Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics

Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple m...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 54; no. 3; pp. 1966 - 1974
Main Authors Hauk, Olaf, Wakeman, Daniel G., Henson, Richard
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2011
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2010.09.053

Cover

Loading…
Abstract Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as “spatial filters.” While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods. ►Noise-normalization of inverse estimators affects the shapes of PSFs, but not CTFs. ►Spatial resolution of EEG/MEG should be assessed using multiple resolution metrics. ►Resolution metrics should describe localization, spatial extent and amplitude. ►dSPM and sLORETA have lower localization error than MNE, but larger spatial extent. ►The benefit of dSPM/sLORETA over MNE for complex source distributions is not clear.
AbstractList Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as “spatial filters.” While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods. ►Noise-normalization of inverse estimators affects the shapes of PSFs, but not CTFs. ►Spatial resolution of EEG/MEG should be assessed using multiple resolution metrics. ►Resolution metrics should describe localization, spatial extent and amplitude. ►dSPM and sLORETA have lower localization error than MNE, but larger spatial extent. ►The benefit of dSPM/sLORETA over MNE for complex source distributions is not clear.
Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods.
Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations andp-values from pairedt-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods.
Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods.Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as "spatial filters." While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods.
Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been argued that in order to make inferences for the case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17 subjects in a real experiment, including individual noise covariance matrices and head geometries. We confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating that all three methods may greatly underestimate some sources relative to others. The reliability of differences between methods across subjects was demonstrated using distributions of standard deviations and p -values from paired t -tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the general resolution limits of the inverse problem. This means that noise-normalization is of no consequence where linear estimation procedures are used as “spatial filters.” While low DLE is advantageous for the localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex source distributions is not obvious. We suggest that software packages for source estimation should include comprehensive tools for evaluating the performance of different methods. ►Noise-normalization of inverse estimators affects the shapes of PSFs, but not CTFs. ►Spatial resolution of EEG/MEG should be assessed using multiple resolution metrics. ►Resolution metrics should describe localization, spatial extent and amplitude. ►dSPM and sLORETA have lower localization error than MNE, but larger spatial extent. ►The benefit of dSPM/sLORETA over MNE for complex source distributions is not clear.
Author Wakeman, Daniel G.
Hauk, Olaf
Henson, Richard
AuthorAffiliation Cognition and Brain Sciences Unit, Medical Research Council, 15 Chaucer Road, Cambridge CB2 7EF, UK
AuthorAffiliation_xml – name: Cognition and Brain Sciences Unit, Medical Research Council, 15 Chaucer Road, Cambridge CB2 7EF, UK
Author_xml – sequence: 1
  givenname: Olaf
  surname: Hauk
  fullname: Hauk, Olaf
  email: olaf.hauk@mrc-cbu.cam.ac.uk
– sequence: 2
  givenname: Daniel G.
  surname: Wakeman
  fullname: Wakeman, Daniel G.
– sequence: 3
  givenname: Richard
  surname: Henson
  fullname: Henson, Richard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20884360$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2P0zAQhiO0iP2Av4AsceCUMk7i2L4g2Go_kBZxgbPlOpOui2MXO1mp_HocdSmwF-qLrfHrxzPvzHlx4oPHoiAUFhRo-26z8DjFYAe9xkUFOQxyAax-VpxRkKyUjFcn85nVpaBUnhbnKW0AQNJGvChOKxCiqVs4K-6XYdjqaFPwJPTEB5uw9CEO2tmf2JHBejtMA5lDBNOYvxwxkT5E8vnqhmiv3S7ZRKZk_ZoMkxvt1iGJmIKbRpupA47RmvSyeN5rl_DV435RfLu--rq8Le--3HxafrwrTdvSsVyx3khWCwrQgGhaSXsNvOJiJRrTUdNhx1lF9SqXVjea6xolY0glk5xr09cXxfs9dzutBuwM-jFqp7YxZx53Kmir_r3x9l6tw4OqgQrGmwx4-wiI4ceUS1aDTQad0x7DlJTgbcUgC_-vrIDLJq-sfPNEuQlTzN4lRVkjZVXzCrLq9d-pH3L-3a0sEHuBiSGliP1BQkHNg6E26s9gqHkwFEg1W3Ww5fDU2FHPDcomWHcM4HIPwNy8B4tRJWPRG-xsRDOqLthjIB-eQIzLA2a0-4674xC_ACCe80Y
CitedBy_id crossref_primary_10_1016_j_neuroimage_2016_08_044
crossref_primary_10_1007_s10548_018_0656_5
crossref_primary_10_1016_j_neuroimage_2013_04_025
crossref_primary_10_1016_j_neuroimage_2013_12_026
crossref_primary_10_1109_TBME_2023_3235377
crossref_primary_10_1016_j_neuroimage_2017_09_009
crossref_primary_10_1016_j_clinph_2014_03_011
crossref_primary_10_1016_j_neuroimage_2017_01_054
crossref_primary_10_1016_j_neuroimage_2018_01_056
crossref_primary_10_3389_fnins_2019_01114
crossref_primary_10_1111_psyp_13751
crossref_primary_10_1371_journal_pone_0299284
crossref_primary_10_1016_j_neuroimage_2013_05_079
crossref_primary_10_1016_j_neuroimage_2018_02_018
crossref_primary_10_1088_1741_2552_aa7db1
crossref_primary_10_1109_TNSRE_2021_3064665
crossref_primary_10_1016_j_neuroimage_2020_117345
crossref_primary_10_1002_hbm_22279
crossref_primary_10_1016_j_isci_2022_105177
crossref_primary_10_1016_j_neuroimage_2021_118670
crossref_primary_10_1007_s10548_012_0262_x
crossref_primary_10_1016_j_neuroimage_2013_01_041
crossref_primary_10_1371_journal_pone_0068192
crossref_primary_10_1016_j_neuroimage_2014_08_031
crossref_primary_10_1002_hbm_25262
crossref_primary_10_1016_j_neuroimage_2012_10_001
crossref_primary_10_1016_j_heares_2016_11_015
crossref_primary_10_1097_WNP_0000000000000153
crossref_primary_10_1016_j_neuroimage_2016_01_065
crossref_primary_10_1016_j_bspc_2021_103332
crossref_primary_10_1016_j_neuroimage_2012_01_061
crossref_primary_10_1016_j_neuroimage_2021_118726
crossref_primary_10_1093_brain_awv043
crossref_primary_10_1109_TBME_2020_3016468
crossref_primary_10_1016_j_neuroimage_2017_04_038
crossref_primary_10_1002_hbm_26747
crossref_primary_10_1016_j_neuroimage_2017_06_022
crossref_primary_10_1002_hbm_22220
crossref_primary_10_1109_TMAG_2011_2173754
crossref_primary_10_1016_j_nicl_2017_10_021
crossref_primary_10_1016_j_neuroimage_2013_05_056
crossref_primary_10_1002_hbm_25608
crossref_primary_10_3389_fneur_2022_831546
crossref_primary_10_1016_j_visres_2018_01_011
crossref_primary_10_1093_cercor_bhab309
crossref_primary_10_1016_j_neuroimage_2018_02_032
crossref_primary_10_1002_hbm_23945
crossref_primary_10_1016_j_neuroimage_2016_12_048
crossref_primary_10_3389_fneur_2022_905017
crossref_primary_10_1016_j_neuroimage_2013_04_086
crossref_primary_10_1038_s41597_020_0467_x
crossref_primary_10_1002_jmri_23600
crossref_primary_10_1016_j_bspc_2025_107673
crossref_primary_10_1152_jn_00585_2013
crossref_primary_10_1080_17415977_2018_1490279
crossref_primary_10_1007_s10548_015_0437_3
crossref_primary_10_1016_j_eplepsyres_2016_11_018
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1016_j_neuroimage_2023_119958
crossref_primary_10_1007_s10548_018_0623_1
crossref_primary_10_1371_journal_pone_0198806
crossref_primary_10_1016_j_neuroimage_2020_117430
crossref_primary_10_1016_j_neuroimage_2017_10_003
crossref_primary_10_1016_j_neuroimage_2013_04_010
crossref_primary_10_1016_j_neuroimage_2022_119047
crossref_primary_10_1016_j_nicl_2021_102903
crossref_primary_10_1371_journal_pbio_3001735
crossref_primary_10_1002_hbm_21276
crossref_primary_10_1016_j_neuroimage_2023_120276
crossref_primary_10_1016_j_neuroimage_2025_121122
crossref_primary_10_1093_pnasnexus_pgae535
crossref_primary_10_3389_fnins_2016_00183
crossref_primary_10_1016_j_bspc_2017_03_022
crossref_primary_10_3389_fnins_2018_00530
crossref_primary_10_1371_journal_pone_0187490
crossref_primary_10_1093_cercor_bhu137
crossref_primary_10_1016_j_neuroimage_2013_04_062
crossref_primary_10_1016_j_jneumeth_2024_110193
crossref_primary_10_1016_j_neuroimage_2016_01_019
crossref_primary_10_1093_cercor_bhab444
crossref_primary_10_3389_fnins_2014_00330
crossref_primary_10_3389_fnins_2023_1151885
crossref_primary_10_3389_fpsyg_2022_994098
crossref_primary_10_3389_fnagi_2020_596551
crossref_primary_10_1088_1361_6420_ac62f5
crossref_primary_10_1523_JNEUROSCI_5592_10_2011
crossref_primary_10_1016_j_neuroimage_2021_118768
crossref_primary_10_1080_0954898X_2019_1634290
crossref_primary_10_1162_jocn_a_00960
crossref_primary_10_1109_TMAG_2013_2243825
crossref_primary_10_3389_fnhum_2018_00340
crossref_primary_10_1002_hbm_25578
crossref_primary_10_1016_j_brainres_2016_04_068
crossref_primary_10_3389_fninf_2022_970372
crossref_primary_10_1016_j_dcn_2021_101019
crossref_primary_10_1016_j_neuroimage_2024_120896
crossref_primary_10_1063_5_0226457
crossref_primary_10_1088_1361_6560_ad25c3
crossref_primary_10_1109_TBME_2016_2582643
crossref_primary_10_1016_j_cortex_2022_06_017
crossref_primary_10_1038_s41598_017_07046_6
crossref_primary_10_1016_j_neuron_2012_03_031
crossref_primary_10_1093_cercor_bhac319
crossref_primary_10_1093_cercor_bhab501
crossref_primary_10_1088_0031_9155_59_23_7141
crossref_primary_10_1371_journal_pone_0242715
crossref_primary_10_3389_fneur_2021_759866
crossref_primary_10_1523_ENEURO_0145_16_2016
crossref_primary_10_1016_j_neuroimage_2016_12_006
crossref_primary_10_1162_jocn_a_00815
crossref_primary_10_1016_j_neuroimage_2017_01_029
crossref_primary_10_1155_2016_3979547
crossref_primary_10_1016_j_neuroimage_2022_119177
crossref_primary_10_1371_journal_pone_0059856
crossref_primary_10_1088_1361_6420_ad14a1
crossref_primary_10_3389_fnhum_2014_00725
crossref_primary_10_1016_j_neuroimage_2018_01_042
crossref_primary_10_1371_journal_pone_0039906
crossref_primary_10_1007_s10548_018_0621_3
crossref_primary_10_1007_s11517_024_03125_9
crossref_primary_10_1016_j_visres_2024_108523
crossref_primary_10_1093_cercor_bhaa306
crossref_primary_10_1016_j_cortex_2015_10_021
crossref_primary_10_1038_s41598_020_62098_5
crossref_primary_10_1038_s41598_025_88777_9
crossref_primary_10_1016_j_jneumeth_2015_08_015
crossref_primary_10_1038_s41598_021_96933_0
crossref_primary_10_3389_fncom_2015_00005
crossref_primary_10_3390_mca24040098
crossref_primary_10_1016_j_clineuro_2013_08_003
Cites_doi 10.1007/BF01128993
10.1006/nimg.2002.1102
10.1016/S0013-4694(96)96590-6
10.1002/hbm.20102
10.1016/0167-8760(84)90014-X
10.1006/meth.2001.1238
10.1016/j.neuroimage.2008.05.064
10.1007/BF01200711
10.1109/79.962275
10.1002/(SICI)1097-0193(1997)5:6<454::AID-HBM6>3.0.CO;2-2
10.1109/10.664200
10.1016/S0896-6273(00)81138-1
10.1016/j.neuroimage.2003.12.018
10.1109/42.906426
10.1103/RevModPhys.65.413
10.1006/nimg.1998.0396
10.1002/hbm.20571
10.1155/2009/659247
10.1016/j.neuroimage.2004.11.051
10.1088/0266-5611/1/4/004
10.1111/j.1365-246X.1968.tb00216.x
10.1097/00004691-199905000-00006
10.1016/S0959-4388(00)00197-5
10.1162/jocn.1993.5.2.162
10.1109/TSP.2005.853201
10.1016/j.neuroimage.2005.11.054
10.1002/hbm.10024
10.1006/nimg.1998.0395
10.1088/0031-9155/32/1/004
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright © 2010 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 1, 2011
2011 Elsevier Inc. 2010 Elsevier Inc.
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Copyright © 2010 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 1, 2011
– notice: 2011 Elsevier Inc. 2010 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2010.09.053
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
Engineering Research Database

ProQuest One Psychology
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1974
ExternalDocumentID PMC3018574
3388705991
20884360
10_1016_j_neuroimage_2010_09_053
S105381191001253X
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U105579212
– fundername: Medical Research Council
  grantid: MC_U105579226
– fundername: Medical Research Council
  grantid: MC_U105580445
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c661t-b5fc95381004084691fa07278b84cd1cded7521ab05334a7a3e955e195977acf3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:43:17 EDT 2025
Thu Sep 04 18:40:50 EDT 2025
Fri Sep 05 08:49:01 EDT 2025
Wed Aug 13 06:52:19 EDT 2025
Mon Jul 21 06:01:21 EDT 2025
Tue Jul 01 02:14:39 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Fri Feb 23 02:20:30 EST 2024
Tue Aug 26 16:36:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Amplitude
Localization error
Spatial dispersion
Source analysis
Inverse problem
Language English
License http://creativecommons.org/licenses/by/3.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2010 Elsevier Inc. All rights reserved.
Open Access under CC BY 3.0 license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-b5fc95381004084691fa07278b84cd1cded7521ab05334a7a3e955e195977acf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S105381191001253X
PMID 20884360
PQID 1549923720
PQPubID 2031077
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3018574
proquest_miscellaneous_876250743
proquest_miscellaneous_820794444
proquest_journals_1549923720
pubmed_primary_20884360
crossref_primary_10_1016_j_neuroimage_2010_09_053
crossref_citationtrail_10_1016_j_neuroimage_2010_09_053
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_09_053
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_09_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
2011-02-00
2011-Feb-01
20110201
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2011
Publisher Elsevier Inc
Elsevier Limited
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press
References Liu, Dale, Belliveau (bb0130) 2002; 16
Greenblatt, Ossadtchi, Pflieger (bb0090) 2005; 53
Hillebrand, Barnes (bb0110) 2002; 16
Sekihara, Sahani, Nagarajan (bb0170) 2005; 25
Dale, Sereno (bb0025) 1993; 5
Pascual-Marqui (bb0155) 2002; 24
Grave de Peralta-Menendez, Gonzalez-Andino (bb0085) 1998; 45
Baillet, Mosher, Leahy (bb0010) 2001; 18
Lin, Witzel, Ahlfors, Stufflebeam, Belliveau, Hamalainen (bb0125) 2006; 31
Ioannides, Muratore, Balish, Sato (bb0120) 1993; 5
Pascual-Marqui, Michel, Lehmann (bb0160) 1994; 18
Vrba, Robinson (bb0175) 2001; 25
Fuchs, Wagner, Kohler, Wischmann (bb0050) 1999; 16
Grave de Peralta Menendez, Hauk, Gonzalez Andino, Vogt, Michel (bb0075) 1997; 5
Menendez, Andino, Lutkenhoner (bb0140) 1996; 9
Dale, Fischl, Sereno (bb0030) 1999; 9
Lütkenhöner, Grave de Peralta Menendez (bb0135) 1997; 102
Molins, Stufflebeam, Brown, Hämäläinen (bb0150) 2008; 42
Dale, Halgren (bb0020) 2001; 11
Fischl, Sereno, Dale (bb0040) 1999; 9
Goldenholz, Ahlfors, Hamalainen, Sharon, Ishitobi, Vaina (bb0055) 2009; 30
Hauk (bb0105) 2004; 21
Hillebrand, Singh, Holliday, Furlong, Barnes (bb0115) 2005; 25
Sarvas (bb0165) 1987; 32
Fischl, Liu, Dale (bb0045) 2001; 20
Grave de Peralta Menendez, Gonzalez Andino, Hauk, Spinelli, Michel (bb0070) 1997
Menke (bb0145) 1989
Hämäläinen, Ilmoniemi (bb0095) 1984
Grave de Peralta, Hauk, Gonzalez (bb0080) 2009
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bb0100) 1993; 65
Golub, van Loan (bb0060) 1996
Backus, Gilbert (bb0005) 1968; 16
Bertero, De Mol, Pike (bb0015) 1985; 1
Dale, Liu, Fischl, Buckner, Belliveau, Lewine (bb0035) 2000; 26
Dale (10.1016/j.neuroimage.2010.09.053_bb0025) 1993; 5
Lütkenhöner (10.1016/j.neuroimage.2010.09.053_bb0135) 1997; 102
Hämäläinen (10.1016/j.neuroimage.2010.09.053_bb0100) 1993; 65
Golub (10.1016/j.neuroimage.2010.09.053_bb0060) 1996
Sekihara (10.1016/j.neuroimage.2010.09.053_bb0170) 2005; 25
Grave de Peralta-Menendez (10.1016/j.neuroimage.2010.09.053_bb0085) 1998; 45
Pascual-Marqui (10.1016/j.neuroimage.2010.09.053_bb0155) 2002; 24
Grave de Peralta (10.1016/j.neuroimage.2010.09.053_bb0080) 2009
Dale (10.1016/j.neuroimage.2010.09.053_bb0030) 1999; 9
Hauk (10.1016/j.neuroimage.2010.09.053_bb0105) 2004; 21
Vrba (10.1016/j.neuroimage.2010.09.053_bb0175) 2001; 25
Backus (10.1016/j.neuroimage.2010.09.053_bb0005) 1968; 16
Dale (10.1016/j.neuroimage.2010.09.053_bb0035) 2000; 26
Grave de Peralta Menendez (10.1016/j.neuroimage.2010.09.053_bb0070) 1997
Greenblatt (10.1016/j.neuroimage.2010.09.053_bb0090) 2005; 53
Sarvas (10.1016/j.neuroimage.2010.09.053_bb0165) 1987; 32
Baillet (10.1016/j.neuroimage.2010.09.053_bb0010) 2001; 18
Lin (10.1016/j.neuroimage.2010.09.053_bb0125) 2006; 31
Goldenholz (10.1016/j.neuroimage.2010.09.053_bb0055) 2009; 30
Hillebrand (10.1016/j.neuroimage.2010.09.053_bb0115) 2005; 25
Fischl (10.1016/j.neuroimage.2010.09.053_bb0045) 2001; 20
Hillebrand (10.1016/j.neuroimage.2010.09.053_bb0110) 2002; 16
Menke (10.1016/j.neuroimage.2010.09.053_bb0145) 1989
Liu (10.1016/j.neuroimage.2010.09.053_bb0130) 2002; 16
Bertero (10.1016/j.neuroimage.2010.09.053_bb0015) 1985; 1
Pascual-Marqui (10.1016/j.neuroimage.2010.09.053_bb0160) 1994; 18
Menendez (10.1016/j.neuroimage.2010.09.053_bb0140) 1996; 9
Molins (10.1016/j.neuroimage.2010.09.053_bb0150) 2008; 42
Ioannides (10.1016/j.neuroimage.2010.09.053_bb0120) 1993; 5
Hämäläinen (10.1016/j.neuroimage.2010.09.053_bb0095) 1984
Dale (10.1016/j.neuroimage.2010.09.053_bb0020) 2001; 11
Fischl (10.1016/j.neuroimage.2010.09.053_bb0040) 1999; 9
Fuchs (10.1016/j.neuroimage.2010.09.053_bb0050) 1999; 16
Grave de Peralta Menendez (10.1016/j.neuroimage.2010.09.053_bb0075) 1997; 5
References_xml – volume: 5
  start-page: 454
  year: 1997
  end-page: 467
  ident: bb0075
  article-title: Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography
  publication-title: Hum. Brain Mapp.
– volume: 1
  start-page: 301
  year: 1985
  end-page: 330
  ident: bb0015
  article-title: Linear inverse problems with discrete data. I: general formulation and singular system analysis
  publication-title: Inverse Prob.
– volume: 11
  start-page: 202
  year: 2001
  end-page: 208
  ident: bb0020
  article-title: Spatiotemporal mapping of brain activity by integration of multiple imaging modalities
  publication-title: Curr. Opin. Neurobiol.
– year: 1984
  ident: bb0095
  article-title: Interpreting measured magnetic fields of the brain: minimum norm estimates of current distributions
  publication-title: Helsinki University of Technology, Technical Report TKK-F-A559
– volume: 31
  start-page: 160
  year: 2006
  end-page: 171
  ident: bb0125
  article-title: Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates
  publication-title: Neuroimage
– volume: 5
  start-page: 162
  year: 1993
  end-page: 176
  ident: bb0025
  article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach
  publication-title: J. Cogn. Neurosci.
– volume: 45
  start-page: 440
  year: 1998
  end-page: 448
  ident: bb0085
  article-title: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 18
  start-page: 49
  year: 1994
  end-page: 65
  ident: bb0160
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
– volume: 102
  start-page: 326
  year: 1997
  end-page: 334
  ident: bb0135
  article-title: The resolution-field concept
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 18
  start-page: 14
  year: 2001
  end-page: 30
  ident: bb0010
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Process. Mag.
– year: 1997
  ident: bb0070
  article-title: A linear inverse solution with optimal resolution properties: WROP
  publication-title: Paper presented at the bv, Graz
– volume: 20
  start-page: 70
  year: 2001
  end-page: 80
  ident: bb0045
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bb0040
  article-title: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
– volume: 21
  start-page: 1612
  year: 2004
  end-page: 1621
  ident: bb0105
  article-title: Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data
  publication-title: Neuroimage
– volume: 25
  start-page: 199
  year: 2005
  end-page: 211
  ident: bb0115
  article-title: A new approach to neuroimaging with magnetoencephalography
  publication-title: Hum. Brain Mapp.
– volume: 5
  start-page: 263
  year: 1993
  end-page: 273
  ident: bb0120
  article-title: In vivo validation of distributed source solutions for the biomagnetic inverse problem
  publication-title: Brain Topogr.
– volume: 24
  start-page: 5
  year: 2002
  end-page: 12
  ident: bb0155
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 16
  start-page: 169
  year: 1968
  end-page: 205
  ident: bb0005
  article-title: The resolving power of gross earth data
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bb0030
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 25
  start-page: 1056
  year: 2005
  end-page: 1067
  ident: bb0170
  article-title: Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction
  publication-title: Neuroimage
– year: 1989
  ident: bb0145
  article-title: Geophysical data analysis: discrete inverse theory
– volume: 16
  start-page: 267
  year: 1999
  end-page: 295
  ident: bb0050
  article-title: Linear and nonlinear current density reconstructions
  publication-title: J. Clin. Neurophysiol.
– volume: 32
  start-page: 11
  year: 1987
  end-page: 22
  ident: bb0165
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bb0100
  article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– volume: 42
  start-page: 1069
  year: 2008
  end-page: 1077
  ident: bb0150
  article-title: Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation
  publication-title: Neuroimage
– volume: 16
  start-page: 47
  year: 2002
  end-page: 62
  ident: bb0130
  article-title: Monte Carlo simulation studies of EEG and MEG localization accuracy
  publication-title: Hum. Brain Mapp.
– volume: 30
  start-page: 1077
  year: 2009
  end-page: 1086
  ident: bb0055
  article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography
  publication-title: Hum. Brain Mapp.
– volume: 53
  start-page: 3403
  year: 2005
  end-page: 3412
  ident: bb0090
  article-title: Local linear estimators for the bioelectromagnetic inverse problem
  publication-title: IEEE Trans. Signal Process.
– year: 1996
  ident: bb0060
  article-title: Matrix computations
– year: 2009
  ident: bb0080
  article-title: The neuroelectromagnetic inverse problem and the zero dipole localization error
  publication-title: Comput. Intell. Neurosci.
– volume: 16
  start-page: 638
  year: 2002
  end-page: 650
  ident: bb0110
  article-title: A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex
  publication-title: Neuroimage
– volume: 9
  start-page: 117
  year: 1996
  end-page: 124
  ident: bb0140
  article-title: Figures of merit to compare distributed linear inverse solutions
  publication-title: Brain Topogr.
– volume: 25
  start-page: 249
  year: 2001
  end-page: 271
  ident: bb0175
  article-title: Signal processing in magnetoencephalography
  publication-title: Methods
– volume: 26
  start-page: 55
  year: 2000
  end-page: 67
  ident: bb0035
  article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity
  publication-title: Neuron
– volume: 5
  start-page: 263
  issue: 3
  year: 1993
  ident: 10.1016/j.neuroimage.2010.09.053_bb0120
  article-title: In vivo validation of distributed source solutions for the biomagnetic inverse problem
  publication-title: Brain Topogr.
  doi: 10.1007/BF01128993
– volume: 16
  start-page: 638
  issue: 3 Pt 1
  year: 2002
  ident: 10.1016/j.neuroimage.2010.09.053_bb0110
  article-title: A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1102
– volume: 102
  start-page: 326
  issue: 4
  year: 1997
  ident: 10.1016/j.neuroimage.2010.09.053_bb0135
  article-title: The resolution-field concept
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(96)96590-6
– volume: 25
  start-page: 199
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2010.09.053_bb0115
  article-title: A new approach to neuroimaging with magnetoencephalography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20102
– volume: 18
  start-page: 49
  issue: 1
  year: 1994
  ident: 10.1016/j.neuroimage.2010.09.053_bb0160
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(84)90014-X
– volume: 25
  start-page: 249
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2010.09.053_bb0175
  article-title: Signal processing in magnetoencephalography
  publication-title: Methods
  doi: 10.1006/meth.2001.1238
– volume: 24
  start-page: 5
  issue: Suppl D
  year: 2002
  ident: 10.1016/j.neuroimage.2010.09.053_bb0155
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 42
  start-page: 1069
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2010.09.053_bb0150
  article-title: Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.064
– volume: 9
  start-page: 117
  issue: 2
  year: 1996
  ident: 10.1016/j.neuroimage.2010.09.053_bb0140
  article-title: Figures of merit to compare distributed linear inverse solutions
  publication-title: Brain Topogr.
  doi: 10.1007/BF01200711
– volume: 18
  start-page: 14
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2010.09.053_bb0010
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.962275
– year: 1989
  ident: 10.1016/j.neuroimage.2010.09.053_bb0145
– year: 1996
  ident: 10.1016/j.neuroimage.2010.09.053_bb0060
– volume: 5
  start-page: 454
  issue: 6
  year: 1997
  ident: 10.1016/j.neuroimage.2010.09.053_bb0075
  article-title: Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:6<454::AID-HBM6>3.0.CO;2-2
– volume: 45
  start-page: 440
  year: 1998
  ident: 10.1016/j.neuroimage.2010.09.053_bb0085
  article-title: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.664200
– volume: 26
  start-page: 55
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2010.09.053_bb0035
  article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81138-1
– volume: 21
  start-page: 1612
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2010.09.053_bb0105
  article-title: Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.018
– volume: 20
  start-page: 70
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2010.09.053_bb0045
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906426
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.neuroimage.2010.09.053_bb0100
  article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2010.09.053_bb0040
  article-title: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– volume: 30
  start-page: 1077
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2010.09.053_bb0055
  article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20571
– year: 1997
  ident: 10.1016/j.neuroimage.2010.09.053_bb0070
  article-title: A linear inverse solution with optimal resolution properties: WROP
– year: 1984
  ident: 10.1016/j.neuroimage.2010.09.053_bb0095
  article-title: Interpreting measured magnetic fields of the brain: minimum norm estimates of current distributions
– year: 2009
  ident: 10.1016/j.neuroimage.2010.09.053_bb0080
  article-title: The neuroelectromagnetic inverse problem and the zero dipole localization error
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2009/659247
– volume: 25
  start-page: 1056
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2010.09.053_bb0170
  article-title: Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.11.051
– volume: 1
  start-page: 301
  issue: 4
  year: 1985
  ident: 10.1016/j.neuroimage.2010.09.053_bb0015
  article-title: Linear inverse problems with discrete data. I: general formulation and singular system analysis
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/1/4/004
– volume: 16
  start-page: 169
  year: 1968
  ident: 10.1016/j.neuroimage.2010.09.053_bb0005
  article-title: The resolving power of gross earth data
  publication-title: Geophys. J. R. Astron. Soc.
  doi: 10.1111/j.1365-246X.1968.tb00216.x
– volume: 16
  start-page: 267
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2010.09.053_bb0050
  article-title: Linear and nonlinear current density reconstructions
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-199905000-00006
– volume: 11
  start-page: 202
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2010.09.053_bb0020
  article-title: Spatiotemporal mapping of brain activity by integration of multiple imaging modalities
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(00)00197-5
– volume: 5
  start-page: 162
  issue: 2
  year: 1993
  ident: 10.1016/j.neuroimage.2010.09.053_bb0025
  article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1993.5.2.162
– volume: 53
  start-page: 3403
  issue: 9
  year: 2005
  ident: 10.1016/j.neuroimage.2010.09.053_bb0090
  article-title: Local linear estimators for the bioelectromagnetic inverse problem
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.853201
– volume: 31
  start-page: 160
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2010.09.053_bb0125
  article-title: Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.11.054
– volume: 16
  start-page: 47
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2010.09.053_bb0130
  article-title: Monte Carlo simulation studies of EEG and MEG localization accuracy
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10024
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2010.09.053_bb0030
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 32
  start-page: 11
  issue: 1
  year: 1987
  ident: 10.1016/j.neuroimage.2010.09.053_bb0165
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
SSID ssj0009148
Score 2.4151256
Snippet Noise-normalization has been shown to partly compensate for the localization bias towards superficial sources in minimum norm estimation. However, it has been...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1966
SubjectTerms Algorithms
Amplitude
Brain - anatomy & histology
Computer programs
Computer Simulation
Electroencephalography - statistics & numerical data
Estimates
Humans
Image Processing, Computer-Assisted - methods
Inverse problem
Localization error
Magnetic Resonance Imaging - statistics & numerical data
Magnetoencephalography - statistics & numerical data
Methods
Noise
Reference Values
Reproducibility of Results
Software
Software packages
Source analysis
Spatial dispersion
Studies
Tomography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5BJyFe0PjdMZAfeDXEjV3H4gFtU8eE1AkhJu3NchyHdVqSQdqX_fXcNU66gZiaxySXVPH57qv93XcA78vCOOGTwPPSaC5NKXmWlgnPjTRTETD-pVTvPD-dnpzJr-fqPC64tZFW2cfEdaAuGk9r5B9JSgzBiJ4kn69_ceoaRbursYXGQ9jBEJypEewczk6_fd_I7grZFcOplGdCmMjl6Rhea8XIRYXzNlK8zIdEpf9LUP8C0L95lLcS0_EuPImIkh10LvAUHoT6GTyaxz3z53BxNLQaZE3J6mbRBl4TVL1a3ISCkbhItaoYnWKkuVER_GQIZtl89oW5qFrCiCH_k_UERIZ_06PXsoq6cvn2BZwdz34cnfDYX4F7zMpLnqvSG0USXziTEYcYUboE8UyWZ9IXwheh0JjdXb6u13XapcEoFUiORmvny_QljOqmDq-BeSknTrnEZXmQATGLV8JTka1TyXRSZGPQ_Ue1PoqPUw-MK9uzzC7tZjgsDYdNjMUXj0EMltedAMcWNqYfN9sXmGJItJgltrD9NNhGENKBiy2t93s3sTEYtHbjumNgw2WcxrQ34-rQrFqLQAwjIx733IJ5SxHiG8Orzu-GDzLBXCHTKT5f3_HI4QYSEb97pV5crMXEMcBnSsu9-3_4G3jcLaYTj2cfRsvfq_AW0dgyfxen3B_ixThk
  priority: 102
  providerName: ProQuest
Title Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191001253X
https://dx.doi.org/10.1016/j.neuroimage.2010.09.053
https://www.ncbi.nlm.nih.gov/pubmed/20884360
https://www.proquest.com/docview/1549923720
https://www.proquest.com/docview/820794444
https://www.proquest.com/docview/876250743
https://pubmed.ncbi.nlm.nih.gov/PMC3018574
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYQSNMu09jG1sGQD7uaJo1dx-LEqrLCaIUYSL1ZjuNAJpKitb3ssN--9xInrCBQJXpopMQvTezn97403_tMyNcsVSa0gWNJpiTjKuMsjrKAJYqrfugg_kVY7zye9EdX_HQqphtk0NTCIK3Sx_46plfR2u_p-t7s3uV59ycgA0g38LyBKVtEU6xg5xL18w_-3tM8VMjrcjgRMWzt2Tw1x6vSjMwLmLme5KUOAhE9laIeQ9CHTMr_UtPxW_LGY0p6VF_2Ntlw5Tvyauzfmr8nN4N2sUE6y2g5y-eOlQhWb_M_LqUoL1IsC4q7KKpuFAhAKcBZOh5-p8brllDkyF_ThoJI4UHd-y0tcF0uO_9Aro6Hl4MR8yssMAt5ecESkVmFvYhzGZCICjMTAKKJk5jbNLSpSyXkd5NUFbtGmsgpIRwK0khpbBbtkM1yVrpPhFrOe0aYwMSJ4w5QixWhxTJbI4J-L407RDadqq2XH8dVMG51wzP7pe-HQ-Nw6EBp-OEOCVvLu1qCYw0b1YybbkpMIShqyBNr2B62tiuuuKb1XuMm2oeDuUYdPEDSshd0CG0Pw0TGtzOmdLPlXAMUg9gIn2eaQOYSiPk65GPtd22H9CBb8KgP55crHtk2QBnx1SNlflPJiUOIj4Xkn19027vkdf1vOxJ99sjm4vfSfQG4tkj2q_kI33Iq98nW0eDi7By3Jz9GE9h-G07OL_4BY-tIHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJgEviN-UDfADPBryw25iTQjB6OjYWiG0SXvzHMdhRUsyllZo-6P4G7lr7JSBmPqyPDa5pLLP932J774j5GWRSx2awLKskAnjsuAsjYuAZZLLfmgh_sVY7zwa94cH_POhOFwhv3wtDKZV-pg4D9R5bfAb-RuUEgMykkTBu9MfDLtG4e6qb6HRusWuPf8Jr2zN252PML-vomh7sL81ZK6rADOARVOWicJIgcJW4L-AvjIsdAAonmYpN3locpsngGk6m1ep6kTHVgphUYQlSbQpYrjvDbIGNEPCKlr7MBh_-bqQ-Q15W3wnYpaGoXS5Q21G2VyhclJCnHApZfJ1IOL_AeK_hPfvvM0_gHD7LrnjGCx937rcPbJiq_vk5sjt0T8gx1tda0NaF7SqJ41lFVLjk8mFzSmKmZSzkuJPFDU-SqS7FMgzHQ0-Ue1UUihm5H-jPuGRnlm_SmiJXcBM85AcXMvIPyKrVV3ZJ4QaziMtdKDTzHILHMmI0GBRrxZBP8rTHkn8oCrjxM6x58aJ8llt39ViOhROhwqkggf3SNhZnraCH0vYSD9vyhe0QghWgEpL2G52to70tGRmSesN7ybKBZ9GLZZKj9DuNIQN3AvSla1njQLiB5EYjisuAZwUyDB75HHrd92ARIBNPO7D_ZNLHtldgKLll89Uk-O5eDkASioS_vTqP_6C3Bruj_bU3s54d53cbj_kYw7RBlmdns3sM2CC0-y5W36UHF33iv8NSuF0Aw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJ028IH7TMcAP8BiWH3YdCyEEW8vGaDUhJu3NOI7DipZkW1oh-NP467hr7JSBmPqyPDa5pLLP932J774j5HmRSx2Z0AZZIUXAZMGCNCnCIJNMDiIL8S_BeufxZLB3xD4c8-M18svXwmBapY-Ji0Cd1wa_kW-jlBiQERGH24VLizjcHb05Ow-wgxTutPp2Gq2LHNgf3-H1rXm9vwtz_SKOR8PPO3uB6zAQGMClWZDxwkiOIlfgy4DEMip0CIieZikzeWRymwvAN50tKla10ImVnFsUZBFCmyKB-94g6wJQMe2R9XfDyeGnpeRvxNpCPJ4EaRRJl0fUZpct1CqnJcQMl14mX4Y8-R84_kt-_87h_AMUR7fJLcdm6dvW_e6QNVvdJRtjt19_j5zsdG0OaV3Qqp42NqiQJp9Of9qcorBJOS8p_kRR76NE6kuBSNPx8D3VTjGFYnb-V-qTH-mF9SuGltgRzDT3ydG1jPwD0qvqyj4i1DAWa65DnWaWWeBLhkcGC3w1DwdxnvaJ8IOqjBM-x_4bp8pnuH1Ty-lQOB0qlAoe3CdRZ3nWin-sYCP9vClf3ArhWAFCrWD7qrN1BKglNitab3k3US4QNWq5bPqEdqchhOC-kK5sPW8UkECIynBccQlgJke22ScPW7_rBiQGnGLJAO4vLnlkdwEKmF8-U01PFkLmAC4pF2zz6j_-jGzASlcf9ycHj8nN9ps-phNtkd7sYm6fACmcZU_d6qPky3Uv-N9nqngv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+noise-normalized+minimum+norm+estimates+for+MEG+analysis+using+multiple+resolution+metrics&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hauk%2C+Olaf&rft.au=Wakeman%2C+Daniel+G.&rft.au=Henson%2C+Richard&rft.date=2011-02-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=54&rft.issue=3&rft.spage=1966&rft.epage=1974&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.09.053&rft.externalDocID=S105381191001253X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon