Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying indi...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 55; no. 2; pp. 574 - 589 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.03.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another—by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%–4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD.
► Unified multi-modality classification system adapts Multi-Kernel Learning (MKL). ► Multi-Modal Disease Marker (MMDM) using imaging and non-imaging data. ► Application to ADNI AD, control and MCI subjects. ► Experimental validation of MMDM's predictive value in MCI to AD progression. |
---|---|
AbstractList | Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another—by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%–4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD.
► Unified multi-modality classification system adapts Multi-Kernel Learning (MKL). ► Multi-Modal Disease Marker (MMDM) using imaging and non-imaging data. ► Application to ADNI AD, control and MCI subjects. ► Experimental validation of MMDM's predictive value in MCI to AD progression. Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another - by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%-4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD. Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reportingseparateresults for each. One strategy to improve on the success of these methods is to leverageallavailable imaging modalitiestogetherin a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another--by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%-4%. We are especially interested in whether such markers are capable of identifyingearlysigns of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD. Alzheimer’s Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another – by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3% – 4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual’s conversion from MCI to AD. Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another-by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%-4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD.Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another-by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%-4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD. |
Author | Johnson, Sterling C. Singh, Vikas Hinrichs, Chris Xu, Guofan |
AuthorAffiliation | a Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706 d Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 c Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI 53705 b Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison Madison, WI 53705 |
AuthorAffiliation_xml | – name: b Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison Madison, WI 53705 – name: d Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 – name: a Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706 – name: c Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI 53705 |
Author_xml | – sequence: 1 givenname: Chris surname: Hinrichs fullname: Hinrichs, Chris email: hinrichs@cs.wisc.edu organization: Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 2 givenname: Vikas surname: Singh fullname: Singh, Vikas email: vsingh@biostat.wisc.edu organization: Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 3 givenname: Guofan surname: Xu fullname: Xu, Guofan email: gxu@medicine.wisc.edu organization: Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI 53705, USA – sequence: 4 givenname: Sterling C. surname: Johnson fullname: Johnson, Sterling C. email: scj@medicine.wisc.edu organization: Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI 53705, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21146621$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuP0zAQxyO0iH3AV0CWOHBK8StpwgFRymul5XGAs2W7k65bxy62U9Rvj9MuXdhTD5atmf_8NJ75XxZnzjsoCkTwhGBSv1pNHAzBm14uYULxPjzBDXlUXBDcVmVbTenZ-K5Y2RDSnheXMa4wxi3hzZPinBLC65qSi8J9D7AwOpktoF6GNYSIOh_Q7D0yDknUDzaZsvcLaU3aoS7IHn77sH6NZjntpN1FE5Hv0Jf5NdoEvwwQo_FurE63kDlfc9xvBitTDj8tHnfSRnh2d18VPz9--DH_XN58-3Q9n92Uuq5JKlU3_oCRRnUKOlUripVWjElcaaLrfKaUK15hDUxS3nDeaqmIagFzSjljV8WbA3czqB4WGlwK0opNyCMLO-GlEf9nnLkVS78VDLNquge8vAME_2uAmERvogZrpQM_RNFUDaesraoTlDXHjFKalS8eKFd-CHmGUZCKty3FbFpn1fN_Wz_2_HdnWdAcBDr4GAN0RwnBYrSHWIl7e4jRHmMm2-N-LMdSbdJ-MXkIxp4CeHcAQF7e1kAQURtwOnsogE5i4c0pkLcPINoaZ7S0a9idhvgDZRDzyA |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2013_06_033 crossref_primary_10_1016_j_mri_2012_11_009 crossref_primary_10_1016_j_jneumeth_2020_108988 crossref_primary_10_3389_fnagi_2018_00272 crossref_primary_10_1109_TNNLS_2019_2900077 crossref_primary_10_1038_s41598_019_49656_2 crossref_primary_10_1155_2014_145243 crossref_primary_10_1016_j_compbiomed_2022_106116 crossref_primary_10_3233_IDT_230141 crossref_primary_10_3233_JAD_150570 crossref_primary_10_1109_TCBB_2021_3053061 crossref_primary_10_1186_s12880_016_0172_6 crossref_primary_10_1109_TCYB_2016_2644718 crossref_primary_10_1186_s12911_017_0497_2 crossref_primary_10_1016_j_archger_2019_103997 crossref_primary_10_1016_j_neuroimage_2013_09_015 crossref_primary_10_1007_s11684_019_0718_4 crossref_primary_10_1038_s41598_024_60134_2 crossref_primary_10_1080_24725579_2017_1367979 crossref_primary_10_3389_fnins_2021_669595 crossref_primary_10_1038_s41598_018_26151_8 crossref_primary_10_3233_JAD_160594 crossref_primary_10_1016_j_neucom_2015_10_043 crossref_primary_10_1016_j_media_2019_01_007 crossref_primary_10_3233_JAD_142820 crossref_primary_10_1016_j_media_2021_102266 crossref_primary_10_1002_hbm_24207 crossref_primary_10_1016_j_patcog_2016_10_009 crossref_primary_10_1093_bioinformatics_btr649 crossref_primary_10_1016_j_compbiomed_2023_107050 crossref_primary_10_1186_s13229_017_0146_8 crossref_primary_10_3390_jpm12050704 crossref_primary_10_1080_19466315_2021_1884129 crossref_primary_10_1038_s41598_021_82098_3 crossref_primary_10_1109_ACCESS_2018_2871977 crossref_primary_10_1080_23279095_2023_2169886 crossref_primary_10_1016_j_nicl_2018_01_019 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_18632_aging_101883 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_1016_j_media_2019_101567 crossref_primary_10_1109_JBHI_2017_2655720 crossref_primary_10_3389_fnagi_2016_00077 crossref_primary_10_1109_JSTSP_2016_2600400 crossref_primary_10_1002_alz_12032 crossref_primary_10_1016_j_neuroimage_2017_03_057 crossref_primary_10_1109_TBME_2014_2310709 crossref_primary_10_1093_cercor_bhac084 crossref_primary_10_3390_app13031656 crossref_primary_10_1016_j_neubiorev_2020_04_026 crossref_primary_10_1007_s11682_012_9180_5 crossref_primary_10_1109_ACCESS_2019_2936415 crossref_primary_10_1109_ACCESS_2024_3454709 crossref_primary_10_1109_TBME_2012_2212278 crossref_primary_10_1093_braincomms_fcaf027 crossref_primary_10_1109_TCDS_2022_3189701 crossref_primary_10_1016_j_trsl_2018_01_001 crossref_primary_10_1109_JBHI_2023_3268729 crossref_primary_10_1002_hbm_23575 crossref_primary_10_1016_j_neunet_2025_107263 crossref_primary_10_1155_2015_865265 crossref_primary_10_1016_j_compbiomed_2024_108588 crossref_primary_10_1148_radiol_12120010 crossref_primary_10_1016_j_cmpb_2022_107103 crossref_primary_10_1016_j_patcog_2016_09_039 crossref_primary_10_1016_j_jneumeth_2015_11_028 crossref_primary_10_1371_journal_pone_0088687 crossref_primary_10_1016_j_neuroimage_2017_06_072 crossref_primary_10_1371_journal_pone_0033182 crossref_primary_10_1016_j_neuroimage_2014_06_077 crossref_primary_10_1016_j_knosys_2012_07_012 crossref_primary_10_1371_journal_pone_0138866 crossref_primary_10_1590_1980_57642015DN94000385 crossref_primary_10_3390_diagnostics14010013 crossref_primary_10_1155_2014_785039 crossref_primary_10_1159_000484248 crossref_primary_10_1007_s12021_017_9347_8 crossref_primary_10_1017_S1041610218001618 crossref_primary_10_1007_s00429_015_1059_y crossref_primary_10_1007_s11042_024_19425_z crossref_primary_10_1016_j_media_2014_04_006 crossref_primary_10_1142_S0129065716500258 crossref_primary_10_3390_app8081372 crossref_primary_10_1002_14651858_CD009628_pub2 crossref_primary_10_1038_s41598_024_62712_w crossref_primary_10_1016_j_compbiomed_2018_09_004 crossref_primary_10_1016_j_neuroimage_2013_08_015 crossref_primary_10_1002_hbm_23434 crossref_primary_10_1093_brain_awv007 crossref_primary_10_3233_JAD_190262 crossref_primary_10_1016_j_cmpb_2020_105348 crossref_primary_10_1016_j_neuroimage_2014_01_033 crossref_primary_10_1002_hbm_24682 crossref_primary_10_1002_ima_22390 crossref_primary_10_1016_j_compmedimag_2019_101663 crossref_primary_10_1007_s12021_016_9318_5 crossref_primary_10_1371_journal_pone_0074062 crossref_primary_10_1016_j_media_2017_01_008 crossref_primary_10_1080_01621459_2021_2013851 crossref_primary_10_1007_s40708_016_0035_5 crossref_primary_10_3390_app10051894 crossref_primary_10_1016_j_jamda_2017_05_017 crossref_primary_10_1016_j_neuroimage_2012_07_059 crossref_primary_10_1080_01621459_2021_1938083 crossref_primary_10_1016_j_exger_2018_01_002 crossref_primary_10_1016_j_neuroimage_2018_03_040 crossref_primary_10_1016_j_biopsych_2019_12_021 crossref_primary_10_1109_TBME_2015_2404809 crossref_primary_10_1002_mrm_25853 crossref_primary_10_1080_0952813X_2020_1818290 crossref_primary_10_1016_j_nicl_2013_07_005 crossref_primary_10_3390_math10050805 crossref_primary_10_14283_jpad_2017_29 crossref_primary_10_1109_TMI_2018_2857221 crossref_primary_10_3389_fpsyt_2019_00572 crossref_primary_10_1016_j_biopsych_2013_11_020 crossref_primary_10_1109_TBME_2013_2284195 crossref_primary_10_1016_j_neuroimage_2011_12_071 crossref_primary_10_3389_fnhum_2017_00380 crossref_primary_10_1007_s40708_015_0020_4 crossref_primary_10_1016_j_bspc_2021_102698 crossref_primary_10_1016_j_jneumeth_2018_09_028 crossref_primary_10_3389_fmolb_2019_00158 crossref_primary_10_3233_JAD_160850 crossref_primary_10_1016_j_biopsych_2016_12_030 crossref_primary_10_1038_s41598_017_03925_0 crossref_primary_10_1016_j_compbiomed_2013_05_021 crossref_primary_10_1080_01431161_2018_1500730 crossref_primary_10_1371_journal_pone_0129250 crossref_primary_10_1142_S0218213018500112 crossref_primary_10_1007_s11682_015_9480_7 crossref_primary_10_1016_j_tics_2013_08_007 crossref_primary_10_1109_TAI_2024_3416420 crossref_primary_10_1016_j_eswa_2021_115549 crossref_primary_10_1109_JBHI_2015_2429556 crossref_primary_10_1016_j_mri_2015_11_009 crossref_primary_10_3233_JAD_170338 crossref_primary_10_1016_j_bspc_2022_104312 crossref_primary_10_1016_j_cmpb_2016_09_019 crossref_primary_10_1186_s40708_018_0080_3 crossref_primary_10_1016_j_neubiorev_2012_01_004 crossref_primary_10_1007_s10072_021_05568_6 crossref_primary_10_1016_j_cmpb_2017_07_003 crossref_primary_10_1016_j_neuroimage_2019_01_053 crossref_primary_10_3390_app9153063 crossref_primary_10_3390_electronics11081288 crossref_primary_10_1007_s12021_020_09470_y crossref_primary_10_1016_j_patcog_2014_12_007 crossref_primary_10_3233_JAD_215338 crossref_primary_10_1155_2014_421743 crossref_primary_10_3389_fnagi_2016_00119 crossref_primary_10_1016_j_media_2020_101712 crossref_primary_10_1016_j_nicl_2013_05_004 crossref_primary_10_3233_JAD_190973 crossref_primary_10_1016_j_pscychresns_2014_08_005 crossref_primary_10_1371_journal_pone_0179804 crossref_primary_10_1007_s00138_012_0462_0 crossref_primary_10_1007_s00259_017_3761_x crossref_primary_10_1111_jon_12163 crossref_primary_10_1016_j_neuroimage_2014_10_002 crossref_primary_10_1007_s12021_013_9180_7 crossref_primary_10_14201_ADCAIJ2021102183196 crossref_primary_10_1016_j_neuroimage_2011_09_069 crossref_primary_10_1016_j_neuroimage_2024_120695 crossref_primary_10_3390_s20030941 crossref_primary_10_7554_eLife_49298 crossref_primary_10_1109_ACCESS_2022_3196649 crossref_primary_10_1016_j_neurobiolaging_2014_03_042 crossref_primary_10_4196_kjpp_2014_18_6_447 crossref_primary_10_1016_j_neuroimage_2011_05_083 crossref_primary_10_1080_13803395_2012_681628 crossref_primary_10_1186_s12938_016_0183_0 crossref_primary_10_1007_s40708_015_0019_x crossref_primary_10_1109_JBHI_2017_2703918 crossref_primary_10_1093_cercor_bhad331 crossref_primary_10_1155_2015_961314 crossref_primary_10_1007_s44192_023_00041_6 crossref_primary_10_1038_srep39880 crossref_primary_10_1155_2021_6628036 crossref_primary_10_1007_s11682_013_9263_y crossref_primary_10_1007_s00429_015_1140_6 crossref_primary_10_1038_s41598_018_35789_3 crossref_primary_10_1016_j_jneumeth_2017_12_011 crossref_primary_10_1016_j_media_2021_102082 crossref_primary_10_3389_fninf_2022_856175 crossref_primary_10_1016_j_neurad_2017_05_008 crossref_primary_10_1016_j_ijmedinf_2017_07_002 crossref_primary_10_1007_s11682_015_9356_x crossref_primary_10_1371_journal_pone_0171749 crossref_primary_10_3389_fnagi_2020_00077 crossref_primary_10_1155_2020_8015156 crossref_primary_10_1016_j_jalz_2015_01_010 crossref_primary_10_1093_cercor_bhac099 crossref_primary_10_3389_fnagi_2022_866230 crossref_primary_10_3389_fnagi_2014_00260 crossref_primary_10_1016_j_compmedimag_2019_01_005 crossref_primary_10_1007_s00429_013_0687_3 crossref_primary_10_1109_JBHI_2022_3161466 crossref_primary_10_1002_hbm_22759 crossref_primary_10_1007_s00702_014_1324_x crossref_primary_10_1002_dad2_12197 crossref_primary_10_1155_2024_6668159 crossref_primary_10_1080_01621459_2019_1585254 crossref_primary_10_1186_s12883_020_01728_x crossref_primary_10_3389_fnins_2024_1352129 crossref_primary_10_1142_S1793536914500046 crossref_primary_10_1016_j_pneurobio_2011_06_004 crossref_primary_10_4236_jbise_2013_611137 crossref_primary_10_1371_journal_pone_0067346 crossref_primary_10_1007_s11517_019_01974_3 crossref_primary_10_1007_s11042_018_5768_0 crossref_primary_10_1016_j_neuroimage_2011_01_008 crossref_primary_10_3389_fnagi_2017_00146 crossref_primary_10_1016_j_dadm_2015_01_006 crossref_primary_10_3389_fonc_2021_588010 crossref_primary_10_1016_j_cmpb_2015_08_004 crossref_primary_10_3389_fnins_2014_00189 crossref_primary_10_1016_j_media_2015_10_008 crossref_primary_10_1016_j_neuroimage_2012_09_065 crossref_primary_10_1016_j_patcog_2018_11_027 crossref_primary_10_1111_ggi_14670 crossref_primary_10_3389_fnagi_2016_00023 crossref_primary_10_1111_jon_12214 crossref_primary_10_1016_j_heliyon_2019_e02216 crossref_primary_10_1016_j_neucom_2016_08_041 crossref_primary_10_1016_j_csbj_2022_11_008 crossref_primary_10_3233_JAD_160102 crossref_primary_10_1016_j_bpsc_2018_04_004 crossref_primary_10_1007_s10845_020_01554_5 crossref_primary_10_1016_j_neurobiolaging_2013_06_015 crossref_primary_10_3390_jcm7090250 crossref_primary_10_1371_journal_pone_0093851 crossref_primary_10_1016_j_neuroimage_2012_01_084 crossref_primary_10_1016_j_nicl_2013_11_010 crossref_primary_10_1109_TMI_2011_2147327 crossref_primary_10_1016_j_jalz_2013_05_1769 crossref_primary_10_1016_j_patcog_2022_108566 crossref_primary_10_1007_s12021_012_9175_9 crossref_primary_10_1371_journal_pone_0077949 crossref_primary_10_1016_j_jneumeth_2017_11_013 crossref_primary_10_1007_s13246_022_01196_2 crossref_primary_10_1371_journal_pone_0114293 crossref_primary_10_3233_JAD_201398 crossref_primary_10_1007_s11682_018_9846_8 crossref_primary_10_1109_TCBB_2020_3026219 crossref_primary_10_1155_2014_541802 crossref_primary_10_1016_j_neubiorev_2015_08_001 crossref_primary_10_1073_pnas_1317918110 crossref_primary_10_1016_j_compbiomed_2015_01_003 crossref_primary_10_3389_fnagi_2017_00006 crossref_primary_10_1002_hbm_22642 crossref_primary_10_1042_ETLS20210249 crossref_primary_10_3390_brainsci11060674 crossref_primary_10_1016_j_compmedimag_2023_102303 crossref_primary_10_1016_j_neuroimage_2016_02_041 crossref_primary_10_12779_dnd_2020_19_4_129 |
Cites_doi | 10.1093/brain/awg064 10.1016/j.neuroimage.2009.07.011 10.1016/j.neuroimage.2008.10.031 10.1016/j.tics.2004.01.004 10.1016/j.neurobiolaging.2010.04.022 10.1056/NEJM199603213341202 10.1002/ana.20009 10.3174/ajnr.A1809 10.1093/brain/awn254 10.1093/brain/awm112 10.1007/s00259-004-1740-5 10.1016/S0306-4522(99)00476-5 10.1212/01.wnl.0000180958.22678.91 10.1007/BF02988596 10.1016/j.neuroimage.2008.07.013 10.1007/BF00994018 10.1016/j.neurobiolaging.2006.11.010 10.1016/j.ins.2009.05.012 10.1093/brain/awm319 10.1016/j.neuroimage.2007.10.012 10.1016/j.neuroimage.2007.07.007 10.1109/TMI.2007.908685 10.1016/j.acra.2007.10.020 10.1016/j.neuroimage.2009.05.037 10.1006/nimg.2000.0582 10.1007/PL00014168 10.1073/pnas.090106797 10.1093/brain/awp105 10.1017/S1355617701755105 10.1016/j.neuroimage.2008.02.043 10.1016/j.neurobiolaging.2003.12.007 10.1016/j.neuroimage.2007.10.031 10.1016/j.neuroimage.2008.03.050 10.1016/j.neuroimage.2009.05.056 10.1016/j.jalz.2005.06.003 10.1093/cercor/11.1.1 10.1523/JNEUROSCI.0959-06.2006 10.1259/BJR/20005470 10.1016/j.neuroimage.2003.07.002 10.1016/j.neuroimage.2007.09.073 10.3233/JAD-2010-1295 10.1523/JNEUROSCI.1392-08.2008 10.1007/BF00308809 10.1136/jnnp.2004.047993 10.1093/brain/awp091 10.1016/S0197-4580(01)00271-8 10.1016/S0140-6736(94)92871-1 10.1016/j.neuroimage.2005.07.030 10.1523/JNEUROSCI.2625-04.2004 10.1016/j.neuroimage.2007.01.011 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. Copyright © 2010 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Mar 15, 2011 |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Copyright © 2010 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Mar 15, 2011 |
CorporateAuthor | The Alzheimers Disease Neuroimaging Initiative Alzheimers Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: The Alzheimers Disease Neuroimaging Initiative – name: Alzheimers Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2010.10.081 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 589 |
ExternalDocumentID | PMC3035743 3388686801 21146621 10_1016_j_neuroimage_2010_10_081 S1053811910015806 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: T15 LM007359 – fundername: NCRR NIH HHS grantid: 1UL1RR025011 – fundername: NCRR NIH HHS grantid: UL1 RR025011 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: K01 AG030514 – fundername: NIA NIH HHS grantid: R21-AG034315 – fundername: NIA NIH HHS grantid: P50 AG033514 – fundername: NIA NIH HHS grantid: R01 AG021155 – fundername: NIA NIH HHS grantid: R21 AG034315 – fundername: NICHD NIH HHS grantid: P30 HD003352 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c661t-bf9572318bfbefb6b20bcb33a05c1c6c1c724b450ce3a248449cab1b9e0422433 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:17:49 EDT 2025 Fri Jul 11 11:33:53 EDT 2025 Fri Jul 11 10:34:51 EDT 2025 Wed Aug 13 04:55:02 EDT 2025 Mon Jul 21 06:06:50 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 02:14:40 EDT 2025 Fri Feb 23 02:20:30 EST 2024 Tue Aug 26 16:36:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Copyright © 2010 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-bf9572318bfbefb6b20bcb33a05c1c6c1c724b450ce3a248449cab1b9e0422433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Data used in the preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database http://www.loni.ucla.edu/ADNI. As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. ADNI investigators include (complete listing available at http://www.loni.ucla.edu/ADNI/Collaboration/ADNI Manuscript Citations.pdf) |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3035743 |
PMID | 21146621 |
PQID | 1549920376 |
PQPubID | 2031077 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3035743 proquest_miscellaneous_858423955 proquest_miscellaneous_856403222 proquest_journals_1549920376 pubmed_primary_21146621 crossref_primary_10_1016_j_neuroimage_2010_10_081 crossref_citationtrail_10_1016_j_neuroimage_2010_10_081 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_10_081 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_10_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-15 |
PublicationDateYYYYMMDD | 2011-03-15 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Dickerson, Goncharova, Sullivan, Forchetti, Wilson, Bennett, Beckett, deToledo-Morrell (bb0090) 2001; 220 Fan, Resnick, Wu, Davatzikos (bb0105) 2008; 410 Kohannim, Hua, Hibar, Lee, Chou, Toga, Jack, Weiner, Thompson (bb0170) 2010; 31 Northoff, Bermpohl (bb0210) 2004; 80 Thompson, Mega, Woods, Zoumalan, Lindshield, Blanton, Moussail, Holmes, Cummings, Toga (bb0295) 2001; 110 Piefke, Weiss, Zilles, Markowitsch, Fink (bb0215) 2003; 1260 Minoshima, Foster, Kuhl (bb0190) 1994; 3440 Klunk, Engler, Nordberg, Wang, Blomqvist, Holt, Bergström, Savitcheva, Huang, Estrada (bb0165) 2004; 550 Demirci, Clark, Calhoun (bb0080) 2008; 390 Arimura, Yoshiura, Kumazawa, Tanaka, Koga, Mihara, Honda, Sakai, Toyofuku, Higashida (bb0010) 2008; 150 Bakir, Hofmann, Schölkopf (bb0025) 2007 Shock, Greulich, Andres (bb0270) 1984 Sonnenburg, Rätsch, Schäfer, Schölkopf (bb0280) 2006; 7 Canu, McLaren, Fitzgerald, Bendlin, Zoccatelli, Alessandrini, Pizzini, Ricciardi, Beltramello, Johnson (bb0050) 2010; 19 Schroeter, Stein, Maslowski, Neumann (bb0255) 2009; 470 Thompson, Apostolova (bb0290) 2007; 800 Matsuda (bb0180) 2001; 150 Reiman, Caselli, Yun, Chen, Bandy, Minoshima, Thibodeau, Osborne (bb0235) 1996; 3340 Rakotomamonjy, Bach, Canu, Grandvalet (bb0225) 2008; 9 Shen, Ford, Makedon, Saykin (bb0265) 2003; vol. 5032 deToledo-Morrell, Stoub, Bulgakova, Wilson, Bennett, Leurgans, Wuu, Turner (bb0085) 2004; 250 . Schoelkopf, Smola (bb0250) 2002 Braak, Braak (bb0045) 1991; 820 Kloft, M., Brefeld, U., Sonnenburg S., Zien, A. 2010. Non-sparse regularization and efficient training with multiple kernels. Gehler, Nowozin (bb0110) 2009 Braak, Griffin, Arai, Bohl, Bratzke, Braak (bb0040) 1999; 2490 Davatzikos, Xu, An, Fan, Resnick (bb0075) 2009; 1320 Ramírez, J., Górrizand, J.M., Salas-Gonzalez D., Romero, A., López M., Álvarez, I., Gómez-Río, M., in press. Computer-aided diagnosis of Alzheimer's type dementia combining support vector machines and discriminant set of features Inf. Sci. Jack, Shiung, Weigand, O'Brien, Gunter, Boeve, Knopman, Smith, Ivnik, Tangalos (bb0145) 2005; 650 Hinrichs, Singh, Xu, Johnson (bb0120) 2009; 5762 Cuingnet, Gérardin, Tessieras, Auzias, Lehéricy, Habert (bb0060) 2010 Walhovd, Fjell, Brewer, McEvoy, Fennema-Notestine, Hagler, Jennings, Karow, Dale (bb0310) 2010; 310 Johnson, Schmitz, Trivedi, Ries, Torgerson, Carlsson, Asthana, Hermann, Sager (bb0150) 2006; 260 Shannon, Buckner (bb0260) 2004; 240 Ries, Schmitz, Kawahara, Torgerson, Trivedi, Johnson (bb0240) 2006; 290 Hua, Leow, Parikshak, Lee, Chiang, Toga, Jack, Weiner, Thompson (bb0135) 2008; 430 Davatzikos, Fan, Wu, Shen, Resnick (bb0065) 2008; 290 Ishii, Sasaki, Kono, Miyamoto, Fukuda, Mori (bb0140) 2005; 320 Bishop (bb0030) 2006 Bobinski, De Leon, Wegiel, Desanti, Convit, Saint Louis, Rusinek, Wisniewski (bb0035) 1999; 950 Hua, Lee, Yanovsky, Leow, Chou, Ho, Gutman, Toga, Jack, Bernstein (bb0130) 2009; 480 Kipps, Duggins, Mahant, Gomes, Ashburner, McCusker (bb0325) 2005; 76 Rocher, Chapon, Blaizot, Baron, Chavoix (bb0245) 2003; 200 Mesulam (bb0185) 2000 Mukherjee, Singh, Peng, Hinrichs (bb0205) 2010 Whitwell, Przybelski, Weigand, Knopman, Boeve, Petersen, Jack (bb0315) 2007; 1300 Villain, Desgranges, Viader, de la Sayette, Mezenge, Landeau, Baron, Eustache, Chetelat (bb0305) 2008; 280 Hoffman, Welsh-Bohmer, Hanson, Crain, Hulette, Earl, Coleman (bb0125) 2000; 410 Ashburner (bb0015) 2007; 380 Xu, Mclaren, Ries, Fitzgerald, Bendlin, Rowley, Sager, Atwood, Asthana, Johnson (bb0320) 2009; 1320 Hinrichs, Singh, Mukherjee, Xu, Chung, Johnson (bb0115) 2009; 480 Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bb0300) 2008; 390 Ashburner, Friston (bb0020) 2000; 110 Querbes, Aubry, Pariente, Lotterie, Demonet, Duret, Puel, Berry, Fort, Celsis (bb0220) 2009; 1320 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0160) 2008; 1310 Cortes, Vapnik (bb0055) 1995; 200 Lanckriet, Cristianini, Bartlett, Ghaoui, Jordan (bb0175) 2004; 5 Soriano-Mas, Pujol, Alonso, Cardoner, Menchn, Harrison, Deus, Vallejo, Gaser (bb0285) 2007; 350 Davatzikos, Resnick, Wu, Parmpi, Clark (bb0070) 2008; 410 Albert, Moss, Tanzi, Jones (bb0005) 2001; 70 Fan, Batmanghelich, Clark, Davatzikos (bb0100) 2008; 390 Misra, Fan, Davatzikos (bb0195) 2008; 440 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bb0200) 2005; 10 Small, Ercoli, Silverman, Huang, Komo, Bookheimer, Lavretsky, Miller, Siddarth, Rasgon (bb0275) 2000; 970 Duchesne, Caroli, Geroldi, Barillot, Frisoni, Collins (bb0095) 2008; 270 Albert (10.1016/j.neuroimage.2010.10.081_bb0005) 2001; 70 Cortes (10.1016/j.neuroimage.2010.10.081_bb0055) 1995; 200 Demirci (10.1016/j.neuroimage.2010.10.081_bb0080) 2008; 390 Small (10.1016/j.neuroimage.2010.10.081_bb0275) 2000; 970 Walhovd (10.1016/j.neuroimage.2010.10.081_bb0310) 2010; 310 Rocher (10.1016/j.neuroimage.2010.10.081_bb0245) 2003; 200 Davatzikos (10.1016/j.neuroimage.2010.10.081_bb0070) 2008; 410 Hoffman (10.1016/j.neuroimage.2010.10.081_bb0125) 2000; 410 Mesulam (10.1016/j.neuroimage.2010.10.081_bb0185) 2000 Thompson (10.1016/j.neuroimage.2010.10.081_bb0295) 2001; 110 Braak (10.1016/j.neuroimage.2010.10.081_bb0045) 1991; 820 Jack (10.1016/j.neuroimage.2010.10.081_bb0145) 2005; 650 Fan (10.1016/j.neuroimage.2010.10.081_bb0105) 2008; 410 Mueller (10.1016/j.neuroimage.2010.10.081_bb0200) 2005; 10 Ishii (10.1016/j.neuroimage.2010.10.081_bb0140) 2005; 320 Matsuda (10.1016/j.neuroimage.2010.10.081_bb0180) 2001; 150 Sonnenburg (10.1016/j.neuroimage.2010.10.081_bb0280) 2006; 7 Shock (10.1016/j.neuroimage.2010.10.081_bb0270) 1984 Hinrichs (10.1016/j.neuroimage.2010.10.081_bb0120) 2009; 5762 10.1016/j.neuroimage.2010.10.081_bb0230 Hinrichs (10.1016/j.neuroimage.2010.10.081_bb0115) 2009; 480 10.1016/j.neuroimage.2010.10.081_bb0155 Misra (10.1016/j.neuroimage.2010.10.081_bb0195) 2008; 440 Querbes (10.1016/j.neuroimage.2010.10.081_bb0220) 2009; 1320 Davatzikos (10.1016/j.neuroimage.2010.10.081_bb0065) 2008; 290 Hua (10.1016/j.neuroimage.2010.10.081_bb0130) 2009; 480 Villain (10.1016/j.neuroimage.2010.10.081_bb0305) 2008; 280 Duchesne (10.1016/j.neuroimage.2010.10.081_bb0095) 2008; 270 Cuingnet (10.1016/j.neuroimage.2010.10.081_bb0060) 2010 Kipps (10.1016/j.neuroimage.2010.10.081_bb0325) 2005; 76 Schroeter (10.1016/j.neuroimage.2010.10.081_bb0255) 2009; 470 Northoff (10.1016/j.neuroimage.2010.10.081_bb0210) 2004; 80 deToledo-Morrell (10.1016/j.neuroimage.2010.10.081_bb0085) 2004; 250 Minoshima (10.1016/j.neuroimage.2010.10.081_bb0190) 1994; 3440 Piefke (10.1016/j.neuroimage.2010.10.081_bb0215) 2003; 1260 Canu (10.1016/j.neuroimage.2010.10.081_bb0050) 2010; 19 Fan (10.1016/j.neuroimage.2010.10.081_bb0100) 2008; 390 Ashburner (10.1016/j.neuroimage.2010.10.081_bb0020) 2000; 110 Soriano-Mas (10.1016/j.neuroimage.2010.10.081_bb0285) 2007; 350 Whitwell (10.1016/j.neuroimage.2010.10.081_bb0315) 2007; 1300 Kohannim (10.1016/j.neuroimage.2010.10.081_bb0170) 2010; 31 Bakir (10.1016/j.neuroimage.2010.10.081_bb0025) 2007 Braak (10.1016/j.neuroimage.2010.10.081_bb0040) 1999; 2490 Bobinski (10.1016/j.neuroimage.2010.10.081_bb0035) 1999; 950 Rakotomamonjy (10.1016/j.neuroimage.2010.10.081_bb0225) 2008; 9 Arimura (10.1016/j.neuroimage.2010.10.081_bb0010) 2008; 150 Mukherjee (10.1016/j.neuroimage.2010.10.081_bb0205) 2010 Thompson (10.1016/j.neuroimage.2010.10.081_bb0290) 2007; 800 Klöppel (10.1016/j.neuroimage.2010.10.081_bb0160) 2008; 1310 Reiman (10.1016/j.neuroimage.2010.10.081_bb0235) 1996; 3340 Hua (10.1016/j.neuroimage.2010.10.081_bb0135) 2008; 430 Davatzikos (10.1016/j.neuroimage.2010.10.081_bb0075) 2009; 1320 Shen (10.1016/j.neuroimage.2010.10.081_bb0265) 2003; vol. 5032 Schoelkopf (10.1016/j.neuroimage.2010.10.081_bb0250) 2002 Ashburner (10.1016/j.neuroimage.2010.10.081_bb0015) 2007; 380 Bishop (10.1016/j.neuroimage.2010.10.081_bb0030) 2006 Gehler (10.1016/j.neuroimage.2010.10.081_bb0110) 2009 Lanckriet (10.1016/j.neuroimage.2010.10.081_bb0175) 2004; 5 Vemuri (10.1016/j.neuroimage.2010.10.081_bb0300) 2008; 390 Xu (10.1016/j.neuroimage.2010.10.081_bb0320) 2009; 1320 Johnson (10.1016/j.neuroimage.2010.10.081_bb0150) 2006; 260 Dickerson (10.1016/j.neuroimage.2010.10.081_bb0090) 2001; 220 Ries (10.1016/j.neuroimage.2010.10.081_bb0240) 2006; 290 Shannon (10.1016/j.neuroimage.2010.10.081_bb0260) 2004; 240 Klunk (10.1016/j.neuroimage.2010.10.081_bb0165) 2004; 550 |
References_xml | – volume: 200 start-page: 273 year: 1995 end-page: 297 ident: bb0055 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 7 start-page: 1531 year: 2006 end-page: 1565 ident: bb0280 article-title: Large scale multiple kernel learning publication-title: J. Mach. Learn. Res. – volume: 410 start-page: 1220 year: 2008 end-page: 1227 ident: bb0070 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: Neuroimage – volume: 9 start-page: 2491 year: 2008 end-page: 2521 ident: bb0225 article-title: Simple MKL publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 963 year: 2010 end-page: 976 ident: bb0050 article-title: Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease publication-title: J. Alzheimer's Dis. – volume: 260 start-page: 6069 year: 2006 end-page: 6076 ident: bb0150 article-title: The influence of Alzheimer disease family history and apolipoprotein E varepsilon4 on mesial temporal lobe activation publication-title: J. Neurosci. – volume: 650 start-page: 1227 year: 2005 end-page: 1231 ident: bb0145 article-title: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI publication-title: Neurology – volume: vol. 5032 start-page: 253 year: 2003 end-page: 264 ident: bb0265 article-title: Hippocampal Shape Analysis: Surface-based Representation and Classification publication-title: Proceedings of SPIE – start-page: 3145 year: 2010 end-page: 3152 ident: bb0205 article-title: Learning kernels for variants of normalized cuts: convex relaxations and applications publication-title: Comput. Vis. Pattern Recognit. – volume: 350 year: 2007 ident: bb0285 article-title: Identifying patients with obsessive-compulsive disorder using whole-brain anatomy publication-title: Neuroimage – volume: 950 start-page: 721 year: 1999 end-page: 725 ident: bb0035 article-title: The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease publication-title: Neuroscience – volume: 390 start-page: 1774 year: 2008 end-page: 1782 ident: bb0080 article-title: A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia publication-title: Neuroimage – volume: 430 start-page: 458 year: 2008 end-page: 469 ident: bb0135 article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects publication-title: Neuroimage – volume: 320 start-page: 959 year: 2005 end-page: 963 ident: bb0140 article-title: Comparison of gray matter and metabolic reduction in mild Alzheimers disease using FDG-PET and voxel-based morphometric MR studies publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 480 start-page: 138 year: 2009 end-page: 149 ident: bb0115 article-title: Spatially augmented LPBoosting for AD classification with evaluations on the ADNI dataset publication-title: Neuroimage – volume: 1260 start-page: 650 year: 2003 end-page: 668 ident: bb0215 article-title: Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory publication-title: Brain – volume: 1320 start-page: 383 year: 2009 ident: bb0320 article-title: The influence of parental history of Alzheimer's disease and apolipoprotein E {ε} 4 on the BOLD signal during recognition memory publication-title: Brain – volume: 110 start-page: 805 year: 2000 end-page: 821 ident: bb0020 article-title: Voxel-based morphometry—the methods publication-title: Neuroimage – volume: 1320 start-page: 2036 year: 2009 end-page: 2047 ident: bb0220 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain – volume: 240 start-page: 10084 year: 2004 end-page: 10092 ident: bb0260 article-title: Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex publication-title: J. Neurosci. – volume: 5 start-page: 27 year: 2004 end-page: 72 ident: bb0175 article-title: Learning the kernel matrix with semidefinite programming publication-title: J. Mach. Learn. Res. – volume: 480 start-page: 668 year: 2009 end-page: 681 ident: bb0130 article-title: Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects publication-title: Neuroimage – year: 2002 ident: bb0250 article-title: Learning from Kernels – volume: 550 start-page: 306 year: 2004 end-page: 319 ident: bb0165 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B publication-title: Ann. Neurol. – volume: 80 start-page: 102 year: 2004 end-page: 107 ident: bb0210 article-title: Cortical midline structures and the self publication-title: Trends Cogn. Sci. – year: 2007 ident: bb0025 article-title: Predicting Structured Data – volume: 470 start-page: 1196 year: 2009 end-page: 1206 ident: bb0255 article-title: Neural correlates of Alzheimer's disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients publication-title: Neuroimage – volume: 150 start-page: 85 year: 2001 end-page: 92 ident: bb0180 article-title: Cerebral blood flow and metabolic abnormalities in Alzheimer's disease publication-title: Ann. Nucl. Med. – start-page: 2836 year: 2009 end-page: 2843 ident: bb0110 article-title: Let the kernel figure it out; principled learning of pre-processing for kernel classifiers publication-title: Comput. Vis. Pattern Recognit. – volume: 390 start-page: 1186 year: 2008 end-page: 1197 ident: bb0300 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: Neuroimage – volume: 310 start-page: 347 year: 2010 ident: bb0310 article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease publication-title: Am. J. Neuroradiol. – volume: 250 start-page: 1197 year: 2004 end-page: 1203 ident: bb0085 article-title: MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD publication-title: Neurobiol. Aging – year: 2000 ident: bb0185 article-title: Principles of Behavioral and Cognitive Neurology – volume: 1310 start-page: 681 year: 2008 end-page: 689 ident: bb0160 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 110 start-page: 1 year: 2001 end-page: 16 ident: bb0295 article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas publication-title: Cereb. Cortex – reference: Ramírez, J., Górrizand, J.M., Salas-Gonzalez D., Romero, A., López M., Álvarez, I., Gómez-Río, M., in press. Computer-aided diagnosis of Alzheimer's type dementia combining support vector machines and discriminant set of features Inf. Sci. – volume: 1300 start-page: 1777 year: 2007 end-page: 1786 ident: bb0315 article-title: 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease publication-title: Brain – volume: 280 start-page: 6174 year: 2008 end-page: 6181 ident: bb0305 article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease publication-title: J. Neurosci. – volume: 270 start-page: 509 year: 2008 end-page: 520 ident: bb0095 article-title: MRI-based automated computer classification of probable AD versus normal controls publication-title: IEEE Trans. Med. Imaging – year: 2006 ident: bb0030 article-title: Pattern Recognition and Machine Learning – volume: 1320 start-page: 2026 year: 2009 end-page: 2035 ident: bb0075 article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index publication-title: Brain – volume: 410 start-page: 1920 year: 2000 end-page: 1928 ident: bb0125 article-title: FDG PET imaging in patients with pathologically verified dementia publication-title: J. Nucl. Med. – volume: 150 start-page: 274 year: 2008 end-page: 284 ident: bb0010 article-title: Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images publication-title: Acad. Radiol. – volume: 70 start-page: 631 year: 2001 end-page: 639 ident: bb0005 article-title: Preclinical prediction of AD using neuropsychological tests publication-title: J. Int. Neuropsychol. Soc. – volume: 200 start-page: 1894 year: 2003 end-page: 1898 ident: bb0245 article-title: Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons publication-title: Neuroimage – volume: 220 start-page: 747 year: 2001 end-page: 754 ident: bb0090 article-title: MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease publication-title: Neurobiol. Aging – reference: Kloft, M., Brefeld, U., Sonnenburg S., Zien, A. 2010. Non-sparse regularization and efficient training with multiple kernels. – volume: 3440 start-page: 895 year: 1994 ident: bb0190 article-title: Posterior cingulate cortex in Alzheimer's disease publication-title: Lancet – volume: 390 start-page: 1731 year: 2008 end-page: 1743 ident: bb0100 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: Neuroimage – volume: 76 start-page: 650 year: 2005 ident: bb0325 article-title: Progression of structural neuropathology in preclinical Huntington’s disease: a tensor based morphometry study. Journal of Neurology, Neurosurgery publication-title: Neurosurgery & Psychiatry – volume: 290 start-page: 485 year: 2006 end-page: 492 ident: bb0240 article-title: Task-dependent posterior cingulate activation in mild cognitive impairment publication-title: Neuroimage – volume: 410 start-page: 277 year: 2008 end-page: 285 ident: bb0105 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: Neuroimage – volume: 3340 start-page: 752 year: 1996 end-page: 758 ident: bb0235 article-title: Preclinical evidence of Alzheimer's disease in persons homozygous for the publication-title: N. Engl. J. Med. – volume: 820 start-page: 239 year: 1991 end-page: 259 ident: bb0045 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol. – volume: 31 start-page: 1429 year: 2010 end-page: 1442 ident: bb0170 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers publication-title: Neurobiol. Aging – volume: 2490 start-page: 14 year: 1999 end-page: 22 ident: bb0040 article-title: Neuropathology of Alzheimer's disease: what is new since A. Alzheimer? publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 5762 start-page: 786 year: 2009 end-page: 794 ident: bb0120 article-title: MKL for robust multi-modality AD classification publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 290 start-page: 514 year: 2008 end-page: 523 ident: bb0065 article-title: Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging publication-title: Neurobiol. Aging – volume: 970 start-page: 6037 year: 2000 end-page: 6042 ident: bb0275 article-title: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 800 start-page: 78 year: 2007 end-page: 91 ident: bb0290 article-title: Computational anatomical methods as applied to ageing and dementia publication-title: Br. J. Radiol. – reference: . – volume: 440 start-page: 1415 year: 2008 end-page: 1422 ident: bb0195 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: Neuroimage – year: 1984 ident: bb0270 article-title: Normal Human Aging: the Baltimore Longitudinal Study of Aging – volume: 380 start-page: 95 year: 2007 end-page: 113 ident: bb0015 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – year: 2010 ident: bb0060 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage – volume: 10 start-page: 55 year: 2005 end-page: 66 ident: bb0200 article-title: Ways toward an early diagnosis in Alzheimers disease: the Alzheimers Disease Neuroimaging Initiative (ADNI) publication-title: J. Alzheimer's Assoc. – volume: 1260 start-page: 650 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2010.10.081_bb0215 article-title: Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory publication-title: Brain doi: 10.1093/brain/awg064 – volume: 480 start-page: 668 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2010.10.081_bb0130 article-title: Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.011 – volume: 440 start-page: 1415 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0195 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.031 – volume: 80 start-page: 102 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2010.10.081_bb0210 article-title: Cortical midline structures and the self publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2004.01.004 – volume: 31 start-page: 1429 issue: 8 year: 2010 ident: 10.1016/j.neuroimage.2010.10.081_bb0170 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.04.022 – volume: vol. 5032 start-page: 253 year: 2003 ident: 10.1016/j.neuroimage.2010.10.081_bb0265 article-title: Hippocampal Shape Analysis: Surface-based Representation and Classification – volume: 3340 start-page: 752 issue: 12 year: 1996 ident: 10.1016/j.neuroimage.2010.10.081_bb0235 article-title: Preclinical evidence of Alzheimer's disease in persons homozygous for the ε4 allele for apolipoprotein E publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199603213341202 – volume: 550 start-page: 306 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2010.10.081_bb0165 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B publication-title: Ann. Neurol. doi: 10.1002/ana.20009 – volume: 7 start-page: 1531 year: 2006 ident: 10.1016/j.neuroimage.2010.10.081_bb0280 article-title: Large scale multiple kernel learning publication-title: J. Mach. Learn. Res. – volume: 310 start-page: 347 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2010.10.081_bb0310 article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A1809 – volume: 1320 start-page: 383 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2010.10.081_bb0320 article-title: The influence of parental history of Alzheimer's disease and apolipoprotein E {ε} 4 on the BOLD signal during recognition memory publication-title: Brain doi: 10.1093/brain/awn254 – volume: 1300 start-page: 1777 issue: 7 year: 2007 ident: 10.1016/j.neuroimage.2010.10.081_bb0315 article-title: 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm112 – volume: 320 start-page: 959 issue: 8 year: 2005 ident: 10.1016/j.neuroimage.2010.10.081_bb0140 article-title: Comparison of gray matter and metabolic reduction in mild Alzheimers disease using FDG-PET and voxel-based morphometric MR studies publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-004-1740-5 – volume: 950 start-page: 721 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2010.10.081_bb0035 article-title: The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease publication-title: Neuroscience doi: 10.1016/S0306-4522(99)00476-5 – volume: 5762 start-page: 786 year: 2009 ident: 10.1016/j.neuroimage.2010.10.081_bb0120 article-title: MKL for robust multi-modality AD classification publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 650 start-page: 1227 issue: 8 year: 2005 ident: 10.1016/j.neuroimage.2010.10.081_bb0145 article-title: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI publication-title: Neurology doi: 10.1212/01.wnl.0000180958.22678.91 – volume: 410 start-page: 1920 issue: 11 year: 2000 ident: 10.1016/j.neuroimage.2010.10.081_bb0125 article-title: FDG PET imaging in patients with pathologically verified dementia publication-title: J. Nucl. Med. – ident: 10.1016/j.neuroimage.2010.10.081_bb0155 – volume: 150 start-page: 85 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2010.10.081_bb0180 article-title: Cerebral blood flow and metabolic abnormalities in Alzheimer's disease publication-title: Ann. Nucl. Med. doi: 10.1007/BF02988596 – volume: 430 start-page: 458 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0135 article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.07.013 – volume: 200 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2010.10.081_bb0055 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 290 start-page: 514 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0065 article-title: Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.11.010 – ident: 10.1016/j.neuroimage.2010.10.081_bb0230 doi: 10.1016/j.ins.2009.05.012 – volume: 1310 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0160 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 5 start-page: 27 year: 2004 ident: 10.1016/j.neuroimage.2010.10.081_bb0175 article-title: Learning the kernel matrix with semidefinite programming publication-title: J. Mach. Learn. Res. – volume: 390 start-page: 1774 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0080 article-title: A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.012 – start-page: 3145 year: 2010 ident: 10.1016/j.neuroimage.2010.10.081_bb0205 article-title: Learning kernels for variants of normalized cuts: convex relaxations and applications publication-title: Comput. Vis. Pattern Recognit. – volume: 380 start-page: 95 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2010.10.081_bb0015 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 270 start-page: 509 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0095 article-title: MRI-based automated computer classification of probable AD versus normal controls publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.908685 – volume: 150 start-page: 274 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0010 article-title: Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images publication-title: Acad. Radiol. doi: 10.1016/j.acra.2007.10.020 – volume: 470 start-page: 1196 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2010.10.081_bb0255 article-title: Neural correlates of Alzheimer's disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.037 – volume: 9 start-page: 2491 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0225 article-title: Simple MKL publication-title: J. Mach. Learn. Res. – volume: 110 start-page: 805 issue: 6 year: 2000 ident: 10.1016/j.neuroimage.2010.10.081_bb0020 article-title: Voxel-based morphometry—the methods publication-title: Neuroimage doi: 10.1006/nimg.2000.0582 – volume: 2490 start-page: 14 issue: 9 year: 1999 ident: 10.1016/j.neuroimage.2010.10.081_bb0040 article-title: Neuropathology of Alzheimer's disease: what is new since A. Alzheimer? publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/PL00014168 – volume: 970 start-page: 6037 issue: 11 year: 2000 ident: 10.1016/j.neuroimage.2010.10.081_bb0275 article-title: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.090106797 – volume: 1320 start-page: 2036 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2010.10.081_bb0220 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain doi: 10.1093/brain/awp105 – volume: 70 start-page: 631 issue: 05 year: 2001 ident: 10.1016/j.neuroimage.2010.10.081_bb0005 article-title: Preclinical prediction of AD using neuropsychological tests publication-title: J. Int. Neuropsychol. Soc. doi: 10.1017/S1355617701755105 – volume: 410 start-page: 277 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0105 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.043 – volume: 250 start-page: 1197 issue: 9 year: 2004 ident: 10.1016/j.neuroimage.2010.10.081_bb0085 article-title: MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2003.12.007 – volume: 390 start-page: 1731 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0100 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.031 – volume: 410 start-page: 1220 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0070 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.050 – volume: 480 start-page: 138 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2010.10.081_bb0115 article-title: Spatially augmented LPBoosting for AD classification with evaluations on the ADNI dataset publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.056 – volume: 10 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2010.10.081_bb0200 article-title: Ways toward an early diagnosis in Alzheimers disease: the Alzheimers Disease Neuroimaging Initiative (ADNI) publication-title: J. Alzheimer's Assoc. doi: 10.1016/j.jalz.2005.06.003 – volume: 110 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2010.10.081_bb0295 article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas publication-title: Cereb. Cortex doi: 10.1093/cercor/11.1.1 – volume: 260 start-page: 6069 issue: 22 year: 2006 ident: 10.1016/j.neuroimage.2010.10.081_bb0150 article-title: The influence of Alzheimer disease family history and apolipoprotein E varepsilon4 on mesial temporal lobe activation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0959-06.2006 – year: 2007 ident: 10.1016/j.neuroimage.2010.10.081_bb0025 – volume: 800 start-page: 78 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2010.10.081_bb0290 article-title: Computational anatomical methods as applied to ageing and dementia publication-title: Br. J. Radiol. doi: 10.1259/BJR/20005470 – volume: 200 start-page: 1894 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2010.10.081_bb0245 article-title: Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.07.002 – year: 2000 ident: 10.1016/j.neuroimage.2010.10.081_bb0185 – start-page: 2836 year: 2009 ident: 10.1016/j.neuroimage.2010.10.081_bb0110 article-title: Let the kernel figure it out; principled learning of pre-processing for kernel classifiers publication-title: Comput. Vis. Pattern Recognit. – volume: 390 start-page: 1186 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0300 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.073 – volume: 19 start-page: 963 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2010.10.081_bb0050 article-title: Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease publication-title: J. Alzheimer's Dis. doi: 10.3233/JAD-2010-1295 – volume: 280 start-page: 6174 issue: 24 year: 2008 ident: 10.1016/j.neuroimage.2010.10.081_bb0305 article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1392-08.2008 – volume: 820 start-page: 239 issue: 4 year: 1991 ident: 10.1016/j.neuroimage.2010.10.081_bb0045 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol. doi: 10.1007/BF00308809 – volume: 76 start-page: 650 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2010.10.081_bb0325 article-title: Progression of structural neuropathology in preclinical Huntington’s disease: a tensor based morphometry study. Journal of Neurology, Neurosurgery publication-title: Neurosurgery & Psychiatry doi: 10.1136/jnnp.2004.047993 – year: 2002 ident: 10.1016/j.neuroimage.2010.10.081_bb0250 – year: 2010 ident: 10.1016/j.neuroimage.2010.10.081_bb0060 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage – volume: 1320 start-page: 2026 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2010.10.081_bb0075 article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index publication-title: Brain doi: 10.1093/brain/awp091 – volume: 220 start-page: 747 issue: 5 year: 2001 ident: 10.1016/j.neuroimage.2010.10.081_bb0090 article-title: MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(01)00271-8 – volume: 3440 start-page: 895 issue: 8926 year: 1994 ident: 10.1016/j.neuroimage.2010.10.081_bb0190 article-title: Posterior cingulate cortex in Alzheimer's disease publication-title: Lancet doi: 10.1016/S0140-6736(94)92871-1 – volume: 290 start-page: 485 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2010.10.081_bb0240 article-title: Task-dependent posterior cingulate activation in mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.07.030 – volume: 240 start-page: 10084 issue: 45 year: 2004 ident: 10.1016/j.neuroimage.2010.10.081_bb0260 article-title: Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2625-04.2004 – year: 1984 ident: 10.1016/j.neuroimage.2010.10.081_bb0270 – year: 2006 ident: 10.1016/j.neuroimage.2010.10.081_bb0030 – volume: 350 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2010.10.081_bb0285 article-title: Identifying patients with obsessive-compulsive disorder using whole-brain anatomy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.011 |
SSID | ssj0009148 |
Score | 2.5194232 |
Snippet | Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase... Alzheimer’s Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 574 |
SubjectTerms | Accuracy Aged Algorithms Alzheimer Disease - diagnosis Alzheimer's disease Area Under Curve Artificial Intelligence Biomarkers Brain research Classification Cognition Disorders - diagnosis Disease Progression Female Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging Male Medical imaging Methods Neurodegeneration Positron-Emission Tomography ROC Curve |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELVgkRAXxDeFBfnA1SL-jAMHVC2sFqSuOLBSb5HtOKKIJkvb_f_MxE7Kglj10KqqPWnlGc882c_PhLwpYlVUMSpmpGyYipIzZ-CttAA3oIJw4fHs8OLcnF2oL0u9zAtu20yrHHPikKibPuAa-VuUEqtEAfPhw-UvhrdG4e5qvkLjNrmD0mVI6SqX5V50l6t0FE5LZqFDZvIkftegF7law6xNBC_keFn-v_L0L_z8m0X5R1k6fUDuZzxJ5ykAHpJbsXtE7i7yjvlj0n3d4GdManSNVJzNlgJOpfOPdNVRRwdCIVv3zYDHaTtytd7ROTRnxRLat3Rx8pkOZK4k5IHWgB3hOefw_XQL2BNycfrp28kZy3cssACVecd8W-kSMJ71rY-tN14UPngpXaEDDwZepVBe6SJE6YSySlXBee6riOJhSsqn5Kjru_gchtaaIJsgWxM8ON07XthWOVGUDaQNJ2akHIe2DlmAHO_B-FmPTLMf9d4pNToFW8ApM8Iny8skwnGATTV6rx4PmUJarKFSHGD7frLNQCQBjAOtj8dgqXNC2Nb78J0ROjXDVMb9GdfF_mpbW21UgTtfN3WxqNio9Yw8S9E3DYjA8-VGwM-X1-Jy6oBC4tdbutX3QVAcYIwGJPni5j_-ktxLC-qScX1Mjnabq_gKENnOvx6m3W_fvDcQ priority: 102 providerName: ProQuest |
Title | Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910015806 https://dx.doi.org/10.1016/j.neuroimage.2010.10.081 https://www.ncbi.nlm.nih.gov/pubmed/21146621 https://www.proquest.com/docview/1549920376 https://www.proquest.com/docview/856403222 https://www.proquest.com/docview/858423955 https://pubmed.ncbi.nlm.nih.gov/PMC3035743 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamISEuiN-UjckHrqHxrzgZp1I2daBWEzCpN8t2HS2IplPbXfnbeS9xMgoCVeLQtIr9ktbPfu9r_PkzIW_SUKRFCDLJhFgkMgiW2AwOOge4ARmEcYdrh6ezbHIlP87V_ICMu7UwSKuMsb-N6U20jmeGsTWHN1U1_ALIANIN_N_AvJ83sttSauzlb3_c0TwKJtvlcEokWDuyeVqOV6MZWS1h5LYkL-R55exvKepPCPo7k_KX1HT-iDyMmJKO2q_9mByE-gm5P42z5k9JfbnGzxjY6BLpOOsNBaxKRx9oVVNLG1JhslwtGkxOy46vdUpHUBxVS-iqpNPxBW0IXa2YB1oDfoTrzOB8vxPYM3J1fvZ1PEniPguJh-y8TVxZKA04L3elC6XLHE-dd0LYVHnmM3hpLp1UqQ_CcplLWXjrmCsCCohJIZ6Tw3pVh5fQtHnmxcKLMvMOHO8sS_NSWp7qBYQOywdEd01rfBQhx70wvpuObfbN3DnFoFOwBJwyIKy3vGmFOPawKTrvmW6hKYRGA9liD9t3ve1Oh9zT-rjrLCYGhY1BNbyCpxDSB4T2xTCccY7G1mF1uzG5ymSKs1__qpKjaqNSA_Ki7X19g3BcY55xuL3e6Zd9BRQT3y2pq-tGVBygjAI0-eq_fvYRedA-cxcJU8fkcLu-Da8BtG3dSTMq4ajn-oTcG118mszg_f3Z7PLzT7cORmk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEHcKA_wAjxbxLRcQQmUXtWytJrRJezOx44gimo62E-JP8Rs5J05SBmLqyx4aVXVOGtnHx5_t73wm5GXksyjzXrFYyoIpLznLY7gkKcANGEG4sJg7PJ7Ew1P18UyfbZFfbS4M0irbmFgH6mLucI38NUqJZSKC_vD-_DvDU6Nwd7U9QiO4xaH_-QOmbMt3oz1o31dCHOyf7A5Zc6oAczAWrZgtM50AqkltaX1pYysi66yUeaQddzF8EqGs0pHzMhcqVSpzueU28yiXpXABFEL-tpIwlemR7Q_7k-NPa5lfrkLynZYs5TxruEOBUVYrVE5nECcCpQxZZSn_34D4L-D9m7f5x0B4cIfcbhAsHQSXu0u2fHWP3Bg3e_T3SXW8wO8YRukMyT-LJQVkTAd7dFrRnNYURjabF_UMgJYtO-wNHUBxo5FC5yUd745oTR8L0iFoDWgVnjOB37tzxx6Q02up_4ekV80r_xiqNo2dLJwsY2fBzWzOo7RUuYiSAgJVLvokaavWuEbyHE_e-GZabttXs24Ug42CJdAofcI7y_Mg-7GBTda2nmnTWiEQGxibNrB929k20CdAmg2td1pnMU0IWpp1h-kT2hVD8MAdobzy84ulSXWsItxru-qWFDUite6TR8H7ugoRmNEeC_j75JJfdjegdPnlkmr6pZYwB-CkAbs-ufrFX5Cbw5PxkTkaTQ6fklthOV8yrndIb7W48M8AD67s86YTUvL5uvv9b_QpdYU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcEJRXoIAPcLS6fu0DhFDUEDWURD1QKTezdrxqENktSSrEX-PXMbPe3bQgqlx6SBTFO5vInhl_a3_zmZDXkc-izHvFYilnTHnJWR7DW5IC3IAZhAuLtcPjSXx8pj5N9XSH_G5rYZBW2ebEOlHPKodr5IcoJZaJCOLhsGhoEaeD4YeLHwxPkMKd1vY4jeAiJ_7XT3h8W70fDWCs3wgx_Pjl6Jg1JwwwB_PSmtki0wkgnNQW1hc2tiKyzkqZR9pxF8MrEcoqHTkvc6FSpTKXW24zj9JZChdDIf3fSaTmGGPJNNkI_nIVyvC0ZCnnWcMiCtyyWqtyvoCMEchlyC9L-f-mxn-h798MzitT4vA-uddgWdoPzveA7Phyn-yNm936h6Q8XeJnTKh0gTSg5YoCRqb9AZ2XNKc1mZEtqln9LECLlif2lvahuVFLoVVBx0cjWhPJgogIWgNuhftM4PvuBLJH5OxWev8x2S2r0j-Frk1jJ2dOFrGz4HA251FaqFxEyQxSVi56JGm71rhG_BzP4PhuWpbbN7MZFIODgi0wKD3CO8uLIACyhU3Wjp5pC1whJRuYpbawfdfZNiAogJstrQ9aZzFNMlqZTej0CO2aIY3g3lBe-upyZVIdqwh33W66JEW1SK175Enwvq5DBNa2xwJ-Prnml90FKGJ-vaWcn9di5gChNKDYZzf_8VdkD6LdfB5NTp6Tu2FdXzKuD8juennpXwAwXNuXdQRS8vW2Q_4P9_J4VQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Markers+for+AD+in+a+Multi-Modality+Framework%3A+An+Analysis+of+MCI+Progression+in+the+ADNI+Population&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hinrichs%2C+Chris&rft.au=Singh%2C+Vikas&rft.au=Xu%2C+Guofan&rft.au=Johnson%2C+Sterling+C.&rft.date=2011-03-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=55&rft.issue=2&rft.spage=574&rft.epage=589&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.10.081&rft_id=info%3Apmid%2F21146621&rft.externalDocID=PMC3035743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |