Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population

Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying indi...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 55; no. 2; pp. 574 - 589
Main Authors Hinrichs, Chris, Singh, Vikas, Xu, Guofan, Johnson, Sterling C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.03.2011
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another—by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%–4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD. ► Unified multi-modality classification system adapts Multi-Kernel Learning (MKL). ► Multi-Modal Disease Marker (MMDM) using imaging and non-imaging data. ► Application to ADNI AD, control and MCI subjects. ► Experimental validation of MMDM's predictive value in MCI to AD progression.
AbstractList Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another—by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%–4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD. ► Unified multi-modality classification system adapts Multi-Kernel Learning (MKL). ► Multi-Modal Disease Marker (MMDM) using imaging and non-imaging data. ► Application to ADNI AD, control and MCI subjects. ► Experimental validation of MMDM's predictive value in MCI to AD progression.
Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another - by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%-4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD.
Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reportingseparateresults for each. One strategy to improve on the success of these methods is to leverageallavailable imaging modalitiestogetherin a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another--by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%-4%. We are especially interested in whether such markers are capable of identifyingearlysigns of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD.
Alzheimer’s Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another – by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3% – 4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual’s conversion from MCI to AD.
Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another-by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%-4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD.Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have utilized statistical machine learning techniques, using brain images as input, as means of deriving such AD-related markers. A common characteristic of this line of research is a focus on either (1) using a single imaging modality for classification, or (2) incorporating several modalities, but reporting separate results for each. One strategy to improve on the success of these methods is to leverage all available imaging modalities together in a single automated learning framework. The rationale is that some subjects may show signs of pathology in one modality but not in another-by combining all available images a clearer view of the progression of disease pathology will emerge. Our method is based on the Multi-Kernel Learning (MKL) framework, which allows the inclusion of an arbitrary number of views of the data in a maximum margin, kernel learning framework. The principal innovation behind MKL is that it learns an optimal combination of kernel (similarity) matrices while simultaneously training a classifier. In classification experiments MKL outperformed an SVM trained on all available features by 3%-4%. We are especially interested in whether such markers are capable of identifying early signs of the disease. To address this question, we have examined whether our multi-modal disease marker (MMDM) can predict conversion from Mild Cognitive Impairment (MCI) to AD. Our experiments reveal that this measure shows significant group differences between MCI subjects who progressed to AD, and those who remained stable for 3 years. These differences were most significant in MMDMs based on imaging data. We also discuss the relationship between our MMDM and an individual's conversion from MCI to AD.
Author Johnson, Sterling C.
Singh, Vikas
Hinrichs, Chris
Xu, Guofan
AuthorAffiliation a Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706
d Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
c Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI 53705
b Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison Madison, WI 53705
AuthorAffiliation_xml – name: b Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison Madison, WI 53705
– name: d Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
– name: a Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706
– name: c Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI 53705
Author_xml – sequence: 1
  givenname: Chris
  surname: Hinrichs
  fullname: Hinrichs, Chris
  email: hinrichs@cs.wisc.edu
  organization: Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 2
  givenname: Vikas
  surname: Singh
  fullname: Singh, Vikas
  email: vsingh@biostat.wisc.edu
  organization: Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 3
  givenname: Guofan
  surname: Xu
  fullname: Xu, Guofan
  email: gxu@medicine.wisc.edu
  organization: Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI 53705, USA
– sequence: 4
  givenname: Sterling C.
  surname: Johnson
  fullname: Johnson, Sterling C.
  email: scj@medicine.wisc.edu
  organization: Geriatric Research Education and Clinical Center, Wm S. Middleton VA Hospital, Madison, WI 53705, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21146621$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuP0zAQxyO0iH3AV0CWOHBK8StpwgFRymul5XGAs2W7k65bxy62U9Rvj9MuXdhTD5atmf_8NJ75XxZnzjsoCkTwhGBSv1pNHAzBm14uYULxPjzBDXlUXBDcVmVbTenZ-K5Y2RDSnheXMa4wxi3hzZPinBLC65qSi8J9D7AwOpktoF6GNYSIOh_Q7D0yDknUDzaZsvcLaU3aoS7IHn77sH6NZjntpN1FE5Hv0Jf5NdoEvwwQo_FurE63kDlfc9xvBitTDj8tHnfSRnh2d18VPz9--DH_XN58-3Q9n92Uuq5JKlU3_oCRRnUKOlUripVWjElcaaLrfKaUK15hDUxS3nDeaqmIagFzSjljV8WbA3czqB4WGlwK0opNyCMLO-GlEf9nnLkVS78VDLNquge8vAME_2uAmERvogZrpQM_RNFUDaesraoTlDXHjFKalS8eKFd-CHmGUZCKty3FbFpn1fN_Wz_2_HdnWdAcBDr4GAN0RwnBYrSHWIl7e4jRHmMm2-N-LMdSbdJ-MXkIxp4CeHcAQF7e1kAQURtwOnsogE5i4c0pkLcPINoaZ7S0a9idhvgDZRDzyA
CitedBy_id crossref_primary_10_1016_j_neuroimage_2013_06_033
crossref_primary_10_1016_j_mri_2012_11_009
crossref_primary_10_1016_j_jneumeth_2020_108988
crossref_primary_10_3389_fnagi_2018_00272
crossref_primary_10_1109_TNNLS_2019_2900077
crossref_primary_10_1038_s41598_019_49656_2
crossref_primary_10_1155_2014_145243
crossref_primary_10_1016_j_compbiomed_2022_106116
crossref_primary_10_3233_IDT_230141
crossref_primary_10_3233_JAD_150570
crossref_primary_10_1109_TCBB_2021_3053061
crossref_primary_10_1186_s12880_016_0172_6
crossref_primary_10_1109_TCYB_2016_2644718
crossref_primary_10_1186_s12911_017_0497_2
crossref_primary_10_1016_j_archger_2019_103997
crossref_primary_10_1016_j_neuroimage_2013_09_015
crossref_primary_10_1007_s11684_019_0718_4
crossref_primary_10_1038_s41598_024_60134_2
crossref_primary_10_1080_24725579_2017_1367979
crossref_primary_10_3389_fnins_2021_669595
crossref_primary_10_1038_s41598_018_26151_8
crossref_primary_10_3233_JAD_160594
crossref_primary_10_1016_j_neucom_2015_10_043
crossref_primary_10_1016_j_media_2019_01_007
crossref_primary_10_3233_JAD_142820
crossref_primary_10_1016_j_media_2021_102266
crossref_primary_10_1002_hbm_24207
crossref_primary_10_1016_j_patcog_2016_10_009
crossref_primary_10_1093_bioinformatics_btr649
crossref_primary_10_1016_j_compbiomed_2023_107050
crossref_primary_10_1186_s13229_017_0146_8
crossref_primary_10_3390_jpm12050704
crossref_primary_10_1080_19466315_2021_1884129
crossref_primary_10_1038_s41598_021_82098_3
crossref_primary_10_1109_ACCESS_2018_2871977
crossref_primary_10_1080_23279095_2023_2169886
crossref_primary_10_1016_j_nicl_2018_01_019
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_18632_aging_101883
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_1016_j_media_2019_101567
crossref_primary_10_1109_JBHI_2017_2655720
crossref_primary_10_3389_fnagi_2016_00077
crossref_primary_10_1109_JSTSP_2016_2600400
crossref_primary_10_1002_alz_12032
crossref_primary_10_1016_j_neuroimage_2017_03_057
crossref_primary_10_1109_TBME_2014_2310709
crossref_primary_10_1093_cercor_bhac084
crossref_primary_10_3390_app13031656
crossref_primary_10_1016_j_neubiorev_2020_04_026
crossref_primary_10_1007_s11682_012_9180_5
crossref_primary_10_1109_ACCESS_2019_2936415
crossref_primary_10_1109_ACCESS_2024_3454709
crossref_primary_10_1109_TBME_2012_2212278
crossref_primary_10_1093_braincomms_fcaf027
crossref_primary_10_1109_TCDS_2022_3189701
crossref_primary_10_1016_j_trsl_2018_01_001
crossref_primary_10_1109_JBHI_2023_3268729
crossref_primary_10_1002_hbm_23575
crossref_primary_10_1016_j_neunet_2025_107263
crossref_primary_10_1155_2015_865265
crossref_primary_10_1016_j_compbiomed_2024_108588
crossref_primary_10_1148_radiol_12120010
crossref_primary_10_1016_j_cmpb_2022_107103
crossref_primary_10_1016_j_patcog_2016_09_039
crossref_primary_10_1016_j_jneumeth_2015_11_028
crossref_primary_10_1371_journal_pone_0088687
crossref_primary_10_1016_j_neuroimage_2017_06_072
crossref_primary_10_1371_journal_pone_0033182
crossref_primary_10_1016_j_neuroimage_2014_06_077
crossref_primary_10_1016_j_knosys_2012_07_012
crossref_primary_10_1371_journal_pone_0138866
crossref_primary_10_1590_1980_57642015DN94000385
crossref_primary_10_3390_diagnostics14010013
crossref_primary_10_1155_2014_785039
crossref_primary_10_1159_000484248
crossref_primary_10_1007_s12021_017_9347_8
crossref_primary_10_1017_S1041610218001618
crossref_primary_10_1007_s00429_015_1059_y
crossref_primary_10_1007_s11042_024_19425_z
crossref_primary_10_1016_j_media_2014_04_006
crossref_primary_10_1142_S0129065716500258
crossref_primary_10_3390_app8081372
crossref_primary_10_1002_14651858_CD009628_pub2
crossref_primary_10_1038_s41598_024_62712_w
crossref_primary_10_1016_j_compbiomed_2018_09_004
crossref_primary_10_1016_j_neuroimage_2013_08_015
crossref_primary_10_1002_hbm_23434
crossref_primary_10_1093_brain_awv007
crossref_primary_10_3233_JAD_190262
crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_1016_j_neuroimage_2014_01_033
crossref_primary_10_1002_hbm_24682
crossref_primary_10_1002_ima_22390
crossref_primary_10_1016_j_compmedimag_2019_101663
crossref_primary_10_1007_s12021_016_9318_5
crossref_primary_10_1371_journal_pone_0074062
crossref_primary_10_1016_j_media_2017_01_008
crossref_primary_10_1080_01621459_2021_2013851
crossref_primary_10_1007_s40708_016_0035_5
crossref_primary_10_3390_app10051894
crossref_primary_10_1016_j_jamda_2017_05_017
crossref_primary_10_1016_j_neuroimage_2012_07_059
crossref_primary_10_1080_01621459_2021_1938083
crossref_primary_10_1016_j_exger_2018_01_002
crossref_primary_10_1016_j_neuroimage_2018_03_040
crossref_primary_10_1016_j_biopsych_2019_12_021
crossref_primary_10_1109_TBME_2015_2404809
crossref_primary_10_1002_mrm_25853
crossref_primary_10_1080_0952813X_2020_1818290
crossref_primary_10_1016_j_nicl_2013_07_005
crossref_primary_10_3390_math10050805
crossref_primary_10_14283_jpad_2017_29
crossref_primary_10_1109_TMI_2018_2857221
crossref_primary_10_3389_fpsyt_2019_00572
crossref_primary_10_1016_j_biopsych_2013_11_020
crossref_primary_10_1109_TBME_2013_2284195
crossref_primary_10_1016_j_neuroimage_2011_12_071
crossref_primary_10_3389_fnhum_2017_00380
crossref_primary_10_1007_s40708_015_0020_4
crossref_primary_10_1016_j_bspc_2021_102698
crossref_primary_10_1016_j_jneumeth_2018_09_028
crossref_primary_10_3389_fmolb_2019_00158
crossref_primary_10_3233_JAD_160850
crossref_primary_10_1016_j_biopsych_2016_12_030
crossref_primary_10_1038_s41598_017_03925_0
crossref_primary_10_1016_j_compbiomed_2013_05_021
crossref_primary_10_1080_01431161_2018_1500730
crossref_primary_10_1371_journal_pone_0129250
crossref_primary_10_1142_S0218213018500112
crossref_primary_10_1007_s11682_015_9480_7
crossref_primary_10_1016_j_tics_2013_08_007
crossref_primary_10_1109_TAI_2024_3416420
crossref_primary_10_1016_j_eswa_2021_115549
crossref_primary_10_1109_JBHI_2015_2429556
crossref_primary_10_1016_j_mri_2015_11_009
crossref_primary_10_3233_JAD_170338
crossref_primary_10_1016_j_bspc_2022_104312
crossref_primary_10_1016_j_cmpb_2016_09_019
crossref_primary_10_1186_s40708_018_0080_3
crossref_primary_10_1016_j_neubiorev_2012_01_004
crossref_primary_10_1007_s10072_021_05568_6
crossref_primary_10_1016_j_cmpb_2017_07_003
crossref_primary_10_1016_j_neuroimage_2019_01_053
crossref_primary_10_3390_app9153063
crossref_primary_10_3390_electronics11081288
crossref_primary_10_1007_s12021_020_09470_y
crossref_primary_10_1016_j_patcog_2014_12_007
crossref_primary_10_3233_JAD_215338
crossref_primary_10_1155_2014_421743
crossref_primary_10_3389_fnagi_2016_00119
crossref_primary_10_1016_j_media_2020_101712
crossref_primary_10_1016_j_nicl_2013_05_004
crossref_primary_10_3233_JAD_190973
crossref_primary_10_1016_j_pscychresns_2014_08_005
crossref_primary_10_1371_journal_pone_0179804
crossref_primary_10_1007_s00138_012_0462_0
crossref_primary_10_1007_s00259_017_3761_x
crossref_primary_10_1111_jon_12163
crossref_primary_10_1016_j_neuroimage_2014_10_002
crossref_primary_10_1007_s12021_013_9180_7
crossref_primary_10_14201_ADCAIJ2021102183196
crossref_primary_10_1016_j_neuroimage_2011_09_069
crossref_primary_10_1016_j_neuroimage_2024_120695
crossref_primary_10_3390_s20030941
crossref_primary_10_7554_eLife_49298
crossref_primary_10_1109_ACCESS_2022_3196649
crossref_primary_10_1016_j_neurobiolaging_2014_03_042
crossref_primary_10_4196_kjpp_2014_18_6_447
crossref_primary_10_1016_j_neuroimage_2011_05_083
crossref_primary_10_1080_13803395_2012_681628
crossref_primary_10_1186_s12938_016_0183_0
crossref_primary_10_1007_s40708_015_0019_x
crossref_primary_10_1109_JBHI_2017_2703918
crossref_primary_10_1093_cercor_bhad331
crossref_primary_10_1155_2015_961314
crossref_primary_10_1007_s44192_023_00041_6
crossref_primary_10_1038_srep39880
crossref_primary_10_1155_2021_6628036
crossref_primary_10_1007_s11682_013_9263_y
crossref_primary_10_1007_s00429_015_1140_6
crossref_primary_10_1038_s41598_018_35789_3
crossref_primary_10_1016_j_jneumeth_2017_12_011
crossref_primary_10_1016_j_media_2021_102082
crossref_primary_10_3389_fninf_2022_856175
crossref_primary_10_1016_j_neurad_2017_05_008
crossref_primary_10_1016_j_ijmedinf_2017_07_002
crossref_primary_10_1007_s11682_015_9356_x
crossref_primary_10_1371_journal_pone_0171749
crossref_primary_10_3389_fnagi_2020_00077
crossref_primary_10_1155_2020_8015156
crossref_primary_10_1016_j_jalz_2015_01_010
crossref_primary_10_1093_cercor_bhac099
crossref_primary_10_3389_fnagi_2022_866230
crossref_primary_10_3389_fnagi_2014_00260
crossref_primary_10_1016_j_compmedimag_2019_01_005
crossref_primary_10_1007_s00429_013_0687_3
crossref_primary_10_1109_JBHI_2022_3161466
crossref_primary_10_1002_hbm_22759
crossref_primary_10_1007_s00702_014_1324_x
crossref_primary_10_1002_dad2_12197
crossref_primary_10_1155_2024_6668159
crossref_primary_10_1080_01621459_2019_1585254
crossref_primary_10_1186_s12883_020_01728_x
crossref_primary_10_3389_fnins_2024_1352129
crossref_primary_10_1142_S1793536914500046
crossref_primary_10_1016_j_pneurobio_2011_06_004
crossref_primary_10_4236_jbise_2013_611137
crossref_primary_10_1371_journal_pone_0067346
crossref_primary_10_1007_s11517_019_01974_3
crossref_primary_10_1007_s11042_018_5768_0
crossref_primary_10_1016_j_neuroimage_2011_01_008
crossref_primary_10_3389_fnagi_2017_00146
crossref_primary_10_1016_j_dadm_2015_01_006
crossref_primary_10_3389_fonc_2021_588010
crossref_primary_10_1016_j_cmpb_2015_08_004
crossref_primary_10_3389_fnins_2014_00189
crossref_primary_10_1016_j_media_2015_10_008
crossref_primary_10_1016_j_neuroimage_2012_09_065
crossref_primary_10_1016_j_patcog_2018_11_027
crossref_primary_10_1111_ggi_14670
crossref_primary_10_3389_fnagi_2016_00023
crossref_primary_10_1111_jon_12214
crossref_primary_10_1016_j_heliyon_2019_e02216
crossref_primary_10_1016_j_neucom_2016_08_041
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_3233_JAD_160102
crossref_primary_10_1016_j_bpsc_2018_04_004
crossref_primary_10_1007_s10845_020_01554_5
crossref_primary_10_1016_j_neurobiolaging_2013_06_015
crossref_primary_10_3390_jcm7090250
crossref_primary_10_1371_journal_pone_0093851
crossref_primary_10_1016_j_neuroimage_2012_01_084
crossref_primary_10_1016_j_nicl_2013_11_010
crossref_primary_10_1109_TMI_2011_2147327
crossref_primary_10_1016_j_jalz_2013_05_1769
crossref_primary_10_1016_j_patcog_2022_108566
crossref_primary_10_1007_s12021_012_9175_9
crossref_primary_10_1371_journal_pone_0077949
crossref_primary_10_1016_j_jneumeth_2017_11_013
crossref_primary_10_1007_s13246_022_01196_2
crossref_primary_10_1371_journal_pone_0114293
crossref_primary_10_3233_JAD_201398
crossref_primary_10_1007_s11682_018_9846_8
crossref_primary_10_1109_TCBB_2020_3026219
crossref_primary_10_1155_2014_541802
crossref_primary_10_1016_j_neubiorev_2015_08_001
crossref_primary_10_1073_pnas_1317918110
crossref_primary_10_1016_j_compbiomed_2015_01_003
crossref_primary_10_3389_fnagi_2017_00006
crossref_primary_10_1002_hbm_22642
crossref_primary_10_1042_ETLS20210249
crossref_primary_10_3390_brainsci11060674
crossref_primary_10_1016_j_compmedimag_2023_102303
crossref_primary_10_1016_j_neuroimage_2016_02_041
crossref_primary_10_12779_dnd_2020_19_4_129
Cites_doi 10.1093/brain/awg064
10.1016/j.neuroimage.2009.07.011
10.1016/j.neuroimage.2008.10.031
10.1016/j.tics.2004.01.004
10.1016/j.neurobiolaging.2010.04.022
10.1056/NEJM199603213341202
10.1002/ana.20009
10.3174/ajnr.A1809
10.1093/brain/awn254
10.1093/brain/awm112
10.1007/s00259-004-1740-5
10.1016/S0306-4522(99)00476-5
10.1212/01.wnl.0000180958.22678.91
10.1007/BF02988596
10.1016/j.neuroimage.2008.07.013
10.1007/BF00994018
10.1016/j.neurobiolaging.2006.11.010
10.1016/j.ins.2009.05.012
10.1093/brain/awm319
10.1016/j.neuroimage.2007.10.012
10.1016/j.neuroimage.2007.07.007
10.1109/TMI.2007.908685
10.1016/j.acra.2007.10.020
10.1016/j.neuroimage.2009.05.037
10.1006/nimg.2000.0582
10.1007/PL00014168
10.1073/pnas.090106797
10.1093/brain/awp105
10.1017/S1355617701755105
10.1016/j.neuroimage.2008.02.043
10.1016/j.neurobiolaging.2003.12.007
10.1016/j.neuroimage.2007.10.031
10.1016/j.neuroimage.2008.03.050
10.1016/j.neuroimage.2009.05.056
10.1016/j.jalz.2005.06.003
10.1093/cercor/11.1.1
10.1523/JNEUROSCI.0959-06.2006
10.1259/BJR/20005470
10.1016/j.neuroimage.2003.07.002
10.1016/j.neuroimage.2007.09.073
10.3233/JAD-2010-1295
10.1523/JNEUROSCI.1392-08.2008
10.1007/BF00308809
10.1136/jnnp.2004.047993
10.1093/brain/awp091
10.1016/S0197-4580(01)00271-8
10.1016/S0140-6736(94)92871-1
10.1016/j.neuroimage.2005.07.030
10.1523/JNEUROSCI.2625-04.2004
10.1016/j.neuroimage.2007.01.011
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright © 2010 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Mar 15, 2011
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Copyright © 2010 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Mar 15, 2011
CorporateAuthor The Alzheimers Disease Neuroimaging Initiative
Alzheimers Disease Neuroimaging Initiative
CorporateAuthor_xml – name: The Alzheimers Disease Neuroimaging Initiative
– name: Alzheimers Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2010.10.081
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
Engineering Research Database
ProQuest One Psychology

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 589
ExternalDocumentID PMC3035743
3388686801
21146621
10_1016_j_neuroimage_2010_10_081
S1053811910015806
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: T15 LM007359
– fundername: NCRR NIH HHS
  grantid: 1UL1RR025011
– fundername: NCRR NIH HHS
  grantid: UL1 RR025011
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: K01 AG030514
– fundername: NIA NIH HHS
  grantid: R21-AG034315
– fundername: NIA NIH HHS
  grantid: P50 AG033514
– fundername: NIA NIH HHS
  grantid: R01 AG021155
– fundername: NIA NIH HHS
  grantid: R21 AG034315
– fundername: NICHD NIH HHS
  grantid: P30 HD003352
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c661t-bf9572318bfbefb6b20bcb33a05c1c6c1c724b450ce3a248449cab1b9e0422433
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:17:49 EDT 2025
Fri Jul 11 11:33:53 EDT 2025
Fri Jul 11 10:34:51 EDT 2025
Wed Aug 13 04:55:02 EDT 2025
Mon Jul 21 06:06:50 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 02:14:40 EDT 2025
Fri Feb 23 02:20:30 EST 2024
Tue Aug 26 16:36:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-bf9572318bfbefb6b20bcb33a05c1c6c1c724b450ce3a248449cab1b9e0422433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Data used in the preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database http://www.loni.ucla.edu/ADNI. As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. ADNI investigators include (complete listing available at http://www.loni.ucla.edu/ADNI/Collaboration/ADNI Manuscript Citations.pdf)
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3035743
PMID 21146621
PQID 1549920376
PQPubID 2031077
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3035743
proquest_miscellaneous_858423955
proquest_miscellaneous_856403222
proquest_journals_1549920376
pubmed_primary_21146621
crossref_primary_10_1016_j_neuroimage_2010_10_081
crossref_citationtrail_10_1016_j_neuroimage_2010_10_081
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_10_081
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_10_081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-15
PublicationDateYYYYMMDD 2011-03-15
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2011
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Dickerson, Goncharova, Sullivan, Forchetti, Wilson, Bennett, Beckett, deToledo-Morrell (bb0090) 2001; 220
Fan, Resnick, Wu, Davatzikos (bb0105) 2008; 410
Kohannim, Hua, Hibar, Lee, Chou, Toga, Jack, Weiner, Thompson (bb0170) 2010; 31
Northoff, Bermpohl (bb0210) 2004; 80
Thompson, Mega, Woods, Zoumalan, Lindshield, Blanton, Moussail, Holmes, Cummings, Toga (bb0295) 2001; 110
Piefke, Weiss, Zilles, Markowitsch, Fink (bb0215) 2003; 1260
Minoshima, Foster, Kuhl (bb0190) 1994; 3440
Klunk, Engler, Nordberg, Wang, Blomqvist, Holt, Bergström, Savitcheva, Huang, Estrada (bb0165) 2004; 550
Demirci, Clark, Calhoun (bb0080) 2008; 390
Arimura, Yoshiura, Kumazawa, Tanaka, Koga, Mihara, Honda, Sakai, Toyofuku, Higashida (bb0010) 2008; 150
Bakir, Hofmann, Schölkopf (bb0025) 2007
Shock, Greulich, Andres (bb0270) 1984
Sonnenburg, Rätsch, Schäfer, Schölkopf (bb0280) 2006; 7
Canu, McLaren, Fitzgerald, Bendlin, Zoccatelli, Alessandrini, Pizzini, Ricciardi, Beltramello, Johnson (bb0050) 2010; 19
Schroeter, Stein, Maslowski, Neumann (bb0255) 2009; 470
Thompson, Apostolova (bb0290) 2007; 800
Matsuda (bb0180) 2001; 150
Reiman, Caselli, Yun, Chen, Bandy, Minoshima, Thibodeau, Osborne (bb0235) 1996; 3340
Rakotomamonjy, Bach, Canu, Grandvalet (bb0225) 2008; 9
Shen, Ford, Makedon, Saykin (bb0265) 2003; vol. 5032
deToledo-Morrell, Stoub, Bulgakova, Wilson, Bennett, Leurgans, Wuu, Turner (bb0085) 2004; 250
.
Schoelkopf, Smola (bb0250) 2002
Braak, Braak (bb0045) 1991; 820
Kloft, M., Brefeld, U., Sonnenburg S., Zien, A. 2010. Non-sparse regularization and efficient training with multiple kernels.
Gehler, Nowozin (bb0110) 2009
Braak, Griffin, Arai, Bohl, Bratzke, Braak (bb0040) 1999; 2490
Davatzikos, Xu, An, Fan, Resnick (bb0075) 2009; 1320
Ramírez, J., Górrizand, J.M., Salas-Gonzalez D., Romero, A., López M., Álvarez, I., Gómez-Río, M., in press. Computer-aided diagnosis of Alzheimer's type dementia combining support vector machines and discriminant set of features Inf. Sci.
Jack, Shiung, Weigand, O'Brien, Gunter, Boeve, Knopman, Smith, Ivnik, Tangalos (bb0145) 2005; 650
Hinrichs, Singh, Xu, Johnson (bb0120) 2009; 5762
Cuingnet, Gérardin, Tessieras, Auzias, Lehéricy, Habert (bb0060) 2010
Walhovd, Fjell, Brewer, McEvoy, Fennema-Notestine, Hagler, Jennings, Karow, Dale (bb0310) 2010; 310
Johnson, Schmitz, Trivedi, Ries, Torgerson, Carlsson, Asthana, Hermann, Sager (bb0150) 2006; 260
Shannon, Buckner (bb0260) 2004; 240
Ries, Schmitz, Kawahara, Torgerson, Trivedi, Johnson (bb0240) 2006; 290
Hua, Leow, Parikshak, Lee, Chiang, Toga, Jack, Weiner, Thompson (bb0135) 2008; 430
Davatzikos, Fan, Wu, Shen, Resnick (bb0065) 2008; 290
Ishii, Sasaki, Kono, Miyamoto, Fukuda, Mori (bb0140) 2005; 320
Bishop (bb0030) 2006
Bobinski, De Leon, Wegiel, Desanti, Convit, Saint Louis, Rusinek, Wisniewski (bb0035) 1999; 950
Hua, Lee, Yanovsky, Leow, Chou, Ho, Gutman, Toga, Jack, Bernstein (bb0130) 2009; 480
Kipps, Duggins, Mahant, Gomes, Ashburner, McCusker (bb0325) 2005; 76
Rocher, Chapon, Blaizot, Baron, Chavoix (bb0245) 2003; 200
Mesulam (bb0185) 2000
Mukherjee, Singh, Peng, Hinrichs (bb0205) 2010
Whitwell, Przybelski, Weigand, Knopman, Boeve, Petersen, Jack (bb0315) 2007; 1300
Villain, Desgranges, Viader, de la Sayette, Mezenge, Landeau, Baron, Eustache, Chetelat (bb0305) 2008; 280
Hoffman, Welsh-Bohmer, Hanson, Crain, Hulette, Earl, Coleman (bb0125) 2000; 410
Ashburner (bb0015) 2007; 380
Xu, Mclaren, Ries, Fitzgerald, Bendlin, Rowley, Sager, Atwood, Asthana, Johnson (bb0320) 2009; 1320
Hinrichs, Singh, Mukherjee, Xu, Chung, Johnson (bb0115) 2009; 480
Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bb0300) 2008; 390
Ashburner, Friston (bb0020) 2000; 110
Querbes, Aubry, Pariente, Lotterie, Demonet, Duret, Puel, Berry, Fort, Celsis (bb0220) 2009; 1320
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0160) 2008; 1310
Cortes, Vapnik (bb0055) 1995; 200
Lanckriet, Cristianini, Bartlett, Ghaoui, Jordan (bb0175) 2004; 5
Soriano-Mas, Pujol, Alonso, Cardoner, Menchn, Harrison, Deus, Vallejo, Gaser (bb0285) 2007; 350
Davatzikos, Resnick, Wu, Parmpi, Clark (bb0070) 2008; 410
Albert, Moss, Tanzi, Jones (bb0005) 2001; 70
Fan, Batmanghelich, Clark, Davatzikos (bb0100) 2008; 390
Misra, Fan, Davatzikos (bb0195) 2008; 440
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bb0200) 2005; 10
Small, Ercoli, Silverman, Huang, Komo, Bookheimer, Lavretsky, Miller, Siddarth, Rasgon (bb0275) 2000; 970
Duchesne, Caroli, Geroldi, Barillot, Frisoni, Collins (bb0095) 2008; 270
Albert (10.1016/j.neuroimage.2010.10.081_bb0005) 2001; 70
Cortes (10.1016/j.neuroimage.2010.10.081_bb0055) 1995; 200
Demirci (10.1016/j.neuroimage.2010.10.081_bb0080) 2008; 390
Small (10.1016/j.neuroimage.2010.10.081_bb0275) 2000; 970
Walhovd (10.1016/j.neuroimage.2010.10.081_bb0310) 2010; 310
Rocher (10.1016/j.neuroimage.2010.10.081_bb0245) 2003; 200
Davatzikos (10.1016/j.neuroimage.2010.10.081_bb0070) 2008; 410
Hoffman (10.1016/j.neuroimage.2010.10.081_bb0125) 2000; 410
Mesulam (10.1016/j.neuroimage.2010.10.081_bb0185) 2000
Thompson (10.1016/j.neuroimage.2010.10.081_bb0295) 2001; 110
Braak (10.1016/j.neuroimage.2010.10.081_bb0045) 1991; 820
Jack (10.1016/j.neuroimage.2010.10.081_bb0145) 2005; 650
Fan (10.1016/j.neuroimage.2010.10.081_bb0105) 2008; 410
Mueller (10.1016/j.neuroimage.2010.10.081_bb0200) 2005; 10
Ishii (10.1016/j.neuroimage.2010.10.081_bb0140) 2005; 320
Matsuda (10.1016/j.neuroimage.2010.10.081_bb0180) 2001; 150
Sonnenburg (10.1016/j.neuroimage.2010.10.081_bb0280) 2006; 7
Shock (10.1016/j.neuroimage.2010.10.081_bb0270) 1984
Hinrichs (10.1016/j.neuroimage.2010.10.081_bb0120) 2009; 5762
10.1016/j.neuroimage.2010.10.081_bb0230
Hinrichs (10.1016/j.neuroimage.2010.10.081_bb0115) 2009; 480
10.1016/j.neuroimage.2010.10.081_bb0155
Misra (10.1016/j.neuroimage.2010.10.081_bb0195) 2008; 440
Querbes (10.1016/j.neuroimage.2010.10.081_bb0220) 2009; 1320
Davatzikos (10.1016/j.neuroimage.2010.10.081_bb0065) 2008; 290
Hua (10.1016/j.neuroimage.2010.10.081_bb0130) 2009; 480
Villain (10.1016/j.neuroimage.2010.10.081_bb0305) 2008; 280
Duchesne (10.1016/j.neuroimage.2010.10.081_bb0095) 2008; 270
Cuingnet (10.1016/j.neuroimage.2010.10.081_bb0060) 2010
Kipps (10.1016/j.neuroimage.2010.10.081_bb0325) 2005; 76
Schroeter (10.1016/j.neuroimage.2010.10.081_bb0255) 2009; 470
Northoff (10.1016/j.neuroimage.2010.10.081_bb0210) 2004; 80
deToledo-Morrell (10.1016/j.neuroimage.2010.10.081_bb0085) 2004; 250
Minoshima (10.1016/j.neuroimage.2010.10.081_bb0190) 1994; 3440
Piefke (10.1016/j.neuroimage.2010.10.081_bb0215) 2003; 1260
Canu (10.1016/j.neuroimage.2010.10.081_bb0050) 2010; 19
Fan (10.1016/j.neuroimage.2010.10.081_bb0100) 2008; 390
Ashburner (10.1016/j.neuroimage.2010.10.081_bb0020) 2000; 110
Soriano-Mas (10.1016/j.neuroimage.2010.10.081_bb0285) 2007; 350
Whitwell (10.1016/j.neuroimage.2010.10.081_bb0315) 2007; 1300
Kohannim (10.1016/j.neuroimage.2010.10.081_bb0170) 2010; 31
Bakir (10.1016/j.neuroimage.2010.10.081_bb0025) 2007
Braak (10.1016/j.neuroimage.2010.10.081_bb0040) 1999; 2490
Bobinski (10.1016/j.neuroimage.2010.10.081_bb0035) 1999; 950
Rakotomamonjy (10.1016/j.neuroimage.2010.10.081_bb0225) 2008; 9
Arimura (10.1016/j.neuroimage.2010.10.081_bb0010) 2008; 150
Mukherjee (10.1016/j.neuroimage.2010.10.081_bb0205) 2010
Thompson (10.1016/j.neuroimage.2010.10.081_bb0290) 2007; 800
Klöppel (10.1016/j.neuroimage.2010.10.081_bb0160) 2008; 1310
Reiman (10.1016/j.neuroimage.2010.10.081_bb0235) 1996; 3340
Hua (10.1016/j.neuroimage.2010.10.081_bb0135) 2008; 430
Davatzikos (10.1016/j.neuroimage.2010.10.081_bb0075) 2009; 1320
Shen (10.1016/j.neuroimage.2010.10.081_bb0265) 2003; vol. 5032
Schoelkopf (10.1016/j.neuroimage.2010.10.081_bb0250) 2002
Ashburner (10.1016/j.neuroimage.2010.10.081_bb0015) 2007; 380
Bishop (10.1016/j.neuroimage.2010.10.081_bb0030) 2006
Gehler (10.1016/j.neuroimage.2010.10.081_bb0110) 2009
Lanckriet (10.1016/j.neuroimage.2010.10.081_bb0175) 2004; 5
Vemuri (10.1016/j.neuroimage.2010.10.081_bb0300) 2008; 390
Xu (10.1016/j.neuroimage.2010.10.081_bb0320) 2009; 1320
Johnson (10.1016/j.neuroimage.2010.10.081_bb0150) 2006; 260
Dickerson (10.1016/j.neuroimage.2010.10.081_bb0090) 2001; 220
Ries (10.1016/j.neuroimage.2010.10.081_bb0240) 2006; 290
Shannon (10.1016/j.neuroimage.2010.10.081_bb0260) 2004; 240
Klunk (10.1016/j.neuroimage.2010.10.081_bb0165) 2004; 550
References_xml – volume: 200
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0055
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 7
  start-page: 1531
  year: 2006
  end-page: 1565
  ident: bb0280
  article-title: Large scale multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– volume: 410
  start-page: 1220
  year: 2008
  end-page: 1227
  ident: bb0070
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: Neuroimage
– volume: 9
  start-page: 2491
  year: 2008
  end-page: 2521
  ident: bb0225
  article-title: Simple MKL
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 963
  year: 2010
  end-page: 976
  ident: bb0050
  article-title: Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease
  publication-title: J. Alzheimer's Dis.
– volume: 260
  start-page: 6069
  year: 2006
  end-page: 6076
  ident: bb0150
  article-title: The influence of Alzheimer disease family history and apolipoprotein E varepsilon4 on mesial temporal lobe activation
  publication-title: J. Neurosci.
– volume: 650
  start-page: 1227
  year: 2005
  end-page: 1231
  ident: bb0145
  article-title: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI
  publication-title: Neurology
– volume: vol. 5032
  start-page: 253
  year: 2003
  end-page: 264
  ident: bb0265
  article-title: Hippocampal Shape Analysis: Surface-based Representation and Classification
  publication-title: Proceedings of SPIE
– start-page: 3145
  year: 2010
  end-page: 3152
  ident: bb0205
  article-title: Learning kernels for variants of normalized cuts: convex relaxations and applications
  publication-title: Comput. Vis. Pattern Recognit.
– volume: 350
  year: 2007
  ident: bb0285
  article-title: Identifying patients with obsessive-compulsive disorder using whole-brain anatomy
  publication-title: Neuroimage
– volume: 950
  start-page: 721
  year: 1999
  end-page: 725
  ident: bb0035
  article-title: The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease
  publication-title: Neuroscience
– volume: 390
  start-page: 1774
  year: 2008
  end-page: 1782
  ident: bb0080
  article-title: A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia
  publication-title: Neuroimage
– volume: 430
  start-page: 458
  year: 2008
  end-page: 469
  ident: bb0135
  article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects
  publication-title: Neuroimage
– volume: 320
  start-page: 959
  year: 2005
  end-page: 963
  ident: bb0140
  article-title: Comparison of gray matter and metabolic reduction in mild Alzheimers disease using FDG-PET and voxel-based morphometric MR studies
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 480
  start-page: 138
  year: 2009
  end-page: 149
  ident: bb0115
  article-title: Spatially augmented LPBoosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
– volume: 1260
  start-page: 650
  year: 2003
  end-page: 668
  ident: bb0215
  article-title: Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory
  publication-title: Brain
– volume: 1320
  start-page: 383
  year: 2009
  ident: bb0320
  article-title: The influence of parental history of Alzheimer's disease and apolipoprotein E {ε} 4 on the BOLD signal during recognition memory
  publication-title: Brain
– volume: 110
  start-page: 805
  year: 2000
  end-page: 821
  ident: bb0020
  article-title: Voxel-based morphometry—the methods
  publication-title: Neuroimage
– volume: 1320
  start-page: 2036
  year: 2009
  end-page: 2047
  ident: bb0220
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
– volume: 240
  start-page: 10084
  year: 2004
  end-page: 10092
  ident: bb0260
  article-title: Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex
  publication-title: J. Neurosci.
– volume: 5
  start-page: 27
  year: 2004
  end-page: 72
  ident: bb0175
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: J. Mach. Learn. Res.
– volume: 480
  start-page: 668
  year: 2009
  end-page: 681
  ident: bb0130
  article-title: Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects
  publication-title: Neuroimage
– year: 2002
  ident: bb0250
  article-title: Learning from Kernels
– volume: 550
  start-page: 306
  year: 2004
  end-page: 319
  ident: bb0165
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B
  publication-title: Ann. Neurol.
– volume: 80
  start-page: 102
  year: 2004
  end-page: 107
  ident: bb0210
  article-title: Cortical midline structures and the self
  publication-title: Trends Cogn. Sci.
– year: 2007
  ident: bb0025
  article-title: Predicting Structured Data
– volume: 470
  start-page: 1196
  year: 2009
  end-page: 1206
  ident: bb0255
  article-title: Neural correlates of Alzheimer's disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients
  publication-title: Neuroimage
– volume: 150
  start-page: 85
  year: 2001
  end-page: 92
  ident: bb0180
  article-title: Cerebral blood flow and metabolic abnormalities in Alzheimer's disease
  publication-title: Ann. Nucl. Med.
– start-page: 2836
  year: 2009
  end-page: 2843
  ident: bb0110
  article-title: Let the kernel figure it out; principled learning of pre-processing for kernel classifiers
  publication-title: Comput. Vis. Pattern Recognit.
– volume: 390
  start-page: 1186
  year: 2008
  end-page: 1197
  ident: bb0300
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: Neuroimage
– volume: 310
  start-page: 347
  year: 2010
  ident: bb0310
  article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
  publication-title: Am. J. Neuroradiol.
– volume: 250
  start-page: 1197
  year: 2004
  end-page: 1203
  ident: bb0085
  article-title: MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD
  publication-title: Neurobiol. Aging
– year: 2000
  ident: bb0185
  article-title: Principles of Behavioral and Cognitive Neurology
– volume: 1310
  start-page: 681
  year: 2008
  end-page: 689
  ident: bb0160
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 110
  start-page: 1
  year: 2001
  end-page: 16
  ident: bb0295
  article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas
  publication-title: Cereb. Cortex
– reference: Ramírez, J., Górrizand, J.M., Salas-Gonzalez D., Romero, A., López M., Álvarez, I., Gómez-Río, M., in press. Computer-aided diagnosis of Alzheimer's type dementia combining support vector machines and discriminant set of features Inf. Sci.
– volume: 1300
  start-page: 1777
  year: 2007
  end-page: 1786
  ident: bb0315
  article-title: 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease
  publication-title: Brain
– volume: 280
  start-page: 6174
  year: 2008
  end-page: 6181
  ident: bb0305
  article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease
  publication-title: J. Neurosci.
– volume: 270
  start-page: 509
  year: 2008
  end-page: 520
  ident: bb0095
  article-title: MRI-based automated computer classification of probable AD versus normal controls
  publication-title: IEEE Trans. Med. Imaging
– year: 2006
  ident: bb0030
  article-title: Pattern Recognition and Machine Learning
– volume: 1320
  start-page: 2026
  year: 2009
  end-page: 2035
  ident: bb0075
  article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index
  publication-title: Brain
– volume: 410
  start-page: 1920
  year: 2000
  end-page: 1928
  ident: bb0125
  article-title: FDG PET imaging in patients with pathologically verified dementia
  publication-title: J. Nucl. Med.
– volume: 150
  start-page: 274
  year: 2008
  end-page: 284
  ident: bb0010
  article-title: Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images
  publication-title: Acad. Radiol.
– volume: 70
  start-page: 631
  year: 2001
  end-page: 639
  ident: bb0005
  article-title: Preclinical prediction of AD using neuropsychological tests
  publication-title: J. Int. Neuropsychol. Soc.
– volume: 200
  start-page: 1894
  year: 2003
  end-page: 1898
  ident: bb0245
  article-title: Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons
  publication-title: Neuroimage
– volume: 220
  start-page: 747
  year: 2001
  end-page: 754
  ident: bb0090
  article-title: MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease
  publication-title: Neurobiol. Aging
– reference: Kloft, M., Brefeld, U., Sonnenburg S., Zien, A. 2010. Non-sparse regularization and efficient training with multiple kernels.
– volume: 3440
  start-page: 895
  year: 1994
  ident: bb0190
  article-title: Posterior cingulate cortex in Alzheimer's disease
  publication-title: Lancet
– volume: 390
  start-page: 1731
  year: 2008
  end-page: 1743
  ident: bb0100
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
– volume: 76
  start-page: 650
  year: 2005
  ident: bb0325
  article-title: Progression of structural neuropathology in preclinical Huntington’s disease: a tensor based morphometry study. Journal of Neurology, Neurosurgery
  publication-title: Neurosurgery & Psychiatry
– volume: 290
  start-page: 485
  year: 2006
  end-page: 492
  ident: bb0240
  article-title: Task-dependent posterior cingulate activation in mild cognitive impairment
  publication-title: Neuroimage
– volume: 410
  start-page: 277
  year: 2008
  end-page: 285
  ident: bb0105
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: Neuroimage
– volume: 3340
  start-page: 752
  year: 1996
  end-page: 758
  ident: bb0235
  article-title: Preclinical evidence of Alzheimer's disease in persons homozygous for the
  publication-title: N. Engl. J. Med.
– volume: 820
  start-page: 239
  year: 1991
  end-page: 259
  ident: bb0045
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
– volume: 31
  start-page: 1429
  year: 2010
  end-page: 1442
  ident: bb0170
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers
  publication-title: Neurobiol. Aging
– volume: 2490
  start-page: 14
  year: 1999
  end-page: 22
  ident: bb0040
  article-title: Neuropathology of Alzheimer's disease: what is new since A. Alzheimer?
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 5762
  start-page: 786
  year: 2009
  end-page: 794
  ident: bb0120
  article-title: MKL for robust multi-modality AD classification
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 290
  start-page: 514
  year: 2008
  end-page: 523
  ident: bb0065
  article-title: Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
  publication-title: Neurobiol. Aging
– volume: 970
  start-page: 6037
  year: 2000
  end-page: 6042
  ident: bb0275
  article-title: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 800
  start-page: 78
  year: 2007
  end-page: 91
  ident: bb0290
  article-title: Computational anatomical methods as applied to ageing and dementia
  publication-title: Br. J. Radiol.
– reference: .
– volume: 440
  start-page: 1415
  year: 2008
  end-page: 1422
  ident: bb0195
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: Neuroimage
– year: 1984
  ident: bb0270
  article-title: Normal Human Aging: the Baltimore Longitudinal Study of Aging
– volume: 380
  start-page: 95
  year: 2007
  end-page: 113
  ident: bb0015
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– year: 2010
  ident: bb0060
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
– volume: 10
  start-page: 55
  year: 2005
  end-page: 66
  ident: bb0200
  article-title: Ways toward an early diagnosis in Alzheimers disease: the Alzheimers Disease Neuroimaging Initiative (ADNI)
  publication-title: J. Alzheimer's Assoc.
– volume: 1260
  start-page: 650
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2010.10.081_bb0215
  article-title: Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory
  publication-title: Brain
  doi: 10.1093/brain/awg064
– volume: 480
  start-page: 668
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2010.10.081_bb0130
  article-title: Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.011
– volume: 440
  start-page: 1415
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0195
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.031
– volume: 80
  start-page: 102
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2010.10.081_bb0210
  article-title: Cortical midline structures and the self
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2004.01.004
– volume: 31
  start-page: 1429
  issue: 8
  year: 2010
  ident: 10.1016/j.neuroimage.2010.10.081_bb0170
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.04.022
– volume: vol. 5032
  start-page: 253
  year: 2003
  ident: 10.1016/j.neuroimage.2010.10.081_bb0265
  article-title: Hippocampal Shape Analysis: Surface-based Representation and Classification
– volume: 3340
  start-page: 752
  issue: 12
  year: 1996
  ident: 10.1016/j.neuroimage.2010.10.081_bb0235
  article-title: Preclinical evidence of Alzheimer's disease in persons homozygous for the ε4 allele for apolipoprotein E
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199603213341202
– volume: 550
  start-page: 306
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2010.10.081_bb0165
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20009
– volume: 7
  start-page: 1531
  year: 2006
  ident: 10.1016/j.neuroimage.2010.10.081_bb0280
  article-title: Large scale multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– volume: 310
  start-page: 347
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2010.10.081_bb0310
  article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1809
– volume: 1320
  start-page: 383
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2010.10.081_bb0320
  article-title: The influence of parental history of Alzheimer's disease and apolipoprotein E {ε} 4 on the BOLD signal during recognition memory
  publication-title: Brain
  doi: 10.1093/brain/awn254
– volume: 1300
  start-page: 1777
  issue: 7
  year: 2007
  ident: 10.1016/j.neuroimage.2010.10.081_bb0315
  article-title: 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm112
– volume: 320
  start-page: 959
  issue: 8
  year: 2005
  ident: 10.1016/j.neuroimage.2010.10.081_bb0140
  article-title: Comparison of gray matter and metabolic reduction in mild Alzheimers disease using FDG-PET and voxel-based morphometric MR studies
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-004-1740-5
– volume: 950
  start-page: 721
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2010.10.081_bb0035
  article-title: The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(99)00476-5
– volume: 5762
  start-page: 786
  year: 2009
  ident: 10.1016/j.neuroimage.2010.10.081_bb0120
  article-title: MKL for robust multi-modality AD classification
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 650
  start-page: 1227
  issue: 8
  year: 2005
  ident: 10.1016/j.neuroimage.2010.10.081_bb0145
  article-title: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000180958.22678.91
– volume: 410
  start-page: 1920
  issue: 11
  year: 2000
  ident: 10.1016/j.neuroimage.2010.10.081_bb0125
  article-title: FDG PET imaging in patients with pathologically verified dementia
  publication-title: J. Nucl. Med.
– ident: 10.1016/j.neuroimage.2010.10.081_bb0155
– volume: 150
  start-page: 85
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2010.10.081_bb0180
  article-title: Cerebral blood flow and metabolic abnormalities in Alzheimer's disease
  publication-title: Ann. Nucl. Med.
  doi: 10.1007/BF02988596
– volume: 430
  start-page: 458
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0135
  article-title: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.07.013
– volume: 200
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2010.10.081_bb0055
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 290
  start-page: 514
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0065
  article-title: Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.11.010
– ident: 10.1016/j.neuroimage.2010.10.081_bb0230
  doi: 10.1016/j.ins.2009.05.012
– volume: 1310
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0160
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 5
  start-page: 27
  year: 2004
  ident: 10.1016/j.neuroimage.2010.10.081_bb0175
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: J. Mach. Learn. Res.
– volume: 390
  start-page: 1774
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0080
  article-title: A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.012
– start-page: 3145
  year: 2010
  ident: 10.1016/j.neuroimage.2010.10.081_bb0205
  article-title: Learning kernels for variants of normalized cuts: convex relaxations and applications
  publication-title: Comput. Vis. Pattern Recognit.
– volume: 380
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2010.10.081_bb0015
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 270
  start-page: 509
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0095
  article-title: MRI-based automated computer classification of probable AD versus normal controls
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.908685
– volume: 150
  start-page: 274
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0010
  article-title: Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2007.10.020
– volume: 470
  start-page: 1196
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2010.10.081_bb0255
  article-title: Neural correlates of Alzheimer's disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.037
– volume: 9
  start-page: 2491
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0225
  article-title: Simple MKL
  publication-title: J. Mach. Learn. Res.
– volume: 110
  start-page: 805
  issue: 6
  year: 2000
  ident: 10.1016/j.neuroimage.2010.10.081_bb0020
  article-title: Voxel-based morphometry—the methods
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0582
– volume: 2490
  start-page: 14
  issue: 9
  year: 1999
  ident: 10.1016/j.neuroimage.2010.10.081_bb0040
  article-title: Neuropathology of Alzheimer's disease: what is new since A. Alzheimer?
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/PL00014168
– volume: 970
  start-page: 6037
  issue: 11
  year: 2000
  ident: 10.1016/j.neuroimage.2010.10.081_bb0275
  article-title: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.090106797
– volume: 1320
  start-page: 2036
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2010.10.081_bb0220
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
  doi: 10.1093/brain/awp105
– volume: 70
  start-page: 631
  issue: 05
  year: 2001
  ident: 10.1016/j.neuroimage.2010.10.081_bb0005
  article-title: Preclinical prediction of AD using neuropsychological tests
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/S1355617701755105
– volume: 410
  start-page: 277
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0105
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.043
– volume: 250
  start-page: 1197
  issue: 9
  year: 2004
  ident: 10.1016/j.neuroimage.2010.10.081_bb0085
  article-title: MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2003.12.007
– volume: 390
  start-page: 1731
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0100
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.031
– volume: 410
  start-page: 1220
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0070
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.050
– volume: 480
  start-page: 138
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.10.081_bb0115
  article-title: Spatially augmented LPBoosting for AD classification with evaluations on the ADNI dataset
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.056
– volume: 10
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2010.10.081_bb0200
  article-title: Ways toward an early diagnosis in Alzheimers disease: the Alzheimers Disease Neuroimaging Initiative (ADNI)
  publication-title: J. Alzheimer's Assoc.
  doi: 10.1016/j.jalz.2005.06.003
– volume: 110
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2010.10.081_bb0295
  article-title: Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/11.1.1
– volume: 260
  start-page: 6069
  issue: 22
  year: 2006
  ident: 10.1016/j.neuroimage.2010.10.081_bb0150
  article-title: The influence of Alzheimer disease family history and apolipoprotein E varepsilon4 on mesial temporal lobe activation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0959-06.2006
– year: 2007
  ident: 10.1016/j.neuroimage.2010.10.081_bb0025
– volume: 800
  start-page: 78
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2010.10.081_bb0290
  article-title: Computational anatomical methods as applied to ageing and dementia
  publication-title: Br. J. Radiol.
  doi: 10.1259/BJR/20005470
– volume: 200
  start-page: 1894
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2010.10.081_bb0245
  article-title: Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.07.002
– year: 2000
  ident: 10.1016/j.neuroimage.2010.10.081_bb0185
– start-page: 2836
  year: 2009
  ident: 10.1016/j.neuroimage.2010.10.081_bb0110
  article-title: Let the kernel figure it out; principled learning of pre-processing for kernel classifiers
  publication-title: Comput. Vis. Pattern Recognit.
– volume: 390
  start-page: 1186
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0300
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.073
– volume: 19
  start-page: 963
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2010.10.081_bb0050
  article-title: Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease
  publication-title: J. Alzheimer's Dis.
  doi: 10.3233/JAD-2010-1295
– volume: 280
  start-page: 6174
  issue: 24
  year: 2008
  ident: 10.1016/j.neuroimage.2010.10.081_bb0305
  article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1392-08.2008
– volume: 820
  start-page: 239
  issue: 4
  year: 1991
  ident: 10.1016/j.neuroimage.2010.10.081_bb0045
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00308809
– volume: 76
  start-page: 650
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2010.10.081_bb0325
  article-title: Progression of structural neuropathology in preclinical Huntington’s disease: a tensor based morphometry study. Journal of Neurology, Neurosurgery
  publication-title: Neurosurgery & Psychiatry
  doi: 10.1136/jnnp.2004.047993
– year: 2002
  ident: 10.1016/j.neuroimage.2010.10.081_bb0250
– year: 2010
  ident: 10.1016/j.neuroimage.2010.10.081_bb0060
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
– volume: 1320
  start-page: 2026
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2010.10.081_bb0075
  article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index
  publication-title: Brain
  doi: 10.1093/brain/awp091
– volume: 220
  start-page: 747
  issue: 5
  year: 2001
  ident: 10.1016/j.neuroimage.2010.10.081_bb0090
  article-title: MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(01)00271-8
– volume: 3440
  start-page: 895
  issue: 8926
  year: 1994
  ident: 10.1016/j.neuroimage.2010.10.081_bb0190
  article-title: Posterior cingulate cortex in Alzheimer's disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(94)92871-1
– volume: 290
  start-page: 485
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2010.10.081_bb0240
  article-title: Task-dependent posterior cingulate activation in mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.07.030
– volume: 240
  start-page: 10084
  issue: 45
  year: 2004
  ident: 10.1016/j.neuroimage.2010.10.081_bb0260
  article-title: Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2625-04.2004
– year: 1984
  ident: 10.1016/j.neuroimage.2010.10.081_bb0270
– year: 2006
  ident: 10.1016/j.neuroimage.2010.10.081_bb0030
– volume: 350
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2010.10.081_bb0285
  article-title: Identifying patients with obsessive-compulsive disorder using whole-brain anatomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.011
SSID ssj0009148
Score 2.5194232
Snippet Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase...
Alzheimer’s Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 574
SubjectTerms Accuracy
Aged
Algorithms
Alzheimer Disease - diagnosis
Alzheimer's disease
Area Under Curve
Artificial Intelligence
Biomarkers
Brain research
Classification
Cognition Disorders - diagnosis
Disease Progression
Female
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
Male
Medical imaging
Methods
Neurodegeneration
Positron-Emission Tomography
ROC Curve
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELVgkRAXxDeFBfnA1SL-jAMHVC2sFqSuOLBSb5HtOKKIJkvb_f_MxE7Kglj10KqqPWnlGc882c_PhLwpYlVUMSpmpGyYipIzZ-CttAA3oIJw4fHs8OLcnF2oL0u9zAtu20yrHHPikKibPuAa-VuUEqtEAfPhw-UvhrdG4e5qvkLjNrmD0mVI6SqX5V50l6t0FE5LZqFDZvIkftegF7law6xNBC_keFn-v_L0L_z8m0X5R1k6fUDuZzxJ5ykAHpJbsXtE7i7yjvlj0n3d4GdManSNVJzNlgJOpfOPdNVRRwdCIVv3zYDHaTtytd7ROTRnxRLat3Rx8pkOZK4k5IHWgB3hOefw_XQL2BNycfrp28kZy3cssACVecd8W-kSMJ71rY-tN14UPngpXaEDDwZepVBe6SJE6YSySlXBee6riOJhSsqn5Kjru_gchtaaIJsgWxM8ON07XthWOVGUDaQNJ2akHIe2DlmAHO_B-FmPTLMf9d4pNToFW8ApM8Iny8skwnGATTV6rx4PmUJarKFSHGD7frLNQCQBjAOtj8dgqXNC2Nb78J0ROjXDVMb9GdfF_mpbW21UgTtfN3WxqNio9Yw8S9E3DYjA8-VGwM-X1-Jy6oBC4tdbutX3QVAcYIwGJPni5j_-ktxLC-qScX1Mjnabq_gKENnOvx6m3W_fvDcQ
  priority: 102
  providerName: ProQuest
Title Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910015806
https://dx.doi.org/10.1016/j.neuroimage.2010.10.081
https://www.ncbi.nlm.nih.gov/pubmed/21146621
https://www.proquest.com/docview/1549920376
https://www.proquest.com/docview/856403222
https://www.proquest.com/docview/858423955
https://pubmed.ncbi.nlm.nih.gov/PMC3035743
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamISEuiN-UjckHrqHxrzgZp1I2daBWEzCpN8t2HS2IplPbXfnbeS9xMgoCVeLQtIr9ktbPfu9r_PkzIW_SUKRFCDLJhFgkMgiW2AwOOge4ARmEcYdrh6ezbHIlP87V_ICMu7UwSKuMsb-N6U20jmeGsTWHN1U1_ALIANIN_N_AvJ83sttSauzlb3_c0TwKJtvlcEokWDuyeVqOV6MZWS1h5LYkL-R55exvKepPCPo7k_KX1HT-iDyMmJKO2q_9mByE-gm5P42z5k9JfbnGzxjY6BLpOOsNBaxKRx9oVVNLG1JhslwtGkxOy46vdUpHUBxVS-iqpNPxBW0IXa2YB1oDfoTrzOB8vxPYM3J1fvZ1PEniPguJh-y8TVxZKA04L3elC6XLHE-dd0LYVHnmM3hpLp1UqQ_CcplLWXjrmCsCCohJIZ6Tw3pVh5fQtHnmxcKLMvMOHO8sS_NSWp7qBYQOywdEd01rfBQhx70wvpuObfbN3DnFoFOwBJwyIKy3vGmFOPawKTrvmW6hKYRGA9liD9t3ve1Oh9zT-rjrLCYGhY1BNbyCpxDSB4T2xTCccY7G1mF1uzG5ymSKs1__qpKjaqNSA_Ki7X19g3BcY55xuL3e6Zd9BRQT3y2pq-tGVBygjAI0-eq_fvYRedA-cxcJU8fkcLu-Da8BtG3dSTMq4ajn-oTcG118mszg_f3Z7PLzT7cORmk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEHcKA_wAjxbxLRcQQmUXtWytJrRJezOx44gimo62E-JP8Rs5J05SBmLqyx4aVXVOGtnHx5_t73wm5GXksyjzXrFYyoIpLznLY7gkKcANGEG4sJg7PJ7Ew1P18UyfbZFfbS4M0irbmFgH6mLucI38NUqJZSKC_vD-_DvDU6Nwd7U9QiO4xaH_-QOmbMt3oz1o31dCHOyf7A5Zc6oAczAWrZgtM50AqkltaX1pYysi66yUeaQddzF8EqGs0pHzMhcqVSpzueU28yiXpXABFEL-tpIwlemR7Q_7k-NPa5lfrkLynZYs5TxruEOBUVYrVE5nECcCpQxZZSn_34D4L-D9m7f5x0B4cIfcbhAsHQSXu0u2fHWP3Bg3e_T3SXW8wO8YRukMyT-LJQVkTAd7dFrRnNYURjabF_UMgJYtO-wNHUBxo5FC5yUd745oTR8L0iFoDWgVnjOB37tzxx6Q02up_4ekV80r_xiqNo2dLJwsY2fBzWzOo7RUuYiSAgJVLvokaavWuEbyHE_e-GZabttXs24Ug42CJdAofcI7y_Mg-7GBTda2nmnTWiEQGxibNrB929k20CdAmg2td1pnMU0IWpp1h-kT2hVD8MAdobzy84ulSXWsItxru-qWFDUite6TR8H7ugoRmNEeC_j75JJfdjegdPnlkmr6pZYwB-CkAbs-ufrFX5Cbw5PxkTkaTQ6fklthOV8yrndIb7W48M8AD67s86YTUvL5uvv9b_QpdYU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcEJRXoIAPcLS6fu0DhFDUEDWURD1QKTezdrxqENktSSrEX-PXMbPe3bQgqlx6SBTFO5vInhl_a3_zmZDXkc-izHvFYilnTHnJWR7DW5IC3IAZhAuLtcPjSXx8pj5N9XSH_G5rYZBW2ebEOlHPKodr5IcoJZaJCOLhsGhoEaeD4YeLHwxPkMKd1vY4jeAiJ_7XT3h8W70fDWCs3wgx_Pjl6Jg1JwwwB_PSmtki0wkgnNQW1hc2tiKyzkqZR9pxF8MrEcoqHTkvc6FSpTKXW24zj9JZChdDIf3fSaTmGGPJNNkI_nIVyvC0ZCnnWcMiCtyyWqtyvoCMEchlyC9L-f-mxn-h798MzitT4vA-uddgWdoPzveA7Phyn-yNm936h6Q8XeJnTKh0gTSg5YoCRqb9AZ2XNKc1mZEtqln9LECLlif2lvahuVFLoVVBx0cjWhPJgogIWgNuhftM4PvuBLJH5OxWev8x2S2r0j-Frk1jJ2dOFrGz4HA251FaqFxEyQxSVi56JGm71rhG_BzP4PhuWpbbN7MZFIODgi0wKD3CO8uLIACyhU3Wjp5pC1whJRuYpbawfdfZNiAogJstrQ9aZzFNMlqZTej0CO2aIY3g3lBe-upyZVIdqwh33W66JEW1SK175Enwvq5DBNa2xwJ-Prnml90FKGJ-vaWcn9di5gChNKDYZzf_8VdkD6LdfB5NTp6Tu2FdXzKuD8juennpXwAwXNuXdQRS8vW2Q_4P9_J4VQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Markers+for+AD+in+a+Multi-Modality+Framework%3A+An+Analysis+of+MCI+Progression+in+the+ADNI+Population&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hinrichs%2C+Chris&rft.au=Singh%2C+Vikas&rft.au=Xu%2C+Guofan&rft.au=Johnson%2C+Sterling+C.&rft.date=2011-03-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=55&rft.issue=2&rft.spage=574&rft.epage=589&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.10.081&rft_id=info%3Apmid%2F21146621&rft.externalDocID=PMC3035743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon