Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling
Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling path...
Saved in:
Published in | PLoS computational biology Vol. 16; no. 12; p. e1008472 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
14.12.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NF
κ
B signaling pathways, to develop hybrid models with
in silico
and
in vitro
measurements, respectively. |
---|---|
AbstractList | Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NFκB signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively.Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NFκB signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively. Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NF κ B signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively. Introduction An intracellular signaling pathway is a biochemical reaction network of cells to adjust their metabolism, gene expression, and other necessary actions so that the cells can appropriately respond to perturbations present in their environment [1, 2]. Since an intracellular signaling pathway is complex involving interactions among a large number of biomolecules inside a cell, it is common to implement a systems biology approach, which integrates experimental observations and mathematical modeling, to analyze the signaling pathway comprehensively [3, 4]. [...]it is desirable to minimize the number of components in a hybrid model that should be inferred from experimental measurements to minimize the possibility of overfitting, which may compromise the generalizability of the hybrid model. [31, 32] is adopted, where differential equations of model states are adjusted by correction terms inferred from experiments. Since an intracellular signaling pathway is often high-dimensional and its origin of prediction inaccuracy is unknown beforehand, a graphical approach is implemented to determine a subset of model states that have the highest correlations with the measurements. [...]this study aims to develop a functional map that can compute the value of w at time t for given values of the model states x(t) and t; that is, we aim to develop for prediction generalizability of the hybrid model. Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NFκB signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively. Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NF κ B signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively. An intracellular signaling pathway is often represented by a set of nonlinear ordinary differential equations, which translate our current knowledge about the signaling pathway into a testable mathematical model. However, predictions from such models are often subject to high uncertainty since many signaling pathways are only partially known beforehand. In this study, we propose a systematic approach to develop a hybrid model to improve model accuracy by combining machine learning and the first-principle modeling. Specifically, model correction terms are learned from discrepancy between model predictions and measurements, and these terms are added to the first-principle model to enhance the prediction accuracy. Once these correction terms are learned from the data, an artificial neural network (ANN) model is developed to find an empirical relation between the model and the correction terms so that the developed ANN can be used to posses improved predictive capabilities even in new operating conditions (i.e., generalizability). The final hybrid model is then constructed by coupling the first-principle model with the developed ANN. Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NF[kappa]B signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively. Introduction An intracellular signaling pathway is a biochemical reaction network of cells to adjust their metabolism, gene expression, and other necessary actions so that the cells can appropriately respond to perturbations present in their environment [1, 2]. Since an intracellular signaling pathway is complex involving interactions among a large number of biomolecules inside a cell, it is common to implement a systems biology approach, which integrates experimental observations and mathematical modeling, to analyze the signaling pathway comprehensively [3, 4]. [...]it is desirable to minimize the number of components in a hybrid model that should be inferred from experimental measurements to minimize the possibility of overfitting, which may compromise the generalizability of the hybrid model. [31, 32] is adopted, where differential equations of model states are adjusted by correction terms inferred from experiments. Since an intracellular signaling pathway is often high-dimensional and its origin of prediction inaccuracy is unknown beforehand, a graphical approach is implemented to determine a subset of model states that have the highest correlations with the measurements. [...]this study aims to develop a functional map that can compute the value of w at time t for given values of the model states x(t) and t; that is, we aim to develop for prediction generalizability of the hybrid model. |
Audience | Academic |
Author | Kwon, Joseph S. Lee, Dongheon Jayaraman, Arul |
AuthorAffiliation | 1 Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA 3 Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA University of Pennsylvania, UNITED STATES 2 Texas A&M Energy Institute, Texas A&M University, College Station, Texas, USA |
AuthorAffiliation_xml | – name: University of Pennsylvania, UNITED STATES – name: 2 Texas A&M Energy Institute, Texas A&M University, College Station, Texas, USA – name: 3 Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA – name: 1 Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA |
Author_xml | – sequence: 1 givenname: Dongheon orcidid: 0000-0002-4066-9222 surname: Lee fullname: Lee, Dongheon – sequence: 2 givenname: Arul orcidid: 0000-0001-9276-8284 surname: Jayaraman fullname: Jayaraman, Arul – sequence: 3 givenname: Joseph S. orcidid: 0000-0002-7903-5681 surname: Kwon fullname: Kwon, Joseph S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33315899$$D View this record in MEDLINE/PubMed |
BookMark | eNqVU9tu1DAQjVARbRf-AIElXuBhF18SO-EBqSq3ShVIXJ4trzPJeuvYi-N02d_gi3F2t6hbVUgoDx5PzpwZn5k5zY6cd5BlTwmeESbI66UfglN2ttJzMyMYl7mgD7ITUhRsKlhRHt2yj7PTvl9inMyKP8qOGWMkmdVJ9vsdXIP1qw5cRL5BCi0282Bq1PkaLGp8SK6VCtEoazfoyvm1Q8bFoDRYO1gVUG_aVIdxbcLFxVptUFwEP7QLpH0IoKPxDkUIHYI-mk5t78rVyMEQlE1HXPtwtcuYaB5nDxtle3iyPyfZjw_vv59_ml5--XhxfnY51ZyTOG2wrmtRKa4LUmLgmpaKEtroRhPGq4JCKUBwLTir5nNcalLxuklCCa6anHM2yZ7veFfW93IvZy9pLqqcC1aVCXGxQ9ReLeUqpOLDRnpl5NbhQytHZbQFWRCGSyjqhlOVpzyVKOdYi5oyjEEBJK63-2zDvINaw6ihPSA9_OPMQrb-WgrBK07zRPByTxD8zyFJKTvTj01QDvywrRvTktHU80n24g70_tftUa1KDzCu8WNXR1J5xgtckoJimlCze1Dpq6EzOo1kY5L_IODVQUDCRPgVWzX0vbz49vU_sJ8Psc9uC_hXuZtZToA3O4AOvu8DNFKbuJ22VLGxkmA5Ls6NFnJcHLlfnBSc3wm-4f9n2B8PrSA_ |
CitedBy_id | crossref_primary_10_1021_acs_iecr_4c01459 crossref_primary_10_3389_fceng_2024_1494244 crossref_primary_10_1016_j_jprocont_2024_103328 crossref_primary_10_3390_en16196921 crossref_primary_10_1016_j_jprocont_2021_06_005 crossref_primary_10_1007_s12038_022_00253_y crossref_primary_10_32604_cmc_2024_047189 crossref_primary_10_1371_journal_pcbi_1010183 crossref_primary_10_1002_bit_28503 crossref_primary_10_1016_j_dche_2023_100137 crossref_primary_10_1016_j_dche_2023_100136 crossref_primary_10_1016_j_cherd_2022_05_041 crossref_primary_10_1016_j_applthermaleng_2024_124795 crossref_primary_10_1038_s41598_025_86332_0 crossref_primary_10_1002_aic_17946 crossref_primary_10_1007_s11814_023_1446_7 crossref_primary_10_1016_j_cej_2022_141025 crossref_primary_10_1016_j_compchemeng_2023_108339 crossref_primary_10_1016_j_jprocont_2024_103243 crossref_primary_10_1021_acs_iecr_3c03531 crossref_primary_10_1002_aic_18076 crossref_primary_10_1016_j_cherd_2024_01_067 crossref_primary_10_3390_fermentation9100922 crossref_primary_10_1016_j_cherd_2024_09_031 crossref_primary_10_3390_ai4010014 crossref_primary_10_1016_j_energy_2023_128441 crossref_primary_10_1002_bit_28912 crossref_primary_10_3390_pr9030515 crossref_primary_10_1016_j_eswa_2022_119464 crossref_primary_10_1021_acs_iecr_3c01435 crossref_primary_10_1016_j_compchemeng_2023_108164 crossref_primary_10_1016_j_cherd_2021_01_009 crossref_primary_10_1016_j_compchemeng_2023_108247 crossref_primary_10_1016_j_compchemeng_2023_108368 crossref_primary_10_1016_j_compchemeng_2022_107898 crossref_primary_10_1016_j_copbio_2025_103263 crossref_primary_10_1002_cjce_24398 crossref_primary_10_1016_j_dche_2023_100111 crossref_primary_10_1016_j_jprocont_2023_103148 crossref_primary_10_1016_j_cherd_2023_04_028 crossref_primary_10_1021_acsomega_3c05953 crossref_primary_10_1016_j_dche_2022_100071 crossref_primary_10_1016_j_jiec_2022_11_016 crossref_primary_10_1016_j_ces_2023_119681 crossref_primary_10_1016_j_compchemeng_2023_108275 crossref_primary_10_1016_j_cej_2022_135643 crossref_primary_10_1038_s44286_024_00142_1 crossref_primary_10_1016_j_cej_2024_155015 crossref_primary_10_1093_bib_bbac436 crossref_primary_10_1002_aic_17609 crossref_primary_10_1016_j_jprocont_2024_103301 crossref_primary_10_3390_ijms251810204 crossref_primary_10_3390_mca29040062 crossref_primary_10_1002_aic_18012 crossref_primary_10_1002_mma_9482 crossref_primary_10_1016_j_compchemeng_2021_107496 crossref_primary_10_1016_j_cherd_2022_01_041 crossref_primary_10_3390_math11020400 crossref_primary_10_1021_acs_iecr_3c02624 crossref_primary_10_1002_aic_18649 crossref_primary_10_1016_j_cej_2024_153664 crossref_primary_10_1371_journal_pcbi_1012762 crossref_primary_10_1016_j_compchemeng_2022_107952 crossref_primary_10_1186_s12915_024_02019_4 crossref_primary_10_1016_j_dche_2022_100080 crossref_primary_10_1016_j_ces_2023_119118 crossref_primary_10_1021_acs_iecr_1c00552 crossref_primary_10_3390_math11091978 crossref_primary_10_1016_j_compchemeng_2024_108926 crossref_primary_10_1021_acs_iecr_2c03691 |
Cites_doi | 10.1002/aic.16209 10.1101/cshperspect.a000034 10.1098/rsif.2017.0332 10.1098/rspa.2016.0446 10.1016/j.compchemeng.2017.07.002 10.1109/LLS.2016.2646498 10.1137/0323017 10.1091/mbc.E17-09-0565 10.1002/aic.690381003 10.1007/BF02706848 10.1016/j.jprocont.2011.06.020 10.1109/TAC.2007.911328 10.1002/j.1460-2075.1995.tb07256.x 10.1016/0009-2509(92)80234-4 10.1016/j.jbiotec.2007.08.020 10.1162/neco.1992.4.3.415 10.1098/rspa.2019.0800 10.1021/acs.iecr.7b00682 10.1073/pnas.1517384113 10.3390/pr6030021 10.3390/pr3010001 10.1002/bit.26371 10.1109/TAC.1974.1100705 10.1016/j.compchemeng.2019.106696 10.1371/journal.pcbi.1003166 10.1007/s11538-018-0421-7 10.1098/rspa.2018.0305 10.1007/978-3-319-08437-4_7 10.1186/1752-0509-4-131 10.1101/gr.1262503 10.1007/s00449-019-02181-y 10.1016/j.compchemeng.2013.08.008 10.1103/PhysRevX.9.041046 10.1002/ceat.270170103 10.1109/TAC.1979.1102181 10.1016/j.cherd.2019.09.009 10.1016/j.compchemeng.2018.02.004 10.1002/aic.690370406 10.1002/aic.16925 10.1049/iet-syb.2018.5079 10.1016/j.compchemeng.2018.08.029 10.1007/BF02551274 10.1093/bioinformatics/btp358 10.1093/biomet/76.2.297 10.1186/1471-2105-6-155 10.1093/bioinformatics/btm397 10.1186/1752-0509-7-16 10.2142/biophysics.1.25 10.1137/110822992 10.1002/aic.16743 10.1186/1471-2202-7-S1-S10 10.1002/aic.15323 10.1002/aic.13782 10.1073/pnas.1424980112 10.1038/srep20772 10.1126/science.1165893 10.1006/jbin.2001.1022 10.1371/journal.pcbi.1005379 10.1615/CritRevEukarGeneExpr.v20.i2.10 10.1016/j.compchemeng.2012.06.001 10.1002/wsbm.1331 10.1016/j.compchemeng.2011.02.012 10.1002/aic.15733 10.1016/0098-1354(95)00000-3 10.1016/j.jprocont.2019.11.012 10.1016/j.ifacol.2019.12.244 10.1126/scisignal.aaa5208 10.7554/eLife.08931 10.1002/aic.690400806 10.1111/j.1742-4658.2008.06844.x 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 10.1371/journal.pcbi.1003546 10.1002/aic.11295 10.1093/bioinformatics/14.10.869 10.1016/j.compchemeng.2018.08.011 10.1016/0098-1354(92)80046-C 10.1126/science.1069492 10.1371/journal.pcbi.1005655 10.1021/acs.iecr.7b04927 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Lee et al 2020 Lee et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Lee et al 2020 Lee et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1008472 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Systematic development of a hybrid model of an intracellular signaling pathway |
EISSN | 1553-7358 |
ExternalDocumentID | 2479467398 oai_doaj_org_article_51308e5df62a46df978b0c7d2300eaee PMC7769624 A650815202 33315899 10_1371_journal_pcbi_1008472 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ PMFND 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 7X8 5PM PUEGO - AAPBV ABPTK ADACO BBAFP M~E PRINS |
ID | FETCH-LOGICAL-c661t-f0cdd79a6c5180e6c28a212fcfc136952e87e76c7639bb08c196df10076af4663 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:12:21 EST 2021 Wed Aug 27 01:30:36 EDT 2025 Thu Aug 21 14:11:37 EDT 2025 Thu Jul 10 19:33:24 EDT 2025 Fri Jul 25 12:02:48 EDT 2025 Tue Jun 17 21:00:37 EDT 2025 Tue Jun 10 20:46:40 EDT 2025 Fri Jun 27 04:03:45 EDT 2025 Fri Jun 27 04:11:20 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Thu Apr 24 23:06:20 EDT 2025 Tue Jul 01 04:04:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-f0cdd79a6c5180e6c28a212fcfc136952e87e76c7639bb08c196df10076af4663 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA The authors have declared that no competing interests exist. |
ORCID | 0000-0001-9276-8284 0000-0002-7903-5681 0000-0002-4066-9222 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1008472 |
PMID | 33315899 |
PQID | 2479467398 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2479467398 doaj_primary_oai_doaj_org_article_51308e5df62a46df978b0c7d2300eaee pubmedcentral_primary_oai_pubmedcentral_nih_gov_7769624 proquest_miscellaneous_2470283255 proquest_journals_2479467398 gale_infotracmisc_A650815202 gale_infotracacademiconefile_A650815202 gale_incontextgauss_ISR_A650815202 gale_incontextgauss_ISN_A650815202 pubmed_primary_33315899 crossref_citationtrail_10_1371_journal_pcbi_1008472 crossref_primary_10_1371_journal_pcbi_1008472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-14 |
PublicationDateYYYYMMDD | 2020-12-14 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | B Lee (pcbi.1008472.ref045) 2001; 25 D Lee (pcbi.1008472.ref047) 2018; 64 M Schmidt (pcbi.1008472.ref049) 2009; 324 S Mitchell (pcbi.1008472.ref077) 2016; 8 N Parameswaran (pcbi.1008472.ref079) 2010; 20 Y Chu (pcbi.1008472.ref074) 2007; 53 J Lagergren (pcbi.1008472.ref030) 2018; 80 pcbi.1008472.ref062 MSF Bangi (pcbi.1008472.ref007) 2020; 134 pcbi.1008472.ref060 B Sun (pcbi.1008472.ref028) 2020; 86 E Limpert (pcbi.1008472.ref066) 2001; 51 CA Tiemann (pcbi.1008472.ref023) 2013; 9 B Engelhardt (pcbi.1008472.ref032) 2017; 14 A Yazdani (pcbi.1008472.ref006) 2019 A Narasingam (pcbi.1008472.ref053) 2019; 65 ML Thompson (pcbi.1008472.ref018) 1994; 40 K Erguler (pcbi.1008472.ref085) 2013; 7 J Schubert (pcbi.1008472.ref024) 1994; 14 M Ashyraliyev (pcbi.1008472.ref072) 2009; 276 L Bansal (pcbi.1008472.ref037) 2012; 58 HL Pahl (pcbi.1008472.ref083) 1995; 14 G Hu (pcbi.1008472.ref027) 2011; 35 D Lee (pcbi.1008472.ref034) 2020; 66 H Kitano (pcbi.1008472.ref003) 2002; 295 pcbi.1008472.ref033 D Lee (pcbi.1008472.ref086) 2018; 118 H Akaike (pcbi.1008472.ref057) 1974; 19 S Maiti (pcbi.1008472.ref080) 2015; 3 A Narasingam (pcbi.1008472.ref016) 2017; 106 JH Lagergren (pcbi.1008472.ref070) 2020; 476 DR Diedrichs (pcbi.1008472.ref084) 2018; 29 A Jayaraman (pcbi.1008472.ref002) 2009 M Soroush (pcbi.1008472.ref046) 1996; 20 D Lee (pcbi.1008472.ref075) 2018; 6 J Hasenauer (pcbi.1008472.ref064) 2011; 21 P Daoutidis (pcbi.1008472.ref043) 1992; 47 A Narasingam (pcbi.1008472.ref015) 2017; 63 B Engelhardt (pcbi.1008472.ref031) 2016; 6 B Bhadriraju (pcbi.1008472.ref052) 2019; 152 KG Gadkar (pcbi.1008472.ref009) 2005; 6 C Kreutz (pcbi.1008472.ref065) 2007; 23 J Pinto (pcbi.1008472.ref025) 2019; 42 SL Brunton (pcbi.1008472.ref050) 2016; 113 C Kravaris (pcbi.1008472.ref021) 2013; 51 D Chaffart (pcbi.1008472.ref026) 2018; 119 DM Himmelblau (pcbi.1008472.ref056) 2000; 17 D Henriques (pcbi.1008472.ref012) 2017; 13 D Lee (pcbi.1008472.ref004) 2019; 13 DP Howsmon (pcbi.1008472.ref038) 2016; 2 C Furusawa (pcbi.1008472.ref063) 2005; 1 G Cybenko (pcbi.1008472.ref055) 1989; 2 A Narasingam (pcbi.1008472.ref036) 2018; 57 P Daoutidis (pcbi.1008472.ref041) 1991; 37 S Steinmeyer (pcbi.1008472.ref059) 2017; 114 M von Stosch (pcbi.1008472.ref013) 2014 DC Psichogios (pcbi.1008472.ref022) 1992; 38 A Narasingam (pcbi.1008472.ref051) 2018; 119 RA Kellogg (pcbi.1008472.ref082) 2015; 4 A Raue (pcbi.1008472.ref020) 2009; 25 M von Stosch (pcbi.1008472.ref008) 2010; 4 D Kahl (pcbi.1008472.ref042) 2019; 9 JF Pollard (pcbi.1008472.ref014) 1992; 16 HS Sidhu (pcbi.1008472.ref039) 2018; 112 P Mendes (pcbi.1008472.ref005) 1998; 14 H Schaeffer (pcbi.1008472.ref068) 2017; 473 SM Udrescu (pcbi.1008472.ref054) 2020; 6 CM Hurvich (pcbi.1008472.ref058) 1989; 76 SH Rudy (pcbi.1008472.ref067) 2017; 3 AP Teixeira (pcbi.1008472.ref010) 2007; 132 Z Cheng (pcbi.1008472.ref081) 2015; 8 R Bellazzi (pcbi.1008472.ref087) 2001; 34 A Garg (pcbi.1008472.ref017) 2017; 56 A Oeckinghaus (pcbi.1008472.ref076) 2009; 1 R Rajaiah (pcbi.1008472.ref078) 2013; 112 S Heo (pcbi.1008472.ref048) 2016; 62 S Zhang (pcbi.1008472.ref069) 2018; 474 CG Moles (pcbi.1008472.ref073) 2003; 13 M Chaves (pcbi.1008472.ref061) 2008; 53 JP Perley (pcbi.1008472.ref011) 2014; 10 C Kravaris (pcbi.1008472.ref035) 1985; 23 E Klipp (pcbi.1008472.ref001) 2006; 7 DJC McKay (pcbi.1008472.ref071) 1992; 4 M von Stosch (pcbi.1008472.ref019) 2014; 60 RM Hirschorn (pcbi.1008472.ref040) 1979; 24 F Hamilton (pcbi.1008472.ref029) 2017; 13 D Claude (pcbi.1008472.ref044) 1986; 303 |
References_xml | – volume-title: Methods in bioengineering: systems analysis of biological networks year: 2009 ident: pcbi.1008472.ref002 – volume: 64 start-page: 3882 year: 2018 ident: pcbi.1008472.ref047 article-title: An integrated numerical and experimental framework for modeling of CTB and GD1b ganglioside binding kinetics publication-title: AIChE Journal doi: 10.1002/aic.16209 – volume: 1 start-page: a000034 year: 2009 ident: pcbi.1008472.ref076 article-title: The NF-κB family of transcription factors and its regulation publication-title: Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a000034 – volume: 14 start-page: 20170332 year: 2017 ident: pcbi.1008472.ref032 article-title: A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models publication-title: Journal of the Royal Society of Interface doi: 10.1098/rsif.2017.0332 – volume: 473 start-page: 20160446 year: 2017 ident: pcbi.1008472.ref068 article-title: Learning partial differential equations via data discovery and sparse optimization publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2016.0446 – volume: 106 start-page: 501 year: 2017 ident: pcbi.1008472.ref016 article-title: Development of local dynamic mode decomposition with control: Application to model predictive control of hydraulic fracturing publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2017.07.002 – volume: 2 start-page: 31 year: 2016 ident: pcbi.1008472.ref038 article-title: Regularization techniques to overcome overparameterization of complex biochemical reaction networks publication-title: IEEE life sciences letters doi: 10.1109/LLS.2016.2646498 – volume: 23 start-page: 217 issue: 2 year: 1985 ident: pcbi.1008472.ref035 article-title: Identification of parameters in distributed parameter systems by regularization publication-title: SIAM Journal on Control and Optimization doi: 10.1137/0323017 – volume: 29 start-page: 1502 year: 2018 ident: pcbi.1008472.ref084 article-title: A data-entrained computational model for testing the regulatory logic of the vertebrate unfolded protein response publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.E17-09-0565 – volume: 38 start-page: 1499 year: 1992 ident: pcbi.1008472.ref022 article-title: A hybrid neural network-First principles approach to process modeling publication-title: AIChE Journal doi: 10.1002/aic.690381003 – volume: 17 start-page: 373 year: 2000 ident: pcbi.1008472.ref056 article-title: Applications of artificial neural networks in chemical engineering publication-title: Korean Journal of Chemical Engineering doi: 10.1007/BF02706848 – volume: 21 start-page: 1417 year: 2011 ident: pcbi.1008472.ref064 article-title: Analysis of heterogeneous cell populations: A density-based modeling and identification framework publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2011.06.020 – volume: 53 start-page: 87 year: 2008 ident: pcbi.1008472.ref061 article-title: Bistable biological systems: A characterization through local compact input-to-state stability publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2007.911328 – volume: 14 start-page: 2580 year: 1995 ident: pcbi.1008472.ref083 article-title: A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-κB publication-title: EMBO Journal doi: 10.1002/j.1460-2075.1995.tb07256.x – volume: 47 start-page: 1091 year: 1992 ident: pcbi.1008472.ref043 article-title: Structural evaluation of control configurations for multivariable nonlinear processes publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(92)80234-4 – volume: 132 start-page: 418 year: 2007 ident: pcbi.1008472.ref010 article-title: Hybrid semi-parametric mathematical systems: Bridging the gap between systems biology and process engineering publication-title: Journal of Biotechnology doi: 10.1016/j.jbiotec.2007.08.020 – volume: 4 start-page: 415 year: 1992 ident: pcbi.1008472.ref071 article-title: Bayesian interpolation publication-title: Neural computation doi: 10.1162/neco.1992.4.3.415 – volume: 476 start-page: 20190800 year: 2020 ident: pcbi.1008472.ref070 article-title: Learning partial differential equations for biological transport models from noisy spatio-temporal data publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2019.0800 – volume: 56 start-page: 7491 year: 2017 ident: pcbi.1008472.ref017 article-title: Subspace Identification-Based Modeling and Control of Batch Particulate Processes publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.7b00682 – volume: 113 start-page: 3932 year: 2016 ident: pcbi.1008472.ref050 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1517384113 – volume: 6 start-page: 21 year: 2018 ident: pcbi.1008472.ref075 article-title: Mathematical modeling and parameter estimation of intracellular signaling pathway: Application to LPS-induced NFκB activation and TNFα production in macrophages publication-title: Processes doi: 10.3390/pr6030021 – volume: 3 start-page: 1 year: 2015 ident: pcbi.1008472.ref080 article-title: Mathematical modeling of pro- and anti-inflammatory signaling in macrophages publication-title: Processes doi: 10.3390/pr3010001 – volume: 114 start-page: 2660 year: 2017 ident: pcbi.1008472.ref059 article-title: Empirical modeling of T cell activation predicts interplay of host cytokines and bacterial indole publication-title: Biotechnology and Bioengineering doi: 10.1002/bit.26371 – volume: 19 start-page: 716 year: 1974 ident: pcbi.1008472.ref057 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1974.1100705 – volume: 134 start-page: 106696 year: 2020 ident: pcbi.1008472.ref007 article-title: Deep hybrid modeling of chemical process: Application to hydraulic fracturing publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2019.106696 – volume: 9 start-page: e1003166 year: 2013 ident: pcbi.1008472.ref023 article-title: Parameter trajectory analysis to identify treatment effects of pharmacological interventions publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003166 – volume: 80 start-page: 1578 year: 2018 ident: pcbi.1008472.ref030 article-title: Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model publication-title: Bulletin of Mathematical Biology doi: 10.1007/s11538-018-0421-7 – volume: 474 start-page: 20180305 year: 2018 ident: pcbi.1008472.ref069 article-title: Robust data-driven discovery of governing physical laws with error bars publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2018.0305 – start-page: 367 volume-title: Large-Scale Networks in Engineering and Life Sciences year: 2014 ident: pcbi.1008472.ref013 doi: 10.1007/978-3-319-08437-4_7 – volume: 4 start-page: 131 year: 2010 ident: pcbi.1008472.ref008 article-title: Modeling Biochemical Networks with Intrinsic Time Delays: A Hybrid Semi-parameteric Approach publication-title: BMC Systems Biology doi: 10.1186/1752-0509-4-131 – volume: 13 start-page: 2467 year: 2003 ident: pcbi.1008472.ref073 article-title: Parameter estimation in biochemical pathways: a comparison of global optimization methods publication-title: Genome research doi: 10.1101/gr.1262503 – volume: 42 start-page: 1853 year: 2019 ident: pcbi.1008472.ref025 article-title: A Bootstrap-aggregated Hybrid Semi-parametric Modeling Framework for Bioprocess Development publication-title: Bioprocess and Biosystems Engineering doi: 10.1007/s00449-019-02181-y – volume: 60 start-page: 86 year: 2014 ident: pcbi.1008472.ref019 article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2013.08.008 – volume: 9 start-page: 041046 year: 2019 ident: pcbi.1008472.ref042 article-title: Structural invertibility and optimal sensor node placement for error and input reconstruction in dynamic systems publication-title: Physical Review X doi: 10.1103/PhysRevX.9.041046 – volume: 3 start-page: e160261 year: 2017 ident: pcbi.1008472.ref067 article-title: Data-driven discovery of partial differential equations publication-title: Science Advances – volume: 14 start-page: 10 year: 1994 ident: pcbi.1008472.ref024 article-title: Hybrid modelling of yeast production processes—combination of a priori knowledge on different levels of sophistication publication-title: Chemical Engineering & Technology doi: 10.1002/ceat.270170103 – volume: 24 start-page: 855 year: 1979 ident: pcbi.1008472.ref040 article-title: lnvertibility of multivariable nonlinear control systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1979.1102181 – volume: 152 start-page: 372 year: 2019 ident: pcbi.1008472.ref052 article-title: Machine learning-based adaptive model identification of systems: Application to a chemical process publication-title: Chemical Engineering Research and Design doi: 10.1016/j.cherd.2019.09.009 – volume: 112 start-page: 9 year: 2018 ident: pcbi.1008472.ref039 article-title: Model order reduction of nonlinear parabolic PDE systems with moving boundaries using sparse proper orthogonal decomposition: Application to hydraulic fracturing publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2018.02.004 – volume: 37 start-page: 527 year: 1991 ident: pcbi.1008472.ref041 article-title: Inversion and zero dynamics in nonlinear multivariable control publication-title: AIChE Journal doi: 10.1002/aic.690370406 – volume: 303 start-page: 833 year: 1986 ident: pcbi.1008472.ref044 article-title: Commande non interactive simple des systèmes non linéaires par bouclages statiques réguliers publication-title: C R Acad Sc Paris – volume: 66 start-page: e16925 year: 2020 ident: pcbi.1008472.ref034 article-title: Identification of cell-to-cell heterogeneity through systems engineering approaches publication-title: AIChE Journal doi: 10.1002/aic.16925 – volume: 13 start-page: 169 year: 2019 ident: pcbi.1008472.ref004 article-title: Identification of a time-varying intracellular signaling model through data clustering and parameter selection: Application to NFκB signaling pathway induced by LPS in the presence of BFA publication-title: IET Systems Biology doi: 10.1049/iet-syb.2018.5079 – volume: 119 start-page: 465 year: 2018 ident: pcbi.1008472.ref026 article-title: Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2018.08.029 – volume: 2 start-page: 303 year: 1989 ident: pcbi.1008472.ref055 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of Control, Signals and Systems doi: 10.1007/BF02551274 – volume: 25 start-page: 1923 year: 2009 ident: pcbi.1008472.ref020 article-title: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp358 – volume: 76 start-page: 297 year: 1989 ident: pcbi.1008472.ref058 article-title: Regression and time series model selection in small samples publication-title: Biometrika doi: 10.1093/biomet/76.2.297 – volume: 6 start-page: 155 year: 2005 ident: pcbi.1008472.ref009 article-title: Iterative approach to model identification of biological networks publication-title: BMC bioinformatics doi: 10.1186/1471-2105-6-155 – volume: 23 start-page: 2747 year: 2007 ident: pcbi.1008472.ref065 article-title: An error model for protein quantification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm397 – volume: 7 start-page: 1 year: 2013 ident: pcbi.1008472.ref085 article-title: A mathematical model of the unfolded protein stress response reveals the decision mechanism for recovery, adaptation and apoptosis publication-title: BMC Systems Biology doi: 10.1186/1752-0509-7-16 – volume: 1 start-page: 25 year: 2005 ident: pcbi.1008472.ref063 article-title: Ubiquity of log-normal distributions in intra-cellular reaction dynamics publication-title: Biophysics doi: 10.2142/biophysics.1.25 – ident: pcbi.1008472.ref033 doi: 10.1137/110822992 – volume: 65 start-page: e16743 year: 2019 ident: pcbi.1008472.ref053 article-title: Koopman Lyapunov-based model predictive control of nonlinear chemical process systems publication-title: AIChE Journal doi: 10.1002/aic.16743 – volume: 7 start-page: S10 year: 2006 ident: pcbi.1008472.ref001 article-title: Mathematical modeling of intracellular signaling pathways publication-title: BMC Neuroscience doi: 10.1186/1471-2202-7-S1-S10 – volume: 62 start-page: 3177 year: 2016 ident: pcbi.1008472.ref048 article-title: Control-relevant decomposition of process networks via optimization-based hierarchical clustering publication-title: AIChE Journal doi: 10.1002/aic.15323 – volume: 58 start-page: 3751 year: 2012 ident: pcbi.1008472.ref037 article-title: Regularization of Inverse Problems to Determine Transcription Factor Profiles from Fluorescent Reporter Systems publication-title: AIChE Journal doi: 10.1002/aic.13782 – volume: 112 start-page: 8391 issue: 27 year: 2013 ident: pcbi.1008472.ref078 article-title: CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1424980112 – volume: 6 start-page: 20772 year: 2016 ident: pcbi.1008472.ref031 article-title: Learning (from) the errors of a systems biology approach publication-title: Scientific Reports doi: 10.1038/srep20772 – volume: 324 start-page: 81 year: 2009 ident: pcbi.1008472.ref049 article-title: Distilling free-form natural laws from experimental data publication-title: Science doi: 10.1126/science.1165893 – volume: 34 start-page: 221 year: 2001 ident: pcbi.1008472.ref087 article-title: A Hybrid Input-Output Approach to Model Metabolic Systems: An Application to Intracellular Thiamine Kinetics publication-title: Journal of Biomedical Informatics doi: 10.1006/jbin.2001.1022 – volume: 13 start-page: e1005379 year: 2017 ident: pcbi.1008472.ref012 article-title: Data-driven reverse engineering of signaling pathways using ensembles of dynamic models publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1005379 – volume: 25 start-page: 85 year: 2001 ident: pcbi.1008472.ref045 article-title: A study on the evaluation of structural controllability in chemical processes publication-title: Chemical Engineering Science – volume: 20 start-page: 87 year: 2010 ident: pcbi.1008472.ref079 article-title: Tumor necrosis factor-α signaling in macrophages publication-title: Critical Reviews in Eukaryotic Gene Expression doi: 10.1615/CritRevEukarGeneExpr.v20.i2.10 – volume: 51 start-page: 111 year: 2013 ident: pcbi.1008472.ref021 article-title: Advances and selected recent developments in state and parameter estimation publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2012.06.001 – volume: 8 start-page: 227 year: 2016 ident: pcbi.1008472.ref077 article-title: Signaling via the NFκB system publication-title: WIREs Systems Biology and Medicine doi: 10.1002/wsbm.1331 – volume: 6 start-page: eaay2631 year: 2020 ident: pcbi.1008472.ref054 article-title: AI Feynman: A physics-inspired method for symbolic regression publication-title: Science Advance – start-page: 865063 year: 2019 ident: pcbi.1008472.ref006 article-title: Systems biology informed deep learning for inferring parameters and hidden dynamics publication-title: bioRxiv – volume: 35 start-page: 2611 year: 2011 ident: pcbi.1008472.ref027 article-title: Hybrid modeling for the prediction of leaching rate in leaching process based onnegative correlation learning bagging ensemble algorithm publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2011.02.012 – volume: 119 start-page: 101 year: 2018 ident: pcbi.1008472.ref051 article-title: Data-driven identification of interpretable reduced-order models using sparse regression publication-title: AIChE Journal – volume: 63 start-page: 3818 year: 2017 ident: pcbi.1008472.ref015 article-title: Temporal clustering for order reduction of nonlinear parabolic PDE systems with time-dependent spatial domains: Application to a hydraulic fracturing process publication-title: AIChE Journal doi: 10.1002/aic.15733 – volume: 20 start-page: 357 year: 1996 ident: pcbi.1008472.ref046 article-title: Evaluation of achievable control quality in nonlinear processes publication-title: Computers & Chemical Engineering doi: 10.1016/0098-1354(95)00000-3 – volume: 86 start-page: 30 year: 2020 ident: pcbi.1008472.ref028 article-title: A comprehensive hybrid first principles/machine learning modeling framework for complex industrial processes publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2019.11.012 – ident: pcbi.1008472.ref060 doi: 10.1016/j.ifacol.2019.12.244 – volume: 8 start-page: ra69 year: 2015 ident: pcbi.1008472.ref081 article-title: Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation publication-title: Science Signaling doi: 10.1126/scisignal.aaa5208 – volume: 4 start-page: e08931 year: 2015 ident: pcbi.1008472.ref082 article-title: Digital signaling decouples activation probability and population heterogeneity publication-title: eLife doi: 10.7554/eLife.08931 – volume: 40 start-page: 1328 year: 1994 ident: pcbi.1008472.ref018 article-title: Modeling chemical processes using prior knowledge and neural networks publication-title: AIChE Journal doi: 10.1002/aic.690400806 – volume: 276 start-page: 886 year: 2009 ident: pcbi.1008472.ref072 article-title: Systems biology: parameter estimation for biochemical models publication-title: FEBS Journal doi: 10.1111/j.1742-4658.2008.06844.x – volume: 51 start-page: 341 year: 2001 ident: pcbi.1008472.ref066 article-title: Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: that is the question publication-title: BioScience doi: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 – ident: pcbi.1008472.ref062 – volume: 10 start-page: e1003546 year: 2014 ident: pcbi.1008472.ref011 article-title: Multiple model-informed open-loop control of uncertain intracellular signaling dynamics publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003546 – volume: 53 start-page: 2858 year: 2007 ident: pcbi.1008472.ref074 article-title: Parameter set selection for estimation of nonlinear dynamic systems publication-title: AIChE Journal doi: 10.1002/aic.11295 – volume: 14 start-page: 869 year: 1998 ident: pcbi.1008472.ref005 article-title: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.10.869 – volume: 118 start-page: 283 year: 2018 ident: pcbi.1008472.ref086 article-title: Kinetic Monte Carlo modeling of multivalent binding of CTB proteins with GM1 receptors publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2018.08.011 – volume: 16 start-page: 253 year: 1992 ident: pcbi.1008472.ref014 article-title: Process identification using neural networks publication-title: Computers & Chemical Engineering doi: 10.1016/0098-1354(92)80046-C – volume: 295 start-page: 1662 year: 2002 ident: pcbi.1008472.ref003 article-title: Systems biology: a brief overview publication-title: Science doi: 10.1126/science.1069492 – volume: 13 start-page: e1005655 year: 2017 ident: pcbi.1008472.ref029 article-title: Hybrid modeling and prediction of dynamical systems publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1005655 – volume: 57 start-page: 3977 year: 2018 ident: pcbi.1008472.ref036 article-title: Handling spatial heterogeneity in reservoir parameters using proper orthogonal decomposition based ensemble Kalman filter for model-based feedback control of hydraulic fracturing publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.7b04927 |
SSID | ssj0035896 |
Score | 2.5659368 |
Snippet | Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway.... Introduction An intracellular signaling pathway is a biochemical reaction network of cells to adjust their metabolism, gene expression, and other necessary... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1008472 |
SubjectTerms | Accuracy Algorithms Apoptosis Biology and Life Sciences Biomolecules Case studies Cellular signal transduction Computer and Information Sciences Correlation analysis Differential equations Error-correcting codes Gene expression Intracellular Intracellular signalling Knowledge Least-Squares Analysis Lipopolysaccharides - pharmacology Mathematical models Medicine and Health Sciences Metabolism Neural networks Neural Networks, Computer NF-kappa B - metabolism Ordinary differential equations Physical Sciences Signal transduction Signal Transduction - drug effects Signaling Terminology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPgi_r6ep0QRfKrXJk3SPp7icQreg3qwbyFNE29haRd3F9l_w7_YmSRbtnJyL74203Q7M53MZCffR8gbU0lrKgPViWlsXtlS5LXxMq8FpK-ibZwM8MVfLuXFVfV5LuYHVF_YExbhgaPiTgUE2dqJzksG83Yeqp62sKqD1LlwxjmMvrDm7YupGIO5qAMzF5Li5IpX83RojqvyNNno3cq2C-wRgPDMJotSwO4fI_RstRzWN6Wff3dRHixL5w_I_ZRP0rP4Hg_JHdc_Incjw-TuMfl90BREB08Nvd7hGS0aGHAoZKxwaYVaMMvljuIOW08X-CTc0ccWVYodHgYPrVNkL_5ldjRx-1CLzB7hXATFAE8RsCOehKSm7yhCZcJP62OjeXwiTPOEXJ1__P7hIk80DLmFxXuT-8J2nWqMtKKsCyctqw0seN56W3LZCOZq5ZS0EKmati1qCx9157H7QhpfQUbzlMz6oXdHhHIB1R1kSIwh8qDgprUdlMOm6KrSSVFmhO_toG3CKEeqjKUOf7wpqFWiWjVaTyfrZSQf71pFjI5b5N-jiUdZRNgOF8DvdPI7fZvfZeQ1OohGDI0em3R-mO16rT99u9RnmPVCXlSwfwp9nQi9TUJ-QPOadDACVIbYXBPJk4kkRAI7GT5CZ92_81qzQB-geFPDnXsHvnn41TiMk2LjXe-GbZAJbFZCZORZ9PdRb5zzEj60JiNq8iVMFDsd6RfXAcJcKdlIVh3_D0s8J_cYboKULC-rEzLb_Ny6F5ApbtqXISj8AWxDaBQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXVJ4NFGQQEifTxI7t5IQKYilI9ABU2lvkOE670ioJ3V2h_Rv84s44TmhQgWs8SXY9b2fmG0JemVRZkxrITkxuWWoTyTJTK5ZJCF9lmTvl4Yu_nKjj0_TzQi7Cgds6lFUONtEb6qq1eEZ-yD0UuhZ59rb7wXBqFH5dDSM0bpJbCXgaLOnK5h8HSyxk5udz4WgcpkW6CK1zQieHgVNvOlsusVIAjDSfuCaP4D_a6Vm3atfXBaF_1lJecU7zPXI3RJX0qBeDe-SGa-6T2_2cyd0D8utKaRBta2ro-Q47taifg0MhboVLHQqRWa12FM_ZGrrEN-G5PhaqUqzzMNi6TnGG8U-zo2HCD7U438N3R1A08xRhO_p-SGqaiiJgJvy0pi83798Ij3lITucfvr8_ZmEYA7Pgwjesjm1V6dwoK5MsdsryzIDbq21tE6FyyV2mnVYW7FVelnFmQbWrGmswlKlTiGsekVnTNm6fUCEhx4M4iXPEH5TClLaCpNjEVZo4JZOIiIEPhQ1I5TgwY1X4z28aMpZ-WwvkXhG4FxE23tX1SB3_oX-HLB5pEWfbX2gvzoqgtoUEF585WdWKg1RXNeTcZWx1BYlb7IxzEXmJAlIgkkaDpTpnZrteF5--nRRHGPtCdBTzvxJ9nRC9DkR1i-w1oT0CtgwRuiaUBxNKsAd2sryPwjr853XxW3PgzkGAr19-MS7jQ7H8rnHt1tP4mVZSRuRxL-_jvgkhElC0PCJ6ogmTjZ2uNMtzD2SutcoVT5_8-2c9JXc4HnIknCXpAZltLrbuGUSCm_K5V_dLlmRfRA priority: 102 providerName: ProQuest |
Title | Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33315899 https://www.proquest.com/docview/2479467398 https://www.proquest.com/docview/2470283255 https://pubmed.ncbi.nlm.nih.gov/PMC7769624 https://doaj.org/article/51308e5df62a46df978b0c7d2300eaee http://dx.doi.org/10.1371/journal.pcbi.1008472 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJyReEPdljMogJJ4y5WY7eUCohZWBtAoNKvUtchxnqxQlpWk18jf4xZzjXLSgTvDSSvFxLvbxudjnnI-QtzLgSgYSvBMZKTtQLrNDmXE7ZGC-siTS3JQvvpjz80XwdcmWB6TDbG0HsNrr2iGe1GKTn_76WX-ABf_eoDYIt-t0ulbJCk_9QeCCUD4E3SQQ0-Ai6M8VfBYaxC4Ey7GFHyzbZLq77jJQVqamfy-5R-u8rPaZpX9HV95SV7NH5GFrZ9JJwxiPyYEunpD7DfJk_ZT8vhUsRMuMSnpdY-4WNcg4FCxZuLRGtpJ5XlPceSvoCp-EO_0Yukox8kNiMjtFVOMbWdMW84cqRPww-RIUBT_FQh5NhiSVRUqxhCa8WtEEoDdPhNs8I4vZ2Y-P53YLz2ArUOpbO3NUmopIcsXc0NFceaEERZipTLk-j5inQ6EFVyDBoiRxQgWLPc0wKoPLLABL5zkZFWWhjwj1GXh9YDl5HlYkZL5MVApusnTSwNWcuRbxu3mIVVu7HCE08tgcyAnwYZphjXH24nb2LGL3vdZN7Y5_0E9xintarLxtLpSbq7hdyDEDpR9qlmbcAz5PM_DCE0eJFFw5R0utLfIGGSTG2hoFBu9cyV1VxV--z-MJWsNgLznenUSXA6J3LVFW4vTKNmEChgxrdg0oTwaUICHUoPkImbX75ir2DKyA8KMQenYMvL_5dd-MN8WAvEKXO0NjUK4Ys8iLht_7cfN934WFFllEDFbCYGCHLcXq2pQ2F4JH3AuO__vTX5IHHu6AuJ7tBidktN3s9CswE7fJmNwTSwG_4ezzmBxOpp-mM_ifns2_XY7N1svYyIY_VLRuww |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXxLsLBQwCcQpN7NhODgiVx7JLHwdopb0Zx3HalVbJ0t1VtX-DH8JvZMZJlgYVOPUaT16e8TzsmfkIeWFiaU1sIDoxqQ1iG4kgMYUMEgHuq8hSJ3374v0DOTyKP4_FeIP8bGthMK2y1YleUeeVxT3ybeZboSueJm9n3wNEjcLT1RZCoxaLXbc6g5Bt_mb0Afj7krHBx8P3w6BBFQgs2KJFUIQ2z1VqpBVREjppWWJAfxe2sBGXqWAuUU5JCwsvzbIwsSCjeYHJBNIUMRhoeO4VcjXmYMmxMn3wqdX8XCQeDwyheALF43FTqsdVtN1IxuuZzSaYmQBGgXVMoUcMWNuF3mxazS9yev_M3TxnDAe3yM3Gi6U7tdjdJhuuvEOu1biWq7vkx7lUJFoV1NCTFVaGUY-7Q8FPhkszFFozna4o7uuVdIJvwnMETIylmFdisFSeImbymVnRBlGIWsQT8dUYFM0KxTYhdf0lNWVOsUEnfFpZp7fXb4TH3CNHl8Km-6RXVqXbJJQLiCnBL2MM-x0KbjKbQxBuwjyOnBRRn_CWD9o2ndERoGOq_XGfggipnlaN3NMN9_okWN81qzuD_If-HbJ4TYt9vf2F6vRYN2pCC3ApEifyQjJYRXkBMX4WWpVDoBg641yfPEcB0di5o8TUoGOznM_16OuB3kFfG7yxkP2V6EuH6FVDVFTIXtOUY8CUYUewDuVWhxL0j-0Mb6Kwtv88179XKtzZCvDFw8_Ww_hQTPcrXbX0NB5DS4g-eVDL-3reOOcRLLS0T1RnJXQmtjtSTk5843SlZCpZ_PDfn_WUXB8e7u_pvdHB7iNyg-EGS8SCKN4ivcXp0j0GL3SRPfFLn5Jvl61rfgHFf5uu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuFe8GCiwIxMmNvfbu2geEWtqooRBVhUq5mfV63UaK7LRJVOVv8HP4dcys16FGBU69esevnbc9Mx8hb1QktIoUZCcq0V6kA-7FqhBezCF85VlihB1f_GUoDk6iTyM-WiM_m14YLKtsbKI11Hml8Rt5j9lR6DJM4l7hyiKO9vofpuceIkjhn9YGTqMWkUOzvIT0bfZ-sAe8fstYf__bxwPPIQx4GvzS3Ct8necyUULzIPaN0CxWYMsLXeggFAlnJpZGCg1KmGSZH2uQ17zAwgKhigicNVz3FlmXmBV1yPru_vDouPEDIY8tOhgC83gyjEaucS-UQc_JyfZUZ2OsUwAXwVqO0eIHrLxEZzqpZteFwH9Wcl5xjf17ZMPFtHSnFsL7ZM2UD8jtGuVy-ZD8uFKYRKuCKnq2xD4xalF4KETNcGiKIqwmkyXFr3wlHeOd8K8ClslSrDJR2DhPEUH5Ui2pwxeiGtFFbG8GRSdDcWhI3Y1JVZlTHNcJj1bWxe71HeEyj8jJjTDqMemUVWk2CQ05ZJgQpTGG0w95qDKdQ0qu_DwKjOBBl4QNH1Lt5qQjXMcktT__JORL9bamyL3Uca9LvNVZ03pOyH_od5HFK1qc8m0PVBenqTMaKYcAIzY8LwQDncoLyPgzX8sc0kbfKGO65DUKSIpzPErUiFO1mM3SwddhuoORN8RmPvsr0XGL6J0jKipkr3LNGbBlOB-sRbnVogRrpFvLmyiszTvP0t96C2c2Anz98qvVMl4Ui_9KUy0sjUXU4rxLntTyvtq3MAwDULSkS2RLE1ob214px2d2jLqUIhEsevrvx3pJ7oCdST8PhofPyF2GX1sC5gXRFunMLxbmOYSk8-yF031Kvt-0ufkF0qKhQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+hybrid+model+for+a+partially+known+intracellular+signaling+pathway+through+correction+term+estimation+and+neural+network+modeling&rft.jtitle=PLoS+computational+biology&rft.au=Lee%2C+Dongheon&rft.au=Jayaraman%2C+Arul&rft.au=Kwon%2C+Joseph+S&rft.date=2020-12-14&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=16&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008472&rft.externalDocID=A650815202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |