Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species
Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. Here, we ge...
Saved in:
Published in | Genome Biology Vol. 18; no. 1; p. 229 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
30.11.2017
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1474-760X 1474-7596 1474-760X |
DOI | 10.1186/s13059-017-1358-0 |
Cover
Loading…
Abstract | Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control.
Here, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny.
These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks. |
---|---|
AbstractList | Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control.
Here, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny.
These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks. Abstract Background Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. Results Here, we generate deep 3′-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3′ termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3′ untranslated region (UTR) lengthening in head and 3′ UTR shortening in testis, and characterize new tissue and developmental 3′ UTR patterns. Our thorough 3′ UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3′-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3′ end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3′ UTR isoform expression across the Drosophila phylogeny. Conclusions These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3′ UTR formation and its consequences for post-transcriptional regulatory networks. BACKGROUND: Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control. RESULTS: Here, we generate deep 3′-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3′ termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3′ untranslated region (UTR) lengthening in head and 3′ UTR shortening in testis, and characterize new tissue and developmental 3′ UTR patterns. Our thorough 3′ UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3′-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3′ end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3′ UTR isoform expression across the Drosophila phylogeny. CONCLUSIONS: These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3′ UTR formation and its consequences for post-transcriptional regulatory networks. Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control.BACKGROUNDDrosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species precludes comprehensive assessment of alternative polyadenylation (APA), which is subject to broad tissue-specific control.Here, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny.RESULTSHere, we generate deep 3'-sequencing data from 23 developmental stages, tissues, and cell lines of D. melanogaster, yielding a comprehensive atlas of ~ 62,000 polyadenylated ends. These data broadly extend the annotated transcriptome, identify ~ 40,000 novel 3' termini, and reveal that two-thirds of Drosophila genes are subject to APA. Furthermore, we dramatically expand the numbers of genes known to be subject to tissue-specific APA, such as 3' untranslated region (UTR) lengthening in head and 3' UTR shortening in testis, and characterize new tissue and developmental 3' UTR patterns. Our thorough 3' UTR annotations permit reassessment of post-transcriptional regulatory networks, via conserved miRNA and RNA binding protein sites. To evaluate the evolutionary conservation and divergence of APA patterns, we generate developmental and tissue-specific 3'-seq libraries from Drosophila yakuba and Drosophila virilis. We document broadly analogous tissue-specific APA trends in these species, but also observe significant alterations in 3' end usage across orthologs. We exploit the population of functionally evolving poly(A) sites to gain clear evidence that evolutionary divergence in core polyadenylation signal (PAS) and downstream sequence element (DSE) motifs drive broad alterations in 3' UTR isoform expression across the Drosophila phylogeny.These data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks.CONCLUSIONSThese data provide a critical resource for the Drosophila community and offer many insights into the complex control of alternative tissue-specific 3' UTR formation and its consequences for post-transcriptional regulatory networks. |
ArticleNumber | 229 |
Author | Lai, Eric C. Wen, Jiayu Sanfilippo, Piero |
Author_xml | – sequence: 1 givenname: Piero surname: Sanfilippo fullname: Sanfilippo, Piero – sequence: 2 givenname: Jiayu surname: Wen fullname: Wen, Jiayu – sequence: 3 givenname: Eric C. orcidid: 0000-0002-8432-5851 surname: Lai fullname: Lai, Eric C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29191225$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkuLFDEUhYOMOA_9AW6kwI2b0tw8KpWNIONroMGNgruY50yadKWsVDX0vzfdPSMzA-Imudx893DDOefoZMiDR-gl4LcAffeuAMVcthhEC5T3LX6CzoAJ1ooO_zy5V5-i81LWGINkpHuGTokECYTwM_RrpQdXrB59U4vGb3Na5piHJodmjqUsvi2jtzFE2-g0-2nQc9z6Zsxpp50fdkkfcG2nXErzsZ55vIlJN4cxX56jp0Gn4l_c3hfox-dP3y-_tqtvX64uP6xa23UwtzrI3ulAhCGWC0u0BGeYDp73xFJuCAbHOlP7xGBmBNeY0hAoC04DFYZeoKujrst6rcYpbvS0U1lHdWjk6VrpaY42eQWAqesDoZZK1glhsOUmOG48MGctqVrvj1rjYjbeWT_Mk04PRB--DPFGXeet4gKLHvMq8OZWYMq_F19mtYnF-pT04PNSFKlML3DF_4uCFNAxgXtW0deP0HVeqiGpChIspJRE0kq9ur_8363vPK-AOAIHyyYflI3zwcX6l5gUYLVPlzqmS9V0qX261H5XeDR5J_7vmT_f89Oc |
CitedBy_id | crossref_primary_10_1093_nar_gkae826 crossref_primary_10_1016_j_gene_2023_147949 crossref_primary_10_1093_bib_bbab157 crossref_primary_10_1534_genetics_120_303515 crossref_primary_10_3390_cells12131717 crossref_primary_10_3390_cells12020318 crossref_primary_10_1155_2020_2626584 crossref_primary_10_1371_journal_pgen_1009563 crossref_primary_10_1134_S1062360425700031 crossref_primary_10_1371_journal_pgen_1010787 crossref_primary_10_3389_fgene_2022_821026 crossref_primary_10_1002_wrna_1485 crossref_primary_10_1128_MCB_00581_18 crossref_primary_10_1038_s44319_025_00401_z crossref_primary_10_1016_j_molcel_2020_09_007 crossref_primary_10_3389_fgene_2022_848626 crossref_primary_10_1371_journal_pgen_1009439 crossref_primary_10_1186_s12864_023_09696_5 crossref_primary_10_15252_embr_202154350 crossref_primary_10_26508_lsa_202302000 crossref_primary_10_1093_nar_gkaa359 crossref_primary_10_1093_nar_gkaa1026 crossref_primary_10_1038_s41467_021_21894_x crossref_primary_10_1080_15476286_2023_2275109 crossref_primary_10_2139_ssrn_4124633 crossref_primary_10_1080_15476286_2021_1872963 crossref_primary_10_1186_s13059_017_1358_0 crossref_primary_10_1002_wrna_1733 crossref_primary_10_1186_s12864_024_10584_9 crossref_primary_10_1038_s41467_019_12575_x crossref_primary_10_1016_j_bbagrm_2018_07_012 crossref_primary_10_1101_gr_237826_118 crossref_primary_10_31083_j_fbs1604021 crossref_primary_10_3390_insects15121006 crossref_primary_10_1126_sciadv_abk0445 crossref_primary_10_1186_s13059_018_1504_3 crossref_primary_10_1093_gbe_evae055 crossref_primary_10_1146_annurev_genet_111523_102413 crossref_primary_10_1016_j_celrep_2019_05_083 crossref_primary_10_1016_j_molcel_2020_09_011 crossref_primary_10_3389_fgene_2021_760530 crossref_primary_10_1016_j_devcel_2020_06_004 crossref_primary_10_3389_fevo_2019_00085 crossref_primary_10_1261_rna_079783_123 crossref_primary_10_1038_s41467_022_32305_0 |
Cites_doi | 10.1101/gr.116657.110 10.1038/nbt.2850 10.1093/molbev/mst085 10.1002/bies.201300174 10.1038/ng.3694 10.1101/gr.205146.116 10.1038/nature20802 10.1101/gr.159384.113 10.1038/nature12311 10.1038/ng1875 10.1101/gr.8.5.524 10.1073/pnas.0900028106 10.1016/j.cell.2005.07.028 10.1101/gr.161554.113 10.1038/nrm.2016.116 10.1093/bioinformatics/btn526 10.1261/rna.035899.112 10.1186/s13059-014-0550-8 10.1101/gr.094896.109 10.1093/nar/18.19.5799 10.1038/ng865 10.1038/nature09715 10.1371/journal.pgen.1005147 10.1016/j.celrep.2012.01.001 10.1038/nature14475 10.1038/nature06341 10.1073/pnas.1112672108 10.1101/gr.132563.111 10.1186/1471-2164-7-176 10.1038/nmeth.2714 10.1101/gr.146886.112 10.1002/dvdy.22262 10.1186/s12915-016-0229-6 10.1016/j.celrep.2014.10.062 10.7554/eLife.05003 10.1371/journal.pgen.1005863 10.1101/gr.112961.110 10.1128/MCB.14.7.4682 10.1016/j.cell.2009.01.002 10.1101/gr.112466.110 10.1242/dev.141978 10.1242/dev.033183 10.1038/263211a0 10.7554/eLife.05005 10.1038/nmeth.3317 10.1038/nature09616 10.1126/science.287.5461.2222 10.1186/1748-7188-6-26 10.1261/rna.046037.114 10.1186/gb-2003-5-1-r3 10.1007/0-387-29362-0_23 10.1126/science.1155390 10.1016/j.cell.2017.04.036 10.1038/nrg3482 10.1186/gb-2010-11-12-220 10.1093/genetics/150.2.723 10.1002/wrna.116 10.1093/bioinformatics/btt656 10.1016/j.cell.2009.06.016 10.1126/science.1198374 10.1534/g3.115.018929 10.1016/S0092-8674(00)82000-0 10.1016/j.devcel.2014.04.023 10.1016/j.cell.2004.12.035 10.1002/wrna.29 10.1101/gr.139733.112 10.1016/j.ymeth.2017.06.003 10.1038/nature12962 10.1073/pnas.96.24.14055 10.1186/s13059-017-1358-0 10.1016/j.devcel.2012.05.013 10.1093/nar/gki158 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2017 |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13059-017-1358-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 229 |
ExternalDocumentID | oai_doaj_org_article_1103d8f23c394677b0c5bfd5be14dcc2 PMC5707805 29191225 10_1186_s13059_017_1358_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01-GM083300 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NINDS NIH HHS grantid: R01-NS083833 – fundername: NCI NIH HHS grantid: P30-CA008748 – fundername: NIGMS NIH HHS grantid: R01 GM083300 – fundername: ; grantid: R01-NS083833 – fundername: ; grantid: R01-GM083300 – fundername: ; grantid: P30-CA008748 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK AHSBF AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c661t-af98daf27b2c57c2a91db4afe582c35b201d46b2a92b04b75a033ff34fda137b3 |
IEDL.DBID | 7X7 |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:21:34 EDT 2025 Thu Aug 21 18:17:19 EDT 2025 Mon Jul 21 11:38:08 EDT 2025 Fri Jul 11 00:24:23 EDT 2025 Fri Jul 25 12:08:03 EDT 2025 Mon Jul 21 06:04:25 EDT 2025 Tue Jul 01 03:10:41 EDT 2025 Thu Apr 24 23:10:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-af98daf27b2c57c2a91db4afe582c35b201d46b2a92b04b75a033ff34fda137b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8432-5851 |
OpenAccessLink | https://www.proquest.com/docview/2207999293?pq-origsite=%requestingapplication% |
PMID | 29191225 |
PQID | 2207999293 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1103d8f23c394677b0c5bfd5be14dcc2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5707805 proquest_miscellaneous_2053870570 proquest_miscellaneous_1971647084 proquest_journals_2207999293 pubmed_primary_29191225 crossref_citationtrail_10_1186_s13059_017_1358_0 crossref_primary_10_1186_s13059_017_1358_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-30 |
PublicationDateYYYYMMDD | 2017-11-30 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2017 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | N Lau (1358_CR62) 2009; 19 BP Lewis (1358_CR70) 2005; 120 BR Graveley (1358_CR14) 2005; 123 A Oshlack (1358_CR65) 2010; 11 T Steijger (1358_CR15) 2013; 10 AG Clark (1358_CR38) 2007; 450 Y Liao (1358_CR67) 2014; 30 P Smibert (1358_CR6) 2012; 1 M Hild (1358_CR2) 2003; 5 S Shenker (1358_CR16) 2015; 21 D Kim (1358_CR40) 2016; 48 L Cherbas (1358_CR63) 2011; 21 D Retelska (1358_CR32) 2006; 7 BJ Main (1358_CR13) 2013; 30 MO Duff (1358_CR8) 2015; 521 N Pinzon (1358_CR41) 2017; 27 JH Graber (1358_CR33) 1999; 96 CC MacDonald (1358_CR61) 2010; 1 1358_CR69 P Sanfilippo (1358_CR29) 2017; 126 JO Westholm (1358_CR7) 2014; 9 S Roy (1358_CR36) 2010; 330 D Kim (1358_CR64) 2015; 12 Z Ji (1358_CR27) 2009; 106 A Shepherd (1358_CR56) 2010; 239 JB Brown (1358_CR5) 2014; 512 B Tian (1358_CR48) 2005; 33 DL Garaulet (1358_CR53) 2014; 29 1358_CR20 B Tian (1358_CR24) 2017; 18 R Sandberg (1358_CR25) 2008; 320 BB Matthews (1358_CR52) 2015; 5 MD Sheets (1358_CR46) 1990; 18 GM Rubin (1358_CR1) 2000; 287 I Ulitsky (1358_CR23) 2012; 22 C Mayr (1358_CR28) 2009; 138 EC Lai (1358_CR43) 2002; 30 B Tian (1358_CR30) 2012; 3 MI Love (1358_CR68) 2014; 15 W Tadros (1358_CR58) 2009; 136 1358_CR39 P Miura (1358_CR22) 2013; 23 YC Wu (1358_CR54) 2012; 23 ZX Chen (1358_CR37) 2014; 24 Y Shi (1358_CR26) 2012; 18 RA Hoskins (1358_CR12) 2011; 21 P Sanfilippo (1358_CR44) 2016; 143 1358_CR72 D Gautheret (1358_CR57) 1998; 8 D Ray (1358_CR71) 2013; 499 A Derti (1358_CR35) 2012; 22 P Miura (1358_CR18) 2014; 36 N Boley (1358_CR11) 2014; 32 V Hilgers (1358_CR17) 2011; 108 NJ Proudfoot (1358_CR55) 1976; 263 J Wen (1358_CR10) 2014; 24 E Cannavo (1358_CR19) 2017; 541 DP Bartel (1358_CR42) 2009; 136 JR Manak (1358_CR3) 2006; 38 O Shalem (1358_CR50) 2015; 11 X Wu (1358_CR49) 2017; 169 CH Jan (1358_CR34) 2011; 469 GK Smyth (1358_CR66) 2005 R Elkon (1358_CR21) 2013; 14 BR Graveley (1358_CR4) 2011; 471 Y Takagaki (1358_CR51) 1996; 87 LN Hutchins (1358_CR31) 2008; 24 J Bao (1358_CR59) 2016; 12 E Berezikov (1358_CR9) 2011; 21 J Prescott (1358_CR47) 1994; 14 ML Samson (1358_CR45) 1998; 150 W Li (1358_CR60) 2016; 14 |
References_xml | – volume: 21 start-page: 203 year: 2011 ident: 1358_CR9 publication-title: Genome Res doi: 10.1101/gr.116657.110 – volume: 32 start-page: 341 year: 2014 ident: 1358_CR11 publication-title: Nat Biotechnol doi: 10.1038/nbt.2850 – volume: 30 start-page: 1966 year: 2013 ident: 1358_CR13 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst085 – volume: 36 start-page: 766 year: 2014 ident: 1358_CR18 publication-title: Bioessays doi: 10.1002/bies.201300174 – volume: 48 start-page: 1517 year: 2016 ident: 1358_CR40 publication-title: Nat Genet doi: 10.1038/ng.3694 – volume: 27 start-page: 234 year: 2017 ident: 1358_CR41 publication-title: Genome Res doi: 10.1101/gr.205146.116 – volume: 541 start-page: 402 year: 2017 ident: 1358_CR19 publication-title: Nature doi: 10.1038/nature20802 – volume: 24 start-page: 1209 year: 2014 ident: 1358_CR37 publication-title: Genome Res doi: 10.1101/gr.159384.113 – volume: 499 start-page: 172 year: 2013 ident: 1358_CR71 publication-title: Nature doi: 10.1038/nature12311 – volume: 38 start-page: 1151 year: 2006 ident: 1358_CR3 publication-title: Nat Genet doi: 10.1038/ng1875 – volume: 8 start-page: 524 year: 1998 ident: 1358_CR57 publication-title: Genome Res doi: 10.1101/gr.8.5.524 – volume: 106 start-page: 7028 year: 2009 ident: 1358_CR27 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0900028106 – volume: 123 start-page: 65 year: 2005 ident: 1358_CR14 publication-title: Cell doi: 10.1016/j.cell.2005.07.028 – volume: 24 start-page: 1236 year: 2014 ident: 1358_CR10 publication-title: Genome Res doi: 10.1101/gr.161554.113 – volume: 18 start-page: 18 year: 2017 ident: 1358_CR24 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2016.116 – volume: 24 start-page: 2684 year: 2008 ident: 1358_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn526 – volume: 18 start-page: 2105 year: 2012 ident: 1358_CR26 publication-title: RNA doi: 10.1261/rna.035899.112 – volume: 15 start-page: 550 year: 2014 ident: 1358_CR68 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 19 start-page: 1776 year: 2009 ident: 1358_CR62 publication-title: Genome Res doi: 10.1101/gr.094896.109 – volume: 18 start-page: 5799 year: 1990 ident: 1358_CR46 publication-title: Nucleic Acids Res doi: 10.1093/nar/18.19.5799 – volume: 30 start-page: 363 year: 2002 ident: 1358_CR43 publication-title: Nat Genet doi: 10.1038/ng865 – volume: 471 start-page: 473 year: 2011 ident: 1358_CR4 publication-title: Nature doi: 10.1038/nature09715 – volume: 11 start-page: e1005147 year: 2015 ident: 1358_CR50 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005147 – volume: 1 start-page: 277 year: 2012 ident: 1358_CR6 publication-title: Cell Rep doi: 10.1016/j.celrep.2012.01.001 – volume: 521 start-page: 376 year: 2015 ident: 1358_CR8 publication-title: Nature doi: 10.1038/nature14475 – volume: 450 start-page: 203 year: 2007 ident: 1358_CR38 publication-title: Nature doi: 10.1038/nature06341 – volume: 108 start-page: 15864 year: 2011 ident: 1358_CR17 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1112672108 – volume: 22 start-page: 1173 year: 2012 ident: 1358_CR35 publication-title: Genome Res doi: 10.1101/gr.132563.111 – volume: 7 start-page: 176 year: 2006 ident: 1358_CR32 publication-title: BMC Genomics doi: 10.1186/1471-2164-7-176 – volume: 10 start-page: 1177 year: 2013 ident: 1358_CR15 publication-title: Nat Methods doi: 10.1038/nmeth.2714 – volume: 23 start-page: 812 year: 2013 ident: 1358_CR22 publication-title: Genome Res doi: 10.1101/gr.146886.112 – volume: 239 start-page: 1220 year: 2010 ident: 1358_CR56 publication-title: Dev Dyn doi: 10.1002/dvdy.22262 – volume: 14 start-page: 6 year: 2016 ident: 1358_CR60 publication-title: BMC Biol doi: 10.1186/s12915-016-0229-6 – volume: 9 start-page: 1966 year: 2014 ident: 1358_CR7 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.10.062 – ident: 1358_CR20 doi: 10.7554/eLife.05003 – volume: 12 start-page: e1005863 year: 2016 ident: 1358_CR59 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005863 – volume: 21 start-page: 301 year: 2011 ident: 1358_CR63 publication-title: Genome Res doi: 10.1101/gr.112961.110 – volume: 14 start-page: 4682 year: 1994 ident: 1358_CR47 publication-title: Mol Cell Biol doi: 10.1128/MCB.14.7.4682 – volume: 136 start-page: 215 year: 2009 ident: 1358_CR42 publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 21 start-page: 182 year: 2011 ident: 1358_CR12 publication-title: Genome Res doi: 10.1101/gr.112466.110 – volume: 143 start-page: 4474 year: 2016 ident: 1358_CR44 publication-title: Development doi: 10.1242/dev.141978 – volume: 136 start-page: 3033 year: 2009 ident: 1358_CR58 publication-title: Development doi: 10.1242/dev.033183 – volume: 263 start-page: 211 year: 1976 ident: 1358_CR55 publication-title: Nature doi: 10.1038/263211a0 – ident: 1358_CR39 doi: 10.7554/eLife.05005 – volume: 12 start-page: 357 year: 2015 ident: 1358_CR64 publication-title: Nat Methods doi: 10.1038/nmeth.3317 – volume: 469 start-page: 97 year: 2011 ident: 1358_CR34 publication-title: Nature doi: 10.1038/nature09616 – volume: 287 start-page: 2222 year: 2000 ident: 1358_CR1 publication-title: Science doi: 10.1126/science.287.5461.2222 – ident: 1358_CR69 doi: 10.1186/1748-7188-6-26 – volume: 21 start-page: 14 year: 2015 ident: 1358_CR16 publication-title: RNA doi: 10.1261/rna.046037.114 – volume: 5 start-page: R3 year: 2003 ident: 1358_CR2 publication-title: Genome Biol doi: 10.1186/gb-2003-5-1-r3 – start-page: 397 volume-title: Bioinformatics and computational biology solutions using R and Bioconductor year: 2005 ident: 1358_CR66 doi: 10.1007/0-387-29362-0_23 – volume: 320 start-page: 1643 year: 2008 ident: 1358_CR25 publication-title: Science doi: 10.1126/science.1155390 – volume: 169 start-page: 905 year: 2017 ident: 1358_CR49 publication-title: Cell doi: 10.1016/j.cell.2017.04.036 – volume: 14 start-page: 496 year: 2013 ident: 1358_CR21 publication-title: Nat Rev Genet doi: 10.1038/nrg3482 – volume: 11 start-page: 220 year: 2010 ident: 1358_CR65 publication-title: Genome Biol doi: 10.1186/gb-2010-11-12-220 – volume: 150 start-page: 723 year: 1998 ident: 1358_CR45 publication-title: Genetics doi: 10.1093/genetics/150.2.723 – volume: 3 start-page: 385 year: 2012 ident: 1358_CR30 publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.116 – volume: 30 start-page: 923 year: 2014 ident: 1358_CR67 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 138 start-page: 673 year: 2009 ident: 1358_CR28 publication-title: Cell doi: 10.1016/j.cell.2009.06.016 – volume: 330 start-page: 1787 year: 2010 ident: 1358_CR36 publication-title: Science doi: 10.1126/science.1198374 – volume: 5 start-page: 1721 year: 2015 ident: 1358_CR52 publication-title: G3 (Bethesda) doi: 10.1534/g3.115.018929 – volume: 87 start-page: 941 year: 1996 ident: 1358_CR51 publication-title: Cell doi: 10.1016/S0092-8674(00)82000-0 – volume: 29 start-page: 635 year: 2014 ident: 1358_CR53 publication-title: Dev Cell doi: 10.1016/j.devcel.2014.04.023 – volume: 120 start-page: 15 year: 2005 ident: 1358_CR70 publication-title: Cell doi: 10.1016/j.cell.2004.12.035 – volume: 1 start-page: 494 year: 2010 ident: 1358_CR61 publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.29 – volume: 22 start-page: 2054 year: 2012 ident: 1358_CR23 publication-title: Genome Res doi: 10.1101/gr.139733.112 – volume: 126 start-page: 86 year: 2017 ident: 1358_CR29 publication-title: Methods doi: 10.1016/j.ymeth.2017.06.003 – volume: 512 start-page: 393 year: 2014 ident: 1358_CR5 publication-title: Nature doi: 10.1038/nature12962 – volume: 96 start-page: 14055 year: 1999 ident: 1358_CR33 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.24.14055 – ident: 1358_CR72 doi: 10.1186/s13059-017-1358-0 – volume: 23 start-page: 202 year: 2012 ident: 1358_CR54 publication-title: Dev Cell doi: 10.1016/j.devcel.2012.05.013 – volume: 33 start-page: 201 year: 2005 ident: 1358_CR48 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki158 |
SSID | ssj0019426 ssj0017866 |
Score | 2.4437277 |
Snippet | Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3'-sequencing data in this species... Background Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing data in... BACKGROUND: Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing data in... Abstract Background Drosophila melanogaster has one of best-described transcriptomes of any multicellular organism. Nevertheless, the paucity of 3′-sequencing... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 229 |
SubjectTerms | 3' Untranslated Regions Adenosine Algorithms Animals Bioinformatics Biology Cell Line Cell lines Computational Biology - methods Developmental stages Divergence divergent evolution Drosophila Drosophila - embryology Drosophila - genetics Drosophila melanogaster Drosophila melanogaster - genetics Drosophila virilis Drosophila yakuba Evolution Evolution, Molecular Evolutionary conservation Gene expression genes Genomes head Insects microRNA MicroRNAs miRNA Molecular Sequence Annotation Organ Specificity - genetics Phylogeny Poly A Polyadenylation Post-transcription Proteins RNA Isoforms RNA-binding protein RNA-binding proteins RNA-Binding Proteins - metabolism Species Species Specificity Spermatogenesis testes Transcription, Genetic transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JahwxEBXGEPAlxHGWjp2gQE6Gxlpb6qOzGGNCTjH4pmglhqHHeMaB-XtXqXsGj8lyya3RAlKpVEtX6RUhH9CN7hK4qTJgCTOr-jaIzFvTmSSxVlLwFe3zW3d-qS6u9NWDUl-YEzbCA4-EOwH1JJMtQkaJ1eBNYFGHknTIXKUYq_QFnbd2pqb4QQ-KZ4phctudLEBSa8wLMi2X2rZsSwtVsP7fWZiPEyUfaJ6zZ-TpZDLS03Gp-2QnD8_Jk7GI5OqA_PiKr3Uxj4nCB82_Jmai80KXlawtPqfElCBaY-NDxfqmN_PZyoPUWY3ZcNTXpdLPt7WywfXM0zotL16Qy7Mv3z-dt1PdhDaCtl22vvQ2-SJMEFGbKHzPU1C-ZG1FlDqAzk-qC9AuAlPBaM-kLEWqkjyXJsiXZHeYD_k1odkwHywrIAqSitwGHouMFnR6b7PWsSFsTUcXJ1BxrG0xc9W5sJ0bSe-A9A5J71hDjjdTbkZEjb8N_oiHsxmIYNi1AVjETSzi_sUiDTlaH62bbujCCcEMGMdg7TTk_aYb7hYGTPyQ53cLxxFfSxlm1Z_HCJBiIPO0gbW-Grlls1rRgzcMArMhZouPtraz3TNc_6wY3xpRmJh-8z_2f0j2RGV9_NN4RHaXt3f5LZhSy_Cu3pp7exMdAA priority: 102 providerName: Directory of Open Access Journals |
Title | Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29191225 https://www.proquest.com/docview/2207999293 https://www.proquest.com/docview/1971647084 https://www.proquest.com/docview/2053870570 https://pubmed.ncbi.nlm.nih.gov/PMC5707805 https://doaj.org/article/1103d8f23c394677b0c5bfd5be14dcc2 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7aIvgi3t1alwg-CUMzuUwyT-JqSxEpUiwsvoy5TS0sM-vutrD_3nMy2dUV7cswkwtkTk7OJTn5DiFv0I2uAripwmEKMyPrwvFYFrrSQWCuJGcT2udZdXohP03VNG-4LXNY5UYmJkEdeo975EecMw3GDGind_OfBWaNwtPVnELjLtlH6DIM6dLTrcNVaoO2Sv6oJR-uGmEAoqqrfMRZmupoCYJcYdiQLkqhTMF2lFTC8v-XAfp3HOUfiunkIXmQLUr6fmCBR-RO7B6Te0OOyfUT8v0zXubFMCcKLzTeZF6jfUtXieoF3rbEiCGajs67BAVO5_1sbUEorYdgOWrTUOnHRUp8cDWzNHWLy6fk4uT464fTIqdVKDwo41Vh29oE23LtuFfac1uXwUnbRmW4F8qBSRBk5aCcOyadVpYJ0bZCtsGWQjvxjOx1fRdfEBo1s86wFiRFkL40rvSt8AZUfm2iUn5E2IaOjc-Y45j6YtYk38NUzUD6BkjfIOkbNiJvt13mA-DGbY0nODnbhoiVnQr6xWWTlx50ZSKYlgsvalAL2jGvXBuUi6UM3vMROdxMbZMX8LL5zW4j8npbDUsPz1NsF_vrZVMi_JbUzMj_t-Eg5EAkKg1jfT5wy3a0vAZnGeTpiOgdPtr5nd2a7upHggBXCNLE1MHtQ39J7vPE1LjFeEj2Vovr-ApsqJUbp4UyJvuT47Mv5-O0EwHP88m3Xz5THIc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKkQviDeBAkaCC9KqXj_W3gNClLZKaYgQaqXeXNtrQ6VoN01SUP4Uv5GxdxMIgt5624e98o7H8_CM50PoVXSjiwrcVGYjhJniZWapzzNZyIpFrCRrUrXPUTE44R9PxekG-rk8CxPTKpcyMQnqqnFxj3yHUiLBmAHt9G5ykUXUqBhdXUJotGxx5Bc_wGWbvT3cg_l9TenB_vGHQdahCmQOdNE8M6FUlQlUWuqEdNSUeWW5CV4o6piwoBErXlh4Ti3hVgpDGAuB8VCZnEnL4Ls30CZn4Mr00Obu_ujzl1XcQqpoHXU3Jaft4aaY8ijKoguq5qrYmYHqEDFRSWY5Eyoja2oxoQf8y-T9O3PzD1V4cAfd7mxY_L5lurtow9f30M0W1XJxH50N4_HhmFiF4QL77x134ybgeZrnLJ7vjDlKOAXr61R8HE-a8cKAGFy06XnYpKHivWmCWjgfG5y6-dkDdHItJH-IenVT-8cIe0mMVSSAbKq4y5XNXWBOgZFRKi-E6yOypKN2XZXzCLYx1snbUYVuSa-B9DqSXpM-erPqMmlLfFzVeDdOzqphrM6dHjTTr7pb7NCVsEoFyhwrQRFJS5ywoRLW57xyjvbR9nJqdScyZvo3g_fRy9VrWOwxgmNq31zOdB4LfnFJFP9_GwpiFYSwkDDWRy23rEZLS3DPQYL3kVzjo7XfWX9Tn39LRcdFLAtFxJOrh_4C3Rocfxrq4eHo6CnaoonB4wbnNurNp5f-GVhwc_u8WzYYnV33Sv0Fe2xYNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+and+evolution+of+tissue-specific+alternative+polyadenylation+across+Drosophila+species&rft.jtitle=Genome+biology&rft.au=Sanfilippo%2C+Piero&rft.au=Wen%2C+Jiayu&rft.au=Lai%2C+Eric+C.&rft.date=2017-11-30&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-017-1358-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13059_017_1358_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |