Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution
Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide r...
Saved in:
Published in | Genome Biology Vol. 20; no. 1; p. 267 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
06.12.2019
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult.
Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization.
We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution. |
---|---|
AbstractList | Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult.BACKGROUNDChromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult.Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization.RESULTSHere, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization.We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.CONCLUSIONSWe show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution. BACKGROUND: Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. RESULTS: Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. CONCLUSIONS: We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution. BackgroundChromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult.ResultsHere, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization.ConclusionsWe show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution. Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution. Abstract Background Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. Results Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. Conclusions We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution. |
ArticleNumber | 267 |
Author | Wu, Qi Hu, Yibo Ng, Bee Ling Fan, Huizhong Wei, Fuwen Yang, Fengtang |
Author_xml | – sequence: 1 givenname: Huizhong surname: Fan fullname: Fan, Huizhong – sequence: 2 givenname: Qi surname: Wu fullname: Wu, Qi – sequence: 3 givenname: Fuwen surname: Wei fullname: Wei, Fuwen – sequence: 4 givenname: Fengtang surname: Yang fullname: Yang, Fengtang – sequence: 5 givenname: Bee Ling surname: Ng fullname: Ng, Bee Ling – sequence: 6 givenname: Yibo orcidid: 0000-0003-3409-3164 surname: Hu fullname: Hu, Yibo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31810476$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURD_gB3BBlrhwCXicxB8XJLTio1IlLiBxs5xkkvXKsRc7Wan_vg5bVm0PcPJ4_Mzrsee9LM588FgUr4G-B5D8Q4KKNqqkoEqQUpXiWXEBtahLwemvswfxeXGZ0o5msGb8RXFegQRaC35RuM02himkMGHp8ICOjOjzhpiUcGrdLRlCJKM1fiZ743tD9jEcbI-J-LDi1ic7bueUgzmQjYneHkI0pDvpEjwEt8w2-JfF88G4hK_u16vi55fPPzbfypvvX683n27KjnOYyx5bHKBtgIJoWdXwSnHZtNJQIVTdg2BgGoVYGeglr4acrGCAQfJeSAasuiquj7p9MDu9j3Yy8VYHY_WfRIijNnG2nUPNFO_QDKyhjNaKUyUGDpCvUB12StZZ6-NRa7-0E_Yd-jka90j08Ym3Wz2Gg-ZSSdXILPDuXiCG3wumWU82deic8RiWpFktBK-kEPT_aMWYqAVjKqNvn6C7sESff3WlZKMaVjeZevOw-VPXf-efATgCXQwpRRxOCFC9ekwfPaazdfTqMS1yjXhS09nZrPPN77fuH5V3th7V9Q |
CitedBy_id | crossref_primary_10_1186_s13059_019_1889_7 crossref_primary_10_1073_pnas_2317430121 crossref_primary_10_1002_ece3_9185 crossref_primary_10_3389_fmars_2023_1170704 crossref_primary_10_1093_molbev_msab333 crossref_primary_10_1038_s42003_022_04074_5 crossref_primary_10_1007_s10709_022_00173_7 crossref_primary_10_1038_s41559_025_02638_2 crossref_primary_10_1038_s41597_024_04167_2 crossref_primary_10_1016_j_scib_2021_02_002 crossref_primary_10_1016_j_gpb_2021_04_001 crossref_primary_10_3390_ani13060979 crossref_primary_10_1093_gigascience_giac112 crossref_primary_10_1093_jhered_esab021 crossref_primary_10_1038_s41598_023_42617_w crossref_primary_10_1186_s12983_022_00475_8 crossref_primary_10_1016_j_isci_2023_108445 crossref_primary_10_1186_s12864_021_08162_4 crossref_primary_10_1073_pnas_2004640117 crossref_primary_10_1016_j_ygeno_2022_110501 crossref_primary_10_1111_1749_4877_12915 crossref_primary_10_1093_gbe_evab162 crossref_primary_10_1186_s12917_021_02880_3 crossref_primary_10_1111_1749_4877_12652 crossref_primary_10_1139_gen_2022_0043 crossref_primary_10_1016_j_ijbiomac_2023_123374 |
Cites_doi | 10.1126/science.1111387 10.1073/pnas.1613870114 10.1159/000059348 10.1101/048603 10.1159/000063032 10.1038/s41438-017-0011-0 10.1093/jn/136.7.1932S 10.1023/A:1015292005631 10.1093/nar/gkr123 10.1093/nar/gkp896 10.1038/ng.2494 10.1371/journal.pgen.0010027 10.1186/gb-2004-5-2-r12 10.1007/s10577-008-1270-2 10.1073/pnas.1702012114 10.1101/gr.086546.108 10.1186/s13059-015-0721-2 10.1186/gb-2004-5-4-r23 10.1002/cyto.a.20330 10.1038/75556 10.1038/nature08696 10.1186/gb-2006-7-12-r115 10.1186/gb-2013-14-6-405 10.1038/nbt.3103 10.1038/nbt.2727 10.1186/gb-2009-10-8-r88 10.1186/s13059-019-1889-7 10.1007/978-94-017-1033-6_20 10.1038/s41576-018-0003-4 10.1186/s13059-016-1071-4 10.1038/ng.3802 10.1101/gr.3896805 10.1016/j.cell.2011.11.065 10.1073/pnas.1220349110 10.1038/ng0815-962a 10.1360/N052018-00223 10.1126/science.1169588 10.1073/pnas.1711437114 10.1038/nbt.3432 10.1101/gr.2289704 10.1016/j.cub.2018.05.046 10.1360/N052018-00115 10.1093/jhered/esp015 10.1093/bioinformatics/btt086 10.1101/128348 10.1093/jhered/esm130 10.1159/000015176 10.1126/science.286.5439.458 10.1038/hdy.2011.107 10.1007/s11427-018-9388-9 10.1002/0471250953.bi0410s25 10.1186/1471-2105-12-491 10.1016/j.jgg.2018.09.005 10.1038/srep18019 10.1023/A:1009251917072 10.1038/nature11622 10.1002/cyto.a.20394 10.1111/mec.12096 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2019 |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13059-019-1889-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 267 |
ExternalDocumentID | oai_doaj_org_article_296ceaf25020496097f6111729cec984 PMC6898958 31810476 10_1186_s13059_019_1889_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: ; grantid: 2019HB2096001006 – fundername: ; grantid: 2016082 – fundername: ; grantid: 2016YFC0503200 – fundername: ; grantid: XDB31020000 and QYZDY-SSW-SMC019 – fundername: ; grantid: 31821001 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c661t-debef1b51017b235639685b8a07794d1721a59ee3a1d863f79431f1f86d782123 |
IEDL.DBID | 7X7 |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:29:19 EDT 2025 Thu Aug 21 18:43:05 EDT 2025 Fri Jul 11 03:13:04 EDT 2025 Tue Aug 05 11:29:50 EDT 2025 Fri Jul 25 11:47:34 EDT 2025 Thu Jan 02 22:59:14 EST 2025 Tue Jul 01 03:10:46 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Evolutionary breakpoint region Carnivora Chromosome-level genome Giant panda Chromosome evolution |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-debef1b51017b235639685b8a07794d1721a59ee3a1d863f79431f1f86d782123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-3409-3164 |
OpenAccessLink | https://www.proquest.com/docview/2328595245?pq-origsite=%requestingapplication% |
PMID | 31810476 |
PQID | 2328595245 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_296ceaf25020496097f6111729cec984 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6898958 proquest_miscellaneous_2477638770 proquest_miscellaneous_2322747229 proquest_journals_2328595245 pubmed_primary_31810476 crossref_primary_10_1186_s13059_019_1889_7 crossref_citationtrail_10_1186_s13059_019_1889_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-06 |
PublicationDateYYYYMMDD | 2019-12-06 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2019 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | R Li (1889_CR16) 2010; 463 EP Murchison (1889_CR31) 2012; 148 H Fan (1889_CR38) 2018; 45 FJ Sedlazeck (1889_CR26) 2018; 19 F Wei (1889_CR37) 2019; 49 X Li (1889_CR35) 2005; 1 R Appels (1889_CR23) 2018; 361 DM Emms (1889_CR56) 2015; 16 F Wei (1889_CR15) 2012; 21 WG Nash (1889_CR3) 1998; 83 S Kim (1889_CR12) 2016; 17 C Webber (1889_CR39) 2005; 15 1889_CR53 1889_CR10 S Kurtz (1889_CR57) 2004; 5 DM Larkin (1889_CR46) 2009; 19 F Yang (1889_CR4) 2000; 8 M Chen (1889_CR55) 2015; 5 C Holt (1889_CR54) 2011; 12 M Ashburner (1889_CR58) 2000; 25 S Zhao (1889_CR18) 2013; 45 RJ Roberts (1889_CR19) 2013; 14 S Gnerre (1889_CR29) 2009; 10 DM Bickhart (1889_CR22) 2017; 49 A Gurevich (1889_CR49) 2013; 29 Y Tian (1889_CR8) 2002; 29 SJ O'Brien (1889_CR43) 1999; 286 BL Ng (1889_CR51) 2006; 69 PM Ashton (1889_CR20) 2015; 33 1889_CR60 1889_CR61 W Nie (1889_CR1) 2012; 108 AS Graphodatsky (1889_CR6) 2002; 96 J Kim (1889_CR30) 2013; 110 1889_CR27 1889_CR24 JN Burton (1889_CR21) 2013; 31 PL Perelman (1889_CR9) 2008; 16 W Zhou (1889_CR48) 2019; 62 J Kim (1889_CR11) 2017; 114 X Li (1889_CR34) 2006; 136 WG Nash (1889_CR5) 2001; 95 WG Nash (1889_CR2) 2008; 99 MA Groenen (1889_CR45) 2012; 491 W Nie (1889_CR7) 2002; 10 X Li (1889_CR36) 2009; 1 M Kanehisa (1889_CR59) 2010; 38 Y Wang (1889_CR32) 2015; 47 BL Ng (1889_CR52) 2007; 71 JA Bailey (1889_CR40) 2004; 5 GX Zheng (1889_CR25) 2016; 34 CG Elsik (1889_CR44) 2009; 324 AC Darling (1889_CR50) 2004; 14 WJ Murphy (1889_CR42) 2005; 309 J Zhu (1889_CR47) 2017; 114 F Wei (1889_CR14) 2018; 48 Y Hu (1889_CR17) 2017; 114 F Wei (1889_CR13) 2018; 28 C Soderlund (1889_CR33) 2011; 39 A Ruiz-Herrera (1889_CR41) 2006; 7 AM Hulse-Kemp (1889_CR28) 2018; 5 |
References_xml | – volume: 309 start-page: 613 year: 2005 ident: 1889_CR42 publication-title: Science doi: 10.1126/science.1111387 – volume: 114 start-page: 1081 year: 2017 ident: 1889_CR17 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1613870114 – volume: 95 start-page: 210 year: 2001 ident: 1889_CR5 publication-title: Cytogenet Cell Genet doi: 10.1159/000059348 – ident: 1889_CR24 doi: 10.1101/048603 – volume: 96 start-page: 137 year: 2002 ident: 1889_CR6 publication-title: Cytogenet Genome Res doi: 10.1159/000063032 – volume: 5 start-page: 4 year: 2018 ident: 1889_CR28 publication-title: Hortic Res doi: 10.1038/s41438-017-0011-0 – volume: 136 start-page: 1932s year: 2006 ident: 1889_CR34 publication-title: J Nutr doi: 10.1093/jn/136.7.1932S – volume: 10 start-page: 209 year: 2002 ident: 1889_CR7 publication-title: Chromosom Res doi: 10.1023/A:1015292005631 – volume: 39 start-page: e68 year: 2011 ident: 1889_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr123 – volume: 38 start-page: D355 year: 2010 ident: 1889_CR59 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp896 – volume: 45 start-page: 67 year: 2013 ident: 1889_CR18 publication-title: Nat Genet doi: 10.1038/ng.2494 – volume: 1 start-page: 27 year: 2005 ident: 1889_CR35 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0010027 – volume: 5 start-page: R12 year: 2004 ident: 1889_CR57 publication-title: Genome Biol doi: 10.1186/gb-2004-5-2-r12 – volume: 16 start-page: 1215 year: 2008 ident: 1889_CR9 publication-title: Chromosom Res doi: 10.1007/s10577-008-1270-2 – volume: 114 start-page: E5379 year: 2017 ident: 1889_CR11 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1702012114 – volume: 19 start-page: 770 year: 2009 ident: 1889_CR46 publication-title: Genome Res doi: 10.1101/gr.086546.108 – volume: 16 start-page: 157 year: 2015 ident: 1889_CR56 publication-title: Genome Biol doi: 10.1186/s13059-015-0721-2 – volume: 5 start-page: R23 year: 2004 ident: 1889_CR40 publication-title: Genome Biol doi: 10.1186/gb-2004-5-4-r23 – volume: 69 start-page: 1028 year: 2006 ident: 1889_CR51 publication-title: Cytometry A. doi: 10.1002/cyto.a.20330 – volume: 25 start-page: 25 year: 2000 ident: 1889_CR58 publication-title: Nat Genet doi: 10.1038/75556 – volume: 463 start-page: 311 year: 2010 ident: 1889_CR16 publication-title: Nature. doi: 10.1038/nature08696 – volume: 7 start-page: R115 year: 2006 ident: 1889_CR41 publication-title: Genome Biol doi: 10.1186/gb-2006-7-12-r115 – volume: 14 start-page: 405 year: 2013 ident: 1889_CR19 publication-title: Genome Biol doi: 10.1186/gb-2013-14-6-405 – volume: 33 start-page: 296 year: 2015 ident: 1889_CR20 publication-title: Nat Biotechnol doi: 10.1038/nbt.3103 – volume: 31 start-page: 1119 year: 2013 ident: 1889_CR21 publication-title: Nat Biotechnol doi: 10.1038/nbt.2727 – volume: 10 start-page: R88 year: 2009 ident: 1889_CR29 publication-title: Genome Biol doi: 10.1186/gb-2009-10-8-r88 – ident: 1889_CR60 doi: 10.1186/s13059-019-1889-7 – volume: 29 start-page: 124 year: 2002 ident: 1889_CR8 publication-title: Acta Genet Sin – ident: 1889_CR10 doi: 10.1007/978-94-017-1033-6_20 – volume: 19 start-page: 329 year: 2018 ident: 1889_CR26 publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0003-4 – volume: 17 start-page: 211 year: 2016 ident: 1889_CR12 publication-title: Genome Biol doi: 10.1186/s13059-016-1071-4 – volume: 361 start-page: 661 year: 2018 ident: 1889_CR23 publication-title: Science. – volume: 49 start-page: 643 year: 2017 ident: 1889_CR22 publication-title: Nat Genet doi: 10.1038/ng.3802 – volume: 15 start-page: 1787 year: 2005 ident: 1889_CR39 publication-title: Genome Res doi: 10.1101/gr.3896805 – volume: 148 start-page: 780 year: 2012 ident: 1889_CR31 publication-title: Cell. doi: 10.1016/j.cell.2011.11.065 – volume: 110 start-page: 1785 year: 2013 ident: 1889_CR30 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1220349110 – volume: 47 start-page: 962 year: 2015 ident: 1889_CR32 publication-title: Nat Genet doi: 10.1038/ng0815-962a – volume: 49 start-page: 498 year: 2019 ident: 1889_CR37 publication-title: Sci Sin Vitae doi: 10.1360/N052018-00223 – ident: 1889_CR61 doi: 10.1186/s13059-019-1889-7 – volume: 324 start-page: 522 year: 2009 ident: 1889_CR44 publication-title: Science. doi: 10.1126/science.1169588 – volume: 114 start-page: E9802 year: 2017 ident: 1889_CR47 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1711437114 – volume: 34 start-page: 303 year: 2016 ident: 1889_CR25 publication-title: Nat Biotechnol doi: 10.1038/nbt.3432 – volume: 14 start-page: 1394 year: 2004 ident: 1889_CR50 publication-title: Genome Res doi: 10.1101/gr.2289704 – volume: 28 start-page: 2174 year: 2018 ident: 1889_CR13 publication-title: Curr Biol doi: 10.1016/j.cub.2018.05.046 – volume: 48 start-page: 1048 year: 2018 ident: 1889_CR14 publication-title: Sci Sin Vitae doi: 10.1360/N052018-00115 – volume: 1 start-page: S90 year: 2009 ident: 1889_CR36 publication-title: J Hered. doi: 10.1093/jhered/esp015 – volume: 29 start-page: 1072 year: 2013 ident: 1889_CR49 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btt086 – ident: 1889_CR27 doi: 10.1101/128348 – volume: 99 start-page: 241 year: 2008 ident: 1889_CR2 publication-title: J Hered doi: 10.1093/jhered/esm130 – volume: 83 start-page: 182 year: 1998 ident: 1889_CR3 publication-title: Cytogenet Cell Genet doi: 10.1159/000015176 – volume: 286 start-page: 463 year: 1999 ident: 1889_CR43 publication-title: Science. doi: 10.1126/science.286.5439.458 – volume: 108 start-page: 17 year: 2012 ident: 1889_CR1 publication-title: Heredity. doi: 10.1038/hdy.2011.107 – volume: 62 start-page: 648 year: 2019 ident: 1889_CR48 publication-title: Sci China Life Sci doi: 10.1007/s11427-018-9388-9 – ident: 1889_CR53 doi: 10.1002/0471250953.bi0410s25 – volume: 12 start-page: 491 year: 2011 ident: 1889_CR54 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-491 – volume: 45 start-page: 593 year: 2018 ident: 1889_CR38 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2018.09.005 – volume: 5 start-page: 18019 year: 2015 ident: 1889_CR55 publication-title: Sci Rep doi: 10.1038/srep18019 – volume: 8 start-page: 93 year: 2000 ident: 1889_CR4 publication-title: Chromosom Res doi: 10.1023/A:1009251917072 – volume: 491 start-page: 393 year: 2012 ident: 1889_CR45 publication-title: Nature. doi: 10.1038/nature11622 – volume: 71 start-page: 410 year: 2007 ident: 1889_CR52 publication-title: Cytometry A doi: 10.1002/cyto.a.20394 – volume: 21 start-page: 5660 year: 2012 ident: 1889_CR15 publication-title: Mol Ecol doi: 10.1111/mec.12096 |
SSID | ssj0019426 ssj0017866 |
Score | 2.45026 |
Snippet | Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different... BackgroundChromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among... BACKGROUND: Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events... Abstract Background Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 267 |
SubjectTerms | Ailuropoda melanoleuca Animal behavior Animals Biological Evolution Carnivora chromosome aberrations Chromosome evolution Chromosome-level genome Chromosomes dogs Evolution Evolutionary breakpoint region Genome genome assembly Genomics Giant panda Male Pandas pseudogenes smell Speciation species Sweet taste Synteny Ursidae - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejUNhlbN1Xtm54sNPANPaLP3LcykoZtKcVejNOIm-F95KypIX-95Mcv9A3RnfZLSRKSCzJ-imWf2LsI7gOYgAtbBWUqBxI0YQ2CGmgUl2k3Y-0G_ns3JxeVN8u9eW9Vl9UEzbTA88Dd6Rq00KIGKkVgllT1jYa9E_EhC20tUtMoBjztslUXj-oMfDkNUzpzNGIM7WmuqBaSCrrsTtRKJH1_w1h_lkoeS_ynDxlTzJk5J_nV33GHkF_wPbnJpJ3z9ma-G03wzhsQKypBIgT7-oGOMJi2DTrO464lP9AM5j4Nf034Hn33cj7gcSv-pEy9BEPpoEf06-SWzQM3i7P5XCbLfQFuzj5-v34VOQeCqLFyDuJDpUUZZM8r1ErjYDEON24UFr0xI4SwKBrgFWQnTOrSHxxMsroTIfYAcPaS7bXDz28ZjysXANlQAwhoQqmalS0aAHaRNvSDQUrt2Pq20wwTn0u1j4lGs74WQ0e1eBJDd4W7NNyy_XMrvGQ8BdS1CJIxNjpBJqLz-bi_2UuBTvcqtlnbx09okqieVOVLtiH5TL6GS2ehB6GmyRDCbxS9QMylcXp2llbFuzVbDnL2-LcSawYOEp2x6Z2Pmf3Sn_1M_F9G2rxqd2b__H9b9ljldxAidIcsr3p1w28Q1g1Ne-TB_0G8NIfxA priority: 102 providerName: Directory of Open Access Journals |
Title | Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31810476 https://www.proquest.com/docview/2328595245 https://www.proquest.com/docview/2322747229 https://www.proquest.com/docview/2477638770 https://pubmed.ncbi.nlm.nih.gov/PMC6898958 https://doaj.org/article/296ceaf25020496097f6111729cec984 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_N1gUN9jQQtRR9-WkspaUMVkZZIexFyLbUFRI7q91C__vd2Yq3jJGX4MTnYPu-T6ffEfIh2CpEHxQz0gsmbeCs8KVnXAcpqoi7H3E38tdzfXYpvyzUIhXc2tRWubGJvaGumhJr5Efg-RGKS0j1af2L4dQoXF1NIzQekn2ELsOWLrMYEy5uLMYq6UsuxbDVCBsQVa7TEie3-qgFQ66wbShnHLt-zJaT6rH8_xeA_ttH-ZdjOn1KnqSIkn4eROAZeRDq5-TRMGPy_gVZIvztqmmbVWBL7BCiCMu6ChSi5rAqlvcUwlZ6BVLS0TWWFWjanNfSukHy67rFBL6Fg66hx1hJuQO5oeX4vzTcJQF-SS5PT74fn7E0YoGV4Jg7VgEPIy96xSzETEG8oq0qrM8MKGqF-aFXeQgzzyurZxHh5Hjk0eoKQgvweq_IXt3U4YBQP7NFyDyEGDxIr2UhogEBUTqaEi-YkGzzTl2Z8MdxDMbS9XmI1W5ggwM2OGSDMxPycbxkPYBv7CKeI6NGQsTN7n9obq5cUkMncl0GHyHuE5Aa6Sw3UYO1hwyjDGVu5YQcbtjskjK37o_oTcj78TSoIa6t-Do0tz0N5vdC5DtopAFrbo3JJuT1IDnj3YJpRdAMeEtmS6a2Hmf7TH39s4cD1zgBVNk3u2_9LXksegEXLNOHZK-7uQ3vIJ7qimmvNFOyPz85_3Yx7asS8Hkx__Eb3kUg7w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEG8CBYwEFySrieNXDgjR0mpL2xVCrdSbcRKnVNpNlmZbtH-K38hMXrAI7a23zWYSOZ5vPA-PZwh5403uC-cl08JxJoyPWOoyxyLlBc8LPP2Ip5GPJ2p8Kj6fybMN8qs_C4Nplf2a2CzUeZVhjHwbND-W4uJCfpj_YNg1CndX-xYaLSwO_fInuGz1-4NPwN-3nO_vneyOWddVgGWgixYsh2EXUdpgMeWxBBWtjEyNCzVgM0eXyMnE-9hFuVFxgRXUoiIqjMpBm0ZY6ACW_E0RgyszIps7e5MvX4d9C23QOuouEsHbw02Y8igT1W2qRkZt16A6JCYqJSzCPCO9ohab7gH_M3n_zdz8SxXu3yN3OxuWfmxBd59s-PIBudV2tVw-JFMsuDur6mrm2RRzkigWgp15Cna6n6XTJQVDmZ4DLhd0joEM2h0HrGlZIflFWWPIoIYfi4ruYuzmGpBKs-G91F93IvOInN7I9D8mo7Iq_VNCXWxSHzowaiIvnBIpLzRAUqpCZ_hAQMJ-Tm3WVTzHxhtT23g-RtmWDRbYYJENVgfk3fDIvC33sY54Bxk1EGKl7uaP6vLcdoJveaIy7wqwNDk4YypMdKFAv4BPk_ksMSIgWz2bbbd81PYP2APyergNgo-7Oa701VVDgxEFzpM1NEKD_jBahwF50iJnGC0s5limA2ZJr2Bq5XNW75QX35sC5Ap7jkrzbP3QX5Hb45PjI3t0MDl8Tu7wBuychWqLjBaXV_4FWHOL9GUnQpR8u2mp_Q3uYlmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromosome-level+genome+assembly+for+giant+panda+provides+novel+insights+into+Carnivora+chromosome+evolution&rft.jtitle=Genome+biology&rft.au=Fan%2C+Huizhong&rft.au=Wu%2C+Qi&rft.au=Wei%2C+Fuwen&rft.au=Yang%2C+Fengtang&rft.date=2019-12-06&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-019-1889-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13059_019_1889_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |