Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution

Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide r...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 20; no. 1; p. 267
Main Authors Fan, Huizhong, Wu, Qi, Wei, Fuwen, Yang, Fengtang, Ng, Bee Ling, Hu, Yibo
Format Journal Article
LanguageEnglish
Published England BioMed Central 06.12.2019
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.
AbstractList Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult.BACKGROUNDChromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult.Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization.RESULTSHere, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization.We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.CONCLUSIONSWe show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.
BACKGROUND: Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. RESULTS: Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. CONCLUSIONS: We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.
BackgroundChromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult.ResultsHere, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization.ConclusionsWe show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.
Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.
Abstract Background Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different Carnivora species using chromosome painting strategies. However, few of these studies have focused on chromosome evolution at a nucleotide resolution due to the limited availability of chromosome-level Carnivora genomes. Although the de novo genome assembly of the giant panda is available, current short read-based assemblies are limited to moderately sized scaffolds, making the study of chromosome evolution difficult. Results Here, we present a chromosome-level giant panda draft genome with a total size of 2.29 Gb. Based on the giant panda genome and published chromosome-level dog and cat genomes, we conduct six large-scale pairwise synteny alignments and identify evolutionary breakpoint regions. Interestingly, gene functional enrichment analysis shows that for all of the three Carnivora genomes, some genes located in evolutionary breakpoint regions are significantly enriched in pathways or terms related to sensory perception of smell. In addition, we find that the sweet receptor gene TAS1R2, which has been proven to be a pseudogene in the cat genome, is located in an evolutionary breakpoint region of the giant panda, suggesting that interchromosomal rearrangement may play a role in the cat TAS1R2 pseudogenization. Conclusions We show that the combined strategies employed in this study can be used to generate efficient chromosome-level genome assemblies. Moreover, our comparative genomics analyses provide novel insights into Carnivora chromosome evolution, linking chromosome evolution to functional gene evolution.
ArticleNumber 267
Author Wu, Qi
Hu, Yibo
Ng, Bee Ling
Fan, Huizhong
Wei, Fuwen
Yang, Fengtang
Author_xml – sequence: 1
  givenname: Huizhong
  surname: Fan
  fullname: Fan, Huizhong
– sequence: 2
  givenname: Qi
  surname: Wu
  fullname: Wu, Qi
– sequence: 3
  givenname: Fuwen
  surname: Wei
  fullname: Wei, Fuwen
– sequence: 4
  givenname: Fengtang
  surname: Yang
  fullname: Yang, Fengtang
– sequence: 5
  givenname: Bee Ling
  surname: Ng
  fullname: Ng, Bee Ling
– sequence: 6
  givenname: Yibo
  orcidid: 0000-0003-3409-3164
  surname: Hu
  fullname: Hu, Yibo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31810476$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gB3BBlrhwCXicxB8XJLTio1IlLiBxs5xkkvXKsRc7Wan_vg5bVm0PcPJ4_Mzrsee9LM588FgUr4G-B5D8Q4KKNqqkoEqQUpXiWXEBtahLwemvswfxeXGZ0o5msGb8RXFegQRaC35RuM02himkMGHp8ICOjOjzhpiUcGrdLRlCJKM1fiZ743tD9jEcbI-J-LDi1ic7bueUgzmQjYneHkI0pDvpEjwEt8w2-JfF88G4hK_u16vi55fPPzbfypvvX683n27KjnOYyx5bHKBtgIJoWdXwSnHZtNJQIVTdg2BgGoVYGeglr4acrGCAQfJeSAasuiquj7p9MDu9j3Yy8VYHY_WfRIijNnG2nUPNFO_QDKyhjNaKUyUGDpCvUB12StZZ6-NRa7-0E_Yd-jka90j08Ym3Wz2Gg-ZSSdXILPDuXiCG3wumWU82deic8RiWpFktBK-kEPT_aMWYqAVjKqNvn6C7sESff3WlZKMaVjeZevOw-VPXf-efATgCXQwpRRxOCFC9ekwfPaazdfTqMS1yjXhS09nZrPPN77fuH5V3th7V9Q
CitedBy_id crossref_primary_10_1186_s13059_019_1889_7
crossref_primary_10_1073_pnas_2317430121
crossref_primary_10_1002_ece3_9185
crossref_primary_10_3389_fmars_2023_1170704
crossref_primary_10_1093_molbev_msab333
crossref_primary_10_1038_s42003_022_04074_5
crossref_primary_10_1007_s10709_022_00173_7
crossref_primary_10_1038_s41559_025_02638_2
crossref_primary_10_1038_s41597_024_04167_2
crossref_primary_10_1016_j_scib_2021_02_002
crossref_primary_10_1016_j_gpb_2021_04_001
crossref_primary_10_3390_ani13060979
crossref_primary_10_1093_gigascience_giac112
crossref_primary_10_1093_jhered_esab021
crossref_primary_10_1038_s41598_023_42617_w
crossref_primary_10_1186_s12983_022_00475_8
crossref_primary_10_1016_j_isci_2023_108445
crossref_primary_10_1186_s12864_021_08162_4
crossref_primary_10_1073_pnas_2004640117
crossref_primary_10_1016_j_ygeno_2022_110501
crossref_primary_10_1111_1749_4877_12915
crossref_primary_10_1093_gbe_evab162
crossref_primary_10_1186_s12917_021_02880_3
crossref_primary_10_1111_1749_4877_12652
crossref_primary_10_1139_gen_2022_0043
crossref_primary_10_1016_j_ijbiomac_2023_123374
Cites_doi 10.1126/science.1111387
10.1073/pnas.1613870114
10.1159/000059348
10.1101/048603
10.1159/000063032
10.1038/s41438-017-0011-0
10.1093/jn/136.7.1932S
10.1023/A:1015292005631
10.1093/nar/gkr123
10.1093/nar/gkp896
10.1038/ng.2494
10.1371/journal.pgen.0010027
10.1186/gb-2004-5-2-r12
10.1007/s10577-008-1270-2
10.1073/pnas.1702012114
10.1101/gr.086546.108
10.1186/s13059-015-0721-2
10.1186/gb-2004-5-4-r23
10.1002/cyto.a.20330
10.1038/75556
10.1038/nature08696
10.1186/gb-2006-7-12-r115
10.1186/gb-2013-14-6-405
10.1038/nbt.3103
10.1038/nbt.2727
10.1186/gb-2009-10-8-r88
10.1186/s13059-019-1889-7
10.1007/978-94-017-1033-6_20
10.1038/s41576-018-0003-4
10.1186/s13059-016-1071-4
10.1038/ng.3802
10.1101/gr.3896805
10.1016/j.cell.2011.11.065
10.1073/pnas.1220349110
10.1038/ng0815-962a
10.1360/N052018-00223
10.1126/science.1169588
10.1073/pnas.1711437114
10.1038/nbt.3432
10.1101/gr.2289704
10.1016/j.cub.2018.05.046
10.1360/N052018-00115
10.1093/jhered/esp015
10.1093/bioinformatics/btt086
10.1101/128348
10.1093/jhered/esm130
10.1159/000015176
10.1126/science.286.5439.458
10.1038/hdy.2011.107
10.1007/s11427-018-9388-9
10.1002/0471250953.bi0410s25
10.1186/1471-2105-12-491
10.1016/j.jgg.2018.09.005
10.1038/srep18019
10.1023/A:1009251917072
10.1038/nature11622
10.1002/cyto.a.20394
10.1111/mec.12096
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2019
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-019-1889-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 267
ExternalDocumentID oai_doaj_org_article_296ceaf25020496097f6111729cec984
PMC6898958
31810476
10_1186_s13059_019_1889_7
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: ;
  grantid: 2019HB2096001006
– fundername: ;
  grantid: 2016082
– fundername: ;
  grantid: 2016YFC0503200
– fundername: ;
  grantid: XDB31020000 and QYZDY-SSW-SMC019
– fundername: ;
  grantid: 31821001
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c661t-debef1b51017b235639685b8a07794d1721a59ee3a1d863f79431f1f86d782123
IEDL.DBID 7X7
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:29:19 EDT 2025
Thu Aug 21 18:43:05 EDT 2025
Fri Jul 11 03:13:04 EDT 2025
Tue Aug 05 11:29:50 EDT 2025
Fri Jul 25 11:47:34 EDT 2025
Thu Jan 02 22:59:14 EST 2025
Tue Jul 01 03:10:46 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Evolutionary breakpoint region
Carnivora
Chromosome-level genome
Giant panda
Chromosome evolution
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-debef1b51017b235639685b8a07794d1721a59ee3a1d863f79431f1f86d782123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-3409-3164
OpenAccessLink https://www.proquest.com/docview/2328595245?pq-origsite=%requestingapplication%
PMID 31810476
PQID 2328595245
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_296ceaf25020496097f6111729cec984
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6898958
proquest_miscellaneous_2477638770
proquest_miscellaneous_2322747229
proquest_journals_2328595245
pubmed_primary_31810476
crossref_primary_10_1186_s13059_019_1889_7
crossref_citationtrail_10_1186_s13059_019_1889_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-06
PublicationDateYYYYMMDD 2019-12-06
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome Biology
PublicationTitleAlternate Genome Biol
PublicationYear 2019
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References R Li (1889_CR16) 2010; 463
EP Murchison (1889_CR31) 2012; 148
H Fan (1889_CR38) 2018; 45
FJ Sedlazeck (1889_CR26) 2018; 19
F Wei (1889_CR37) 2019; 49
X Li (1889_CR35) 2005; 1
R Appels (1889_CR23) 2018; 361
DM Emms (1889_CR56) 2015; 16
F Wei (1889_CR15) 2012; 21
WG Nash (1889_CR3) 1998; 83
S Kim (1889_CR12) 2016; 17
C Webber (1889_CR39) 2005; 15
1889_CR53
1889_CR10
S Kurtz (1889_CR57) 2004; 5
DM Larkin (1889_CR46) 2009; 19
F Yang (1889_CR4) 2000; 8
M Chen (1889_CR55) 2015; 5
C Holt (1889_CR54) 2011; 12
M Ashburner (1889_CR58) 2000; 25
S Zhao (1889_CR18) 2013; 45
RJ Roberts (1889_CR19) 2013; 14
S Gnerre (1889_CR29) 2009; 10
DM Bickhart (1889_CR22) 2017; 49
A Gurevich (1889_CR49) 2013; 29
Y Tian (1889_CR8) 2002; 29
SJ O'Brien (1889_CR43) 1999; 286
BL Ng (1889_CR51) 2006; 69
PM Ashton (1889_CR20) 2015; 33
1889_CR60
1889_CR61
W Nie (1889_CR1) 2012; 108
AS Graphodatsky (1889_CR6) 2002; 96
J Kim (1889_CR30) 2013; 110
1889_CR27
1889_CR24
JN Burton (1889_CR21) 2013; 31
PL Perelman (1889_CR9) 2008; 16
W Zhou (1889_CR48) 2019; 62
J Kim (1889_CR11) 2017; 114
X Li (1889_CR34) 2006; 136
WG Nash (1889_CR5) 2001; 95
WG Nash (1889_CR2) 2008; 99
MA Groenen (1889_CR45) 2012; 491
W Nie (1889_CR7) 2002; 10
X Li (1889_CR36) 2009; 1
M Kanehisa (1889_CR59) 2010; 38
Y Wang (1889_CR32) 2015; 47
BL Ng (1889_CR52) 2007; 71
JA Bailey (1889_CR40) 2004; 5
GX Zheng (1889_CR25) 2016; 34
CG Elsik (1889_CR44) 2009; 324
AC Darling (1889_CR50) 2004; 14
WJ Murphy (1889_CR42) 2005; 309
J Zhu (1889_CR47) 2017; 114
F Wei (1889_CR14) 2018; 48
Y Hu (1889_CR17) 2017; 114
F Wei (1889_CR13) 2018; 28
C Soderlund (1889_CR33) 2011; 39
A Ruiz-Herrera (1889_CR41) 2006; 7
AM Hulse-Kemp (1889_CR28) 2018; 5
References_xml – volume: 309
  start-page: 613
  year: 2005
  ident: 1889_CR42
  publication-title: Science
  doi: 10.1126/science.1111387
– volume: 114
  start-page: 1081
  year: 2017
  ident: 1889_CR17
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1613870114
– volume: 95
  start-page: 210
  year: 2001
  ident: 1889_CR5
  publication-title: Cytogenet Cell Genet
  doi: 10.1159/000059348
– ident: 1889_CR24
  doi: 10.1101/048603
– volume: 96
  start-page: 137
  year: 2002
  ident: 1889_CR6
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000063032
– volume: 5
  start-page: 4
  year: 2018
  ident: 1889_CR28
  publication-title: Hortic Res
  doi: 10.1038/s41438-017-0011-0
– volume: 136
  start-page: 1932s
  year: 2006
  ident: 1889_CR34
  publication-title: J Nutr
  doi: 10.1093/jn/136.7.1932S
– volume: 10
  start-page: 209
  year: 2002
  ident: 1889_CR7
  publication-title: Chromosom Res
  doi: 10.1023/A:1015292005631
– volume: 39
  start-page: e68
  year: 2011
  ident: 1889_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr123
– volume: 38
  start-page: D355
  year: 2010
  ident: 1889_CR59
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp896
– volume: 45
  start-page: 67
  year: 2013
  ident: 1889_CR18
  publication-title: Nat Genet
  doi: 10.1038/ng.2494
– volume: 1
  start-page: 27
  year: 2005
  ident: 1889_CR35
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0010027
– volume: 5
  start-page: R12
  year: 2004
  ident: 1889_CR57
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-2-r12
– volume: 16
  start-page: 1215
  year: 2008
  ident: 1889_CR9
  publication-title: Chromosom Res
  doi: 10.1007/s10577-008-1270-2
– volume: 114
  start-page: E5379
  year: 2017
  ident: 1889_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1702012114
– volume: 19
  start-page: 770
  year: 2009
  ident: 1889_CR46
  publication-title: Genome Res
  doi: 10.1101/gr.086546.108
– volume: 16
  start-page: 157
  year: 2015
  ident: 1889_CR56
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0721-2
– volume: 5
  start-page: R23
  year: 2004
  ident: 1889_CR40
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-4-r23
– volume: 69
  start-page: 1028
  year: 2006
  ident: 1889_CR51
  publication-title: Cytometry A.
  doi: 10.1002/cyto.a.20330
– volume: 25
  start-page: 25
  year: 2000
  ident: 1889_CR58
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 463
  start-page: 311
  year: 2010
  ident: 1889_CR16
  publication-title: Nature.
  doi: 10.1038/nature08696
– volume: 7
  start-page: R115
  year: 2006
  ident: 1889_CR41
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-12-r115
– volume: 14
  start-page: 405
  year: 2013
  ident: 1889_CR19
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-6-405
– volume: 33
  start-page: 296
  year: 2015
  ident: 1889_CR20
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3103
– volume: 31
  start-page: 1119
  year: 2013
  ident: 1889_CR21
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2727
– volume: 10
  start-page: R88
  year: 2009
  ident: 1889_CR29
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-8-r88
– ident: 1889_CR60
  doi: 10.1186/s13059-019-1889-7
– volume: 29
  start-page: 124
  year: 2002
  ident: 1889_CR8
  publication-title: Acta Genet Sin
– ident: 1889_CR10
  doi: 10.1007/978-94-017-1033-6_20
– volume: 19
  start-page: 329
  year: 2018
  ident: 1889_CR26
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0003-4
– volume: 17
  start-page: 211
  year: 2016
  ident: 1889_CR12
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1071-4
– volume: 361
  start-page: 661
  year: 2018
  ident: 1889_CR23
  publication-title: Science.
– volume: 49
  start-page: 643
  year: 2017
  ident: 1889_CR22
  publication-title: Nat Genet
  doi: 10.1038/ng.3802
– volume: 15
  start-page: 1787
  year: 2005
  ident: 1889_CR39
  publication-title: Genome Res
  doi: 10.1101/gr.3896805
– volume: 148
  start-page: 780
  year: 2012
  ident: 1889_CR31
  publication-title: Cell.
  doi: 10.1016/j.cell.2011.11.065
– volume: 110
  start-page: 1785
  year: 2013
  ident: 1889_CR30
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1220349110
– volume: 47
  start-page: 962
  year: 2015
  ident: 1889_CR32
  publication-title: Nat Genet
  doi: 10.1038/ng0815-962a
– volume: 49
  start-page: 498
  year: 2019
  ident: 1889_CR37
  publication-title: Sci Sin Vitae
  doi: 10.1360/N052018-00223
– ident: 1889_CR61
  doi: 10.1186/s13059-019-1889-7
– volume: 324
  start-page: 522
  year: 2009
  ident: 1889_CR44
  publication-title: Science.
  doi: 10.1126/science.1169588
– volume: 114
  start-page: E9802
  year: 2017
  ident: 1889_CR47
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1711437114
– volume: 34
  start-page: 303
  year: 2016
  ident: 1889_CR25
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3432
– volume: 14
  start-page: 1394
  year: 2004
  ident: 1889_CR50
  publication-title: Genome Res
  doi: 10.1101/gr.2289704
– volume: 28
  start-page: 2174
  year: 2018
  ident: 1889_CR13
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2018.05.046
– volume: 48
  start-page: 1048
  year: 2018
  ident: 1889_CR14
  publication-title: Sci Sin Vitae
  doi: 10.1360/N052018-00115
– volume: 1
  start-page: S90
  year: 2009
  ident: 1889_CR36
  publication-title: J Hered.
  doi: 10.1093/jhered/esp015
– volume: 29
  start-page: 1072
  year: 2013
  ident: 1889_CR49
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btt086
– ident: 1889_CR27
  doi: 10.1101/128348
– volume: 99
  start-page: 241
  year: 2008
  ident: 1889_CR2
  publication-title: J Hered
  doi: 10.1093/jhered/esm130
– volume: 83
  start-page: 182
  year: 1998
  ident: 1889_CR3
  publication-title: Cytogenet Cell Genet
  doi: 10.1159/000015176
– volume: 286
  start-page: 463
  year: 1999
  ident: 1889_CR43
  publication-title: Science.
  doi: 10.1126/science.286.5439.458
– volume: 108
  start-page: 17
  year: 2012
  ident: 1889_CR1
  publication-title: Heredity.
  doi: 10.1038/hdy.2011.107
– volume: 62
  start-page: 648
  year: 2019
  ident: 1889_CR48
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-018-9388-9
– ident: 1889_CR53
  doi: 10.1002/0471250953.bi0410s25
– volume: 12
  start-page: 491
  year: 2011
  ident: 1889_CR54
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-491
– volume: 45
  start-page: 593
  year: 2018
  ident: 1889_CR38
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2018.09.005
– volume: 5
  start-page: 18019
  year: 2015
  ident: 1889_CR55
  publication-title: Sci Rep
  doi: 10.1038/srep18019
– volume: 8
  start-page: 93
  year: 2000
  ident: 1889_CR4
  publication-title: Chromosom Res
  doi: 10.1023/A:1009251917072
– volume: 491
  start-page: 393
  year: 2012
  ident: 1889_CR45
  publication-title: Nature.
  doi: 10.1038/nature11622
– volume: 71
  start-page: 410
  year: 2007
  ident: 1889_CR52
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20394
– volume: 21
  start-page: 5660
  year: 2012
  ident: 1889_CR15
  publication-title: Mol Ecol
  doi: 10.1111/mec.12096
SSID ssj0019426
ssj0017866
Score 2.45026
Snippet Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among different...
BackgroundChromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events among...
BACKGROUND: Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement events...
Abstract Background Chromosome evolution is an important driver of speciation and species evolution. Previous studies have detected chromosome rearrangement...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 267
SubjectTerms Ailuropoda melanoleuca
Animal behavior
Animals
Biological Evolution
Carnivora
chromosome aberrations
Chromosome evolution
Chromosome-level genome
Chromosomes
dogs
Evolution
Evolutionary breakpoint region
Genome
genome assembly
Genomics
Giant panda
Male
Pandas
pseudogenes
smell
Speciation
species
Sweet taste
Synteny
Ursidae - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejUNhlbN1Xtm54sNPANPaLP3LcykoZtKcVejNOIm-F95KypIX-95Mcv9A3RnfZLSRKSCzJ-imWf2LsI7gOYgAtbBWUqBxI0YQ2CGmgUl2k3Y-0G_ns3JxeVN8u9eW9Vl9UEzbTA88Dd6Rq00KIGKkVgllT1jYa9E_EhC20tUtMoBjztslUXj-oMfDkNUzpzNGIM7WmuqBaSCrrsTtRKJH1_w1h_lkoeS_ynDxlTzJk5J_nV33GHkF_wPbnJpJ3z9ma-G03wzhsQKypBIgT7-oGOMJi2DTrO464lP9AM5j4Nf034Hn33cj7gcSv-pEy9BEPpoEf06-SWzQM3i7P5XCbLfQFuzj5-v34VOQeCqLFyDuJDpUUZZM8r1ErjYDEON24UFr0xI4SwKBrgFWQnTOrSHxxMsroTIfYAcPaS7bXDz28ZjysXANlQAwhoQqmalS0aAHaRNvSDQUrt2Pq20wwTn0u1j4lGs74WQ0e1eBJDd4W7NNyy_XMrvGQ8BdS1CJIxNjpBJqLz-bi_2UuBTvcqtlnbx09okqieVOVLtiH5TL6GS2ehB6GmyRDCbxS9QMylcXp2llbFuzVbDnL2-LcSawYOEp2x6Z2Pmf3Sn_1M_F9G2rxqd2b__H9b9ljldxAidIcsr3p1w28Q1g1Ne-TB_0G8NIfxA
  priority: 102
  providerName: Directory of Open Access Journals
Title Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution
URI https://www.ncbi.nlm.nih.gov/pubmed/31810476
https://www.proquest.com/docview/2328595245
https://www.proquest.com/docview/2322747229
https://www.proquest.com/docview/2477638770
https://pubmed.ncbi.nlm.nih.gov/PMC6898958
https://doaj.org/article/296ceaf25020496097f6111729cec984
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_N1gUN9jQQtRR9-WkspaUMVkZZIexFyLbUFRI7q91C__vd2Yq3jJGX4MTnYPu-T6ffEfIh2CpEHxQz0gsmbeCs8KVnXAcpqoi7H3E38tdzfXYpvyzUIhXc2tRWubGJvaGumhJr5Efg-RGKS0j1af2L4dQoXF1NIzQekn2ELsOWLrMYEy5uLMYq6UsuxbDVCBsQVa7TEie3-qgFQ66wbShnHLt-zJaT6rH8_xeA_ttH-ZdjOn1KnqSIkn4eROAZeRDq5-TRMGPy_gVZIvztqmmbVWBL7BCiCMu6ChSi5rAqlvcUwlZ6BVLS0TWWFWjanNfSukHy67rFBL6Fg66hx1hJuQO5oeX4vzTcJQF-SS5PT74fn7E0YoGV4Jg7VgEPIy96xSzETEG8oq0qrM8MKGqF-aFXeQgzzyurZxHh5Hjk0eoKQgvweq_IXt3U4YBQP7NFyDyEGDxIr2UhogEBUTqaEi-YkGzzTl2Z8MdxDMbS9XmI1W5ggwM2OGSDMxPycbxkPYBv7CKeI6NGQsTN7n9obq5cUkMncl0GHyHuE5Aa6Sw3UYO1hwyjDGVu5YQcbtjskjK37o_oTcj78TSoIa6t-Do0tz0N5vdC5DtopAFrbo3JJuT1IDnj3YJpRdAMeEtmS6a2Hmf7TH39s4cD1zgBVNk3u2_9LXksegEXLNOHZK-7uQ3vIJ7qimmvNFOyPz85_3Yx7asS8Hkx__Eb3kUg7w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEG8CBYwEFySrieNXDgjR0mpL2xVCrdSbcRKnVNpNlmZbtH-K38hMXrAI7a23zWYSOZ5vPA-PZwh5403uC-cl08JxJoyPWOoyxyLlBc8LPP2Ip5GPJ2p8Kj6fybMN8qs_C4Nplf2a2CzUeZVhjHwbND-W4uJCfpj_YNg1CndX-xYaLSwO_fInuGz1-4NPwN-3nO_vneyOWddVgGWgixYsh2EXUdpgMeWxBBWtjEyNCzVgM0eXyMnE-9hFuVFxgRXUoiIqjMpBm0ZY6ACW_E0RgyszIps7e5MvX4d9C23QOuouEsHbw02Y8igT1W2qRkZt16A6JCYqJSzCPCO9ohab7gH_M3n_zdz8SxXu3yN3OxuWfmxBd59s-PIBudV2tVw-JFMsuDur6mrm2RRzkigWgp15Cna6n6XTJQVDmZ4DLhd0joEM2h0HrGlZIflFWWPIoIYfi4ruYuzmGpBKs-G91F93IvOInN7I9D8mo7Iq_VNCXWxSHzowaiIvnBIpLzRAUqpCZ_hAQMJ-Tm3WVTzHxhtT23g-RtmWDRbYYJENVgfk3fDIvC33sY54Bxk1EGKl7uaP6vLcdoJveaIy7wqwNDk4YypMdKFAv4BPk_ksMSIgWz2bbbd81PYP2APyergNgo-7Oa701VVDgxEFzpM1NEKD_jBahwF50iJnGC0s5limA2ZJr2Bq5XNW75QX35sC5Ap7jkrzbP3QX5Hb45PjI3t0MDl8Tu7wBuychWqLjBaXV_4FWHOL9GUnQpR8u2mp_Q3uYlmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromosome-level+genome+assembly+for+giant+panda+provides+novel+insights+into+Carnivora+chromosome+evolution&rft.jtitle=Genome+biology&rft.au=Fan%2C+Huizhong&rft.au=Wu%2C+Qi&rft.au=Wei%2C+Fuwen&rft.au=Yang%2C+Fengtang&rft.date=2019-12-06&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-019-1889-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13059_019_1889_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon