Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms
Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early...
Saved in:
Published in | BMC Research Notes Vol. 12; no. 1; pp. 383 - 7 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Springer Science and Business Media LLC
08.07.2019
BioMed Central Ltd BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through biofilm mass quantity and cell viability.
The present study successfully synthesized nanochitosan with average diameter of approximately 20-30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treatment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nanochitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of incubation. However, greater inhibition of biofilm was observed at 18 h incubation. |
---|---|
AbstractList | Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through biofilm mass quantity and cell viability.OBJECTIVEChitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through biofilm mass quantity and cell viability.The present study successfully synthesized nanochitosan with average diameter of approximately 20-30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treatment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nanochitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of incubation. However, greater inhibition of biofilm was observed at 18 h incubation.RESULTSThe present study successfully synthesized nanochitosan with average diameter of approximately 20-30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treatment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nanochitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of incubation. However, greater inhibition of biofilm was observed at 18 h incubation. Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through biofilm mass quantity and cell viability. The present study successfully synthesized nanochitosan with average diameter of approximately 20-30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treatment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nanochitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of incubation. However, greater inhibition of biofilm was observed at 18 h incubation. Abstract Objective Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through biofilm mass quantity and cell viability. Results The present study successfully synthesized nanochitosan with average diameter of approximately 20–30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treatment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nanochitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of incubation. However, greater inhibition of biofilm was observed at 18 h incubation. Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through biofilm mass quantity and cell viability. The present study successfully synthesized nanochitosan with average diameter of approximately 20-30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treatment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nanochitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of incubation. However, greater inhibition of biofilm was observed at 18 h incubation. Objective Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through biofilm mass quantity and cell viability. Results The present study successfully synthesized nanochitosan with average diameter of approximately 20-30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treatment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nanochitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of incubation. However, greater inhibition of biofilm was observed at 18 h incubation. Keywords: Biofilm, Candida albicans, Caries, Nanochitosan, Streptococcus mutans |
ArticleNumber | 383 |
Audience | Academic |
Author | Arinobu Tojo Boy M. Bachtiar Agnia Vibriani Kurniawan Eko Saputro Li Xianqi Wibias Muliawan Nurul Taufiqu Rochman Endang Winiati Bachtiar Radyum Ikono Indra Wibowo Etik Mardliyati Tokiko Nagamura-Inoue Hideaki Kagami |
Author_xml | – sequence: 1 givenname: Radyum orcidid: 0000-0001-9368-8737 surname: Ikono fullname: Ikono, Radyum – sequence: 2 givenname: Agnia surname: Vibriani fullname: Vibriani, Agnia – sequence: 3 givenname: Indra surname: Wibowo fullname: Wibowo, Indra – sequence: 4 givenname: Kurniawan Eko surname: Saputro fullname: Saputro, Kurniawan Eko – sequence: 5 givenname: Wibias surname: Muliawan fullname: Muliawan, Wibias – sequence: 6 givenname: Boy Muchlis surname: Bachtiar fullname: Bachtiar, Boy Muchlis – sequence: 7 givenname: Etik surname: Mardliyati fullname: Mardliyati, Etik – sequence: 8 givenname: Endang Winiati surname: Bachtiar fullname: Bachtiar, Endang Winiati – sequence: 9 givenname: Nurul Taufiqu surname: Rochman fullname: Rochman, Nurul Taufiqu – sequence: 10 givenname: Hideaki surname: Kagami fullname: Kagami, Hideaki – sequence: 11 givenname: Li surname: Xianqi fullname: Xianqi, Li – sequence: 12 givenname: Tokiko surname: Nagamura-Inoue fullname: Nagamura-Inoue, Tokiko – sequence: 13 givenname: Arinobu surname: Tojo fullname: Tojo, Arinobu |
BackLink | https://cir.nii.ac.jp/crid/1870583643265714304$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/31287001$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhSNURB_wA9igSLCARYrHThxng1RVPK5U0QWPrTVxJrcuufYldqrbf49DWtSLEIrkWM53TmbG5zg7cN5Rlj0Hdgqg5NsAAlhZMGiKsuS82D3KjqCuZMEqxg4e7A-z4xCuGZOgFDzJDgVwVTMGR9mPz-i8ubLRB3Q5umg31oy-tTjkaKK9sfE2xzVaF2L-JY60jd54Y6aQb6aILiRNl5-nxXaY49BaMx92Ew5F2JKxFPLW-t4Om_A0e9zjEOjZ3fsk-_bh_dfzT8XF5cfV-dlFYaSEWFANzNRN2VDDpTDUp7IZcW4q4mVTK-p7YC1voSaQHAUnTooqoaDFtmJSnGSrxbfzeK23o93geKs9Wv37wI9rjWO0ZiCtoK9lo0j2qErZSJXGCJz10HM0RjTJ693itZ3aDXWGXBxx2DPd_-LslV77G51aEVzWyeD1ncHof04Uot7YYGgY0JGfgua8KitQ6T4T-nJB15hKs673ydHMuD6rGt7wUtSQqNN_UOnpKF1dCkiaNe0L3uwJEhNpF9c4haBXl9_32RcP2_3T531gElAvQApJCCP12tiI0fq5eztoYHqOpl6iqVM09RxNvUtK-Et5b_4_zatF46xNP5pXSHVUSsgyTbeqoRSsFL8AVO_vfQ |
CitedBy_id | crossref_primary_10_4103_jispcd_JISPCD_163_21 crossref_primary_10_3389_fdmed_2022_849274 crossref_primary_10_3390_pharmaceutics15092253 crossref_primary_10_3390_nano13192649 crossref_primary_10_3390_pharmaceutics15030762 crossref_primary_10_1016_j_mam_2024_101290 crossref_primary_10_1590_pboci_2021_069 crossref_primary_10_1039_D0CC05880G crossref_primary_10_1590_1678_7757_2021_0120 crossref_primary_10_3389_fchem_2021_813973 crossref_primary_10_1111_1758_2229_13053 crossref_primary_10_3390_pharmaceutics13060803 crossref_primary_10_1016_j_biteb_2022_101218 crossref_primary_10_3389_fphar_2021_760768 crossref_primary_10_1016_j_jmbbm_2023_106134 crossref_primary_10_1016_j_ijbiomac_2021_08_046 crossref_primary_10_1186_s12951_020_00714_2 crossref_primary_10_2174_1874210602014010731 crossref_primary_10_1080_1040841X_2021_1921696 crossref_primary_10_51847_HzJjQ1bn1I crossref_primary_10_2217_fmb_2023_0259 crossref_primary_10_2147_IJN_S468848 crossref_primary_10_1007_s40242_024_4135_0 crossref_primary_10_3390_molecules26206315 crossref_primary_10_3390_pr8091173 crossref_primary_10_3390_prosthesis6060103 crossref_primary_10_1016_j_jdent_2024_105134 crossref_primary_10_3389_fmicb_2020_538602 crossref_primary_10_1016_j_archoralbio_2020_104822 crossref_primary_10_3390_polym14020230 crossref_primary_10_1016_j_ijbiomac_2024_138324 crossref_primary_10_3390_ph14080752 crossref_primary_10_3390_molecules26071870 crossref_primary_10_1177_22808000211065259 crossref_primary_10_23887_ijnse_v7i1_53897 crossref_primary_10_3389_fcimb_2022_836379 crossref_primary_10_1016_j_optlastec_2022_108930 crossref_primary_10_3390_polym14050908 crossref_primary_10_1039_D0NH00696C crossref_primary_10_1155_2021_8975948 crossref_primary_10_1590_1678_7757_2023_0146 crossref_primary_10_3389_fmicb_2022_911623 crossref_primary_10_1016_j_sdentj_2021_06_003 crossref_primary_10_3390_microorganisms9020412 crossref_primary_10_3390_polym13193430 crossref_primary_10_5005_jp_journals_10015_2212 crossref_primary_10_12688_f1000research_20700_1 crossref_primary_10_1088_2057_1976_ac0609 crossref_primary_10_12688_f1000research_20700_2 crossref_primary_10_1016_j_jallcom_2020_155366 crossref_primary_10_3390_antibiotics11050623 crossref_primary_10_3389_fcimb_2023_1106231 |
Cites_doi | 10.1111/idj.12261 10.1016/j.addr.2009.09.004 10.1016/j.archoralbio.2008.02.015 10.1128/IAI.00087-14 10.1016/j.addr.2013.07.011 10.1038/ismej.2014.73 10.1016/j.ultramic.2009.03.015 10.3390/pathogens3040908 10.1088/2057-1976/aac9f8 10.1038/srep41332 10.1128/AEM.05203-11 10.1111/j.1751-7915.2008.00080.x 10.1016/j.anaerobe.2012.04.009 10.1155/2016/1851242 10.1128/AEM.02941-10 10.1371/journal.pone.0150457 10.1155/2015/246012 10.1002/macp.1984.021850503 10.1016/j.marenvres.2009.07.001 10.1021/cr030441b 10.3389/fmicb.2016.00140 10.1016/j.fm.2008.05.003 10.1016/j.ijfoodmicro.2010.09.012 10.1016/b978-0-12-800268-1.00002-0 10.3390/nu6093572 10.3390/md8082252 10.1111/j.1532-849X.2012.00906.x 10.1016/j.biomaterials.2008.07.034 10.1016/B978-0-12-800269-8.00012-9 10.1016/j.yrtph.2009.09.015 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 BioMed Central Ltd. The Author(s) 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: The Author(s) 2019 |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV 7X8 5PM DOA |
DOI | 10.1186/s13104-019-4422-x |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Opposing Viewpoints MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1756-0500 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_81f7698e6fa846968422120f1f2acc39 PMC6613267 A592924371 31287001 10_1186_s13104_019_4422_x |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: ID no: R11525 – fundername: Grant-in-Aid for Scientific Research, JSPS Kakenhi grantid: JP16H05546 – fundername: ; grantid: JP16H05546 – fundername: ; grantid: ID no: R11525 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBD EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR IOV ITC KQ8 LK8 M1P M48 M7P MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RYH SBL SOJ SV3 TR2 TUS UKHRP ~8M AAYXX CITATION CGR CUY CVF ECM EIF NPM PMFND 7X8 PJZUB PPXIY PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c661t-e710c7949e9263cef0610e22c5e24978eff10b2b17e162a32e2e8e5381bab5063 |
IEDL.DBID | M48 |
ISSN | 1756-0500 |
IngestDate | Wed Aug 27 01:26:07 EDT 2025 Thu Aug 21 14:10:41 EDT 2025 Mon Jul 21 09:21:51 EDT 2025 Tue Jun 17 21:22:45 EDT 2025 Tue Jun 10 20:47:25 EDT 2025 Fri Jun 27 04:40:48 EDT 2025 Thu Apr 03 07:00:04 EDT 2025 Tue Jul 01 03:33:46 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Thu Jun 26 23:07:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Candida albicans Biofilm Caries Nanochitosan Streptococcus mutans |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-e710c7949e9263cef0610e22c5e24978eff10b2b17e162a32e2e8e5381bab5063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2512-2579 0009-0005-2124-5669 0000-0003-2285-2602 0000-0001-7478-8169 0000-0001-7197-2075 0000-0001-9368-8737 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13104-019-4422-x |
PMID | 31287001 |
PQID | 2254518118 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81f7698e6fa846968422120f1f2acc39 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613267 proquest_miscellaneous_2254518118 gale_infotracmisc_A592924371 gale_infotracacademiconefile_A592924371 gale_incontextgauss_IOV_A592924371 pubmed_primary_31287001 crossref_citationtrail_10_1186_s13104_019_4422_x crossref_primary_10_1186_s13104_019_4422_x nii_cinii_1870583643265714304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-08 |
PublicationDateYYYYMMDD | 2019-07-08 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC Research Notes |
PublicationTitleAlternate | BMC Res Notes |
PublicationYear | 2019 |
Publisher | Springer Science and Business Media LLC BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: Springer Science and Business Media LLC – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | A Aliasghari (4422_CR31) 2016; 8 DH Ngo (4422_CR15) 2014 JC Fernandes (4422_CR19) 2008; 25 ZS Ardestani (4422_CR32) 2016; 2 A Sandra (4422_CR7) 2013; 22 N Beyth (4422_CR8) 2015 S Liu (4422_CR5) 2017; 4 L Guo (4422_CR35) 2015; 5 S Gregoire (4422_CR29) 2011; 77 J Venkatesan (4422_CR12) 2010; 8 W Zhao (4422_CR36) 2014; 6 HL Bernard (4422_CR30) 2017; 98 TP Cenci (4422_CR26) 2008; 53 D Duangporn (4422_CR3) 2017; 67 D Di Stasio (4422_CR6) 2018; 32 D Raafat (4422_CR22) 2009; 2 M Ramasamy (4422_CR11) 2016; 2016 MZ Karagozlu (4422_CR14) 2014 T Kean (4422_CR20) 2010; 62 RY Pelgrift (4422_CR9) 2013; 65 E Costa (4422_CR24) 2014; 3 R Ikono (4422_CR25) 2018; 4 H Sztajer (4422_CR27) 2014; 8 SY Ong (4422_CR21) 2008; 29 M Kong (4422_CR33) 2010; 144 JC Fernandes (4422_CR18) 2009; 109 M Mühling (4422_CR10) 2009; 68 JO Barbosa (4422_CR28) 2016; 11 MN Kumar (4422_CR13) 2004; 104 M Feldman (4422_CR4) 2016; 7 D Kim (4422_CR1) 2017; 7 LE ChávezdePaz (4422_CR23) 2011; 77 ML Falsetta (4422_CR2) 2014; 82 EM Costa (4422_CR17) 2012; 18 P Baldrick (4422_CR16) 2010; 56 T Ikeda (4422_CR34) 1984; 185 |
References_xml | – volume: 32 start-page: 113 year: 2018 ident: 4422_CR6 publication-title: J Biol Regul Homeost Agents – volume: 98 start-page: 105 year: 2017 ident: 4422_CR30 publication-title: Colloids Surf B. – volume: 67 start-page: 98 year: 2017 ident: 4422_CR3 publication-title: Int Dent J doi: 10.1111/idj.12261 – volume: 62 start-page: 3 year: 2010 ident: 4422_CR20 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2009.09.004 – volume: 53 start-page: 755 year: 2008 ident: 4422_CR26 publication-title: Arch Oral Biol doi: 10.1016/j.archoralbio.2008.02.015 – volume: 8 start-page: 93 year: 2016 ident: 4422_CR31 publication-title: Iran J Microbiol – volume: 4 start-page: 1 year: 2017 ident: 4422_CR5 publication-title: Biomed Res Int – volume: 82 start-page: 1968 year: 2014 ident: 4422_CR2 publication-title: Infect Immun doi: 10.1128/IAI.00087-14 – volume: 65 start-page: 1803 year: 2013 ident: 4422_CR9 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2013.07.011 – volume: 8 start-page: 2256 year: 2014 ident: 4422_CR27 publication-title: ISME J doi: 10.1038/ismej.2014.73 – volume: 109 start-page: 854 year: 2009 ident: 4422_CR18 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2009.03.015 – volume: 3 start-page: 908 year: 2014 ident: 4422_CR24 publication-title: Pathogens. doi: 10.3390/pathogens3040908 – volume: 4 start-page: 1 year: 2018 ident: 4422_CR25 publication-title: Biomed Phys Eng Express doi: 10.1088/2057-1976/aac9f8 – volume: 7 start-page: 41332 year: 2017 ident: 4422_CR1 publication-title: Sci Rep doi: 10.1038/srep41332 – volume: 77 start-page: 6357 year: 2011 ident: 4422_CR29 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05203-11 – volume: 2 start-page: 186 year: 2009 ident: 4422_CR22 publication-title: Microb Biotechnol doi: 10.1111/j.1751-7915.2008.00080.x – volume: 18 start-page: 305 year: 2012 ident: 4422_CR17 publication-title: Anaerobe doi: 10.1016/j.anaerobe.2012.04.009 – volume: 2016 start-page: 1 year: 2016 ident: 4422_CR11 publication-title: Biomed Res Int doi: 10.1155/2016/1851242 – volume: 77 start-page: 3892 year: 2011 ident: 4422_CR23 publication-title: Appl Environ Microbiol. doi: 10.1128/AEM.02941-10 – volume: 5 start-page: 1 year: 2015 ident: 4422_CR35 publication-title: Sci Rep. – volume: 2 start-page: 28 year: 2016 ident: 4422_CR32 publication-title: Curr Med Mycol. – volume: 11 start-page: e0150457 year: 2016 ident: 4422_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0150457 – year: 2015 ident: 4422_CR8 publication-title: Evid Based Complement Alternat Med. doi: 10.1155/2015/246012 – volume: 185 start-page: 869 year: 1984 ident: 4422_CR34 publication-title: Macromol Chem Phys. doi: 10.1002/macp.1984.021850503 – volume: 68 start-page: 278 year: 2009 ident: 4422_CR10 publication-title: Mar Environ Res doi: 10.1016/j.marenvres.2009.07.001 – volume: 104 start-page: 6017 year: 2004 ident: 4422_CR13 publication-title: Chem Rev doi: 10.1021/cr030441b – volume: 7 start-page: 1 year: 2016 ident: 4422_CR4 publication-title: Front Microbiol. doi: 10.3389/fmicb.2016.00140 – volume: 25 start-page: 922 year: 2008 ident: 4422_CR19 publication-title: Food Microbiol doi: 10.1016/j.fm.2008.05.003 – volume: 144 start-page: 51 year: 2010 ident: 4422_CR33 publication-title: Int J Food Microbiol. doi: 10.1016/j.ijfoodmicro.2010.09.012 – start-page: 15 volume-title: Advances in food and nutrition research year: 2014 ident: 4422_CR15 doi: 10.1016/b978-0-12-800268-1.00002-0 – volume: 6 start-page: 3572 year: 2014 ident: 4422_CR36 publication-title: Nutrients doi: 10.3390/nu6093572 – volume: 8 start-page: 2252 year: 2010 ident: 4422_CR12 publication-title: Mar Drugs. doi: 10.3390/md8082252 – volume: 22 start-page: 13 year: 2013 ident: 4422_CR7 publication-title: J Prosthodont. doi: 10.1111/j.1532-849X.2012.00906.x – volume: 29 start-page: 4323 year: 2008 ident: 4422_CR21 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.07.034 – start-page: 215 volume-title: Advances in food and nutrition research year: 2014 ident: 4422_CR14 doi: 10.1016/B978-0-12-800269-8.00012-9 – volume: 56 start-page: 290 year: 2010 ident: 4422_CR16 publication-title: Regul Toxicol Pharmacol doi: 10.1016/j.yrtph.2009.09.015 |
SSID | ssj0061881 |
Score | 2.4607713 |
Snippet | Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental... Objective Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on dental... Abstract Objective Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic microorganisms. However, its effect on... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 383 |
SubjectTerms | Anti-Infective Agents Anti-Infective Agents - chemistry Anti-Infective Agents - pharmacology Biofilm Biofilms Biofilms - drug effects Biofilms - growth & development Biology (General) Candida albicans Candida albicans - drug effects Candida albicans - physiology Care and treatment Caries Causes of Child Children Chitin Chitosan Chitosan - chemistry Dental Caries Dental Caries - drug therapy Dental Caries - microbiology Dental Plaque Dental Plaque - drug therapy Dental Plaque - microbiology Health aspects Humans Medicine Microbial Viability Microbial Viability - drug effects Microorganisms Microscopy, Electron, Transmission Nanochitosan Nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure Particle Size Pathogenic microorganisms Q1-390 QH301-705.5 R Research Note Science (General) Streptococcus mutans Streptococcus mutans - drug effects Streptococcus mutans - physiology Time Factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF60IPgi_ja2lVUEQVia3SSbzWMtliqoL1b6tuxuZmuwlxRzgfa_dybJHY2IvvhyD5cZ7jIzO_stO_MNY6_LyoRQKhDeqFLkoa5FVQYpXJVmMSt0jKOnP33WJ6f5x7Pi7MaoL6oJm-iBJ8MdGBlLXRnQ0eFWWdG1EWbbNMqoXAjZ2LqHe97mMDXlYC2NkfMdpjT6oJeIYqjaohI56ourxS40kvVvU_Lttmn-BDd_r5q8sQ0d32f3ZvzID6f__YDdgvYhuzNNlLx-xH5gtuzoaqDrXcvRas2qGamWUIdaGGhSBHfnrkFUyOlG-nLdYUoMQ89XA-LEHnVqfkS9LrXj7sJTluw5NWwJasrEczX3DY35XvWP2enx-69HJ2KepyAC7sJrAYgmAq6_CiqlswDoBpmCUqEARYPmIEaZeuVlCVIrlylQYAAzovTOF4hlnrCdtmvhGeO1z0DjSaiAUuUYB5WvgRhG0TPa11masHRjXxtmsnGaeXFhx0OH0XZyiUWXWHKJvUrY263K5cS08Tfhd-S0rSCRZI9fYOjYOXTsv0InYa_I5ZZoMFqqszl3Q9_bD1--2cMCYSNxNcqEvZmFYodvENzctoB2IOasheTeQhLXaVg83sfIQmvQp8Q0WZgM4aDSBY2gT_OEvdzEnCVVKn5roRt6iyk3LxCJSZOwp1MMbl8cLW6odCBh5SI6F5ZZPmmb7yONOMYE_nr5_H-YcpfdVenYDidSs8d21j8H2Ee0tvYvxoX5Cz-oOHo priority: 102 providerName: Directory of Open Access Journals |
Title | Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms |
URI | https://cir.nii.ac.jp/crid/1870583643265714304 https://www.ncbi.nlm.nih.gov/pubmed/31287001 https://www.proquest.com/docview/2254518118 https://pubmed.ncbi.nlm.nih.gov/PMC6613267 https://doaj.org/article/81f7698e6fa846968422120f1f2acc39 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2EWgviDuBrQoICQkpLHYS23lAqJs2jUobCCjqm2U7Tolok9E00vbvOSdNK4IKL43U2Klybv7c43M-Ql6LVFormAuMZCKIbZYFqbA00GkY5VHC87zV9OUVvxjHo0ky2SFreqtOgPXWrR3ySY0Xs3c3v24_gMO_bx1e8uOaAkbBsxRpEMewtwJIuQ8Lk0BCg8t4k1TgVEraJTa3TjsgdyOKib-OIWa9SrXN_Dche7csim1w9O9TlX8sU-f3yb0OX_rDlUE8IDuufEjurBgnbx-RnxBNK0wdVLUufZBqMS_aVkwwB0sckEnC11NdAGr0MWN9vawgZNqm9ucN4Mga5mT-KdbCZNrXM4NRtPaxoCvAok3Yd_umQBrwef2YjM_Pvp1eBB3fQmBhlV4GDtCGBf9MXcp4ZB2oiYaOMZs4hkR0Ls9paJihwlHOdMQcc9JBxKRGmwSwzhOyV1ale0b8zESOw04pcYLFYCepyRx2IKUs5CaLQo-Ea_kq2zUjR06MmWo3JZKrlXYUaEehdtSNR95uplyvOnH8b_AJKm0zEJtot19Ui6nqfFJJmgueSsdzDSgsxYwkLORhTnOmrY1Sj7xClStsk1HiOZypbupaffz0XQ0TgJXYy5F65E03KK_gDazuyhpADthZqzfysDcS_Nj2bh-BZYE08JOCFSYyArjIeIIU9WHskZdrm1M4FQ_Hla5qagUhOU4AqVHpkacrG9y8-NqgPSJ61tmTTP9OWfxo24yDTcCvi-f_fOYLcsDCtgYuCOUh2VsuGncEEG1pBmRXTMSA7A-Ho68juJ6cXX3-Mmj_8Bi0Tvkbg3Q40Q |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanochitosan+antimicrobial+activity+against+Streptococcus+mutans+and+Candida+albicans+dual-species+biofilms&rft.jtitle=BMC+research+notes&rft.au=Ikono%2C+Radyum&rft.au=Vibriani%2C+Agnia&rft.au=Wibowo%2C+Indra&rft.au=Saputro%2C+Kurniawan+Eko&rft.date=2019-07-08&rft.eissn=1756-0500&rft.volume=12&rft.issue=1&rft.spage=383&rft_id=info:doi/10.1186%2Fs13104-019-4422-x&rft_id=info%3Apmid%2F31287001&rft.externalDocID=31287001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon |