Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species

Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. Here, we ge...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 18; no. 1; p. 229
Main Authors Sanfilippo, Piero, Wen, Jiayu, Lai, Eric C.
Format Journal Article
LanguageEnglish
Published England BioMed Central 30.11.2017
BMC
Subjects
Online AccessGet full text
ISSN1474-760X
1474-7596
1474-760X
DOI10.1186/s13059-017-1358-0

Cover

Loading…
Abstract Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. Here, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny. These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks.
AbstractList Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. Here, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny. These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks.
Abstract Background Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. Results Here, we generate deep 3′-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3′ termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3′ untranslated region (UTR) lengthening in head and 3′ UTR shortening in testis, and characterize new tissue and developmental 3′ UTR patterns. Our thorough 3′ UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3′-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3′ end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3′ UTR isoform expression across the Drosophila phylogeny. Conclusions These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3′ UTR formation and its consequences for post-transcriptional regulatory networks.
BACKGROUND: Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. RESULTS: Here, we generate deep 3′-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3′ termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3′ untranslated region (UTR) lengthening in head and 3′ UTR shortening in testis, and characterize new tissue and developmental 3′ UTR patterns. Our thorough 3′ UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3′-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3′ end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3′ UTR isoform expression across the Drosophila phylogeny. CONCLUSIONS: These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3′ UTR formation and its consequences for post-transcriptional regulatory networks.
Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control.BACKGROUNDDrosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control.Here, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny.RESULTSHere, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny.These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks.CONCLUSIONSThese data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks.
ArticleNumber 229
Author Lai, Eric C.
Wen, Jiayu
Sanfilippo, Piero
Author_xml – sequence: 1
  givenname: Piero
  surname: Sanfilippo
  fullname: Sanfilippo, Piero
– sequence: 2
  givenname: Jiayu
  surname: Wen
  fullname: Wen, Jiayu
– sequence: 3
  givenname: Eric C.
  orcidid: 0000-0002-8432-5851
  surname: Lai
  fullname: Lai, Eric C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29191225$$D View this record in MEDLINE/PubMed
BookMark eNqFkkuLFDEUhYOMOA_9AW6kwI2b0tw8KpWNIONroMGNgruY50yadKWsVDX0vzfdPSMzA-Imudx893DDOefoZMiDR-gl4LcAffeuAMVcthhEC5T3LX6CzoAJ1ooO_zy5V5-i81LWGINkpHuGTokECYTwM_RrpQdXrB59U4vGb3Na5piHJodmjqUsvi2jtzFE2-g0-2nQc9z6Zsxpp50fdkkfcG2nXErzsZ55vIlJN4cxX56jp0Gn4l_c3hfox-dP3y-_tqtvX64uP6xa23UwtzrI3ulAhCGWC0u0BGeYDp73xFJuCAbHOlP7xGBmBNeY0hAoC04DFYZeoKujrst6rcYpbvS0U1lHdWjk6VrpaY42eQWAqesDoZZK1glhsOUmOG48MGctqVrvj1rjYjbeWT_Mk04PRB--DPFGXeet4gKLHvMq8OZWYMq_F19mtYnF-pT04PNSFKlML3DF_4uCFNAxgXtW0deP0HVeqiGpChIspJRE0kq9ur_8363vPK-AOAIHyyYflI3zwcX6l5gUYLVPlzqmS9V0qX261H5XeDR5J_7vmT_f89Oc
CitedBy_id crossref_primary_10_1093_nar_gkae826
crossref_primary_10_1016_j_gene_2023_147949
crossref_primary_10_1093_bib_bbab157
crossref_primary_10_1534_genetics_120_303515
crossref_primary_10_3390_cells12131717
crossref_primary_10_3390_cells12020318
crossref_primary_10_1155_2020_2626584
crossref_primary_10_1371_journal_pgen_1009563
crossref_primary_10_1134_S1062360425700031
crossref_primary_10_1371_journal_pgen_1010787
crossref_primary_10_3389_fgene_2022_821026
crossref_primary_10_1002_wrna_1485
crossref_primary_10_1128_MCB_00581_18
crossref_primary_10_1038_s44319_025_00401_z
crossref_primary_10_1016_j_molcel_2020_09_007
crossref_primary_10_3389_fgene_2022_848626
crossref_primary_10_1371_journal_pgen_1009439
crossref_primary_10_1186_s12864_023_09696_5
crossref_primary_10_15252_embr_202154350
crossref_primary_10_26508_lsa_202302000
crossref_primary_10_1093_nar_gkaa359
crossref_primary_10_1093_nar_gkaa1026
crossref_primary_10_1038_s41467_021_21894_x
crossref_primary_10_1080_15476286_2023_2275109
crossref_primary_10_2139_ssrn_4124633
crossref_primary_10_1080_15476286_2021_1872963
crossref_primary_10_1186_s13059_017_1358_0
crossref_primary_10_1002_wrna_1733
crossref_primary_10_1186_s12864_024_10584_9
crossref_primary_10_1038_s41467_019_12575_x
crossref_primary_10_1016_j_bbagrm_2018_07_012
crossref_primary_10_1101_gr_237826_118
crossref_primary_10_31083_j_fbs1604021
crossref_primary_10_3390_insects15121006
crossref_primary_10_1126_sciadv_abk0445
crossref_primary_10_1186_s13059_018_1504_3
crossref_primary_10_1093_gbe_evae055
crossref_primary_10_1146_annurev_genet_111523_102413
crossref_primary_10_1016_j_celrep_2019_05_083
crossref_primary_10_1016_j_molcel_2020_09_011
crossref_primary_10_3389_fgene_2021_760530
crossref_primary_10_1016_j_devcel_2020_06_004
crossref_primary_10_3389_fevo_2019_00085
crossref_primary_10_1261_rna_079783_123
crossref_primary_10_1038_s41467_022_32305_0
Cites_doi 10.1101/gr.116657.110
10.1038/nbt.2850
10.1093/molbev/mst085
10.1002/bies.201300174
10.1038/ng.3694
10.1101/gr.205146.116
10.1038/nature20802
10.1101/gr.159384.113
10.1038/nature12311
10.1038/ng1875
10.1101/gr.8.5.524
10.1073/pnas.0900028106
10.1016/j.cell.2005.07.028
10.1101/gr.161554.113
10.1038/nrm.2016.116
10.1093/bioinformatics/btn526
10.1261/rna.035899.112
10.1186/s13059-014-0550-8
10.1101/gr.094896.109
10.1093/nar/18.19.5799
10.1038/ng865
10.1038/nature09715
10.1371/journal.pgen.1005147
10.1016/j.celrep.2012.01.001
10.1038/nature14475
10.1038/nature06341
10.1073/pnas.1112672108
10.1101/gr.132563.111
10.1186/1471-2164-7-176
10.1038/nmeth.2714
10.1101/gr.146886.112
10.1002/dvdy.22262
10.1186/s12915-016-0229-6
10.1016/j.celrep.2014.10.062
10.7554/eLife.05003
10.1371/journal.pgen.1005863
10.1101/gr.112961.110
10.1128/MCB.14.7.4682
10.1016/j.cell.2009.01.002
10.1101/gr.112466.110
10.1242/dev.141978
10.1242/dev.033183
10.1038/263211a0
10.7554/eLife.05005
10.1038/nmeth.3317
10.1038/nature09616
10.1126/science.287.5461.2222
10.1186/1748-7188-6-26
10.1261/rna.046037.114
10.1186/gb-2003-5-1-r3
10.1007/0-387-29362-0_23
10.1126/science.1155390
10.1016/j.cell.2017.04.036
10.1038/nrg3482
10.1186/gb-2010-11-12-220
10.1093/genetics/150.2.723
10.1002/wrna.116
10.1093/bioinformatics/btt656
10.1016/j.cell.2009.06.016
10.1126/science.1198374
10.1534/g3.115.018929
10.1016/S0092-8674(00)82000-0
10.1016/j.devcel.2014.04.023
10.1016/j.cell.2004.12.035
10.1002/wrna.29
10.1101/gr.139733.112
10.1016/j.ymeth.2017.06.003
10.1038/nature12962
10.1073/pnas.96.24.14055
10.1186/s13059-017-1358-0
10.1016/j.devcel.2012.05.013
10.1093/nar/gki158
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2017
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-017-1358-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 229
ExternalDocumentID oai_doaj_org_article_1103d8f23c394677b0c5bfd5be14dcc2
PMC5707805
29191225
10_1186_s13059_017_1358_0
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01-GM083300
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NINDS NIH HHS
  grantid: R01-NS083833
– fundername: NCI NIH HHS
  grantid: P30-CA008748
– fundername: NIGMS NIH HHS
  grantid: R01 GM083300
– fundername: ;
  grantid: R01-NS083833
– fundername: ;
  grantid: R01-GM083300
– fundername: ;
  grantid: P30-CA008748
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
AHSBF
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c661t-af98daf27b2c57c2a91db4afe582c35b201d46b2a92b04b75a033ff34fda137b3
IEDL.DBID 7X7
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:21:34 EDT 2025
Thu Aug 21 18:17:19 EDT 2025
Mon Jul 21 11:38:08 EDT 2025
Fri Jul 11 00:24:23 EDT 2025
Fri Jul 25 12:08:03 EDT 2025
Mon Jul 21 06:04:25 EDT 2025
Tue Jul 01 03:10:41 EDT 2025
Thu Apr 24 23:10:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-af98daf27b2c57c2a91db4afe582c35b201d46b2a92b04b75a033ff34fda137b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8432-5851
OpenAccessLink https://www.proquest.com/docview/2207999293?pq-origsite=%requestingapplication%
PMID 29191225
PQID 2207999293
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1103d8f23c394677b0c5bfd5be14dcc2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5707805
proquest_miscellaneous_2053870570
proquest_miscellaneous_1971647084
proquest_journals_2207999293
pubmed_primary_29191225
crossref_citationtrail_10_1186_s13059_017_1358_0
crossref_primary_10_1186_s13059_017_1358_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-30
PublicationDateYYYYMMDD 2017-11-30
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-30
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome Biology
PublicationTitleAlternate Genome Biol
PublicationYear 2017
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References N Lau (1358_CR62) 2009; 19
BP Lewis (1358_CR70) 2005; 120
BR Graveley (1358_CR14) 2005; 123
A Oshlack (1358_CR65) 2010; 11
T Steijger (1358_CR15) 2013; 10
AG Clark (1358_CR38) 2007; 450
Y Liao (1358_CR67) 2014; 30
P Smibert (1358_CR6) 2012; 1
M Hild (1358_CR2) 2003; 5
S Shenker (1358_CR16) 2015; 21
D Kim (1358_CR40) 2016; 48
L Cherbas (1358_CR63) 2011; 21
D Retelska (1358_CR32) 2006; 7
BJ Main (1358_CR13) 2013; 30
MO Duff (1358_CR8) 2015; 521
N Pinzon (1358_CR41) 2017; 27
JH Graber (1358_CR33) 1999; 96
CC MacDonald (1358_CR61) 2010; 1
1358_CR69
P Sanfilippo (1358_CR29) 2017; 126
JO Westholm (1358_CR7) 2014; 9
S Roy (1358_CR36) 2010; 330
D Kim (1358_CR64) 2015; 12
Z Ji (1358_CR27) 2009; 106
A Shepherd (1358_CR56) 2010; 239
JB Brown (1358_CR5) 2014; 512
B Tian (1358_CR48) 2005; 33
DL Garaulet (1358_CR53) 2014; 29
1358_CR20
B Tian (1358_CR24) 2017; 18
R Sandberg (1358_CR25) 2008; 320
BB Matthews (1358_CR52) 2015; 5
MD Sheets (1358_CR46) 1990; 18
GM Rubin (1358_CR1) 2000; 287
I Ulitsky (1358_CR23) 2012; 22
C Mayr (1358_CR28) 2009; 138
EC Lai (1358_CR43) 2002; 30
B Tian (1358_CR30) 2012; 3
MI Love (1358_CR68) 2014; 15
W Tadros (1358_CR58) 2009; 136
1358_CR39
P Miura (1358_CR22) 2013; 23
YC Wu (1358_CR54) 2012; 23
ZX Chen (1358_CR37) 2014; 24
Y Shi (1358_CR26) 2012; 18
RA Hoskins (1358_CR12) 2011; 21
P Sanfilippo (1358_CR44) 2016; 143
1358_CR72
D Gautheret (1358_CR57) 1998; 8
D Ray (1358_CR71) 2013; 499
A Derti (1358_CR35) 2012; 22
P Miura (1358_CR18) 2014; 36
N Boley (1358_CR11) 2014; 32
V Hilgers (1358_CR17) 2011; 108
NJ Proudfoot (1358_CR55) 1976; 263
J Wen (1358_CR10) 2014; 24
E Cannavo (1358_CR19) 2017; 541
DP Bartel (1358_CR42) 2009; 136
JR Manak (1358_CR3) 2006; 38
O Shalem (1358_CR50) 2015; 11
X Wu (1358_CR49) 2017; 169
CH Jan (1358_CR34) 2011; 469
GK Smyth (1358_CR66) 2005
R Elkon (1358_CR21) 2013; 14
BR Graveley (1358_CR4) 2011; 471
Y Takagaki (1358_CR51) 1996; 87
LN Hutchins (1358_CR31) 2008; 24
J Bao (1358_CR59) 2016; 12
E Berezikov (1358_CR9) 2011; 21
J Prescott (1358_CR47) 1994; 14
ML Samson (1358_CR45) 1998; 150
W Li (1358_CR60) 2016; 14
References_xml – volume: 21
  start-page: 203
  year: 2011
  ident: 1358_CR9
  publication-title: Genome Res
  doi: 10.1101/gr.116657.110
– volume: 32
  start-page: 341
  year: 2014
  ident: 1358_CR11
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2850
– volume: 30
  start-page: 1966
  year: 2013
  ident: 1358_CR13
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst085
– volume: 36
  start-page: 766
  year: 2014
  ident: 1358_CR18
  publication-title: Bioessays
  doi: 10.1002/bies.201300174
– volume: 48
  start-page: 1517
  year: 2016
  ident: 1358_CR40
  publication-title: Nat Genet
  doi: 10.1038/ng.3694
– volume: 27
  start-page: 234
  year: 2017
  ident: 1358_CR41
  publication-title: Genome Res
  doi: 10.1101/gr.205146.116
– volume: 541
  start-page: 402
  year: 2017
  ident: 1358_CR19
  publication-title: Nature
  doi: 10.1038/nature20802
– volume: 24
  start-page: 1209
  year: 2014
  ident: 1358_CR37
  publication-title: Genome Res
  doi: 10.1101/gr.159384.113
– volume: 499
  start-page: 172
  year: 2013
  ident: 1358_CR71
  publication-title: Nature
  doi: 10.1038/nature12311
– volume: 38
  start-page: 1151
  year: 2006
  ident: 1358_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng1875
– volume: 8
  start-page: 524
  year: 1998
  ident: 1358_CR57
  publication-title: Genome Res
  doi: 10.1101/gr.8.5.524
– volume: 106
  start-page: 7028
  year: 2009
  ident: 1358_CR27
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0900028106
– volume: 123
  start-page: 65
  year: 2005
  ident: 1358_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2005.07.028
– volume: 24
  start-page: 1236
  year: 2014
  ident: 1358_CR10
  publication-title: Genome Res
  doi: 10.1101/gr.161554.113
– volume: 18
  start-page: 18
  year: 2017
  ident: 1358_CR24
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2016.116
– volume: 24
  start-page: 2684
  year: 2008
  ident: 1358_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn526
– volume: 18
  start-page: 2105
  year: 2012
  ident: 1358_CR26
  publication-title: RNA
  doi: 10.1261/rna.035899.112
– volume: 15
  start-page: 550
  year: 2014
  ident: 1358_CR68
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 19
  start-page: 1776
  year: 2009
  ident: 1358_CR62
  publication-title: Genome Res
  doi: 10.1101/gr.094896.109
– volume: 18
  start-page: 5799
  year: 1990
  ident: 1358_CR46
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.19.5799
– volume: 30
  start-page: 363
  year: 2002
  ident: 1358_CR43
  publication-title: Nat Genet
  doi: 10.1038/ng865
– volume: 471
  start-page: 473
  year: 2011
  ident: 1358_CR4
  publication-title: Nature
  doi: 10.1038/nature09715
– volume: 11
  start-page: e1005147
  year: 2015
  ident: 1358_CR50
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005147
– volume: 1
  start-page: 277
  year: 2012
  ident: 1358_CR6
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.01.001
– volume: 521
  start-page: 376
  year: 2015
  ident: 1358_CR8
  publication-title: Nature
  doi: 10.1038/nature14475
– volume: 450
  start-page: 203
  year: 2007
  ident: 1358_CR38
  publication-title: Nature
  doi: 10.1038/nature06341
– volume: 108
  start-page: 15864
  year: 2011
  ident: 1358_CR17
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1112672108
– volume: 22
  start-page: 1173
  year: 2012
  ident: 1358_CR35
  publication-title: Genome Res
  doi: 10.1101/gr.132563.111
– volume: 7
  start-page: 176
  year: 2006
  ident: 1358_CR32
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-176
– volume: 10
  start-page: 1177
  year: 2013
  ident: 1358_CR15
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2714
– volume: 23
  start-page: 812
  year: 2013
  ident: 1358_CR22
  publication-title: Genome Res
  doi: 10.1101/gr.146886.112
– volume: 239
  start-page: 1220
  year: 2010
  ident: 1358_CR56
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.22262
– volume: 14
  start-page: 6
  year: 2016
  ident: 1358_CR60
  publication-title: BMC Biol
  doi: 10.1186/s12915-016-0229-6
– volume: 9
  start-page: 1966
  year: 2014
  ident: 1358_CR7
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.10.062
– ident: 1358_CR20
  doi: 10.7554/eLife.05003
– volume: 12
  start-page: e1005863
  year: 2016
  ident: 1358_CR59
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005863
– volume: 21
  start-page: 301
  year: 2011
  ident: 1358_CR63
  publication-title: Genome Res
  doi: 10.1101/gr.112961.110
– volume: 14
  start-page: 4682
  year: 1994
  ident: 1358_CR47
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.14.7.4682
– volume: 136
  start-page: 215
  year: 2009
  ident: 1358_CR42
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 21
  start-page: 182
  year: 2011
  ident: 1358_CR12
  publication-title: Genome Res
  doi: 10.1101/gr.112466.110
– volume: 143
  start-page: 4474
  year: 2016
  ident: 1358_CR44
  publication-title: Development
  doi: 10.1242/dev.141978
– volume: 136
  start-page: 3033
  year: 2009
  ident: 1358_CR58
  publication-title: Development
  doi: 10.1242/dev.033183
– volume: 263
  start-page: 211
  year: 1976
  ident: 1358_CR55
  publication-title: Nature
  doi: 10.1038/263211a0
– ident: 1358_CR39
  doi: 10.7554/eLife.05005
– volume: 12
  start-page: 357
  year: 2015
  ident: 1358_CR64
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3317
– volume: 469
  start-page: 97
  year: 2011
  ident: 1358_CR34
  publication-title: Nature
  doi: 10.1038/nature09616
– volume: 287
  start-page: 2222
  year: 2000
  ident: 1358_CR1
  publication-title: Science
  doi: 10.1126/science.287.5461.2222
– ident: 1358_CR69
  doi: 10.1186/1748-7188-6-26
– volume: 21
  start-page: 14
  year: 2015
  ident: 1358_CR16
  publication-title: RNA
  doi: 10.1261/rna.046037.114
– volume: 5
  start-page: R3
  year: 2003
  ident: 1358_CR2
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-5-1-r3
– start-page: 397
  volume-title: Bioinformatics and computational biology solutions using R and Bioconductor
  year: 2005
  ident: 1358_CR66
  doi: 10.1007/0-387-29362-0_23
– volume: 320
  start-page: 1643
  year: 2008
  ident: 1358_CR25
  publication-title: Science
  doi: 10.1126/science.1155390
– volume: 169
  start-page: 905
  year: 2017
  ident: 1358_CR49
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.036
– volume: 14
  start-page: 496
  year: 2013
  ident: 1358_CR21
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3482
– volume: 11
  start-page: 220
  year: 2010
  ident: 1358_CR65
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-12-220
– volume: 150
  start-page: 723
  year: 1998
  ident: 1358_CR45
  publication-title: Genetics
  doi: 10.1093/genetics/150.2.723
– volume: 3
  start-page: 385
  year: 2012
  ident: 1358_CR30
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.116
– volume: 30
  start-page: 923
  year: 2014
  ident: 1358_CR67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 138
  start-page: 673
  year: 2009
  ident: 1358_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.016
– volume: 330
  start-page: 1787
  year: 2010
  ident: 1358_CR36
  publication-title: Science
  doi: 10.1126/science.1198374
– volume: 5
  start-page: 1721
  year: 2015
  ident: 1358_CR52
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.115.018929
– volume: 87
  start-page: 941
  year: 1996
  ident: 1358_CR51
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)82000-0
– volume: 29
  start-page: 635
  year: 2014
  ident: 1358_CR53
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2014.04.023
– volume: 120
  start-page: 15
  year: 2005
  ident: 1358_CR70
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.035
– volume: 1
  start-page: 494
  year: 2010
  ident: 1358_CR61
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.29
– volume: 22
  start-page: 2054
  year: 2012
  ident: 1358_CR23
  publication-title: Genome Res
  doi: 10.1101/gr.139733.112
– volume: 126
  start-page: 86
  year: 2017
  ident: 1358_CR29
  publication-title: Methods
  doi: 10.1016/j.ymeth.2017.06.003
– volume: 512
  start-page: 393
  year: 2014
  ident: 1358_CR5
  publication-title: Nature
  doi: 10.1038/nature12962
– volume: 96
  start-page: 14055
  year: 1999
  ident: 1358_CR33
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.24.14055
– ident: 1358_CR72
  doi: 10.1186/s13059-017-1358-0
– volume: 23
  start-page: 202
  year: 2012
  ident: 1358_CR54
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2012.05.013
– volume: 33
  start-page: 201
  year: 2005
  ident: 1358_CR48
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki158
SSID ssj0019426
ssj0017866
Score 2.4437277
Snippet Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species...
Background Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing data in...
BACKGROUND: Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing data in...
Abstract Background Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 229
SubjectTerms 3' Untranslated Regions
Adenosine
Algorithms
Animals
Bioinformatics
Biology
Cell Line
Cell lines
Computational Biology - methods
Developmental stages
Divergence
divergent evolution
Drosophila
Drosophila - embryology
Drosophila - genetics
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila virilis
Drosophila yakuba
Evolution
Evolution, Molecular
Evolutionary conservation
Gene expression
genes
Genomes
head
Insects
microRNA
MicroRNAs
miRNA
Molecular Sequence Annotation
Organ Specificity - genetics
Phylogeny
Poly A
Polyadenylation
Post-transcription
Proteins
RNA Isoforms
RNA-binding protein
RNA-binding proteins
RNA-Binding Proteins - metabolism
Species
Species Specificity
Spermatogenesis
testes
Transcription, Genetic
transcriptome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JahwxEBXGEPAlxHGWjp2gQE6Gxlpb6qOzGGNCTjH4pmglhqHHeMaB-XtXqXsGj8lyya3RAlKpVEtX6RUhH9CN7hK4qTJgCTOr-jaIzFvTmSSxVlLwFe3zW3d-qS6u9NWDUl-YEzbCA4-EOwH1JJMtQkaJ1eBNYFGHknTIXKUYq_QFnbd2pqb4QQ-KZ4phctudLEBSa8wLMi2X2rZsSwtVsP7fWZiPEyUfaJ6zZ-TpZDLS03Gp-2QnD8_Jk7GI5OqA_PiKr3Uxj4nCB82_Jmai80KXlawtPqfElCBaY-NDxfqmN_PZyoPUWY3ZcNTXpdLPt7WywfXM0zotL16Qy7Mv3z-dt1PdhDaCtl22vvQ2-SJMEFGbKHzPU1C-ZG1FlDqAzk-qC9AuAlPBaM-kLEWqkjyXJsiXZHeYD_k1odkwHywrIAqSitwGHouMFnR6b7PWsSFsTUcXJ1BxrG0xc9W5sJ0bSe-A9A5J71hDjjdTbkZEjb8N_oiHsxmIYNi1AVjETSzi_sUiDTlaH62bbujCCcEMGMdg7TTk_aYb7hYGTPyQ53cLxxFfSxlm1Z_HCJBiIPO0gbW-Grlls1rRgzcMArMhZouPtraz3TNc_6wY3xpRmJh-8z_2f0j2RGV9_NN4RHaXt3f5LZhSy_Cu3pp7exMdAA
  priority: 102
  providerName: Directory of Open Access Journals
Title Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species
URI https://www.ncbi.nlm.nih.gov/pubmed/29191225
https://www.proquest.com/docview/2207999293
https://www.proquest.com/docview/1971647084
https://www.proquest.com/docview/2053870570
https://pubmed.ncbi.nlm.nih.gov/PMC5707805
https://doaj.org/article/1103d8f23c394677b0c5bfd5be14dcc2
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7aIvgi3t1alwg-CUMzuUwyT-JqSxEpUiwsvoy5TS0sM-vutrD_3nMy2dUV7cswkwtkTk7OJTn5DiFv0I2uAripwmEKMyPrwvFYFrrSQWCuJGcT2udZdXohP03VNG-4LXNY5UYmJkEdeo975EecMw3GDGind_OfBWaNwtPVnELjLtlH6DIM6dLTrcNVaoO2Sv6oJR-uGmEAoqqrfMRZmupoCYJcYdiQLkqhTMF2lFTC8v-XAfp3HOUfiunkIXmQLUr6fmCBR-RO7B6Te0OOyfUT8v0zXubFMCcKLzTeZF6jfUtXieoF3rbEiCGajs67BAVO5_1sbUEorYdgOWrTUOnHRUp8cDWzNHWLy6fk4uT464fTIqdVKDwo41Vh29oE23LtuFfac1uXwUnbRmW4F8qBSRBk5aCcOyadVpYJ0bZCtsGWQjvxjOx1fRdfEBo1s86wFiRFkL40rvSt8AZUfm2iUn5E2IaOjc-Y45j6YtYk38NUzUD6BkjfIOkbNiJvt13mA-DGbY0nODnbhoiVnQr6xWWTlx50ZSKYlgsvalAL2jGvXBuUi6UM3vMROdxMbZMX8LL5zW4j8npbDUsPz1NsF_vrZVMi_JbUzMj_t-Eg5EAkKg1jfT5wy3a0vAZnGeTpiOgdPtr5nd2a7upHggBXCNLE1MHtQ39J7vPE1LjFeEj2Vovr-ApsqJUbp4UyJvuT47Mv5-O0EwHP88m3Xz5THIc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKkQviDeBAkaCC9KqXj_W3gNClLZKaYgQaqXeXNtrQ6VoN01SUP4Uv5GxdxMIgt5624e98o7H8_CM50PoVXSjiwrcVGYjhJniZWapzzNZyIpFrCRrUrXPUTE44R9PxekG-rk8CxPTKpcyMQnqqnFxj3yHUiLBmAHt9G5ykUXUqBhdXUJotGxx5Bc_wGWbvT3cg_l9TenB_vGHQdahCmQOdNE8M6FUlQlUWuqEdNSUeWW5CV4o6piwoBErXlh4Ti3hVgpDGAuB8VCZnEnL4Ls30CZn4Mr00Obu_ujzl1XcQqpoHXU3Jaft4aaY8ijKoguq5qrYmYHqEDFRSWY5Eyoja2oxoQf8y-T9O3PzD1V4cAfd7mxY_L5lurtow9f30M0W1XJxH50N4_HhmFiF4QL77x134ybgeZrnLJ7vjDlKOAXr61R8HE-a8cKAGFy06XnYpKHivWmCWjgfG5y6-dkDdHItJH-IenVT-8cIe0mMVSSAbKq4y5XNXWBOgZFRKi-E6yOypKN2XZXzCLYx1snbUYVuSa-B9DqSXpM-erPqMmlLfFzVeDdOzqphrM6dHjTTr7pb7NCVsEoFyhwrQRFJS5ywoRLW57xyjvbR9nJqdScyZvo3g_fRy9VrWOwxgmNq31zOdB4LfnFJFP9_GwpiFYSwkDDWRy23rEZLS3DPQYL3kVzjo7XfWX9Tn39LRcdFLAtFxJOrh_4C3Rocfxrq4eHo6CnaoonB4wbnNurNp5f-GVhwc_u8WzYYnV33Sv0Fe2xYNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+and+evolution+of+tissue-specific+alternative+polyadenylation+across+Drosophila+species&rft.jtitle=Genome+biology&rft.au=Sanfilippo%2C+Piero&rft.au=Wen%2C+Jiayu&rft.au=Lai%2C+Eric+C.&rft.date=2017-11-30&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-017-1358-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13059_017_1358_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon