Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics
Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple m...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 54; no. 3; pp. 1966 - 1974 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2011
Elsevier Limited Academic Press |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2010.09.053 |
Cover
Loading…
Abstract | Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as “spatial filters.” While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods.
►Noise-normalization of inverse estimators affects the shapes of PSFs, but not CTFs. ►Spatial resolution of EEG/MEG should be assessed using multiple resolution metrics. ►Resolution metrics should describe localization, spatial extent and amplitude. ►dSPM and sLORETA have lower localization error than MNE, but larger spatial extent. ►The benefit of dSPM/sLORETA over MNE for complex source distributions is not clear. |
---|---|
AbstractList | Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as “spatial filters.” While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods.
►Noise-normalization of inverse estimators affects the shapes of PSFs, but not CTFs. ►Spatial resolution of EEG/MEG should be assessed using multiple resolution metrics. ►Resolution metrics should describe localization, spatial extent and amplitude. ►dSPM and sLORETA have lower localization error than MNE, but larger spatial extent. ►The benefit of dSPM/sLORETA over MNE for complex source distributions is not clear. Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods. Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations andp-values from pairedt-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods. Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods.Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods. Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p -values from paired t -tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as “spatial filters.” While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods. ►Noise-normalization of inverse estimators affects the shapes of PSFs, but not CTFs. ►Spatial resolution of EEG/MEG should be assessed using multiple resolution metrics. ►Resolution metrics should describe localization, spatial extent and amplitude. ►dSPM and sLORETA have lower localization error than MNE, but larger spatial extent. ►The benefit of dSPM/sLORETA over MNE for complex source distributions is not clear. |
Author | Wakeman, Daniel G. Hauk, Olaf Henson, Richard |
AuthorAffiliation | Cognition and Brain Sciences Unit, Medical Research Council, 15 Chaucer Road, Cambridge CB2 7EF, UK |
AuthorAffiliation_xml | – name: Cognition and Brain Sciences Unit, Medical Research Council, 15 Chaucer Road, Cambridge CB2 7EF, UK |
Author_xml | – sequence: 1 givenname: Olaf surname: Hauk fullname: Hauk, Olaf email: olaf.hauk@mrc-cbu.cam.ac.uk – sequence: 2 givenname: Daniel G. surname: Wakeman fullname: Wakeman, Daniel G. – sequence: 3 givenname: Richard surname: Henson fullname: Henson, Richard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20884360$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2P0zAQhiO0iP2Av4AsceCUMk7i2L4g2Go_kBZxgbPlOpOui2MXO1mp_HocdSmwF-qLrfHrxzPvzHlx4oPHoiAUFhRo-26z8DjFYAe9xkUFOQxyAax-VpxRkKyUjFcn85nVpaBUnhbnKW0AQNJGvChOKxCiqVs4K-6XYdjqaFPwJPTEB5uw9CEO2tmf2JHBejtMA5lDBNOYvxwxkT5E8vnqhmiv3S7ZRKZk_ZoMkxvt1iGJmIKbRpupA47RmvSyeN5rl_DV435RfLu--rq8Le--3HxafrwrTdvSsVyx3khWCwrQgGhaSXsNvOJiJRrTUdNhx1lF9SqXVjea6xolY0glk5xr09cXxfs9dzutBuwM-jFqp7YxZx53Kmir_r3x9l6tw4OqgQrGmwx4-wiI4ceUS1aDTQad0x7DlJTgbcUgC_-vrIDLJq-sfPNEuQlTzN4lRVkjZVXzCrLq9d-pH3L-3a0sEHuBiSGliP1BQkHNg6E26s9gqHkwFEg1W3Ww5fDU2FHPDcomWHcM4HIPwNy8B4tRJWPRG-xsRDOqLthjIB-eQIzLA2a0-4674xC_ACCe80Y |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2016_08_044 crossref_primary_10_1007_s10548_018_0656_5 crossref_primary_10_1016_j_neuroimage_2013_04_025 crossref_primary_10_1016_j_neuroimage_2013_12_026 crossref_primary_10_1109_TBME_2023_3235377 crossref_primary_10_1016_j_neuroimage_2017_09_009 crossref_primary_10_1016_j_clinph_2014_03_011 crossref_primary_10_1016_j_neuroimage_2017_01_054 crossref_primary_10_1016_j_neuroimage_2018_01_056 crossref_primary_10_3389_fnins_2019_01114 crossref_primary_10_1111_psyp_13751 crossref_primary_10_1371_journal_pone_0299284 crossref_primary_10_1016_j_neuroimage_2013_05_079 crossref_primary_10_1016_j_neuroimage_2018_02_018 crossref_primary_10_1088_1741_2552_aa7db1 crossref_primary_10_1109_TNSRE_2021_3064665 crossref_primary_10_1016_j_neuroimage_2020_117345 crossref_primary_10_1002_hbm_22279 crossref_primary_10_1016_j_isci_2022_105177 crossref_primary_10_1016_j_neuroimage_2021_118670 crossref_primary_10_1007_s10548_012_0262_x crossref_primary_10_1016_j_neuroimage_2013_01_041 crossref_primary_10_1371_journal_pone_0068192 crossref_primary_10_1016_j_neuroimage_2014_08_031 crossref_primary_10_1002_hbm_25262 crossref_primary_10_1016_j_neuroimage_2012_10_001 crossref_primary_10_1016_j_heares_2016_11_015 crossref_primary_10_1097_WNP_0000000000000153 crossref_primary_10_1016_j_neuroimage_2016_01_065 crossref_primary_10_1016_j_bspc_2021_103332 crossref_primary_10_1016_j_neuroimage_2012_01_061 crossref_primary_10_1016_j_neuroimage_2021_118726 crossref_primary_10_1093_brain_awv043 crossref_primary_10_1109_TBME_2020_3016468 crossref_primary_10_1016_j_neuroimage_2017_04_038 crossref_primary_10_1002_hbm_26747 crossref_primary_10_1016_j_neuroimage_2017_06_022 crossref_primary_10_1002_hbm_22220 crossref_primary_10_1109_TMAG_2011_2173754 crossref_primary_10_1016_j_nicl_2017_10_021 crossref_primary_10_1016_j_neuroimage_2013_05_056 crossref_primary_10_1002_hbm_25608 crossref_primary_10_3389_fneur_2022_831546 crossref_primary_10_1016_j_visres_2018_01_011 crossref_primary_10_1093_cercor_bhab309 crossref_primary_10_1016_j_neuroimage_2018_02_032 crossref_primary_10_1002_hbm_23945 crossref_primary_10_1016_j_neuroimage_2016_12_048 crossref_primary_10_3389_fneur_2022_905017 crossref_primary_10_1016_j_neuroimage_2013_04_086 crossref_primary_10_1038_s41597_020_0467_x crossref_primary_10_1002_jmri_23600 crossref_primary_10_1016_j_bspc_2025_107673 crossref_primary_10_1152_jn_00585_2013 crossref_primary_10_1080_17415977_2018_1490279 crossref_primary_10_1007_s10548_015_0437_3 crossref_primary_10_1016_j_eplepsyres_2016_11_018 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1016_j_neuroimage_2023_119958 crossref_primary_10_1007_s10548_018_0623_1 crossref_primary_10_1371_journal_pone_0198806 crossref_primary_10_1016_j_neuroimage_2020_117430 crossref_primary_10_1016_j_neuroimage_2017_10_003 crossref_primary_10_1016_j_neuroimage_2013_04_010 crossref_primary_10_1016_j_neuroimage_2022_119047 crossref_primary_10_1016_j_nicl_2021_102903 crossref_primary_10_1371_journal_pbio_3001735 crossref_primary_10_1002_hbm_21276 crossref_primary_10_1016_j_neuroimage_2023_120276 crossref_primary_10_1016_j_neuroimage_2025_121122 crossref_primary_10_1093_pnasnexus_pgae535 crossref_primary_10_3389_fnins_2016_00183 crossref_primary_10_1016_j_bspc_2017_03_022 crossref_primary_10_3389_fnins_2018_00530 crossref_primary_10_1371_journal_pone_0187490 crossref_primary_10_1093_cercor_bhu137 crossref_primary_10_1016_j_neuroimage_2013_04_062 crossref_primary_10_1016_j_jneumeth_2024_110193 crossref_primary_10_1016_j_neuroimage_2016_01_019 crossref_primary_10_1093_cercor_bhab444 crossref_primary_10_3389_fnins_2014_00330 crossref_primary_10_3389_fnins_2023_1151885 crossref_primary_10_3389_fpsyg_2022_994098 crossref_primary_10_3389_fnagi_2020_596551 crossref_primary_10_1088_1361_6420_ac62f5 crossref_primary_10_1523_JNEUROSCI_5592_10_2011 crossref_primary_10_1016_j_neuroimage_2021_118768 crossref_primary_10_1080_0954898X_2019_1634290 crossref_primary_10_1162_jocn_a_00960 crossref_primary_10_1109_TMAG_2013_2243825 crossref_primary_10_3389_fnhum_2018_00340 crossref_primary_10_1002_hbm_25578 crossref_primary_10_1016_j_brainres_2016_04_068 crossref_primary_10_3389_fninf_2022_970372 crossref_primary_10_1016_j_dcn_2021_101019 crossref_primary_10_1016_j_neuroimage_2024_120896 crossref_primary_10_1063_5_0226457 crossref_primary_10_1088_1361_6560_ad25c3 crossref_primary_10_1109_TBME_2016_2582643 crossref_primary_10_1016_j_cortex_2022_06_017 crossref_primary_10_1038_s41598_017_07046_6 crossref_primary_10_1016_j_neuron_2012_03_031 crossref_primary_10_1093_cercor_bhac319 crossref_primary_10_1093_cercor_bhab501 crossref_primary_10_1088_0031_9155_59_23_7141 crossref_primary_10_1371_journal_pone_0242715 crossref_primary_10_3389_fneur_2021_759866 crossref_primary_10_1523_ENEURO_0145_16_2016 crossref_primary_10_1016_j_neuroimage_2016_12_006 crossref_primary_10_1162_jocn_a_00815 crossref_primary_10_1016_j_neuroimage_2017_01_029 crossref_primary_10_1155_2016_3979547 crossref_primary_10_1016_j_neuroimage_2022_119177 crossref_primary_10_1371_journal_pone_0059856 crossref_primary_10_1088_1361_6420_ad14a1 crossref_primary_10_3389_fnhum_2014_00725 crossref_primary_10_1016_j_neuroimage_2018_01_042 crossref_primary_10_1371_journal_pone_0039906 crossref_primary_10_1007_s10548_018_0621_3 crossref_primary_10_1007_s11517_024_03125_9 crossref_primary_10_1016_j_visres_2024_108523 crossref_primary_10_1093_cercor_bhaa306 crossref_primary_10_1016_j_cortex_2015_10_021 crossref_primary_10_1038_s41598_020_62098_5 crossref_primary_10_1038_s41598_025_88777_9 crossref_primary_10_1016_j_jneumeth_2015_08_015 crossref_primary_10_1038_s41598_021_96933_0 crossref_primary_10_3389_fncom_2015_00005 crossref_primary_10_3390_mca24040098 crossref_primary_10_1016_j_clineuro_2013_08_003 |
Cites_doi | 10.1007/BF01128993 10.1006/nimg.2002.1102 10.1016/S0013-4694(96)96590-6 10.1002/hbm.20102 10.1016/0167-8760(84)90014-X 10.1006/meth.2001.1238 10.1016/j.neuroimage.2008.05.064 10.1007/BF01200711 10.1109/79.962275 10.1002/(SICI)1097-0193(1997)5:6<454::AID-HBM6>3.0.CO;2-2 10.1109/10.664200 10.1016/S0896-6273(00)81138-1 10.1016/j.neuroimage.2003.12.018 10.1109/42.906426 10.1103/RevModPhys.65.413 10.1006/nimg.1998.0396 10.1002/hbm.20571 10.1155/2009/659247 10.1016/j.neuroimage.2004.11.051 10.1088/0266-5611/1/4/004 10.1111/j.1365-246X.1968.tb00216.x 10.1097/00004691-199905000-00006 10.1016/S0959-4388(00)00197-5 10.1162/jocn.1993.5.2.162 10.1109/TSP.2005.853201 10.1016/j.neuroimage.2005.11.054 10.1002/hbm.10024 10.1006/nimg.1998.0395 10.1088/0031-9155/32/1/004 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. Copyright © 2010 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 1, 2011 2011 Elsevier Inc. 2010 Elsevier Inc. |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Copyright © 2010 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 1, 2011 – notice: 2011 Elsevier Inc. 2010 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2010.09.053 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1974 |
ExternalDocumentID | PMC3018574 3388705991 20884360 10_1016_j_neuroimage_2010_09_053 S105381191001253X |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U105579212 – fundername: Medical Research Council grantid: MC_U105579226 – fundername: Medical Research Council grantid: MC_U105580445 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c661t-b5fc95381004084691fa07278b84cd1cded7521ab05334a7a3e955e195977acf3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:43:17 EDT 2025 Thu Sep 04 18:40:50 EDT 2025 Fri Sep 05 08:49:01 EDT 2025 Wed Aug 13 06:52:19 EDT 2025 Mon Jul 21 06:01:21 EDT 2025 Tue Jul 01 02:14:39 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Fri Feb 23 02:20:30 EST 2024 Tue Aug 26 16:36:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Amplitude Localization error Spatial dispersion Source analysis Inverse problem |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2010 Elsevier Inc. All rights reserved. Open Access under CC BY 3.0 license |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-b5fc95381004084691fa07278b84cd1cded7521ab05334a7a3e955e195977acf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S105381191001253X |
PMID | 20884360 |
PQID | 1549923720 |
PQPubID | 2031077 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3018574 proquest_miscellaneous_876250743 proquest_miscellaneous_820794444 proquest_journals_1549923720 pubmed_primary_20884360 crossref_primary_10_1016_j_neuroimage_2010_09_053 crossref_citationtrail_10_1016_j_neuroimage_2010_09_053 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_09_053 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_09_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 2011-02-00 2011-Feb-01 20110201 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier Limited Academic Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Academic Press |
References | Liu, Dale, Belliveau (bb0130) 2002; 16 Greenblatt, Ossadtchi, Pflieger (bb0090) 2005; 53 Hillebrand, Barnes (bb0110) 2002; 16 Sekihara, Sahani, Nagarajan (bb0170) 2005; 25 Dale, Sereno (bb0025) 1993; 5 Pascual-Marqui (bb0155) 2002; 24 Grave de Peralta-Menendez, Gonzalez-Andino (bb0085) 1998; 45 Baillet, Mosher, Leahy (bb0010) 2001; 18 Lin, Witzel, Ahlfors, Stufflebeam, Belliveau, Hamalainen (bb0125) 2006; 31 Ioannides, Muratore, Balish, Sato (bb0120) 1993; 5 Pascual-Marqui, Michel, Lehmann (bb0160) 1994; 18 Vrba, Robinson (bb0175) 2001; 25 Fuchs, Wagner, Kohler, Wischmann (bb0050) 1999; 16 Grave de Peralta Menendez, Hauk, Gonzalez Andino, Vogt, Michel (bb0075) 1997; 5 Menendez, Andino, Lutkenhoner (bb0140) 1996; 9 Dale, Fischl, Sereno (bb0030) 1999; 9 Lütkenhöner, Grave de Peralta Menendez (bb0135) 1997; 102 Molins, Stufflebeam, Brown, Hämäläinen (bb0150) 2008; 42 Dale, Halgren (bb0020) 2001; 11 Fischl, Sereno, Dale (bb0040) 1999; 9 Goldenholz, Ahlfors, Hamalainen, Sharon, Ishitobi, Vaina (bb0055) 2009; 30 Hauk (bb0105) 2004; 21 Hillebrand, Singh, Holliday, Furlong, Barnes (bb0115) 2005; 25 Sarvas (bb0165) 1987; 32 Fischl, Liu, Dale (bb0045) 2001; 20 Grave de Peralta Menendez, Gonzalez Andino, Hauk, Spinelli, Michel (bb0070) 1997 Menke (bb0145) 1989 Hämäläinen, Ilmoniemi (bb0095) 1984 Grave de Peralta, Hauk, Gonzalez (bb0080) 2009 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bb0100) 1993; 65 Golub, van Loan (bb0060) 1996 Backus, Gilbert (bb0005) 1968; 16 Bertero, De Mol, Pike (bb0015) 1985; 1 Dale, Liu, Fischl, Buckner, Belliveau, Lewine (bb0035) 2000; 26 Dale (10.1016/j.neuroimage.2010.09.053_bb0025) 1993; 5 Lütkenhöner (10.1016/j.neuroimage.2010.09.053_bb0135) 1997; 102 Hämäläinen (10.1016/j.neuroimage.2010.09.053_bb0100) 1993; 65 Golub (10.1016/j.neuroimage.2010.09.053_bb0060) 1996 Sekihara (10.1016/j.neuroimage.2010.09.053_bb0170) 2005; 25 Grave de Peralta-Menendez (10.1016/j.neuroimage.2010.09.053_bb0085) 1998; 45 Pascual-Marqui (10.1016/j.neuroimage.2010.09.053_bb0155) 2002; 24 Grave de Peralta (10.1016/j.neuroimage.2010.09.053_bb0080) 2009 Dale (10.1016/j.neuroimage.2010.09.053_bb0030) 1999; 9 Hauk (10.1016/j.neuroimage.2010.09.053_bb0105) 2004; 21 Vrba (10.1016/j.neuroimage.2010.09.053_bb0175) 2001; 25 Backus (10.1016/j.neuroimage.2010.09.053_bb0005) 1968; 16 Dale (10.1016/j.neuroimage.2010.09.053_bb0035) 2000; 26 Grave de Peralta Menendez (10.1016/j.neuroimage.2010.09.053_bb0070) 1997 Greenblatt (10.1016/j.neuroimage.2010.09.053_bb0090) 2005; 53 Sarvas (10.1016/j.neuroimage.2010.09.053_bb0165) 1987; 32 Baillet (10.1016/j.neuroimage.2010.09.053_bb0010) 2001; 18 Lin (10.1016/j.neuroimage.2010.09.053_bb0125) 2006; 31 Goldenholz (10.1016/j.neuroimage.2010.09.053_bb0055) 2009; 30 Hillebrand (10.1016/j.neuroimage.2010.09.053_bb0115) 2005; 25 Fischl (10.1016/j.neuroimage.2010.09.053_bb0045) 2001; 20 Hillebrand (10.1016/j.neuroimage.2010.09.053_bb0110) 2002; 16 Menke (10.1016/j.neuroimage.2010.09.053_bb0145) 1989 Liu (10.1016/j.neuroimage.2010.09.053_bb0130) 2002; 16 Bertero (10.1016/j.neuroimage.2010.09.053_bb0015) 1985; 1 Pascual-Marqui (10.1016/j.neuroimage.2010.09.053_bb0160) 1994; 18 Menendez (10.1016/j.neuroimage.2010.09.053_bb0140) 1996; 9 Molins (10.1016/j.neuroimage.2010.09.053_bb0150) 2008; 42 Ioannides (10.1016/j.neuroimage.2010.09.053_bb0120) 1993; 5 Hämäläinen (10.1016/j.neuroimage.2010.09.053_bb0095) 1984 Dale (10.1016/j.neuroimage.2010.09.053_bb0020) 2001; 11 Fischl (10.1016/j.neuroimage.2010.09.053_bb0040) 1999; 9 Fuchs (10.1016/j.neuroimage.2010.09.053_bb0050) 1999; 16 Grave de Peralta Menendez (10.1016/j.neuroimage.2010.09.053_bb0075) 1997; 5 |
References_xml | – volume: 5 start-page: 454 year: 1997 end-page: 467 ident: bb0075 article-title: Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography publication-title: Hum. Brain Mapp. – volume: 1 start-page: 301 year: 1985 end-page: 330 ident: bb0015 article-title: Linear inverse problems with discrete data. I: general formulation and singular system analysis publication-title: Inverse Prob. – volume: 11 start-page: 202 year: 2001 end-page: 208 ident: bb0020 article-title: Spatiotemporal mapping of brain activity by integration of multiple imaging modalities publication-title: Curr. Opin. Neurobiol. – year: 1984 ident: bb0095 article-title: Interpreting measured magnetic fields of the brain: minimum norm estimates of current distributions publication-title: Helsinki University of Technology, Technical Report TKK-F-A559 – volume: 31 start-page: 160 year: 2006 end-page: 171 ident: bb0125 article-title: Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates publication-title: Neuroimage – volume: 5 start-page: 162 year: 1993 end-page: 176 ident: bb0025 article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach publication-title: J. Cogn. Neurosci. – volume: 45 start-page: 440 year: 1998 end-page: 448 ident: bb0085 article-title: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem publication-title: IEEE Trans. Biomed. Eng. – volume: 18 start-page: 49 year: 1994 end-page: 65 ident: bb0160 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. – volume: 102 start-page: 326 year: 1997 end-page: 334 ident: bb0135 article-title: The resolution-field concept publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 18 start-page: 14 year: 2001 end-page: 30 ident: bb0010 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. – year: 1997 ident: bb0070 article-title: A linear inverse solution with optimal resolution properties: WROP publication-title: Paper presented at the bv, Graz – volume: 20 start-page: 70 year: 2001 end-page: 80 ident: bb0045 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans. Med. Imaging – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bb0040 article-title: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage – volume: 21 start-page: 1612 year: 2004 end-page: 1621 ident: bb0105 article-title: Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data publication-title: Neuroimage – volume: 25 start-page: 199 year: 2005 end-page: 211 ident: bb0115 article-title: A new approach to neuroimaging with magnetoencephalography publication-title: Hum. Brain Mapp. – volume: 5 start-page: 263 year: 1993 end-page: 273 ident: bb0120 article-title: In vivo validation of distributed source solutions for the biomagnetic inverse problem publication-title: Brain Topogr. – volume: 24 start-page: 5 year: 2002 end-page: 12 ident: bb0155 article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 16 start-page: 169 year: 1968 end-page: 205 ident: bb0005 article-title: The resolving power of gross earth data publication-title: Geophys. J. R. Astron. Soc. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bb0030 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage – volume: 25 start-page: 1056 year: 2005 end-page: 1067 ident: bb0170 article-title: Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction publication-title: Neuroimage – year: 1989 ident: bb0145 article-title: Geophysical data analysis: discrete inverse theory – volume: 16 start-page: 267 year: 1999 end-page: 295 ident: bb0050 article-title: Linear and nonlinear current density reconstructions publication-title: J. Clin. Neurophysiol. – volume: 32 start-page: 11 year: 1987 end-page: 22 ident: bb0165 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bb0100 article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. – volume: 42 start-page: 1069 year: 2008 end-page: 1077 ident: bb0150 article-title: Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation publication-title: Neuroimage – volume: 16 start-page: 47 year: 2002 end-page: 62 ident: bb0130 article-title: Monte Carlo simulation studies of EEG and MEG localization accuracy publication-title: Hum. Brain Mapp. – volume: 30 start-page: 1077 year: 2009 end-page: 1086 ident: bb0055 article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography publication-title: Hum. Brain Mapp. – volume: 53 start-page: 3403 year: 2005 end-page: 3412 ident: bb0090 article-title: Local linear estimators for the bioelectromagnetic inverse problem publication-title: IEEE Trans. Signal Process. – year: 1996 ident: bb0060 article-title: Matrix computations – year: 2009 ident: bb0080 article-title: The neuroelectromagnetic inverse problem and the zero dipole localization error publication-title: Comput. Intell. Neurosci. – volume: 16 start-page: 638 year: 2002 end-page: 650 ident: bb0110 article-title: A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex publication-title: Neuroimage – volume: 9 start-page: 117 year: 1996 end-page: 124 ident: bb0140 article-title: Figures of merit to compare distributed linear inverse solutions publication-title: Brain Topogr. – volume: 25 start-page: 249 year: 2001 end-page: 271 ident: bb0175 article-title: Signal processing in magnetoencephalography publication-title: Methods – volume: 26 start-page: 55 year: 2000 end-page: 67 ident: bb0035 article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron – volume: 5 start-page: 263 issue: 3 year: 1993 ident: 10.1016/j.neuroimage.2010.09.053_bb0120 article-title: In vivo validation of distributed source solutions for the biomagnetic inverse problem publication-title: Brain Topogr. doi: 10.1007/BF01128993 – volume: 16 start-page: 638 issue: 3 Pt 1 year: 2002 ident: 10.1016/j.neuroimage.2010.09.053_bb0110 article-title: A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex publication-title: Neuroimage doi: 10.1006/nimg.2002.1102 – volume: 102 start-page: 326 issue: 4 year: 1997 ident: 10.1016/j.neuroimage.2010.09.053_bb0135 article-title: The resolution-field concept publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(96)96590-6 – volume: 25 start-page: 199 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2010.09.053_bb0115 article-title: A new approach to neuroimaging with magnetoencephalography publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20102 – volume: 18 start-page: 49 issue: 1 year: 1994 ident: 10.1016/j.neuroimage.2010.09.053_bb0160 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(84)90014-X – volume: 25 start-page: 249 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2010.09.053_bb0175 article-title: Signal processing in magnetoencephalography publication-title: Methods doi: 10.1006/meth.2001.1238 – volume: 24 start-page: 5 issue: Suppl D year: 2002 ident: 10.1016/j.neuroimage.2010.09.053_bb0155 article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 42 start-page: 1069 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2010.09.053_bb0150 article-title: Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.064 – volume: 9 start-page: 117 issue: 2 year: 1996 ident: 10.1016/j.neuroimage.2010.09.053_bb0140 article-title: Figures of merit to compare distributed linear inverse solutions publication-title: Brain Topogr. doi: 10.1007/BF01200711 – volume: 18 start-page: 14 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2010.09.053_bb0010 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.962275 – year: 1989 ident: 10.1016/j.neuroimage.2010.09.053_bb0145 – year: 1996 ident: 10.1016/j.neuroimage.2010.09.053_bb0060 – volume: 5 start-page: 454 issue: 6 year: 1997 ident: 10.1016/j.neuroimage.2010.09.053_bb0075 article-title: Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1997)5:6<454::AID-HBM6>3.0.CO;2-2 – volume: 45 start-page: 440 year: 1998 ident: 10.1016/j.neuroimage.2010.09.053_bb0085 article-title: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.664200 – volume: 26 start-page: 55 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2010.09.053_bb0035 article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron doi: 10.1016/S0896-6273(00)81138-1 – volume: 21 start-page: 1612 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2010.09.053_bb0105 article-title: Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.018 – volume: 20 start-page: 70 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2010.09.053_bb0045 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906426 – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.neuroimage.2010.09.053_bb0100 article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 9 start-page: 195 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2010.09.053_bb0040 article-title: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – volume: 30 start-page: 1077 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2010.09.053_bb0055 article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20571 – year: 1997 ident: 10.1016/j.neuroimage.2010.09.053_bb0070 article-title: A linear inverse solution with optimal resolution properties: WROP – year: 1984 ident: 10.1016/j.neuroimage.2010.09.053_bb0095 article-title: Interpreting measured magnetic fields of the brain: minimum norm estimates of current distributions – year: 2009 ident: 10.1016/j.neuroimage.2010.09.053_bb0080 article-title: The neuroelectromagnetic inverse problem and the zero dipole localization error publication-title: Comput. Intell. Neurosci. doi: 10.1155/2009/659247 – volume: 25 start-page: 1056 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2010.09.053_bb0170 article-title: Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.11.051 – volume: 1 start-page: 301 issue: 4 year: 1985 ident: 10.1016/j.neuroimage.2010.09.053_bb0015 article-title: Linear inverse problems with discrete data. I: general formulation and singular system analysis publication-title: Inverse Prob. doi: 10.1088/0266-5611/1/4/004 – volume: 16 start-page: 169 year: 1968 ident: 10.1016/j.neuroimage.2010.09.053_bb0005 article-title: The resolving power of gross earth data publication-title: Geophys. J. R. Astron. Soc. doi: 10.1111/j.1365-246X.1968.tb00216.x – volume: 16 start-page: 267 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2010.09.053_bb0050 article-title: Linear and nonlinear current density reconstructions publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199905000-00006 – volume: 11 start-page: 202 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2010.09.053_bb0020 article-title: Spatiotemporal mapping of brain activity by integration of multiple imaging modalities publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(00)00197-5 – volume: 5 start-page: 162 issue: 2 year: 1993 ident: 10.1016/j.neuroimage.2010.09.053_bb0025 article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1993.5.2.162 – volume: 53 start-page: 3403 issue: 9 year: 2005 ident: 10.1016/j.neuroimage.2010.09.053_bb0090 article-title: Local linear estimators for the bioelectromagnetic inverse problem publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.853201 – volume: 31 start-page: 160 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2010.09.053_bb0125 article-title: Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.054 – volume: 16 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2010.09.053_bb0130 article-title: Monte Carlo simulation studies of EEG and MEG localization accuracy publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10024 – volume: 9 start-page: 179 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2010.09.053_bb0030 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 32 start-page: 11 issue: 1 year: 1987 ident: 10.1016/j.neuroimage.2010.09.053_bb0165 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 |
SSID | ssj0009148 |
Score | 2.4151256 |
Snippet | Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1966 |
SubjectTerms | Algorithms Amplitude Brain - anatomy & histology Computer programs Computer Simulation Electroencephalography - statistics & numerical data Estimates Humans Image Processing, Computer-Assisted - methods Inverse problem Localization error Magnetic Resonance Imaging - statistics & numerical data Magnetoencephalography - statistics & numerical data Methods Noise Reference Values Reproducibility of Results Software Software packages Source analysis Spatial dispersion Studies Tomography |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5BJyFe0PjdMZAfeDXEjV3H4gFtU8eE1AkhJu3NchyHdVqSQdqX_fXcNU66gZiaxySXVPH57qv93XcA78vCOOGTwPPSaC5NKXmWlgnPjTRTETD-pVTvPD-dnpzJr-fqPC64tZFW2cfEdaAuGk9r5B9JSgzBiJ4kn69_ceoaRbursYXGQ9jBEJypEewczk6_fd_I7grZFcOplGdCmMjl6Rhea8XIRYXzNlK8zIdEpf9LUP8C0L95lLcS0_EuPImIkh10LvAUHoT6GTyaxz3z53BxNLQaZE3J6mbRBl4TVL1a3ISCkbhItaoYnWKkuVER_GQIZtl89oW5qFrCiCH_k_UERIZ_06PXsoq6cvn2BZwdz34cnfDYX4F7zMpLnqvSG0USXziTEYcYUboE8UyWZ9IXwheh0JjdXb6u13XapcEoFUiORmvny_QljOqmDq-BeSknTrnEZXmQATGLV8JTka1TyXRSZGPQ_Ue1PoqPUw-MK9uzzC7tZjgsDYdNjMUXj0EMltedAMcWNqYfN9sXmGJItJgltrD9NNhGENKBiy2t93s3sTEYtHbjumNgw2WcxrQ34-rQrFqLQAwjIx733IJ5SxHiG8Orzu-GDzLBXCHTKT5f3_HI4QYSEb97pV5crMXEMcBnSsu9-3_4G3jcLaYTj2cfRsvfq_AW0dgyfxen3B_ixThk priority: 102 providerName: ProQuest |
Title | Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191001253X https://dx.doi.org/10.1016/j.neuroimage.2010.09.053 https://www.ncbi.nlm.nih.gov/pubmed/20884360 https://www.proquest.com/docview/1549923720 https://www.proquest.com/docview/820794444 https://www.proquest.com/docview/876250743 https://pubmed.ncbi.nlm.nih.gov/PMC3018574 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYQSNMu09jG1sGQD7uaJo1dx-LEqrLCaIUYSL1ZjuNAJpKitb3ssN--9xInrCBQJXpopMQvTezn97403_tMyNcsVSa0gWNJpiTjKuMsjrKAJYqrfugg_kVY7zye9EdX_HQqphtk0NTCIK3Sx_46plfR2u_p-t7s3uV59ycgA0g38LyBKVtEU6xg5xL18w_-3tM8VMjrcjgRMWzt2Tw1x6vSjMwLmLme5KUOAhE9laIeQ9CHTMr_UtPxW_LGY0p6VF_2Ntlw5Tvyauzfmr8nN4N2sUE6y2g5y-eOlQhWb_M_LqUoL1IsC4q7KKpuFAhAKcBZOh5-p8brllDkyF_ThoJI4UHd-y0tcF0uO_9Aro6Hl4MR8yssMAt5ecESkVmFvYhzGZCICjMTAKKJk5jbNLSpSyXkd5NUFbtGmsgpIRwK0khpbBbtkM1yVrpPhFrOe0aYwMSJ4w5QixWhxTJbI4J-L407RDadqq2XH8dVMG51wzP7pe-HQ-Nw6EBp-OEOCVvLu1qCYw0b1YybbkpMIShqyBNr2B62tiuuuKb1XuMm2oeDuUYdPEDSshd0CG0Pw0TGtzOmdLPlXAMUg9gIn2eaQOYSiPk65GPtd22H9CBb8KgP55crHtk2QBnx1SNlflPJiUOIj4Xkn19027vkdf1vOxJ99sjm4vfSfQG4tkj2q_kI33Iq98nW0eDi7By3Jz9GE9h-G07OL_4BY-tIHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJgEviN-UDfADPBryw25iTQjB6OjYWiG0SXvzHMdhRUsyllZo-6P4G7lr7JSBmPqyPDa5pLLP932J774j5GWRSx2awLKskAnjsuAsjYuAZZLLfmgh_sVY7zwa94cH_POhOFwhv3wtDKZV-pg4D9R5bfAb-RuUEgMykkTBu9MfDLtG4e6qb6HRusWuPf8Jr2zN252PML-vomh7sL81ZK6rADOARVOWicJIgcJW4L-AvjIsdAAonmYpN3locpsngGk6m1ep6kTHVgphUYQlSbQpYrjvDbIGNEPCKlr7MBh_-bqQ-Q15W3wnYpaGoXS5Q21G2VyhclJCnHApZfJ1IOL_AeK_hPfvvM0_gHD7LrnjGCx937rcPbJiq_vk5sjt0T8gx1tda0NaF7SqJ41lFVLjk8mFzSmKmZSzkuJPFDU-SqS7FMgzHQ0-Ue1UUihm5H-jPuGRnlm_SmiJXcBM85AcXMvIPyKrVV3ZJ4QaziMtdKDTzHILHMmI0GBRrxZBP8rTHkn8oCrjxM6x58aJ8llt39ViOhROhwqkggf3SNhZnraCH0vYSD9vyhe0QghWgEpL2G52to70tGRmSesN7ybKBZ9GLZZKj9DuNIQN3AvSla1njQLiB5EYjisuAZwUyDB75HHrd92ARIBNPO7D_ZNLHtldgKLll89Uk-O5eDkASioS_vTqP_6C3Bruj_bU3s54d53cbj_kYw7RBlmdns3sM2CC0-y5W36UHF33iv8NSuF0Aw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJ028IH7TMcAP8BiWH3YdCyEEW8vGaDUhJu3NOI7DipZkW1oh-NP467hr7JSBmPqyPDa5pLLP932J774j5HmRSx2Z0AZZIUXAZMGCNCnCIJNMDiIL8S_BeufxZLB3xD4c8-M18svXwmBapY-Ji0Cd1wa_kW-jlBiQERGH24VLizjcHb05Ow-wgxTutPp2Gq2LHNgf3-H1rXm9vwtz_SKOR8PPO3uB6zAQGMClWZDxwkiOIlfgy4DEMip0CIieZikzeWRymwvAN50tKla10ImVnFsUZBFCmyKB-94g6wJQMe2R9XfDyeGnpeRvxNpCPJ4EaRRJl0fUZpct1CqnJcQMl14mX4Y8-R84_kt-_87h_AMUR7fJLcdm6dvW_e6QNVvdJRtjt19_j5zsdG0OaV3Qqp42NqiQJp9Of9qcorBJOS8p_kRR76NE6kuBSNPx8D3VTjGFYnb-V-qTH-mF9SuGltgRzDT3ydG1jPwD0qvqyj4i1DAWa65DnWaWWeBLhkcGC3w1DwdxnvaJ8IOqjBM-x_4bp8pnuH1Ty-lQOB0qlAoe3CdRZ3nWin-sYCP9vClf3ArhWAFCrWD7qrN1BKglNitab3k3US4QNWq5bPqEdqchhOC-kK5sPW8UkECIynBccQlgJke22ScPW7_rBiQGnGLJAO4vLnlkdwEKmF8-U01PFkLmAC4pF2zz6j_-jGzASlcf9ycHj8nN9ps-phNtkd7sYm6fACmcZU_d6qPky3Uv-N9nqngv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+noise-normalized+minimum+norm+estimates+for+MEG+analysis+using+multiple+resolution+metrics&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hauk%2C+Olaf&rft.au=Wakeman%2C+Daniel+G.&rft.au=Henson%2C+Richard&rft.date=2011-02-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=54&rft.issue=3&rft.spage=1966&rft.epage=1974&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.09.053&rft.externalDocID=S105381191001253X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |