Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling

Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling path...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 16; no. 12; p. e1008472
Main Authors Lee, Dongheon, Jayaraman, Arul, Kwon, Joseph S.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.12.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NF κ B signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively.
AbstractList Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NFκB signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively.Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NFκB signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively.
Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NF κ B signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively.
Introduction An intracellular signaling pathway is a biochemical reaction network of cells to adjust their metabolism, gene expression, and other necessary actions so that the cells can appropriately respond to perturbations present in their environment [1, 2]. Since an intracellular signaling pathway is complex involving interactions among a large number of biomolecules inside a cell, it is common to implement a systems biology approach, which integrates experimental observations and mathematical modeling, to analyze the signaling pathway comprehensively [3, 4]. [...]it is desirable to minimize the number of components in a hybrid model that should be inferred from experimental measurements to minimize the possibility of overfitting, which may compromise the generalizability of the hybrid model. [31, 32] is adopted, where differential equations of model states are adjusted by correction terms inferred from experiments. Since an intracellular signaling pathway is often high-dimensional and its origin of prediction inaccuracy is unknown beforehand, a graphical approach is implemented to determine a subset of model states that have the highest correlations with the measurements. [...]this study aims to develop a functional map that can compute the value of w at time t for given values of the model states x(t) and t; that is, we aim to develop for prediction generalizability of the hybrid model.
Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NFκB signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively.
Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NF κ B signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively. An intracellular signaling pathway is often represented by a set of nonlinear ordinary differential equations, which translate our current knowledge about the signaling pathway into a testable mathematical model. However, predictions from such models are often subject to high uncertainty since many signaling pathways are only partially known beforehand. In this study, we propose a systematic approach to develop a hybrid model to improve model accuracy by combining machine learning and the first-principle modeling. Specifically, model correction terms are learned from discrepancy between model predictions and measurements, and these terms are added to the first-principle model to enhance the prediction accuracy. Once these correction terms are learned from the data, an artificial neural network (ANN) model is developed to find an empirical relation between the model and the correction terms so that the developed ANN can be used to posses improved predictive capabilities even in new operating conditions (i.e., generalizability). The final hybrid model is then constructed by coupling the first-principle model with the developed ANN.
Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway. However, an accurate first-principle model is difficult to be developed since it requires in-depth mechanistic understandings of the signaling pathway. Since underlying mechanisms such as the reaction network structure are not fully understood, significant discrepancy exists between predicted and actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid modeling approach that combines a first-principle model and an artificial neural network (ANN) model so that predictions of the hybrid model surpass those of the original model. First, the proposed approach determines an optimal subset of model states whose dynamics should be corrected by the ANN by examining the correlation between each state and outputs through relative order. Second, an L2-regularized least-squares problem is solved to infer values of the correction terms that are necessary to minimize the discrepancy between the model predictions and available measurements. Third, an ANN is developed to generalize relationships between the values of the correction terms and the system dynamics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the hybrid model development so that the model will possess generalized prediction capabilities while retaining the model interpretability. We have successfully validated the proposed methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced NF[kappa]B signaling pathways, to develop hybrid models with in silico and in vitro measurements, respectively.
Introduction An intracellular signaling pathway is a biochemical reaction network of cells to adjust their metabolism, gene expression, and other necessary actions so that the cells can appropriately respond to perturbations present in their environment [1, 2]. Since an intracellular signaling pathway is complex involving interactions among a large number of biomolecules inside a cell, it is common to implement a systems biology approach, which integrates experimental observations and mathematical modeling, to analyze the signaling pathway comprehensively [3, 4]. [...]it is desirable to minimize the number of components in a hybrid model that should be inferred from experimental measurements to minimize the possibility of overfitting, which may compromise the generalizability of the hybrid model. [31, 32] is adopted, where differential equations of model states are adjusted by correction terms inferred from experiments. Since an intracellular signaling pathway is often high-dimensional and its origin of prediction inaccuracy is unknown beforehand, a graphical approach is implemented to determine a subset of model states that have the highest correlations with the measurements. [...]this study aims to develop a functional map that can compute the value of w at time t for given values of the model states x(t) and t; that is, we aim to develop for prediction generalizability of the hybrid model.
Audience Academic
Author Kwon, Joseph S.
Lee, Dongheon
Jayaraman, Arul
AuthorAffiliation 1 Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
3 Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
University of Pennsylvania, UNITED STATES
2 Texas A&M Energy Institute, Texas A&M University, College Station, Texas, USA
AuthorAffiliation_xml – name: University of Pennsylvania, UNITED STATES
– name: 2 Texas A&M Energy Institute, Texas A&M University, College Station, Texas, USA
– name: 3 Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
– name: 1 Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
Author_xml – sequence: 1
  givenname: Dongheon
  orcidid: 0000-0002-4066-9222
  surname: Lee
  fullname: Lee, Dongheon
– sequence: 2
  givenname: Arul
  orcidid: 0000-0001-9276-8284
  surname: Jayaraman
  fullname: Jayaraman, Arul
– sequence: 3
  givenname: Joseph S.
  orcidid: 0000-0002-7903-5681
  surname: Kwon
  fullname: Kwon, Joseph S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33315899$$D View this record in MEDLINE/PubMed
BookMark eNqVU9tu1DAQjVARbRf-AIElXuBhF18SO-EBqSq3ShVIXJ4trzPJeuvYi-N02d_gi3F2t6hbVUgoDx5PzpwZn5k5zY6cd5BlTwmeESbI66UfglN2ttJzMyMYl7mgD7ITUhRsKlhRHt2yj7PTvl9inMyKP8qOGWMkmdVJ9vsdXIP1qw5cRL5BCi0282Bq1PkaLGp8SK6VCtEoazfoyvm1Q8bFoDRYO1gVUG_aVIdxbcLFxVptUFwEP7QLpH0IoKPxDkUIHYI-mk5t78rVyMEQlE1HXPtwtcuYaB5nDxtle3iyPyfZjw_vv59_ml5--XhxfnY51ZyTOG2wrmtRKa4LUmLgmpaKEtroRhPGq4JCKUBwLTir5nNcalLxuklCCa6anHM2yZ7veFfW93IvZy9pLqqcC1aVCXGxQ9ReLeUqpOLDRnpl5NbhQytHZbQFWRCGSyjqhlOVpzyVKOdYi5oyjEEBJK63-2zDvINaw6ihPSA9_OPMQrb-WgrBK07zRPByTxD8zyFJKTvTj01QDvywrRvTktHU80n24g70_tftUa1KDzCu8WNXR1J5xgtckoJimlCze1Dpq6EzOo1kY5L_IODVQUDCRPgVWzX0vbz49vU_sJ8Psc9uC_hXuZtZToA3O4AOvu8DNFKbuJ22VLGxkmA5Ls6NFnJcHLlfnBSc3wm-4f9n2B8PrSA_
CitedBy_id crossref_primary_10_1021_acs_iecr_4c01459
crossref_primary_10_3389_fceng_2024_1494244
crossref_primary_10_1016_j_jprocont_2024_103328
crossref_primary_10_3390_en16196921
crossref_primary_10_1016_j_jprocont_2021_06_005
crossref_primary_10_1007_s12038_022_00253_y
crossref_primary_10_32604_cmc_2024_047189
crossref_primary_10_1371_journal_pcbi_1010183
crossref_primary_10_1002_bit_28503
crossref_primary_10_1016_j_dche_2023_100137
crossref_primary_10_1016_j_dche_2023_100136
crossref_primary_10_1016_j_cherd_2022_05_041
crossref_primary_10_1016_j_applthermaleng_2024_124795
crossref_primary_10_1038_s41598_025_86332_0
crossref_primary_10_1002_aic_17946
crossref_primary_10_1007_s11814_023_1446_7
crossref_primary_10_1016_j_cej_2022_141025
crossref_primary_10_1016_j_compchemeng_2023_108339
crossref_primary_10_1016_j_jprocont_2024_103243
crossref_primary_10_1021_acs_iecr_3c03531
crossref_primary_10_1002_aic_18076
crossref_primary_10_1016_j_cherd_2024_01_067
crossref_primary_10_3390_fermentation9100922
crossref_primary_10_1016_j_cherd_2024_09_031
crossref_primary_10_3390_ai4010014
crossref_primary_10_1016_j_energy_2023_128441
crossref_primary_10_1002_bit_28912
crossref_primary_10_3390_pr9030515
crossref_primary_10_1016_j_eswa_2022_119464
crossref_primary_10_1021_acs_iecr_3c01435
crossref_primary_10_1016_j_compchemeng_2023_108164
crossref_primary_10_1016_j_cherd_2021_01_009
crossref_primary_10_1016_j_compchemeng_2023_108247
crossref_primary_10_1016_j_compchemeng_2023_108368
crossref_primary_10_1016_j_compchemeng_2022_107898
crossref_primary_10_1016_j_copbio_2025_103263
crossref_primary_10_1002_cjce_24398
crossref_primary_10_1016_j_dche_2023_100111
crossref_primary_10_1016_j_jprocont_2023_103148
crossref_primary_10_1016_j_cherd_2023_04_028
crossref_primary_10_1021_acsomega_3c05953
crossref_primary_10_1016_j_dche_2022_100071
crossref_primary_10_1016_j_jiec_2022_11_016
crossref_primary_10_1016_j_ces_2023_119681
crossref_primary_10_1016_j_compchemeng_2023_108275
crossref_primary_10_1016_j_cej_2022_135643
crossref_primary_10_1038_s44286_024_00142_1
crossref_primary_10_1016_j_cej_2024_155015
crossref_primary_10_1093_bib_bbac436
crossref_primary_10_1002_aic_17609
crossref_primary_10_1016_j_jprocont_2024_103301
crossref_primary_10_3390_ijms251810204
crossref_primary_10_3390_mca29040062
crossref_primary_10_1002_aic_18012
crossref_primary_10_1002_mma_9482
crossref_primary_10_1016_j_compchemeng_2021_107496
crossref_primary_10_1016_j_cherd_2022_01_041
crossref_primary_10_3390_math11020400
crossref_primary_10_1021_acs_iecr_3c02624
crossref_primary_10_1002_aic_18649
crossref_primary_10_1016_j_cej_2024_153664
crossref_primary_10_1371_journal_pcbi_1012762
crossref_primary_10_1016_j_compchemeng_2022_107952
crossref_primary_10_1186_s12915_024_02019_4
crossref_primary_10_1016_j_dche_2022_100080
crossref_primary_10_1016_j_ces_2023_119118
crossref_primary_10_1021_acs_iecr_1c00552
crossref_primary_10_3390_math11091978
crossref_primary_10_1016_j_compchemeng_2024_108926
crossref_primary_10_1021_acs_iecr_2c03691
Cites_doi 10.1002/aic.16209
10.1101/cshperspect.a000034
10.1098/rsif.2017.0332
10.1098/rspa.2016.0446
10.1016/j.compchemeng.2017.07.002
10.1109/LLS.2016.2646498
10.1137/0323017
10.1091/mbc.E17-09-0565
10.1002/aic.690381003
10.1007/BF02706848
10.1016/j.jprocont.2011.06.020
10.1109/TAC.2007.911328
10.1002/j.1460-2075.1995.tb07256.x
10.1016/0009-2509(92)80234-4
10.1016/j.jbiotec.2007.08.020
10.1162/neco.1992.4.3.415
10.1098/rspa.2019.0800
10.1021/acs.iecr.7b00682
10.1073/pnas.1517384113
10.3390/pr6030021
10.3390/pr3010001
10.1002/bit.26371
10.1109/TAC.1974.1100705
10.1016/j.compchemeng.2019.106696
10.1371/journal.pcbi.1003166
10.1007/s11538-018-0421-7
10.1098/rspa.2018.0305
10.1007/978-3-319-08437-4_7
10.1186/1752-0509-4-131
10.1101/gr.1262503
10.1007/s00449-019-02181-y
10.1016/j.compchemeng.2013.08.008
10.1103/PhysRevX.9.041046
10.1002/ceat.270170103
10.1109/TAC.1979.1102181
10.1016/j.cherd.2019.09.009
10.1016/j.compchemeng.2018.02.004
10.1002/aic.690370406
10.1002/aic.16925
10.1049/iet-syb.2018.5079
10.1016/j.compchemeng.2018.08.029
10.1007/BF02551274
10.1093/bioinformatics/btp358
10.1093/biomet/76.2.297
10.1186/1471-2105-6-155
10.1093/bioinformatics/btm397
10.1186/1752-0509-7-16
10.2142/biophysics.1.25
10.1137/110822992
10.1002/aic.16743
10.1186/1471-2202-7-S1-S10
10.1002/aic.15323
10.1002/aic.13782
10.1073/pnas.1424980112
10.1038/srep20772
10.1126/science.1165893
10.1006/jbin.2001.1022
10.1371/journal.pcbi.1005379
10.1615/CritRevEukarGeneExpr.v20.i2.10
10.1016/j.compchemeng.2012.06.001
10.1002/wsbm.1331
10.1016/j.compchemeng.2011.02.012
10.1002/aic.15733
10.1016/0098-1354(95)00000-3
10.1016/j.jprocont.2019.11.012
10.1016/j.ifacol.2019.12.244
10.1126/scisignal.aaa5208
10.7554/eLife.08931
10.1002/aic.690400806
10.1111/j.1742-4658.2008.06844.x
10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
10.1371/journal.pcbi.1003546
10.1002/aic.11295
10.1093/bioinformatics/14.10.869
10.1016/j.compchemeng.2018.08.011
10.1016/0098-1354(92)80046-C
10.1126/science.1069492
10.1371/journal.pcbi.1005655
10.1021/acs.iecr.7b04927
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Lee et al 2020 Lee et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Lee et al 2020 Lee et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1008472
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Systematic development of a hybrid model of an intracellular signaling pathway
EISSN 1553-7358
ExternalDocumentID 2479467398
oai_doaj_org_article_51308e5df62a46df978b0c7d2300eaee
PMC7769624
A650815202
33315899
10_1371_journal_pcbi_1008472
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
5PM
PUEGO
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
PRINS
ID FETCH-LOGICAL-c661t-f0cdd79a6c5180e6c28a212fcfc136952e87e76c7639bb08c196df10076af4663
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:12:21 EST 2021
Wed Aug 27 01:30:36 EDT 2025
Thu Aug 21 14:11:37 EDT 2025
Thu Jul 10 19:33:24 EDT 2025
Fri Jul 25 12:02:48 EDT 2025
Tue Jun 17 21:00:37 EDT 2025
Tue Jun 10 20:46:40 EDT 2025
Fri Jun 27 04:03:45 EDT 2025
Fri Jun 27 04:11:20 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Thu Apr 24 23:06:20 EDT 2025
Tue Jul 01 04:04:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-f0cdd79a6c5180e6c28a212fcfc136952e87e76c7639bb08c196df10076af4663
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
The authors have declared that no competing interests exist.
ORCID 0000-0001-9276-8284
0000-0002-7903-5681
0000-0002-4066-9222
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1008472
PMID 33315899
PQID 2479467398
PQPubID 1436340
ParticipantIDs plos_journals_2479467398
doaj_primary_oai_doaj_org_article_51308e5df62a46df978b0c7d2300eaee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7769624
proquest_miscellaneous_2470283255
proquest_journals_2479467398
gale_infotracmisc_A650815202
gale_infotracacademiconefile_A650815202
gale_incontextgauss_ISR_A650815202
gale_incontextgauss_ISN_A650815202
pubmed_primary_33315899
crossref_citationtrail_10_1371_journal_pcbi_1008472
crossref_primary_10_1371_journal_pcbi_1008472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-14
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References B Lee (pcbi.1008472.ref045) 2001; 25
D Lee (pcbi.1008472.ref047) 2018; 64
M Schmidt (pcbi.1008472.ref049) 2009; 324
S Mitchell (pcbi.1008472.ref077) 2016; 8
N Parameswaran (pcbi.1008472.ref079) 2010; 20
Y Chu (pcbi.1008472.ref074) 2007; 53
J Lagergren (pcbi.1008472.ref030) 2018; 80
pcbi.1008472.ref062
MSF Bangi (pcbi.1008472.ref007) 2020; 134
pcbi.1008472.ref060
B Sun (pcbi.1008472.ref028) 2020; 86
E Limpert (pcbi.1008472.ref066) 2001; 51
CA Tiemann (pcbi.1008472.ref023) 2013; 9
B Engelhardt (pcbi.1008472.ref032) 2017; 14
A Yazdani (pcbi.1008472.ref006) 2019
A Narasingam (pcbi.1008472.ref053) 2019; 65
ML Thompson (pcbi.1008472.ref018) 1994; 40
K Erguler (pcbi.1008472.ref085) 2013; 7
J Schubert (pcbi.1008472.ref024) 1994; 14
M Ashyraliyev (pcbi.1008472.ref072) 2009; 276
L Bansal (pcbi.1008472.ref037) 2012; 58
HL Pahl (pcbi.1008472.ref083) 1995; 14
G Hu (pcbi.1008472.ref027) 2011; 35
D Lee (pcbi.1008472.ref034) 2020; 66
H Kitano (pcbi.1008472.ref003) 2002; 295
pcbi.1008472.ref033
D Lee (pcbi.1008472.ref086) 2018; 118
H Akaike (pcbi.1008472.ref057) 1974; 19
S Maiti (pcbi.1008472.ref080) 2015; 3
A Narasingam (pcbi.1008472.ref016) 2017; 106
JH Lagergren (pcbi.1008472.ref070) 2020; 476
DR Diedrichs (pcbi.1008472.ref084) 2018; 29
A Jayaraman (pcbi.1008472.ref002) 2009
M Soroush (pcbi.1008472.ref046) 1996; 20
D Lee (pcbi.1008472.ref075) 2018; 6
J Hasenauer (pcbi.1008472.ref064) 2011; 21
P Daoutidis (pcbi.1008472.ref043) 1992; 47
A Narasingam (pcbi.1008472.ref015) 2017; 63
B Engelhardt (pcbi.1008472.ref031) 2016; 6
B Bhadriraju (pcbi.1008472.ref052) 2019; 152
KG Gadkar (pcbi.1008472.ref009) 2005; 6
C Kreutz (pcbi.1008472.ref065) 2007; 23
J Pinto (pcbi.1008472.ref025) 2019; 42
SL Brunton (pcbi.1008472.ref050) 2016; 113
C Kravaris (pcbi.1008472.ref021) 2013; 51
D Chaffart (pcbi.1008472.ref026) 2018; 119
DM Himmelblau (pcbi.1008472.ref056) 2000; 17
D Henriques (pcbi.1008472.ref012) 2017; 13
D Lee (pcbi.1008472.ref004) 2019; 13
DP Howsmon (pcbi.1008472.ref038) 2016; 2
C Furusawa (pcbi.1008472.ref063) 2005; 1
G Cybenko (pcbi.1008472.ref055) 1989; 2
A Narasingam (pcbi.1008472.ref036) 2018; 57
P Daoutidis (pcbi.1008472.ref041) 1991; 37
S Steinmeyer (pcbi.1008472.ref059) 2017; 114
M von Stosch (pcbi.1008472.ref013) 2014
DC Psichogios (pcbi.1008472.ref022) 1992; 38
A Narasingam (pcbi.1008472.ref051) 2018; 119
RA Kellogg (pcbi.1008472.ref082) 2015; 4
A Raue (pcbi.1008472.ref020) 2009; 25
M von Stosch (pcbi.1008472.ref008) 2010; 4
D Kahl (pcbi.1008472.ref042) 2019; 9
JF Pollard (pcbi.1008472.ref014) 1992; 16
HS Sidhu (pcbi.1008472.ref039) 2018; 112
P Mendes (pcbi.1008472.ref005) 1998; 14
H Schaeffer (pcbi.1008472.ref068) 2017; 473
SM Udrescu (pcbi.1008472.ref054) 2020; 6
CM Hurvich (pcbi.1008472.ref058) 1989; 76
SH Rudy (pcbi.1008472.ref067) 2017; 3
AP Teixeira (pcbi.1008472.ref010) 2007; 132
Z Cheng (pcbi.1008472.ref081) 2015; 8
R Bellazzi (pcbi.1008472.ref087) 2001; 34
A Garg (pcbi.1008472.ref017) 2017; 56
A Oeckinghaus (pcbi.1008472.ref076) 2009; 1
R Rajaiah (pcbi.1008472.ref078) 2013; 112
S Heo (pcbi.1008472.ref048) 2016; 62
S Zhang (pcbi.1008472.ref069) 2018; 474
CG Moles (pcbi.1008472.ref073) 2003; 13
M Chaves (pcbi.1008472.ref061) 2008; 53
JP Perley (pcbi.1008472.ref011) 2014; 10
C Kravaris (pcbi.1008472.ref035) 1985; 23
E Klipp (pcbi.1008472.ref001) 2006; 7
DJC McKay (pcbi.1008472.ref071) 1992; 4
M von Stosch (pcbi.1008472.ref019) 2014; 60
RM Hirschorn (pcbi.1008472.ref040) 1979; 24
F Hamilton (pcbi.1008472.ref029) 2017; 13
D Claude (pcbi.1008472.ref044) 1986; 303
References_xml – volume-title: Methods in bioengineering: systems analysis of biological networks
  year: 2009
  ident: pcbi.1008472.ref002
– volume: 64
  start-page: 3882
  year: 2018
  ident: pcbi.1008472.ref047
  article-title: An integrated numerical and experimental framework for modeling of CTB and GD1b ganglioside binding kinetics
  publication-title: AIChE Journal
  doi: 10.1002/aic.16209
– volume: 1
  start-page: a000034
  year: 2009
  ident: pcbi.1008472.ref076
  article-title: The NF-κB family of transcription factors and its regulation
  publication-title: Cold Spring Harbor Perspectives in Biology
  doi: 10.1101/cshperspect.a000034
– volume: 14
  start-page: 20170332
  year: 2017
  ident: pcbi.1008472.ref032
  article-title: A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models
  publication-title: Journal of the Royal Society of Interface
  doi: 10.1098/rsif.2017.0332
– volume: 473
  start-page: 20160446
  year: 2017
  ident: pcbi.1008472.ref068
  article-title: Learning partial differential equations via data discovery and sparse optimization
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2016.0446
– volume: 106
  start-page: 501
  year: 2017
  ident: pcbi.1008472.ref016
  article-title: Development of local dynamic mode decomposition with control: Application to model predictive control of hydraulic fracturing
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2017.07.002
– volume: 2
  start-page: 31
  year: 2016
  ident: pcbi.1008472.ref038
  article-title: Regularization techniques to overcome overparameterization of complex biochemical reaction networks
  publication-title: IEEE life sciences letters
  doi: 10.1109/LLS.2016.2646498
– volume: 23
  start-page: 217
  issue: 2
  year: 1985
  ident: pcbi.1008472.ref035
  article-title: Identification of parameters in distributed parameter systems by regularization
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/0323017
– volume: 29
  start-page: 1502
  year: 2018
  ident: pcbi.1008472.ref084
  article-title: A data-entrained computational model for testing the regulatory logic of the vertebrate unfolded protein response
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.E17-09-0565
– volume: 38
  start-page: 1499
  year: 1992
  ident: pcbi.1008472.ref022
  article-title: A hybrid neural network-First principles approach to process modeling
  publication-title: AIChE Journal
  doi: 10.1002/aic.690381003
– volume: 17
  start-page: 373
  year: 2000
  ident: pcbi.1008472.ref056
  article-title: Applications of artificial neural networks in chemical engineering
  publication-title: Korean Journal of Chemical Engineering
  doi: 10.1007/BF02706848
– volume: 21
  start-page: 1417
  year: 2011
  ident: pcbi.1008472.ref064
  article-title: Analysis of heterogeneous cell populations: A density-based modeling and identification framework
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2011.06.020
– volume: 53
  start-page: 87
  year: 2008
  ident: pcbi.1008472.ref061
  article-title: Bistable biological systems: A characterization through local compact input-to-state stability
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2007.911328
– volume: 14
  start-page: 2580
  year: 1995
  ident: pcbi.1008472.ref083
  article-title: A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-κB
  publication-title: EMBO Journal
  doi: 10.1002/j.1460-2075.1995.tb07256.x
– volume: 47
  start-page: 1091
  year: 1992
  ident: pcbi.1008472.ref043
  article-title: Structural evaluation of control configurations for multivariable nonlinear processes
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(92)80234-4
– volume: 132
  start-page: 418
  year: 2007
  ident: pcbi.1008472.ref010
  article-title: Hybrid semi-parametric mathematical systems: Bridging the gap between systems biology and process engineering
  publication-title: Journal of Biotechnology
  doi: 10.1016/j.jbiotec.2007.08.020
– volume: 4
  start-page: 415
  year: 1992
  ident: pcbi.1008472.ref071
  article-title: Bayesian interpolation
  publication-title: Neural computation
  doi: 10.1162/neco.1992.4.3.415
– volume: 476
  start-page: 20190800
  year: 2020
  ident: pcbi.1008472.ref070
  article-title: Learning partial differential equations for biological transport models from noisy spatio-temporal data
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2019.0800
– volume: 56
  start-page: 7491
  year: 2017
  ident: pcbi.1008472.ref017
  article-title: Subspace Identification-Based Modeling and Control of Batch Particulate Processes
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.7b00682
– volume: 113
  start-page: 3932
  year: 2016
  ident: pcbi.1008472.ref050
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1517384113
– volume: 6
  start-page: 21
  year: 2018
  ident: pcbi.1008472.ref075
  article-title: Mathematical modeling and parameter estimation of intracellular signaling pathway: Application to LPS-induced NFκB activation and TNFα production in macrophages
  publication-title: Processes
  doi: 10.3390/pr6030021
– volume: 3
  start-page: 1
  year: 2015
  ident: pcbi.1008472.ref080
  article-title: Mathematical modeling of pro- and anti-inflammatory signaling in macrophages
  publication-title: Processes
  doi: 10.3390/pr3010001
– volume: 114
  start-page: 2660
  year: 2017
  ident: pcbi.1008472.ref059
  article-title: Empirical modeling of T cell activation predicts interplay of host cytokines and bacterial indole
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/bit.26371
– volume: 19
  start-page: 716
  year: 1974
  ident: pcbi.1008472.ref057
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
– volume: 134
  start-page: 106696
  year: 2020
  ident: pcbi.1008472.ref007
  article-title: Deep hybrid modeling of chemical process: Application to hydraulic fracturing
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2019.106696
– volume: 9
  start-page: e1003166
  year: 2013
  ident: pcbi.1008472.ref023
  article-title: Parameter trajectory analysis to identify treatment effects of pharmacological interventions
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003166
– volume: 80
  start-page: 1578
  year: 2018
  ident: pcbi.1008472.ref030
  article-title: Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model
  publication-title: Bulletin of Mathematical Biology
  doi: 10.1007/s11538-018-0421-7
– volume: 474
  start-page: 20180305
  year: 2018
  ident: pcbi.1008472.ref069
  article-title: Robust data-driven discovery of governing physical laws with error bars
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2018.0305
– start-page: 367
  volume-title: Large-Scale Networks in Engineering and Life Sciences
  year: 2014
  ident: pcbi.1008472.ref013
  doi: 10.1007/978-3-319-08437-4_7
– volume: 4
  start-page: 131
  year: 2010
  ident: pcbi.1008472.ref008
  article-title: Modeling Biochemical Networks with Intrinsic Time Delays: A Hybrid Semi-parameteric Approach
  publication-title: BMC Systems Biology
  doi: 10.1186/1752-0509-4-131
– volume: 13
  start-page: 2467
  year: 2003
  ident: pcbi.1008472.ref073
  article-title: Parameter estimation in biochemical pathways: a comparison of global optimization methods
  publication-title: Genome research
  doi: 10.1101/gr.1262503
– volume: 42
  start-page: 1853
  year: 2019
  ident: pcbi.1008472.ref025
  article-title: A Bootstrap-aggregated Hybrid Semi-parametric Modeling Framework for Bioprocess Development
  publication-title: Bioprocess and Biosystems Engineering
  doi: 10.1007/s00449-019-02181-y
– volume: 60
  start-page: 86
  year: 2014
  ident: pcbi.1008472.ref019
  article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2013.08.008
– volume: 9
  start-page: 041046
  year: 2019
  ident: pcbi.1008472.ref042
  article-title: Structural invertibility and optimal sensor node placement for error and input reconstruction in dynamic systems
  publication-title: Physical Review X
  doi: 10.1103/PhysRevX.9.041046
– volume: 3
  start-page: e160261
  year: 2017
  ident: pcbi.1008472.ref067
  article-title: Data-driven discovery of partial differential equations
  publication-title: Science Advances
– volume: 14
  start-page: 10
  year: 1994
  ident: pcbi.1008472.ref024
  article-title: Hybrid modelling of yeast production processes—combination of a priori knowledge on different levels of sophistication
  publication-title: Chemical Engineering & Technology
  doi: 10.1002/ceat.270170103
– volume: 24
  start-page: 855
  year: 1979
  ident: pcbi.1008472.ref040
  article-title: lnvertibility of multivariable nonlinear control systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1979.1102181
– volume: 152
  start-page: 372
  year: 2019
  ident: pcbi.1008472.ref052
  article-title: Machine learning-based adaptive model identification of systems: Application to a chemical process
  publication-title: Chemical Engineering Research and Design
  doi: 10.1016/j.cherd.2019.09.009
– volume: 112
  start-page: 9
  year: 2018
  ident: pcbi.1008472.ref039
  article-title: Model order reduction of nonlinear parabolic PDE systems with moving boundaries using sparse proper orthogonal decomposition: Application to hydraulic fracturing
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2018.02.004
– volume: 37
  start-page: 527
  year: 1991
  ident: pcbi.1008472.ref041
  article-title: Inversion and zero dynamics in nonlinear multivariable control
  publication-title: AIChE Journal
  doi: 10.1002/aic.690370406
– volume: 303
  start-page: 833
  year: 1986
  ident: pcbi.1008472.ref044
  article-title: Commande non interactive simple des systèmes non linéaires par bouclages statiques réguliers
  publication-title: C R Acad Sc Paris
– volume: 66
  start-page: e16925
  year: 2020
  ident: pcbi.1008472.ref034
  article-title: Identification of cell-to-cell heterogeneity through systems engineering approaches
  publication-title: AIChE Journal
  doi: 10.1002/aic.16925
– volume: 13
  start-page: 169
  year: 2019
  ident: pcbi.1008472.ref004
  article-title: Identification of a time-varying intracellular signaling model through data clustering and parameter selection: Application to NFκB signaling pathway induced by LPS in the presence of BFA
  publication-title: IET Systems Biology
  doi: 10.1049/iet-syb.2018.5079
– volume: 119
  start-page: 465
  year: 2018
  ident: pcbi.1008472.ref026
  article-title: Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2018.08.029
– volume: 2
  start-page: 303
  year: 1989
  ident: pcbi.1008472.ref055
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of Control, Signals and Systems
  doi: 10.1007/BF02551274
– volume: 25
  start-page: 1923
  year: 2009
  ident: pcbi.1008472.ref020
  article-title: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp358
– volume: 76
  start-page: 297
  year: 1989
  ident: pcbi.1008472.ref058
  article-title: Regression and time series model selection in small samples
  publication-title: Biometrika
  doi: 10.1093/biomet/76.2.297
– volume: 6
  start-page: 155
  year: 2005
  ident: pcbi.1008472.ref009
  article-title: Iterative approach to model identification of biological networks
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-6-155
– volume: 23
  start-page: 2747
  year: 2007
  ident: pcbi.1008472.ref065
  article-title: An error model for protein quantification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm397
– volume: 7
  start-page: 1
  year: 2013
  ident: pcbi.1008472.ref085
  article-title: A mathematical model of the unfolded protein stress response reveals the decision mechanism for recovery, adaptation and apoptosis
  publication-title: BMC Systems Biology
  doi: 10.1186/1752-0509-7-16
– volume: 1
  start-page: 25
  year: 2005
  ident: pcbi.1008472.ref063
  article-title: Ubiquity of log-normal distributions in intra-cellular reaction dynamics
  publication-title: Biophysics
  doi: 10.2142/biophysics.1.25
– ident: pcbi.1008472.ref033
  doi: 10.1137/110822992
– volume: 65
  start-page: e16743
  year: 2019
  ident: pcbi.1008472.ref053
  article-title: Koopman Lyapunov-based model predictive control of nonlinear chemical process systems
  publication-title: AIChE Journal
  doi: 10.1002/aic.16743
– volume: 7
  start-page: S10
  year: 2006
  ident: pcbi.1008472.ref001
  article-title: Mathematical modeling of intracellular signaling pathways
  publication-title: BMC Neuroscience
  doi: 10.1186/1471-2202-7-S1-S10
– volume: 62
  start-page: 3177
  year: 2016
  ident: pcbi.1008472.ref048
  article-title: Control-relevant decomposition of process networks via optimization-based hierarchical clustering
  publication-title: AIChE Journal
  doi: 10.1002/aic.15323
– volume: 58
  start-page: 3751
  year: 2012
  ident: pcbi.1008472.ref037
  article-title: Regularization of Inverse Problems to Determine Transcription Factor Profiles from Fluorescent Reporter Systems
  publication-title: AIChE Journal
  doi: 10.1002/aic.13782
– volume: 112
  start-page: 8391
  issue: 27
  year: 2013
  ident: pcbi.1008472.ref078
  article-title: CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1424980112
– volume: 6
  start-page: 20772
  year: 2016
  ident: pcbi.1008472.ref031
  article-title: Learning (from) the errors of a systems biology approach
  publication-title: Scientific Reports
  doi: 10.1038/srep20772
– volume: 324
  start-page: 81
  year: 2009
  ident: pcbi.1008472.ref049
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
  doi: 10.1126/science.1165893
– volume: 34
  start-page: 221
  year: 2001
  ident: pcbi.1008472.ref087
  article-title: A Hybrid Input-Output Approach to Model Metabolic Systems: An Application to Intracellular Thiamine Kinetics
  publication-title: Journal of Biomedical Informatics
  doi: 10.1006/jbin.2001.1022
– volume: 13
  start-page: e1005379
  year: 2017
  ident: pcbi.1008472.ref012
  article-title: Data-driven reverse engineering of signaling pathways using ensembles of dynamic models
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005379
– volume: 25
  start-page: 85
  year: 2001
  ident: pcbi.1008472.ref045
  article-title: A study on the evaluation of structural controllability in chemical processes
  publication-title: Chemical Engineering Science
– volume: 20
  start-page: 87
  year: 2010
  ident: pcbi.1008472.ref079
  article-title: Tumor necrosis factor-α signaling in macrophages
  publication-title: Critical Reviews in Eukaryotic Gene Expression
  doi: 10.1615/CritRevEukarGeneExpr.v20.i2.10
– volume: 51
  start-page: 111
  year: 2013
  ident: pcbi.1008472.ref021
  article-title: Advances and selected recent developments in state and parameter estimation
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2012.06.001
– volume: 8
  start-page: 227
  year: 2016
  ident: pcbi.1008472.ref077
  article-title: Signaling via the NFκB system
  publication-title: WIREs Systems Biology and Medicine
  doi: 10.1002/wsbm.1331
– volume: 6
  start-page: eaay2631
  year: 2020
  ident: pcbi.1008472.ref054
  article-title: AI Feynman: A physics-inspired method for symbolic regression
  publication-title: Science Advance
– start-page: 865063
  year: 2019
  ident: pcbi.1008472.ref006
  article-title: Systems biology informed deep learning for inferring parameters and hidden dynamics
  publication-title: bioRxiv
– volume: 35
  start-page: 2611
  year: 2011
  ident: pcbi.1008472.ref027
  article-title: Hybrid modeling for the prediction of leaching rate in leaching process based onnegative correlation learning bagging ensemble algorithm
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2011.02.012
– volume: 119
  start-page: 101
  year: 2018
  ident: pcbi.1008472.ref051
  article-title: Data-driven identification of interpretable reduced-order models using sparse regression
  publication-title: AIChE Journal
– volume: 63
  start-page: 3818
  year: 2017
  ident: pcbi.1008472.ref015
  article-title: Temporal clustering for order reduction of nonlinear parabolic PDE systems with time-dependent spatial domains: Application to a hydraulic fracturing process
  publication-title: AIChE Journal
  doi: 10.1002/aic.15733
– volume: 20
  start-page: 357
  year: 1996
  ident: pcbi.1008472.ref046
  article-title: Evaluation of achievable control quality in nonlinear processes
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/0098-1354(95)00000-3
– volume: 86
  start-page: 30
  year: 2020
  ident: pcbi.1008472.ref028
  article-title: A comprehensive hybrid first principles/machine learning modeling framework for complex industrial processes
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2019.11.012
– ident: pcbi.1008472.ref060
  doi: 10.1016/j.ifacol.2019.12.244
– volume: 8
  start-page: ra69
  year: 2015
  ident: pcbi.1008472.ref081
  article-title: Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation
  publication-title: Science Signaling
  doi: 10.1126/scisignal.aaa5208
– volume: 4
  start-page: e08931
  year: 2015
  ident: pcbi.1008472.ref082
  article-title: Digital signaling decouples activation probability and population heterogeneity
  publication-title: eLife
  doi: 10.7554/eLife.08931
– volume: 40
  start-page: 1328
  year: 1994
  ident: pcbi.1008472.ref018
  article-title: Modeling chemical processes using prior knowledge and neural networks
  publication-title: AIChE Journal
  doi: 10.1002/aic.690400806
– volume: 276
  start-page: 886
  year: 2009
  ident: pcbi.1008472.ref072
  article-title: Systems biology: parameter estimation for biochemical models
  publication-title: FEBS Journal
  doi: 10.1111/j.1742-4658.2008.06844.x
– volume: 51
  start-page: 341
  year: 2001
  ident: pcbi.1008472.ref066
  article-title: Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: that is the question
  publication-title: BioScience
  doi: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
– ident: pcbi.1008472.ref062
– volume: 10
  start-page: e1003546
  year: 2014
  ident: pcbi.1008472.ref011
  article-title: Multiple model-informed open-loop control of uncertain intracellular signaling dynamics
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003546
– volume: 53
  start-page: 2858
  year: 2007
  ident: pcbi.1008472.ref074
  article-title: Parameter set selection for estimation of nonlinear dynamic systems
  publication-title: AIChE Journal
  doi: 10.1002/aic.11295
– volume: 14
  start-page: 869
  year: 1998
  ident: pcbi.1008472.ref005
  article-title: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.10.869
– volume: 118
  start-page: 283
  year: 2018
  ident: pcbi.1008472.ref086
  article-title: Kinetic Monte Carlo modeling of multivalent binding of CTB proteins with GM1 receptors
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2018.08.011
– volume: 16
  start-page: 253
  year: 1992
  ident: pcbi.1008472.ref014
  article-title: Process identification using neural networks
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/0098-1354(92)80046-C
– volume: 295
  start-page: 1662
  year: 2002
  ident: pcbi.1008472.ref003
  article-title: Systems biology: a brief overview
  publication-title: Science
  doi: 10.1126/science.1069492
– volume: 13
  start-page: e1005655
  year: 2017
  ident: pcbi.1008472.ref029
  article-title: Hybrid modeling and prediction of dynamical systems
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005655
– volume: 57
  start-page: 3977
  year: 2018
  ident: pcbi.1008472.ref036
  article-title: Handling spatial heterogeneity in reservoir parameters using proper orthogonal decomposition based ensemble Kalman filter for model-based feedback control of hydraulic fracturing
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.7b04927
SSID ssj0035896
Score 2.5659368
Snippet Developing an accurate first-principle model is an important step in employing systems biology approaches to analyze an intracellular signaling pathway....
Introduction An intracellular signaling pathway is a biochemical reaction network of cells to adjust their metabolism, gene expression, and other necessary...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008472
SubjectTerms Accuracy
Algorithms
Apoptosis
Biology and Life Sciences
Biomolecules
Case studies
Cellular signal transduction
Computer and Information Sciences
Correlation analysis
Differential equations
Error-correcting codes
Gene expression
Intracellular
Intracellular signalling
Knowledge
Least-Squares Analysis
Lipopolysaccharides - pharmacology
Mathematical models
Medicine and Health Sciences
Metabolism
Neural networks
Neural Networks, Computer
NF-kappa B - metabolism
Ordinary differential equations
Physical Sciences
Signal transduction
Signal Transduction - drug effects
Signaling
Terminology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPgi_r6ep0QRfKrXJk3SPp7icQreg3qwbyFNE29haRd3F9l_w7_YmSRbtnJyL74203Q7M53MZCffR8gbU0lrKgPViWlsXtlS5LXxMq8FpK-ibZwM8MVfLuXFVfV5LuYHVF_YExbhgaPiTgUE2dqJzksG83Yeqp62sKqD1LlwxjmMvrDm7YupGIO5qAMzF5Li5IpX83RojqvyNNno3cq2C-wRgPDMJotSwO4fI_RstRzWN6Wff3dRHixL5w_I_ZRP0rP4Hg_JHdc_Incjw-TuMfl90BREB08Nvd7hGS0aGHAoZKxwaYVaMMvljuIOW08X-CTc0ccWVYodHgYPrVNkL_5ldjRx-1CLzB7hXATFAE8RsCOehKSm7yhCZcJP62OjeXwiTPOEXJ1__P7hIk80DLmFxXuT-8J2nWqMtKKsCyctqw0seN56W3LZCOZq5ZS0EKmati1qCx9157H7QhpfQUbzlMz6oXdHhHIB1R1kSIwh8qDgprUdlMOm6KrSSVFmhO_toG3CKEeqjKUOf7wpqFWiWjVaTyfrZSQf71pFjI5b5N-jiUdZRNgOF8DvdPI7fZvfZeQ1OohGDI0em3R-mO16rT99u9RnmPVCXlSwfwp9nQi9TUJ-QPOadDACVIbYXBPJk4kkRAI7GT5CZ92_81qzQB-geFPDnXsHvnn41TiMk2LjXe-GbZAJbFZCZORZ9PdRb5zzEj60JiNq8iVMFDsd6RfXAcJcKdlIVh3_D0s8J_cYboKULC-rEzLb_Ny6F5ApbtqXISj8AWxDaBQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXVJ4NFGQQEifTxI7t5IQKYilI9ABU2lvkOE670ioJ3V2h_Rv84s44TmhQgWs8SXY9b2fmG0JemVRZkxrITkxuWWoTyTJTK5ZJCF9lmTvl4Yu_nKjj0_TzQi7Cgds6lFUONtEb6qq1eEZ-yD0UuhZ59rb7wXBqFH5dDSM0bpJbCXgaLOnK5h8HSyxk5udz4WgcpkW6CK1zQieHgVNvOlsusVIAjDSfuCaP4D_a6Vm3atfXBaF_1lJecU7zPXI3RJX0qBeDe-SGa-6T2_2cyd0D8utKaRBta2ro-Q47taifg0MhboVLHQqRWa12FM_ZGrrEN-G5PhaqUqzzMNi6TnGG8U-zo2HCD7U438N3R1A08xRhO_p-SGqaiiJgJvy0pi83798Ij3lITucfvr8_ZmEYA7Pgwjesjm1V6dwoK5MsdsryzIDbq21tE6FyyV2mnVYW7FVelnFmQbWrGmswlKlTiGsekVnTNm6fUCEhx4M4iXPEH5TClLaCpNjEVZo4JZOIiIEPhQ1I5TgwY1X4z28aMpZ-WwvkXhG4FxE23tX1SB3_oX-HLB5pEWfbX2gvzoqgtoUEF585WdWKg1RXNeTcZWx1BYlb7IxzEXmJAlIgkkaDpTpnZrteF5--nRRHGPtCdBTzvxJ9nRC9DkR1i-w1oT0CtgwRuiaUBxNKsAd2sryPwjr853XxW3PgzkGAr19-MS7jQ7H8rnHt1tP4mVZSRuRxL-_jvgkhElC0PCJ6ogmTjZ2uNMtzD2SutcoVT5_8-2c9JXc4HnIknCXpAZltLrbuGUSCm_K5V_dLlmRfRA
  priority: 102
  providerName: ProQuest
Title Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling
URI https://www.ncbi.nlm.nih.gov/pubmed/33315899
https://www.proquest.com/docview/2479467398
https://www.proquest.com/docview/2470283255
https://pubmed.ncbi.nlm.nih.gov/PMC7769624
https://doaj.org/article/51308e5df62a46df978b0c7d2300eaee
http://dx.doi.org/10.1371/journal.pcbi.1008472
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJyReEPdljMogJJ4y5WY7eUCohZWBtAoNKvUtchxnqxQlpWk18jf4xZzjXLSgTvDSSvFxLvbxudjnnI-QtzLgSgYSvBMZKTtQLrNDmXE7ZGC-siTS3JQvvpjz80XwdcmWB6TDbG0HsNrr2iGe1GKTn_76WX-ABf_eoDYIt-t0ulbJCk_9QeCCUD4E3SQQ0-Ai6M8VfBYaxC4Ey7GFHyzbZLq77jJQVqamfy-5R-u8rPaZpX9HV95SV7NH5GFrZ9JJwxiPyYEunpD7DfJk_ZT8vhUsRMuMSnpdY-4WNcg4FCxZuLRGtpJ5XlPceSvoCp-EO_0Yukox8kNiMjtFVOMbWdMW84cqRPww-RIUBT_FQh5NhiSVRUqxhCa8WtEEoDdPhNs8I4vZ2Y-P53YLz2ArUOpbO3NUmopIcsXc0NFceaEERZipTLk-j5inQ6EFVyDBoiRxQgWLPc0wKoPLLABL5zkZFWWhjwj1GXh9YDl5HlYkZL5MVApusnTSwNWcuRbxu3mIVVu7HCE08tgcyAnwYZphjXH24nb2LGL3vdZN7Y5_0E9xintarLxtLpSbq7hdyDEDpR9qlmbcAz5PM_DCE0eJFFw5R0utLfIGGSTG2hoFBu9cyV1VxV--z-MJWsNgLznenUSXA6J3LVFW4vTKNmEChgxrdg0oTwaUICHUoPkImbX75ir2DKyA8KMQenYMvL_5dd-MN8WAvEKXO0NjUK4Ys8iLht_7cfN934WFFllEDFbCYGCHLcXq2pQ2F4JH3AuO__vTX5IHHu6AuJ7tBidktN3s9CswE7fJmNwTSwG_4ezzmBxOpp-mM_ifns2_XY7N1svYyIY_VLRuww
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXxLsLBQwCcQpN7NhODgiVx7JLHwdopb0Zx3HalVbJ0t1VtX-DH8JvZMZJlgYVOPUaT16e8TzsmfkIeWFiaU1sIDoxqQ1iG4kgMYUMEgHuq8hSJ3374v0DOTyKP4_FeIP8bGthMK2y1YleUeeVxT3ybeZboSueJm9n3wNEjcLT1RZCoxaLXbc6g5Bt_mb0Afj7krHBx8P3w6BBFQgs2KJFUIQ2z1VqpBVREjppWWJAfxe2sBGXqWAuUU5JCwsvzbIwsSCjeYHJBNIUMRhoeO4VcjXmYMmxMn3wqdX8XCQeDwyheALF43FTqsdVtN1IxuuZzSaYmQBGgXVMoUcMWNuF3mxazS9yev_M3TxnDAe3yM3Gi6U7tdjdJhuuvEOu1biWq7vkx7lUJFoV1NCTFVaGUY-7Q8FPhkszFFozna4o7uuVdIJvwnMETIylmFdisFSeImbymVnRBlGIWsQT8dUYFM0KxTYhdf0lNWVOsUEnfFpZp7fXb4TH3CNHl8Km-6RXVqXbJJQLiCnBL2MM-x0KbjKbQxBuwjyOnBRRn_CWD9o2ndERoGOq_XGfggipnlaN3NMN9_okWN81qzuD_If-HbJ4TYt9vf2F6vRYN2pCC3ApEifyQjJYRXkBMX4WWpVDoBg641yfPEcB0di5o8TUoGOznM_16OuB3kFfG7yxkP2V6EuH6FVDVFTIXtOUY8CUYUewDuVWhxL0j-0Mb6Kwtv88179XKtzZCvDFw8_Ww_hQTPcrXbX0NB5DS4g-eVDL-3reOOcRLLS0T1RnJXQmtjtSTk5843SlZCpZ_PDfn_WUXB8e7u_pvdHB7iNyg-EGS8SCKN4ivcXp0j0GL3SRPfFLn5Jvl61rfgHFf5uu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuFe8GCiwIxMmNvfbu2geEWtqooRBVhUq5mfV63UaK7LRJVOVv8HP4dcys16FGBU69esevnbc9Mx8hb1QktIoUZCcq0V6kA-7FqhBezCF85VlihB1f_GUoDk6iTyM-WiM_m14YLKtsbKI11Hml8Rt5j9lR6DJM4l7hyiKO9vofpuceIkjhn9YGTqMWkUOzvIT0bfZ-sAe8fstYf__bxwPPIQx4GvzS3Ct8necyUULzIPaN0CxWYMsLXeggFAlnJpZGCg1KmGSZH2uQ17zAwgKhigicNVz3FlmXmBV1yPru_vDouPEDIY8tOhgC83gyjEaucS-UQc_JyfZUZ2OsUwAXwVqO0eIHrLxEZzqpZteFwH9Wcl5xjf17ZMPFtHSnFsL7ZM2UD8jtGuVy-ZD8uFKYRKuCKnq2xD4xalF4KETNcGiKIqwmkyXFr3wlHeOd8K8ClslSrDJR2DhPEUH5Ui2pwxeiGtFFbG8GRSdDcWhI3Y1JVZlTHNcJj1bWxe71HeEyj8jJjTDqMemUVWk2CQ05ZJgQpTGG0w95qDKdQ0qu_DwKjOBBl4QNH1Lt5qQjXMcktT__JORL9bamyL3Uca9LvNVZ03pOyH_od5HFK1qc8m0PVBenqTMaKYcAIzY8LwQDncoLyPgzX8sc0kbfKGO65DUKSIpzPErUiFO1mM3SwddhuoORN8RmPvsr0XGL6J0jKipkr3LNGbBlOB-sRbnVogRrpFvLmyiszTvP0t96C2c2Anz98qvVMl4Ui_9KUy0sjUXU4rxLntTyvtq3MAwDULSkS2RLE1ob214px2d2jLqUIhEsevrvx3pJ7oCdST8PhofPyF2GX1sC5gXRFunMLxbmOYSk8-yF031Kvt-0ufkF0qKhQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+hybrid+model+for+a+partially+known+intracellular+signaling+pathway+through+correction+term+estimation+and+neural+network+modeling&rft.jtitle=PLoS+computational+biology&rft.au=Lee%2C+Dongheon&rft.au=Jayaraman%2C+Arul&rft.au=Kwon%2C+Joseph+S&rft.date=2020-12-14&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=16&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008472&rft.externalDocID=A650815202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon