn – sequence: 2 givenname: Rene surname: Mandl fullname: Mandl, Rene – sequence: 3 givenname: Hilleke surname: Hulshoff Pol fullname: Hulshoff Pol, Hilleke |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18431486$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9v0zAUxSM0xP7AN0AQCWkSDym24zjJHpCmDkalwaRu4tVy7OvWlRt3toMYnx6XdtBOCKE8xLr53XN9T85xdtC7HrLsJUYjXNb43cINvhd2tErlEUKIIISfZEe4LUnBCCoPds6H2XEIC4SqsmHsWXaIG1pi2rCj7OyL80thzQ9Q-XiI-aV3wyof2yFE8Kaf5U7nUwgxHYubKCLk-vN0kl-IKJ5nT7WwAV5s3yfZ7ccPt-NPxdX15WR8flVIxkgsMKJaaSBEIllXtWzrThNMcCNBVqQSClOFoaQdqA5potKlpewE1S0wJGV5kr3eyK6sC3y7deC4XGs0DNeJmGwI5cSCr7xZCn_PnTD8V8H5GRc-GmmBS4SSbEsxIkAr1Xa66aDGqiOUYdSRpPV-O23olqAk9NELuye6_6U3cz5z3zghLa6qJgmcbgW8uxuSc3xpggRrRQ9uCJy1mJQtWYNvHoF_3220oWYiXd_02qWpMj0KlkamX69Nqp_TmrCqJO16gbd7DYmJ8D3OxBACn9xM_5-9_rrPnu6wcxA2zoOzQzSuD_vgq10Hf1v3kLkE0A0gvQvBg_6DIL6O9oMRfB1tvo12ajt71CZNCmQanxwx9t_NPwHOAv56 |
CitedBy_id | crossref_primary_10_1073_pnas_1204185109 crossref_primary_10_1142_S0218001420570049 crossref_primary_10_1002_hbm_22285 crossref_primary_10_1007_s12559_021_09982_y crossref_primary_10_1017_S1355617715000703 crossref_primary_10_1109_ACCESS_2023_3277731 crossref_primary_10_1002_hbm_22839 crossref_primary_10_3389_fnins_2018_00334 crossref_primary_10_1016_j_euroneuro_2021_05_013 crossref_primary_10_1002_hbm_20893 crossref_primary_10_1016_j_is_2015_04_007 crossref_primary_10_1053_j_semperi_2009_10_008 crossref_primary_10_1016_j_neuroimage_2009_12_119 crossref_primary_10_1016_j_neubiorev_2017_09_025 crossref_primary_10_1186_1471_2202_15_78 crossref_primary_10_3389_fenvs_2023_1201942 crossref_primary_10_3389_fnhum_2016_00364 crossref_primary_10_1155_2012_412512 crossref_primary_10_3389_fnhum_2024_1404759 crossref_primary_10_1007_s12021_021_09514_x crossref_primary_10_1371_journal_pone_0049847 crossref_primary_10_1371_journal_pone_0117179 crossref_primary_10_3389_fnimg_2022_963125 crossref_primary_10_1016_j_psiq_2011_05_001 crossref_primary_10_1016_j_bandc_2008_12_009 crossref_primary_10_1007_s00429_013_0700_x crossref_primary_10_1007_s00429_015_0999_6 crossref_primary_10_1016_j_neuroimage_2017_10_028 crossref_primary_10_1016_j_neuroimage_2023_120010 crossref_primary_10_1002_jnr_25242 crossref_primary_10_1016_j_bspc_2018_11_007 crossref_primary_10_1016_j_neuroimage_2016_04_006 crossref_primary_10_3389_fnana_2015_00097 crossref_primary_10_1002_hbm_22188 crossref_primary_10_1371_journal_pone_0040370 crossref_primary_10_3389_fnins_2015_00275 crossref_primary_10_1016_j_comppsych_2024_152487 crossref_primary_10_1016_j_sigpro_2020_107834 crossref_primary_10_1007_s10072_011_0636_y crossref_primary_10_1109_TBME_2014_2369495 crossref_primary_10_1109_TMI_2013_2259248 crossref_primary_10_1152_jn_00891_2011 crossref_primary_10_1007_s41109_018_0078_z crossref_primary_10_1109_TBME_2017_2737785 crossref_primary_10_1007_s11065_014_9248_7 crossref_primary_10_1371_journal_pone_0118175 crossref_primary_10_1177_1971400915576311 crossref_primary_10_1016_j_neuroimage_2015_05_017 crossref_primary_10_1016_j_neuroimage_2023_120006 crossref_primary_10_1016_j_jneumeth_2016_04_001 crossref_primary_10_1371_journal_pone_0076315 crossref_primary_10_1016_j_clinph_2014_04_004 crossref_primary_10_3389_fncom_2023_1132160 crossref_primary_10_1080_23273798_2016_1248452 crossref_primary_10_1016_j_neuroimage_2023_120026 crossref_primary_10_1152_jn_00411_2021 crossref_primary_10_1016_j_brainres_2020_146853 crossref_primary_10_1038_s41598_020_68683_y crossref_primary_10_1002_hbm_25563 crossref_primary_10_3389_fnins_2015_00383 crossref_primary_10_1016_j_imu_2022_100876 crossref_primary_10_1016_j_mri_2019_05_031 crossref_primary_10_1016_j_brainresbull_2020_06_007 crossref_primary_10_1016_j_neuroimage_2022_119418 crossref_primary_10_1016_j_neuroimage_2013_03_053 crossref_primary_10_1016_j_neuroimage_2011_11_088 crossref_primary_10_1109_TAFFC_2022_3220291 crossref_primary_10_1007_s12021_012_9142_5 crossref_primary_10_1097_MD_0000000000021125 crossref_primary_10_3389_fnbeh_2015_00200 crossref_primary_10_1371_journal_pcbi_1002374 crossref_primary_10_1145_3161602 crossref_primary_10_1007_s00062_022_01170_1 crossref_primary_10_1016_j_jneumeth_2020_108628 crossref_primary_10_1109_TCBB_2015_2476787 crossref_primary_10_1089_brain_2017_0576 crossref_primary_10_1093_cercor_bhq186 crossref_primary_10_1089_neu_2017_5212 crossref_primary_10_1016_j_neuroimage_2015_07_041 crossref_primary_10_1093_cercor_bhr393 crossref_primary_10_1002_hbm_20737 crossref_primary_10_3389_fnhum_2019_00203 crossref_primary_10_1093_cercor_bhr269 crossref_primary_10_1002_hbm_23568 crossref_primary_10_1007_s10334_010_0228_5 crossref_primary_10_1053_j_semperi_2015_01_008 crossref_primary_10_1016_j_nbas_2023_100105 crossref_primary_10_1016_j_neuroimage_2010_10_046 crossref_primary_10_1016_j_neuroimage_2012_01_142 crossref_primary_10_1109_TMI_2011_2173699 crossref_primary_10_1016_j_nic_2014_07_009 crossref_primary_10_1016_j_patcog_2016_09_024 crossref_primary_10_1203_PDR_0b013e3181b1bd84 crossref_primary_10_1016_j_neuroimage_2013_03_035 crossref_primary_10_1364_BOE_387919 crossref_primary_10_1016_j_jneumeth_2016_11_014 crossref_primary_10_3389_fneur_2022_844606 crossref_primary_10_1016_j_euroneuro_2019_03_010 crossref_primary_10_1016_j_physleta_2010_08_011 crossref_primary_10_1016_j_neuroimage_2014_11_008 crossref_primary_10_1016_j_neuroimage_2015_07_054 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_24835_1607_0763_2018_5_6_13 crossref_primary_10_1523_JNEUROSCI_2128_13_2013 crossref_primary_10_1016_j_neuroimage_2013_04_073 crossref_primary_10_1002_hbm_23676 crossref_primary_10_1038_s41598_019_45670_6 crossref_primary_10_1371_journal_pone_0036222 crossref_primary_10_1109_TMI_2015_2480864 crossref_primary_10_1103_PhysRevE_96_032413 crossref_primary_10_3390_e21121156 crossref_primary_10_1162_netn_a_00062 crossref_primary_10_1016_j_neuroimage_2020_116678 crossref_primary_10_1159_000442424 crossref_primary_10_1016_j_media_2013_03_007 crossref_primary_10_1016_j_neuroimage_2012_06_011 crossref_primary_10_1371_journal_pone_0094423 crossref_primary_10_1016_j_neuroimage_2016_08_011 crossref_primary_10_1523_JNEUROSCI_1634_14_2014 crossref_primary_10_1002_hbm_21280 crossref_primary_10_1371_journal_pone_0074298 crossref_primary_10_1371_journal_pcbi_1006807 crossref_primary_10_1111_j_1749_6632_2009_04420_x crossref_primary_10_1007_s10479_024_05868_y crossref_primary_10_1016_j_neuroimage_2013_05_081 crossref_primary_10_1088_2632_072X_adab5c crossref_primary_10_7717_peerj_784 crossref_primary_10_1371_journal_pone_0123950 crossref_primary_10_1007_s10548_014_0357_7 crossref_primary_10_1007_s12474_011_0002_0 crossref_primary_10_1016_j_neuroimage_2013_09_071 crossref_primary_10_3389_fnhum_2019_00112 crossref_primary_10_1016_j_neuroimage_2012_06_026 crossref_primary_10_1016_j_sleep_2016_07_018 crossref_primary_10_1016_j_neuroimage_2024_120755 crossref_primary_10_3389_fnhum_2014_01022 crossref_primary_10_3389_fnhum_2016_00659 crossref_primary_10_1002_jmri_24642 crossref_primary_10_1007_s12021_012_9169_7 crossref_primary_10_1111_cgf_14575 crossref_primary_10_1093_cercor_bhx179 crossref_primary_10_1016_j_jneumeth_2014_09_004 crossref_primary_10_1111_j_1460_9568_2010_07279_x crossref_primary_10_1017_S1461145711000526 crossref_primary_10_1186_s12868_015_0193_z crossref_primary_10_1371_journal_pone_0207385 crossref_primary_10_1007_s12264_013_1339_6 crossref_primary_10_23736_S0022_4707_24_15947_6 crossref_primary_10_1016_j_neuroimage_2008_12_017 crossref_primary_10_3389_fnsys_2022_885304 crossref_primary_10_1016_j_neuroimage_2008_08_010 crossref_primary_10_1186_1753_4631_4_S1_S9 crossref_primary_10_1002_hbm_25381 crossref_primary_10_1016_j_neuroimage_2019_01_044 crossref_primary_10_1093_cercor_bhn256 crossref_primary_10_1002_hbm_21333 crossref_primary_10_1016_j_neuroimage_2017_02_084 crossref_primary_10_1038_nmeth_2482 crossref_primary_10_1002_brb3_626 crossref_primary_10_1016_j_neuroimage_2017_08_068 crossref_primary_10_1089_brain_2014_0253 crossref_primary_10_1371_journal_pone_0145906 crossref_primary_10_1002_hbm_21250 crossref_primary_10_1016_j_neuroimage_2016_03_047 crossref_primary_10_1007_s10618_012_0291_9 crossref_primary_10_1016_j_neuroimage_2013_04_006 crossref_primary_10_1007_s10439_011_0258_9 crossref_primary_10_1016_j_neuroimage_2017_01_077 crossref_primary_10_1002_sim_9209 crossref_primary_10_1016_j_neuroimage_2017_01_072 crossref_primary_10_1016_j_neuroimage_2017_07_027 crossref_primary_10_3389_fnins_2020_629667 crossref_primary_10_1007_s11682_020_00287_6 crossref_primary_10_1371_journal_pone_0085880 crossref_primary_10_1016_j_neuri_2023_100148 crossref_primary_10_1016_j_media_2016_02_009 crossref_primary_10_1016_j_neuroimage_2017_07_029 crossref_primary_10_1016_j_artmed_2020_101997 crossref_primary_10_1038_s41386_021_01066_7 crossref_primary_10_1523_JNEUROSCI_2964_08_2008 crossref_primary_10_1016_j_artmed_2020_101872 crossref_primary_10_1002_hbm_23549 crossref_primary_10_1007_s11336_015_9441_5 crossref_primary_10_1016_j_media_2014_10_011 crossref_primary_10_1016_j_neubiorev_2014_05_009 crossref_primary_10_1093_cercor_bhab273 crossref_primary_10_1016_j_pscychresns_2016_04_008 crossref_primary_10_1089_brain_2018_0591 crossref_primary_10_1109_JBHI_2018_2868918 crossref_primary_10_1016_j_nicl_2017_10_018 crossref_primary_10_1016_j_neuroimage_2017_04_014 crossref_primary_10_1038_s41598_017_03420_6 crossref_primary_10_1523_JNEUROSCI_3980_15_2016 crossref_primary_10_1016_j_neuroimage_2011_05_090 crossref_primary_10_1109_TBME_2015_2399495 crossref_primary_10_1029_2019MS001654 crossref_primary_10_3389_fnhum_2018_00166 crossref_primary_10_3174_ajnr_A3263 crossref_primary_10_1016_j_dcn_2018_02_001 crossref_primary_10_1016_j_neuroimage_2012_03_021 crossref_primary_10_1523_JNEUROSCI_3377_10_2010 crossref_primary_10_3389_fnins_2019_00585 crossref_primary_10_1371_journal_pone_0067478 crossref_primary_10_1016_j_pacs_2018_01_003 crossref_primary_10_3389_fnagi_2018_00107 crossref_primary_10_1162_NECO_a_00877 crossref_primary_10_1016_j_neuroimage_2021_118513 crossref_primary_10_1017_S0954579418000342 crossref_primary_10_1371_journal_pone_0098769 crossref_primary_10_1016_j_mri_2014_04_004 crossref_primary_10_1002_brb3_777 crossref_primary_10_1016_j_neuroimage_2014_06_001 crossref_primary_10_1371_journal_pone_0157443 crossref_primary_10_1016_j_neuron_2009_03_024 crossref_primary_10_1093_cercor_bhs072 crossref_primary_10_1016_j_eswa_2022_117249 crossref_primary_10_1089_brain_2015_0338 crossref_primary_10_1016_j_mri_2010_02_008 crossref_primary_10_1089_brain_2020_0852 crossref_primary_10_3390_brainsci12091159 crossref_primary_10_1007_s00701_011_0985_6 crossref_primary_10_1007_s00429_009_0208_6 crossref_primary_10_1002_hbm_22662 crossref_primary_10_1186_1471_2202_13_S1_P168 crossref_primary_10_1371_journal_pone_0145668 crossref_primary_10_1093_scan_nsab048 crossref_primary_10_1016_j_neuroimage_2010_05_047 crossref_primary_10_1007_s12021_013_9177_2 crossref_primary_10_1371_journal_pone_0226481 crossref_primary_10_1016_j_euroneuro_2010_03_008 crossref_primary_10_1088_1741_2552_abfd46 crossref_primary_10_1002_hbm_22532 crossref_primary_10_1007_s10548_009_0113_6 crossref_primary_10_1089_brain_2016_0420 crossref_primary_10_1007_s00422_009_0350_5 crossref_primary_10_1016_j_expneurol_2009_01_025 crossref_primary_10_1007_s11682_013_9280_x crossref_primary_10_1089_brain_2011_0062 crossref_primary_10_1109_JSTSP_2016_2595103 crossref_primary_10_1007_s12559_018_9585_6 crossref_primary_10_1016_j_eswa_2020_113513 crossref_primary_10_1007_s00213_011_2622_8 crossref_primary_10_1371_journal_pone_0137278 crossref_primary_10_3389_fnhum_2014_00204 crossref_primary_10_1227_NEU_0000000000000307 crossref_primary_10_3390_brainsci8060107 crossref_primary_10_1016_j_neuroimage_2013_11_009 crossref_primary_10_1038_s41598_017_12993_1 crossref_primary_10_1038_s41598_020_63552_0 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_1007_s11682_019_00139_y crossref_primary_10_1007_s11135_021_01227_2 crossref_primary_10_1155_2012_608501 crossref_primary_10_1089_brain_2014_0229 crossref_primary_10_1016_j_cobeha_2023_101302 crossref_primary_10_1016_j_neuroimage_2010_02_082 crossref_primary_10_1111_bdi_12512 |
Cites_doi | 10.1073/pnas.0601417103 10.1073/pnas.0135058100 10.1016/j.neulet.2003.10.063 10.1126/science.1131295 10.1016/j.schres.2006.06.028 10.1002/hbm.20022 10.1002/hbm.20113 10.1038/jcbfm.1993.4 10.1523/JNEUROSCI.5587-06.2007 10.1073/pnas.0308627101 10.1016/j.neuroimage.2003.09.056 10.1006/nimg.2000.0654 10.1093/schbul/sbm052 10.1073/pnas.98.2.676 10.1016/j.neuroimage.2007.02.041 10.1016/S0730-725X(02)00503-9 10.1098/rstb.2005.1645 10.1016/j.neuroimage.2005.08.035 10.1073/pnas.0704320104 10.1097/00004728-199403000-00005 10.1016/j.neuroimage.2005.06.054 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 10.1093/schbul/sbm043 10.1016/S1053-8119(03)00097-1 10.1093/cercor/bhi016 10.1016/j.neuroimage.2006.12.001 10.1016/j.clinph.2007.08.010 10.1016/j.mri.2006.10.017 10.1038/nrn2201 10.1126/science.1144677 10.1098/rstb.2005.1634 10.1002/hbm.1048 10.1038/35094500 10.1002/1522-2594(200006)43:6<779::AID-MRM1>3.0.CO;2-4 10.1016/j.neuroimage.2007.08.027 10.1002/mrm.1910340409 10.1016/j.neulet.2007.02.081 10.1097/01.wnr.0000198434.06518.b8 10.1016/j.neuroimage.2007.01.010 10.1016/j.biopsych.2006.09.020 10.1002/hbm.20160 10.1126/science.1099745 10.1006/nimg.1998.0358 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2008 Public Library of Science 2008 van den Heuvel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. van den Heuvel et al. 2008 |
Copyright_xml | – notice: COPYRIGHT 2008 Public Library of Science – notice: 2008 van den Heuvel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: van den Heuvel et al. 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0002001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Group Clustering of RS fMRI |
EISSN | 1932-6203 |
ExternalDocumentID | 1312188617 oai_doaj_org_article_c009e694102e45d9bf8be71db24610b2 PMC2291558 2900627781 A472653292 18431486 10_1371_journal_pone_0002001 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c662t-104fdfe22c0c757c97bf21218cec525ad14d1e34bedb0f2d193ccba4f9e60cc3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:49 EST 2021 Wed Aug 27 01:32:11 EDT 2025 Thu Aug 21 18:24:24 EDT 2025 Mon Jul 21 09:44:52 EDT 2025 Fri Jul 25 10:27:48 EDT 2025 Tue Jun 10 21:31:19 EDT 2025 Fri Jun 27 03:58:30 EDT 2025 Fri Jun 27 04:02:18 EDT 2025 Thu May 22 20:58:01 EDT 2025 Mon Jul 21 06:02:55 EDT 2025 Tue Jul 01 03:30:56 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c662t-104fdfe22c0c757c97bf21218cec525ad14d1e34bedb0f2d193ccba4f9e60cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: Mv HH RM. Performed the experiments: Mv. Analyzed the data: Mv. Contributed reagents/materials/analysis tools: Mv. Wrote the paper: Mv HH RM. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0002001 |
PMID | 18431486 |
PQID | 1312188617 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_1312188617 doaj_primary_oai_doaj_org_article_c009e694102e45d9bf8be71db24610b2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2291558 proquest_miscellaneous_69123928 proquest_journals_1312188617 gale_infotracacademiconefile_A472653292 gale_incontextgauss_ISR_A472653292 gale_incontextgauss_IOV_A472653292 gale_healthsolutions_A472653292 pubmed_primary_18431486 crossref_primary_10_1371_journal_pone_0002001 crossref_citationtrail_10_1371_journal_pone_0002001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-04-23 |
PublicationDateYYYYMMDD | 2008-04-23 |
PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-23 day: 23 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2008 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | RT Knight (ref30) 2007; 316 X Golay (ref46) 2000; 43 DL Collins (ref48) 1994; 18 R Salvador (ref25) 2005; 360 FT Sun (ref45) 2004; 21 S Micheloyannis (ref39) 2006; 87 D Cordes (ref11) 2001; 22 DA Gusnard (ref4) 2001; 2 M Liang (ref38) 2006; 17 P Williamson (ref41) 2007; 33 RL Buckner (ref32) 2007; 37 JS Damoiseaux (ref8) 2006; 103 ME Raichle (ref5) 2001; 98 R Salvador (ref19) 2005; 15 MD Greicius (ref34) 2004; 101 SA Rombouts (ref35) 2005; 26 J Shi (ref20) 2000; 22 BB Biswal (ref10) 1997; 10 M De Luca (ref2) 2006; 29 D Cordes (ref15) 2002; 20 JC Reijneveld (ref43) 2007; 118 V Kiviniemi (ref13) 2003; 19 CJ Stam (ref44) 2004; 355 R Salvador (ref40) 2007; 35 MD Fox (ref7) 2007; 8 NF Ramsey (ref47) 1998; 8 RO Duda (ref29) 2001 MJ Lowe (ref9) 2000; 12 MF Mason (ref22) 2007; 315 CF Beckmann (ref17) 2005; 360 J Ylipaavalniemi (ref28) 2008; 39 D Cordes (ref6) 2000; 21 G Buzsaki (ref31) 2004; 304 Y Zhou (ref42) 2007; 417 P Fransson (ref21) 2005; 26 MD Greicius (ref3) 2003; 100 B Thirion (ref16) 2006; 29 RL Bluhm (ref37) 2007; 33 N Correa (ref27) 2007; 25 VD Calhoun (ref18) 2001; 14 JS Damoiseaux (ref26) 2007 WW Seeley (ref24) 2007; 27 VG van de Ven (ref14) 2004; 22 MD Greicius (ref36) 2007; 62 KJ Friston (ref12) 1993; 13 B Biswal (ref1) 1995; 34 NU Dosenbach (ref23) 2007; 104 ME Raichle (ref33) 2007; 37 16407773 - Neuroreport. 2006 Feb 6;17(2):209-13 17540281 - Magn Reson Imaging. 2007 Jun;25(5):684-94 17900977 - Clin Neurophysiol. 2007 Nov;118(11):2317-31 17210143 - Biol Psychiatry. 2007 Sep 1;62(5):429-37 17719799 - Neuroimage. 2007 Oct 1;37(4):1083-90; discussion 1097-9 16129624 - Neuroimage. 2006 Jan 1;29(1):321-7 11498421 - AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33 15195284 - Hum Brain Mapp. 2004 Jul;22(3):165-78 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51 9758738 - Neuroimage. 1998 Oct;8(3):240-8 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42 10861870 - Magn Reson Med. 2000 Jun;43(6):779-86 17569852 - Science. 2007 Jun 15;316(5831):1578-9 16087438 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):937-46 17931888 - Neuroimage. 2008 Jan 1;39(1):169-80 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 14980567 - Neuroimage. 2004 Feb;21(2):647-58 11034865 - Neuroimage. 2000 Nov;12(5):582-7 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205 18063564 - Cereb Cortex. 2008 Aug;18(8):1856-64 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 15954139 - Hum Brain Mapp. 2005 Dec;26(4):231-9 17240167 - Neuroimage. 2007 Mar;35(1):83-8 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003 16875801 - Schizophr Res. 2006 Oct;87(1-3):60-6 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 17234951 - Science. 2007 Jan 19;315(5810):393-5 12165349 - Magn Reson Imaging. 2002 May;20(4):305-17 17368915 - Neuroimage. 2007 Oct 1;37(4):1091-6; discussion 1097-9 16260155 - Neuroimage. 2006 Feb 15;29(4):1359-67 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12 9430343 - NMR Biomed. 1997 Jun-Aug;10(4-5):165-70 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 15218136 - Science. 2004 Jun 25;304(5679):1926-9 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 |
References_xml | – volume: 103 start-page: 13848 year: 2006 ident: ref8 article-title: Consistent resting-state networks across healthy subjects. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0601417103 – volume: 100 start-page: 253 year: 2003 ident: ref3 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0135058100 – volume: 22 start-page: 17 year: 2000 ident: ref20 article-title: Normalized cuts and image segmentation. publication-title: IEEE Transactions on pattern analysis and machine intelligence – volume: 355 start-page: 25 year: 2004 ident: ref44 article-title: Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? publication-title: Neurosci Lett doi: 10.1016/j.neulet.2003.10.063 – volume: 315 start-page: 393 year: 2007 ident: ref22 article-title: Wandering minds: the default network and stimulus-independent thought. publication-title: Science doi: 10.1126/science.1131295 – volume: 87 start-page: 60 year: 2006 ident: ref39 article-title: Small-world networks and disturbed functional connectivity in schizophrenia. publication-title: Schizophr Res doi: 10.1016/j.schres.2006.06.028 – volume: 22 start-page: 165 year: 2004 ident: ref14 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. publication-title: Hum Brain Mapp doi: 10.1002/hbm.20022 – volume: 26 start-page: 15 year: 2005 ident: ref21 article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. publication-title: Hum Brain Mapp doi: 10.1002/hbm.20113 – volume: 13 start-page: 5 year: 1993 ident: ref12 article-title: Functional connectivity: the principal-component analysis of large (PET) data sets. publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1993.4 – volume: 27 start-page: 2349 year: 2007 ident: ref24 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 101 start-page: 4637 year: 2004 ident: ref34 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0308627101 – volume: 21 start-page: 647 year: 2004 ident: ref45 article-title: Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.09.056 – volume: 12 start-page: 582 year: 2000 ident: ref9 article-title: Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. publication-title: Neuroimage doi: 10.1006/nimg.2000.0654 – volume: 33 start-page: 1004 year: 2007 ident: ref37 article-title: Spontaneous Low-Frequency Fluctuations in the BOLD Signal in Schizophrenic Patients: Anomalies in the Default Network. publication-title: Schizophr Bull doi: 10.1093/schbul/sbm052 – volume: 98 start-page: 676 year: 2001 ident: ref5 article-title: A default mode of brain function. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.98.2.676 – volume: 37 start-page: 1083 year: 2007 ident: ref33 article-title: A default mode of brain function: A brief history of an evolving idea. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.041 – volume: 20 start-page: 305 year: 2002 ident: ref15 article-title: Hierarchical clustering to measure connectivity in fMRI resting-state data. publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(02)00503-9 – volume: 360 start-page: 937 year: 2005 ident: ref25 article-title: Undirected graphs of frequency-dependent functional connectivity in whole brain networks. publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1645 – volume: 22 start-page: 1326 year: 2001 ident: ref11 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. publication-title: AJNR Am J Neuroradiol – volume: 29 start-page: 1359 year: 2006 ident: ref2 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.035 – volume: 104 start-page: 11073 year: 2007 ident: ref23 article-title: Distinct brain networks for adaptive and stable task control in humans. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0704320104 – year: 2007 ident: ref26 article-title: Reduced resting-state brain activity in the “default network” in normal aging. publication-title: Cereb Cortex – volume: 18 start-page: 192 year: 1994 ident: ref48 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-199403000-00005 – volume: 29 start-page: 321 year: 2006 ident: ref16 article-title: Detection of signal synchronizations in resting-state fMRI datasets. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.054 – volume: 10 start-page: 165 year: 1997 ident: ref10 article-title: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. publication-title: NMR Biomed doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 – volume: 33 start-page: 994 year: 2007 ident: ref41 article-title: Are Anticorrelated Networks in the Brain Relevant to Schizophrenia? publication-title: Schizophr Bull doi: 10.1093/schbul/sbm043 – volume: 19 start-page: 253 year: 2003 ident: ref13 article-title: Independent component analysis of nondeterministic fMRI signal sources. publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00097-1 – volume: 15 start-page: 1332 year: 2005 ident: ref19 article-title: Neurophysiological architecture of functional magnetic resonance images of human brain. publication-title: Cereb Cortex doi: 10.1093/cercor/bhi016 – volume: 35 start-page: 83 year: 2007 ident: ref40 article-title: Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.12.001 – volume: 118 start-page: 2317 year: 2007 ident: ref43 article-title: The application of graph theoretical analysis to complex networks in the brain. publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.08.010 – start-page: 654 year: 2001 ident: ref29 article-title: Pattern Recognition: John Wiley & Sons, Inc. – volume: 21 start-page: 1636 year: 2000 ident: ref6 article-title: Mapping functionally related regions of brain with functional connectivity MR imaging. publication-title: AJNR Am J Neuroradiol – volume: 25 start-page: 684 year: 2007 ident: ref27 article-title: Performance of blind source separation algorithms for fMRI analysis using a group ICA method. publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2006.10.017 – volume: 8 start-page: 700 year: 2007 ident: ref7 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. publication-title: Nat Rev Neurosci doi: 10.1038/nrn2201 – volume: 316 start-page: 1578 year: 2007 ident: ref30 article-title: Neuroscience. Neural networks debunk phrenology. publication-title: Science doi: 10.1126/science.1144677 – volume: 360 start-page: 1001 year: 2005 ident: ref17 article-title: Investigations into resting-state connectivity using independent component analysis. publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1634 – volume: 14 start-page: 140 year: 2001 ident: ref18 article-title: A method for making group inferences from functional MRI data using independent component analysis. publication-title: Hum Brain Mapp doi: 10.1002/hbm.1048 – volume: 2 start-page: 685 year: 2001 ident: ref4 article-title: Searching for a baseline: functional imaging and the resting human brain. publication-title: Nat Rev Neurosci doi: 10.1038/35094500 – volume: 43 start-page: 779 year: 2000 ident: ref46 article-title: PRESTO-SENSE: an ultrafast whole-brain fMRI technique. publication-title: Magn Reson Med doi: 10.1002/1522-2594(200006)43:6<779::AID-MRM1>3.0.CO;2-4 – volume: 39 start-page: 169 year: 2008 ident: ref28 article-title: Analyzing consistency of independent components: an fMRI illustration. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.08.027 – volume: 34 start-page: 537 year: 1995 ident: ref1 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. publication-title: Magn Reson Med doi: 10.1002/mrm.1910340409 – volume: 417 start-page: 297 year: 2007 ident: ref42 article-title: Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. publication-title: Neurosci Lett doi: 10.1016/j.neulet.2007.02.081 – volume: 17 start-page: 209 year: 2006 ident: ref38 article-title: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. publication-title: Neuroreport doi: 10.1097/01.wnr.0000198434.06518.b8 – volume: 37 start-page: 1091 year: 2007 ident: ref32 article-title: Unrest at rest: Default activity and spontaneous network correlations. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.010 – volume: 62 start-page: 429 year: 2007 ident: ref36 article-title: Resting-State Functional Connectivity in Major Depression: Abnormally Increased Contributions from Subgenual Cingulate Cortex and Thalamus. publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.09.020 – volume: 26 start-page: 231 year: 2005 ident: ref35 article-title: Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. publication-title: Hum Brain Mapp doi: 10.1002/hbm.20160 – volume: 304 start-page: 1926 year: 2004 ident: ref31 article-title: Neuronal oscillations in cortical networks. publication-title: Science doi: 10.1126/science.1099745 – volume: 8 start-page: 240 year: 1998 ident: ref47 article-title: Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative assessment with a graded motor activation procedure. publication-title: Neuroimage doi: 10.1006/nimg.1998.0358 – reference: 17719799 - Neuroimage. 2007 Oct 1;37(4):1083-90; discussion 1097-9 – reference: 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 – reference: 17240167 - Neuroimage. 2007 Mar;35(1):83-8 – reference: 17540281 - Magn Reson Imaging. 2007 Jun;25(5):684-94 – reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5 – reference: 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 14729226 - Neurosci Lett. 2004 Jan 23;355(1-2):25-8 – reference: 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60 – reference: 15218136 - Science. 2004 Jun 25;304(5679):1926-9 – reference: 11034865 - Neuroimage. 2000 Nov;12(5):582-7 – reference: 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 – reference: 17900977 - Clin Neurophysiol. 2007 Nov;118(11):2317-31 – reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 – reference: 12165349 - Magn Reson Imaging. 2002 May;20(4):305-17 – reference: 17368915 - Neuroimage. 2007 Oct 1;37(4):1091-6; discussion 1097-9 – reference: 16087438 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):937-46 – reference: 10861870 - Magn Reson Med. 2000 Jun;43(6):779-86 – reference: 14980567 - Neuroimage. 2004 Feb;21(2):647-58 – reference: 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 – reference: 16875801 - Schizophr Res. 2006 Oct;87(1-3):60-6 – reference: 17569852 - Science. 2007 Jun 15;316(5831):1578-9 – reference: 11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 – reference: 16129624 - Neuroimage. 2006 Jan 1;29(1):321-7 – reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 – reference: 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205 – reference: 9430343 - NMR Biomed. 1997 Jun-Aug;10(4-5):165-70 – reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 – reference: 16407773 - Neuroreport. 2006 Feb 6;17(2):209-13 – reference: 17931888 - Neuroimage. 2008 Jan 1;39(1):169-80 – reference: 11498421 - AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33 – reference: 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51 – reference: 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42 – reference: 16260155 - Neuroimage. 2006 Feb 15;29(4):1359-67 – reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 – reference: 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12 – reference: 15954139 - Hum Brain Mapp. 2005 Dec;26(4):231-9 – reference: 17210143 - Biol Psychiatry. 2007 Sep 1;62(5):429-37 – reference: 15195284 - Hum Brain Mapp. 2004 Jul;22(3):165-78 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 – reference: 18063564 - Cereb Cortex. 2008 Aug;18(8):1856-64 – reference: 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003 – reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 – reference: 9758738 - Neuroimage. 1998 Oct;8(3):240-8 |
SSID | ssj0053866 |
Score | 2.4342477 |
Snippet | Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions... Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest.... BACKGROUND: Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest.... Background Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest.... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2001 |
SubjectTerms | Adult Attention Brain Brain mapping Brain research Cluster Analysis Clustering Data processing Female Functional magnetic resonance imaging Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Methods Networks Neural networks Neuroimaging Neurons Neuroscience Neuroscience/Cognitive Neuroscience Neurosciences NMR Nuclear magnetic resonance Principal components analysis Psychiatry Radiology and Medical Imaging/Magnetic Resonance Imaging Rest Rest - physiology Schizophrenia Sensorimotor integration Sensory integration Visual perception |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBQi2EBBzSbhzHjrkVxKpFokiloN6s-FUqrZIV2Vz49YwfCQ2qVA7covWslHzz8Fie-QahV7qxDCynyY2wLqdUkRxiHpxSXGlEraljsUD2lB1_o58uqotro758TVikB47AHWpIAqzvtlwSSysjlKuV5YVRnghtqUL0hT1vPEzFGAxezFhqlCt5cZj0crDpWnsQbt_SEJhxIwp8_VNUXmzWXX9Tyvl35eS1rWh1H91LOSQ-iu--g-7Y9gHaSV7a4zeJSvrtQ_Tu1Kek66tf1mA9bHHo4cB6PXh6BNi0cOewH84Bj3loLcKrz2cn2JeNPkLnq4_nH47zNC0h14yRLcRT6oyzhOil5hXXgisH-1JRa6srUjWmoKawJVXWqKUjBjI3rVVDHcC71Lp8jBYtwLOLsBKFZdYWHKIhZdTWHNy-YVSUoiJCqQyVI3JSJyZxP9BiLcP1GIcTRQRCerxlwjtD-fSvTWTSuEX-vVfKJOt5sMMPYB0yWYe8zToytO9VKmNT6eTN8ohywqqSCJB4GSQ8F0bri20um6Hv5cmX7_8g9PVsJvQ6CbkO4NBNanCAb_IcWzPJXW9h42f3AIJXVA3ZZIb2Rqu7eXl_WoY44C93mtZ2Qy-ZgBxEkDpDT6KJ_gG5hiSR1ixDfGa8M2TnK-3Vj8A0TogfH1A__R-qeIbuxlobmpNyDy22Pwf7HBK6rXoRfPc3cr9Icg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDhUYICTik3TiOE3NBZWFpkSjSUlBvVvzaVlolS5Nc-us7kzgpiyrgup5Im3l-scffEPJKF5aD5xSREdZFjCkaQc6DrxSXGJFr5njfIHvMD3-wL6fpqd9wq31b5ZATu0RtKo175PtxEkM1yqHgvl__inBqFJ6u-hEat8mdGCoNtnTl889DJoZY5txfl0uyeN9bZ29dlXavO4Pzo2CGctSx9o-5ebJeVfVNwPPP_snfCtL8PrnnkWR40Jt-i9yy5QOy5WO1Dt94Qum3D8m7YwSmq_NLa8JZ24TdflM4W7VIkgClK6xcuEC2jXIZdeAzdF8XR-HHoikekZP5p5PZYeRnJkSac9pAVmXOOEupnuoszbTIlKOoOW11StPCxMzENmHKGjV11AB-01oVzAmwmdbJYzIpQT3bJFQittzaOIOcyDizeQbBX3AmEpFSoVRAkkFzUns-cRxrsZLdIVkG3xW9IiTqW3p9ByQan1r3fBr_kP-ARhllkQ27-6G6WEofXFIDULR4I3dKLUuNUC5XNouNQrK8qaIB2UWTyv5q6RjT8oBllKcJFSDxspNARowSW26WRVvX8ujbz_8Q-r7YEHrthVwF6tCFv-YA74RMWxuS2-hhw2vX8trFA7IzeN3Ny7vjMmQDPOIpSlu1teQCkIigeUCe9C56reQcoCLLeUCyDefd0OzmSnl-1vGNU4pDBPKnf_9Tz8jdvpeGRTTZIZPmorXPAbA16kUXlVcqBD-m priority: 102 providerName: ProQuest |
Title | Normalized Cut Group Clustering of Resting-State fMRI Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18431486 https://www.proquest.com/docview/1312188617 https://www.proquest.com/docview/69123928 https://pubmed.ncbi.nlm.nih.gov/PMC2291558 https://doaj.org/article/c009e694102e45d9bf8be71db24610b2 http://dx.doi.org/10.1371/journal.pone.0002001 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd-GCGF8LjC5CSMAhVeM4doyE0FZaNqQVVDa0WxQ7dplUJaVpJeDA3857iRtWVATi4kPyfMjP78ux3-8R8lRnhoPmZEEujQ0YUzQAnwe7FBvlMtHM8uaC7JifXLB3l_HlDln3bHUAVlu3dthP6mIx63398u01GPyrumuDCNeTevOyML36bA0LunYhNgnsaXDG2nMFsG7OXQHdn2YijWgCYZVhefW1WFVT-reOuzOfldW2rPT3y5XXotXoNrnl0kz_qNGLPbJjijtkzxly5T93bNMv7pKXY8xaZ1ffTe4PVku__hnlD2YrZFCAuOaX1p8gFUcxDerM1Ldnk1P_TbbM7pHz0fB8cBK4hgqB5pwuweUym1tDqe5rEQsthbIQusJEGx3TOMtDlocmYsrkqm9pDsmd1ipjVsKCah3dJ50CkNonvpKh4caEAhwm48wkAjxDxpmMZEylUh6J1sil2pGNY8-LWVqfoAnYdDRApAh96qD3SNDOmjdkG3-RP8ZFaWWRKrt-UC6mqbO8VEMWabBct08Ni3OpbKKMCHOFTHp9RT1yiEuaNnWnrcGnR0xQHkdUgsSTWgLpMgq8jzPNVlWVnr7_9A9CHycbQs-ckC0BDp25Ggj4JqTh2pDcRw1bf3YFIOBCJZBweuRgrXXbXx-2r8FV4PlPVphyVaVcQpoiaeKRB42K_gLZKbxHxIbybiC7-aa4-lyTkVOKHQaSh_898xG52dzBYQGNDkhnuViZx5DoLVWX3BCXAsZkEOI4etslu8fD8YdJt_510q1tG8cfw5896Fkb |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPhaYFALgYCHbI3jODESQqOjtGwr0ihob1b8VSZVSVlaIfif-B85J05H0QS87LW-RPX5_LtzfPc7hJ6o3DCwnDzU3NiQUklCwDw4pdhY80xRy5oE2TEbfqLvT5KTDfSzrYVxaZUtJtZArUvlvpHvRnEE3igDh_t6_jV0XaPc7WrbQqMxiwPz_Rsc2apXo31Y36eEDN5O-sPQdxUIFWNkAbhDrbaGENVTaZIqnkpL3LuVUQlJch1RHZmYSqNlzxINEY5SMqeWw6yUiuG1V9BVGoMjd4Xpg3ct8AN0MOar8-I02vXGsDMvC7NTX_n5zjOt96ubBKxcQWc-K6uL4tw_0zV_83-Dm-iGD1zxXmNpm2jDFLfQpoeGCj_3_NUvbqOXYxcHz05_GI37ywWuP2_h_mzpOBnAU-LS4mNH7lFMwzrWxfboeIT380V-B00uQ5l3UacA9WwhLHlkmDFRChBMGTVZCliTM8pjnhAuZYDiVnNCefpy10VjJuo7uRSOMY0ihNO38PoOULh6at7Qd_xD_o1blJWsI9-ufyjPpsLvZaEgLjWuALhHDE00lzaTJo20dNx8PUkC1HVLKppK1hWEiD2aEpbEhIPE41rCEXAULsNnmi-rSow-fP4PoY_Ha0LPvJAtQR0q91UVMCdH7LUmueUsrJ12Jc53VIC2W6u7eLi7GgbwcTdKeWHKZSUYh8CHkyxA9xoTPVdyBpEpzViA0jXjXdPs-khx-qWmNyfE9SzI7v_9T3XRteHk6FAcjsYHD9D1Jo2HhiTeRp3F2dI8hFhxIR_VOxQjccmI8AvZU330 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkRAviPFrgUEtBAIesjaO48RICI2WamVQUBlob1bs2GVSlZSlEYL_jP-Oc-JkFE3Ay17rS1ufz9-d47vvEHqkUs3AclI_49r4lEriA-bBKcWEGU8UNaxJkJ2xg0_0zXF0vIV-trUwNq2yxcQaqLNC2XfkgyAMwBsl4HAHxqVFfBhPXq6--raDlL1pbdtpNCZyqL9_g-Nb-WI6hrV-TMjk9dHowHcdBnzFGFkDBlGTGU2IGqo4ihWPpSH2d5RWEYnSLKBZoEMqdSaHhmQQ7SglU2o4zFCpEL72Eroch3Fit1gy6rJLAEYYc5V6YRwMnGHsrYpc79XXf64LTesJ64YBnVvorZZFeV7M-2fq5m--cHIdXXNBLN5vrG4bben8Btp2MFHip47L-tlN9HxmY-LlyQ-d4VG1xvWrLjxaVpafAbwmLgyeW6KPfOHXcS827-ZTPE7X6S10dBHKvI16OahnB2HJA820DmKAY8qoTkC_JGWUhzwiXEoPha3mhHJU5rajxlLU93MxHGkaRQirb-H07SG_e2rVUHn8Q_6VXZRO1hJx1x8Upwvh9rVQEKNqWww8JJpGGZcmkToOMml5-oaSeKhvl1Q0Va0dnIh9GhMWhYSDxMNawpJx5NasF2lVlmL6_vN_CH2cbwg9cUKmAHWo1FVYwJwsydeG5I61sHbapTjbXR7aba3u_OF-NwxAZG-X0lwXVSkYhyCIk8RDdxoTPVNyAlEqTZiH4g3j3dDs5kh-8qWmOifE9i9I7v79T_XRFcAC8XY6O7yHrjYZPdQn4S7qrU8rfR_CxrV8UG9QjMQFA8IvKGOB9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normalized+Cut+Group+Clustering+of+Resting-State+fMRI+Data&rft.jtitle=PloS+one&rft.au=van+den+Heuvel%2C+Martijn&rft.au=Mandl%2C+Rene&rft.au=Hulshoff+Pol%2C+Hilleke&rft.date=2008-04-23&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=3&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0002001&rft_id=info%3Apmid%2F18431486&rft.externalDocID=PMC2291558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |