iCDA-CGR: Identification of circRNA-disease associations based on Chaos Game Representation

Found in recent research, tumor cell invasion, proliferation, or other biological processes are controlled by circular RNA. Understanding the association between circRNAs and diseases is an important way to explore the pathogenesis of complex diseases and promote disease-targeted therapy. Most metho...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 16; no. 5; p. e1007872
Main Authors Zheng, Kai, You, Zhu-Hong, Li, Jian-Qiang, Wang, Lei, Guo, Zhen-Hao, Huang, Yu-An
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Found in recent research, tumor cell invasion, proliferation, or other biological processes are controlled by circular RNA. Understanding the association between circRNAs and diseases is an important way to explore the pathogenesis of complex diseases and promote disease-targeted therapy. Most methods, such as k-mer and PSSM, based on the analysis of high-throughput expression data have the tendency to think functionally similar nucleic acid lack direct linear homology regardless of positional information and only quantify nonlinear sequence relationships. However, in many complex diseases, the sequence nonlinear relationship between the pathogenic nucleic acid and ordinary nucleic acid is not much different. Therefore, the analysis of positional information expression can help to predict the complex associations between circRNA and disease. To fill up this gap, we propose a new method, named iCDA-CGR, to predict the circRNA-disease associations. In particular, we introduce circRNA sequence information and quantifies the sequence nonlinear relationship of circRNA by Chaos Game Representation (CGR) technology based on the biological sequence position information for the first time in the circRNA-disease prediction model. In the cross-validation experiment, our method achieved 0.8533 AUC, which was significantly higher than other existing methods. In the validation of independent data sets including circ2Disease, circRNADisease and CRDD, the prediction accuracy of iCDA-CGR reached 95.18%, 90.64% and 95.89%. Moreover, in the case studies, 19 of the top 30 circRNA-disease associations predicted by iCDA-CGR on circRDisease dataset were confirmed by newly published literature. These results demonstrated that iCDA-CGR has outstanding robustness and stability, and can provide highly credible candidates for biological experiments.
AbstractList Found in recent research, tumor cell invasion, proliferation, or other biological processes are controlled by circular RNA. Understanding the association between circRNAs and diseases is an important way to explore the pathogenesis of complex diseases and promote disease-targeted therapy. Most methods, such as k-mer and PSSM, based on the analysis of high-throughput expression data have the tendency to think functionally similar nucleic acid lack direct linear homology regardless of positional information and only quantify nonlinear sequence relationships. However, in many complex diseases, the sequence nonlinear relationship between the pathogenic nucleic acid and ordinary nucleic acid is not much different. Therefore, the analysis of positional information expression can help to predict the complex associations between circRNA and disease. To fill up this gap, we propose a new method, named iCDA-CGR, to predict the circRNA-disease associations. In particular, we introduce circRNA sequence information and quantifies the sequence nonlinear relationship of circRNA by Chaos Game Representation (CGR) technology based on the biological sequence position information for the first time in the circRNA-disease prediction model. In the cross-validation experiment, our method achieved 0.8533 AUC, which was significantly higher than other existing methods. In the validation of independent data sets including circ2Disease, circRNADisease and CRDD, the prediction accuracy of iCDA-CGR reached 95.18%, 90.64% and 95.89%. Moreover, in the case studies, 19 of the top 30 circRNA-disease associations predicted by iCDA-CGR on circRDisease dataset were confirmed by newly published literature. These results demonstrated that iCDA-CGR has outstanding robustness and stability, and can provide highly credible candidates for biological experiments.
Found in recent research, tumor cell invasion, proliferation, or other biological processes are controlled by circular RNA. Understanding the association between circRNAs and diseases is an important way to explore the pathogenesis of complex diseases and promote disease-targeted therapy. Most methods, such as k-mer and PSSM, based on the analysis of high-throughput expression data have the tendency to think functionally similar nucleic acid lack direct linear homology regardless of positional information and only quantify nonlinear sequence relationships. However, in many complex diseases, the sequence nonlinear relationship between the pathogenic nucleic acid and ordinary nucleic acid is not much different. Therefore, the analysis of positional information expression can help to predict the complex associations between circRNA and disease. To fill up this gap, we propose a new method, named iCDA-CGR, to predict the circRNA-disease associations. In particular, we introduce circRNA sequence information and quantifies the sequence nonlinear relationship of circRNA by Chaos Game Representation (CGR) technology based on the biological sequence position information for the first time in the circRNA-disease prediction model. In the cross-validation experiment, our method achieved 0.8533 AUC, which was significantly higher than other existing methods. In the validation of independent data sets including circ2Disease, circRNADisease and CRDD, the prediction accuracy of iCDA-CGR reached 95.18%, 90.64% and 95.89%. Moreover, in the case studies, 19 of the top 30 circRNA-disease associations predicted by iCDA-CGR on circRDisease dataset were confirmed by newly published literature. These results demonstrated that iCDA-CGR has outstanding robustness and stability, and can provide highly credible candidates for biological experiments.Found in recent research, tumor cell invasion, proliferation, or other biological processes are controlled by circular RNA. Understanding the association between circRNAs and diseases is an important way to explore the pathogenesis of complex diseases and promote disease-targeted therapy. Most methods, such as k-mer and PSSM, based on the analysis of high-throughput expression data have the tendency to think functionally similar nucleic acid lack direct linear homology regardless of positional information and only quantify nonlinear sequence relationships. However, in many complex diseases, the sequence nonlinear relationship between the pathogenic nucleic acid and ordinary nucleic acid is not much different. Therefore, the analysis of positional information expression can help to predict the complex associations between circRNA and disease. To fill up this gap, we propose a new method, named iCDA-CGR, to predict the circRNA-disease associations. In particular, we introduce circRNA sequence information and quantifies the sequence nonlinear relationship of circRNA by Chaos Game Representation (CGR) technology based on the biological sequence position information for the first time in the circRNA-disease prediction model. In the cross-validation experiment, our method achieved 0.8533 AUC, which was significantly higher than other existing methods. In the validation of independent data sets including circ2Disease, circRNADisease and CRDD, the prediction accuracy of iCDA-CGR reached 95.18%, 90.64% and 95.89%. Moreover, in the case studies, 19 of the top 30 circRNA-disease associations predicted by iCDA-CGR on circRDisease dataset were confirmed by newly published literature. These results demonstrated that iCDA-CGR has outstanding robustness and stability, and can provide highly credible candidates for biological experiments.
Found in recent research, tumor cell invasion, proliferation, or other biological processes are controlled by circular RNA. Understanding the association between circRNAs and diseases is an important way to explore the pathogenesis of complex diseases and promote disease-targeted therapy. Most methods, such as k -mer and PSSM , based on the analysis of high-throughput expression data have the tendency to think functionally similar nucleic acid lack direct linear homology regardless of positional information and only quantify nonlinear sequence relationships. However, in many complex diseases, the sequence nonlinear relationship between the pathogenic nucleic acid and ordinary nucleic acid is not much different. Therefore, the analysis of positional information expression can help to predict the complex associations between circRNA and disease. To fill up this gap, we propose a new method, named iCDA-CGR, to predict the circRNA-disease associations. In particular, we introduce circRNA sequence information and quantifies the sequence nonlinear relationship of circRNA by Chaos Game Representation (CGR) technology based on the biological sequence position information for the first time in the circRNA-disease prediction model. In the cross-validation experiment, our method achieved 0.8533 AUC, which was significantly higher than other existing methods. In the validation of independent data sets including circ2Disease, circRNADisease and CRDD, the prediction accuracy of iCDA-CGR reached 95.18%, 90.64% and 95.89%. Moreover, in the case studies, 19 of the top 30 circRNA-disease associations predicted by iCDA-CGR on circRDisease dataset were confirmed by newly published literature. These results demonstrated that iCDA-CGR has outstanding robustness and stability, and can provide highly credible candidates for biological experiments. Understanding the association between circRNAs and diseases is an important step to explore the pathogenesis of complex diseases and promote disease-targeted therapy. Computational methods contribute to discovering the potential disease-related circRNAs. Based on the analysis of the location information expression of biological sequences, the model of iCDA-CGR is proposed to predict the circRNA-disease associations by integrates multi-source information, including circRNA sequence information, gene-circRNA associations information, circRNA-disease associations information and the disease semantic information. In particular, the location information of circRNA sequences was first introduced into the circRNA-disease associations prediction model. The promising results on cross-validation and independent data sets demonstrated the effectiveness of the proposed model. We further implemented case studies, and 19 of the top 30 predicted scores of the proposed model were confirmed by recent experimental reports. The results show that iCDA-CGR model can effectively predict the potential circRNA-disease associations and provide highly reliable candidates for biological experiments, thus helping to further understand the complex disease mechanism.
Audience Academic
Author Guo, Zhen-Hao
Wang, Lei
Li, Jian-Qiang
You, Zhu-Hong
Zheng, Kai
Huang, Yu-An
AuthorAffiliation 3 College of Computer and Software Engineering, Shenzhen University, Shenzhen, China
1 School of Computer Science and Engineering, Central South University, Changsha, China
4 College of Information Science and Engineering, Zaozhuang University, Zaozhuang, China
Utrecht University, NETHERLANDS
5 Department of Computing, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
2 Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
AuthorAffiliation_xml – name: 1 School of Computer Science and Engineering, Central South University, Changsha, China
– name: Utrecht University, NETHERLANDS
– name: 3 College of Computer and Software Engineering, Shenzhen University, Shenzhen, China
– name: 2 Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– name: 5 Department of Computing, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
– name: 4 College of Information Science and Engineering, Zaozhuang University, Zaozhuang, China
Author_xml – sequence: 1
  givenname: Kai
  surname: Zheng
  fullname: Zheng, Kai
– sequence: 2
  givenname: Zhu-Hong
  orcidid: 0000-0003-1266-2696
  surname: You
  fullname: You, Zhu-Hong
– sequence: 3
  givenname: Jian-Qiang
  surname: Li
  fullname: Li, Jian-Qiang
– sequence: 4
  givenname: Lei
  orcidid: 0000-0003-0184-307X
  surname: Wang
  fullname: Wang, Lei
– sequence: 5
  givenname: Zhen-Hao
  surname: Guo
  fullname: Guo, Zhen-Hao
– sequence: 6
  givenname: Yu-An
  surname: Huang
  fullname: Huang, Yu-An
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32421715$$D View this record in MEDLINE/PubMed
BookMark eNqVk12LEzEUhgdZcT_0H4gOeLNeTE0y-ZjshVCq1sKyQtUrL0I-uynTSU2msv5703Yq22URZC4mnDzvm3MO55wXJ13obFG8hGAEawbfLcMmdrIdrbXyIwgAaxh6UpxBQuqK1aQ5uXc-Lc5TWgKQj5w-K05rhBFkkJwVP_zkw7iaTOdX5czYrvfOa9n70JXBldpHPb8ZV8YnK5MtZUpB-911KlWOmDKDk1sZUjmVK1vO7TralG12zPPiqZNtsi-G_0Xx_dPHb5PP1fWX6Wwyvq40pbCvpGKKEUQlbTBRFAGJuFYKYQ2ggc5ZjUitTY0oddDYGhqunCUMU4cBh7K-KF7vfddtSGLoSxIIU8AIbxqcidmeMEEuxTr6lYy_RZBe7AIhLoSMvdetFY0EXFECDdUMY2SV4ayBDdfcEMQ0yV7vh9c2amWNztVG2R6ZHt90_lYswi_BUE4GbJO5HAxi-LmxqRcrn7RtW9nZsNnmDTCteQNRRt88QB-vbqAWMhfgOxfyu3prKsa0RhwDBmimRo9Q-TN25XWeLedz_Ejw9kiQmd7e9Qu5SUnMvs7_g705Zl_db-Dfzh2GMgNXe0DHkFK0Tmi_n6icsW8FBGK7AYdeiO0GiGEDshg_EB_8_yn7A9FACQE
CitedBy_id crossref_primary_10_1007_s12204_024_2575_9
crossref_primary_10_1109_JBHI_2023_3346821
crossref_primary_10_1016_j_asoc_2021_107629
crossref_primary_10_3934_mbe_2023909
crossref_primary_10_3389_fgene_2020_540751
crossref_primary_10_1186_s12859_021_04467_z
crossref_primary_10_1093_bib_bbac388
crossref_primary_10_3934_mbe_2023345
crossref_primary_10_1109_TCBB_2022_3180903
crossref_primary_10_1093_bib_bbac338
crossref_primary_10_1093_bib_bbac613
crossref_primary_10_1371_journal_pcbi_1011344
crossref_primary_10_3389_fgene_2024_1399810
crossref_primary_10_1093_bib_bbab444
crossref_primary_10_1007_s11704_024_40060_2
crossref_primary_10_1109_TCBB_2021_3138339
crossref_primary_10_3390_biomedicines10071543
crossref_primary_10_1111_jcmm_18180
crossref_primary_10_3390_biom12091235
crossref_primary_10_3390_ijms26020477
crossref_primary_10_1016_j_asoc_2020_106921
crossref_primary_10_1093_bib_bbab286
crossref_primary_10_1093_bib_bbad069
crossref_primary_10_1109_TCBB_2024_3488281
crossref_primary_10_1007_s40747_022_00846_y
crossref_primary_10_1093_bib_bbaa350
crossref_primary_10_1016_j_asoc_2023_111215
crossref_primary_10_1007_s00500_022_07396_y
crossref_primary_10_1109_TCYB_2021_3090756
crossref_primary_10_1016_j_ymeth_2025_01_013
crossref_primary_10_1109_JBHI_2024_3456478
crossref_primary_10_1109_JBHI_2022_3199462
crossref_primary_10_1002_cbic_202400227
crossref_primary_10_1093_bib_bbac289
crossref_primary_10_1186_s12920_021_01054_2
crossref_primary_10_1093_bioinformatics_btac079
crossref_primary_10_1186_s12967_020_02602_7
crossref_primary_10_1186_s12911_024_02564_6
crossref_primary_10_1093_bib_bbab028
crossref_primary_10_1016_j_csbj_2021_11_008
crossref_primary_10_1093_bioinformatics_btaa1077
crossref_primary_10_1093_bib_bbac479
crossref_primary_10_1177_1176934320984171
crossref_primary_10_1016_j_ymeth_2021_10_006
crossref_primary_10_1093_bib_bbae575
crossref_primary_10_1186_s12859_022_04957_8
crossref_primary_10_1093_bfgp_elae005
crossref_primary_10_1093_bioinformatics_btad499
crossref_primary_10_1016_j_compbiolchem_2020_107361
crossref_primary_10_1109_TCBB_2023_3248787
crossref_primary_10_1093_bib_bbac393
crossref_primary_10_1007_s12539_023_00590_y
crossref_primary_10_1109_TCBB_2024_3488059
crossref_primary_10_1007_s00438_020_01741_2
crossref_primary_10_1186_s12915_024_01826_z
crossref_primary_10_1186_s12859_022_04976_5
Cites_doi 10.1186/s12943-018-0827-8
10.1109/JBHI.2019.2891779
10.1038/s41598-019-46369-4
10.1109/ACCESS.2019.2940470
10.1093/nar/gkv1273
10.7150/ijbs.28260
10.1038/srep34985
10.1093/bioinformatics/btg153
10.1016/j.bbrc.2017.04.044
10.1016/j.gpb.2018.08.001
10.1186/s12967-019-2009-x
10.3390/ijms19113410
10.1016/j.omtn.2019.12.010
10.1093/nar/18.8.2163
10.1093/bioinformatics/btr500
10.1038/s41598-018-29360-3
10.1093/bioinformatics/btm087
10.1093/nar/gkv940
10.1016/j.molcel.2013.08.017
10.1038/srep12453
10.1371/journal.pone.0070204
10.1371/journal.pcbi.1006865
10.1038/s41419-018-0503-3
10.1038/nsmb.2959
10.1109/TCBB.2016.2550432
10.1038/ng.2434
10.1016/j.cca.2015.02.018
10.1093/nar/gkp943
10.1038/cdd.2016.133
10.1016/j.molcel.2014.08.019
10.1093/bioinformatics/btx672
10.1016/j.jtbi.2018.10.029
10.1093/database/baz003
10.18632/oncotarget.3469
10.1261/rna.043687.113
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Zheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Zheng et al 2020 Zheng et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Zheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Zheng et al 2020 Zheng et al
DBID AAYXX
CITATION
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1007872
DatabaseName CrossRef
PubMed
Gale In Context: Canada
Gale in Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
DocumentTitleAlternate Prediction of circRNA-disease associations
EISSN 1553-7358
ExternalDocumentID 2460759884
oai_doaj_org_article_8a09b651d6c7442ebd978189c9d527c5
PMC7259804
A632940706
32421715
10_1371_journal_pcbi_1007872
Genre Journal Article
GeographicLocations China
Hong Kong China
GeographicLocations_xml – name: China
– name: Hong Kong China
GrantInformation_xml – fundername: ;
  grantid: 61702444
– fundername: ;
  grantid: 61572506
– fundername: ;
  grantid: 61722212
– fundername: ;
  grantid: 2018-XBQNXZ-B-008
– fundername: ;
  grantid: 2019M653804
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
C1A
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
PMFND
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
ID FETCH-LOGICAL-c661t-ab7b7526a6845b620a29cbb24c01d1ffec253cd3266f1de31d9bfe5746f4091a3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:31 EDT 2023
Wed Aug 27 01:08:52 EDT 2025
Thu Aug 21 18:10:18 EDT 2025
Fri Jul 11 00:51:27 EDT 2025
Fri Jul 25 12:05:44 EDT 2025
Tue Jun 17 20:58:20 EDT 2025
Tue Jun 10 20:43:01 EDT 2025
Fri Jun 27 04:15:57 EDT 2025
Fri Jun 27 04:01:25 EDT 2025
Wed Feb 19 02:30:44 EST 2025
Tue Jul 01 04:05:19 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-ab7b7526a6845b620a29cbb24c01d1ffec253cd3266f1de31d9bfe5746f4091a3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors share first authorship on this work.
The authors have declared that no competing interests exist.
ORCID 0000-0003-1266-2696
0000-0003-0184-307X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1007872
PMID 32421715
PQID 2460759884
PQPubID 1436340
ParticipantIDs plos_journals_2460759884
doaj_primary_oai_doaj_org_article_8a09b651d6c7442ebd978189c9d527c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7259804
proquest_miscellaneous_2404639812
proquest_journals_2460759884
gale_infotracmisc_A632940706
gale_infotracacademiconefile_A632940706
gale_incontextgauss_ISR_A632940706
gale_incontextgauss_ISN_A632940706
pubmed_primary_32421715
crossref_citationtrail_10_1371_journal_pcbi_1007872
crossref_primary_10_1371_journal_pcbi_1007872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References B Zhou (pcbi.1007872.ref009) 2017; 487
R Dong (pcbi.1007872.ref018) 2018; 16
Y-C Liu (pcbi.1007872.ref020) 2015; 44
L Wang (pcbi.1007872.ref014) 2019; 9
JZ Wang (pcbi.1007872.ref031) 2007; 23
PW Lord (pcbi.1007872.ref030) 2003; 19
K Zheng (pcbi.1007872.ref033) 2019; 7
Y Liu (pcbi.1007872.ref037) 2016; 14
P Li (pcbi.1007872.ref011) 2015; 444
Springer (pcbi.1007872.ref016) 2019
P Glažar (pcbi.1007872.ref017) 2014; 20
M Armakola (pcbi.1007872.ref004) 2012; 44
H Xu (pcbi.1007872.ref007) 2015; 5
F Li (pcbi.1007872.ref008) 2015; 6
Q Xiao (pcbi.1007872.ref039) 2019; 23
X Chen (pcbi.1007872.ref021) 2016; 6
L Wang (pcbi.1007872.ref013) 2019; 15
L Wang (pcbi.1007872.ref012) 2019; 461
X Meng (pcbi.1007872.ref025) 2019; 2019
C Fan (pcbi.1007872.ref022) 2018; 2018
L-L Zheng (pcbi.1007872.ref002) 2015; 44
Y Zhang (pcbi.1007872.ref006) 2013; 51
K Zheng (pcbi.1007872.ref034) 2020; 19
R Ashwal-Fluss (pcbi.1007872.ref001) 2014; 56
D Yao (pcbi.1007872.ref024) 2018; 8
P Xuan (pcbi.1007872.ref032) 2013; 8
Y-A Huang (pcbi.1007872.ref036) 2018; 34
J-H Yang (pcbi.1007872.ref019) 2009; 38
X Lei (pcbi.1007872.ref028) 2018; 19
HJ Jeffrey (pcbi.1007872.ref029) 1990; 18
Z Li (pcbi.1007872.ref005) 2015; 22
WW Du (pcbi.1007872.ref003) 2017; 24
T van Laarhoven (pcbi.1007872.ref038) 2011; 27
K Zheng (pcbi.1007872.ref015) 2019; 17
Y Zhong (pcbi.1007872.ref035) 2018; 17
Q Xiao (pcbi.1007872.ref026) 2019
H-F Liang (pcbi.1007872.ref010) 2017; 7
C Fan (pcbi.1007872.ref027) 2018; 14
Z Zhao (pcbi.1007872.ref023) 2018; 9
References_xml – volume: 17
  start-page: 79
  issue: 1
  year: 2018
  ident: pcbi.1007872.ref035
  article-title: Circular RNAs function as ceRNAs to regulate and control human cancer progression
  publication-title: Molecular cancer
  doi: 10.1186/s12943-018-0827-8
– volume: 23
  start-page: 2661
  issue: 6
  year: 2019
  ident: pcbi.1007872.ref039
  article-title: Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework
  publication-title: IEEE journal of biomedical and health informatics
  doi: 10.1109/JBHI.2019.2891779
– volume: 9
  start-page: 9848
  issue: 1
  year: 2019
  ident: pcbi.1007872.ref014
  article-title: Predicting Protein-Protein Interactions from Matrix-Based Protein Sequence Using Convolution Neural Network and Feature-Selective Rotation Forest.
  publication-title: Scientific reports.
  doi: 10.1038/s41598-019-46369-4
– volume: 2018
  year: 2018
  ident: pcbi.1007872.ref022
  article-title: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases.
  publication-title: Database
– volume: 7
  start-page: 133314
  year: 2019
  ident: pcbi.1007872.ref033
  article-title: CGMDA: An Approach to Predict and Validate MicroRNA-Disease Associations by Utilizing Chaos Game Representation and LightGBM.
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2940470
– volume: 44
  start-page: D196
  issue: D1
  year: 2015
  ident: pcbi.1007872.ref002
  article-title: deepBase v2. 0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkv1273
– volume: 14
  start-page: 1950
  issue: 14
  year: 2018
  ident: pcbi.1007872.ref027
  article-title: Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks
  publication-title: International journal of biological sciences
  doi: 10.7150/ijbs.28260
– volume: 6
  start-page: 34985
  year: 2016
  ident: pcbi.1007872.ref021
  article-title: circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations
  publication-title: Scientific reports.
  doi: 10.1038/srep34985
– volume: 19
  start-page: 1275
  issue: 10
  year: 2003
  ident: pcbi.1007872.ref030
  article-title: Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg153
– volume: 487
  start-page: 769
  issue: 4
  year: 2017
  ident: pcbi.1007872.ref009
  article-title: A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1
  publication-title: Biochemical and biophysical research communications
  doi: 10.1016/j.bbrc.2017.04.044
– volume: 16
  start-page: 226
  issue: 4
  year: 2018
  ident: pcbi.1007872.ref018
  article-title: CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison
  publication-title: Genomics, proteomics & bioinformatics.
  doi: 10.1016/j.gpb.2018.08.001
– volume: 17
  start-page: 1
  issue: 1
  year: 2019
  ident: pcbi.1007872.ref015
  article-title: MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources
  publication-title: Journal of translational medicine
  doi: 10.1186/s12967-019-2009-x
– volume: 19
  start-page: 3410
  issue: 11
  year: 2018
  ident: pcbi.1007872.ref028
  article-title: PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations
  publication-title: International journal of molecular sciences
  doi: 10.3390/ijms19113410
– volume: 19
  start-page: 602
  year: 2020
  ident: pcbi.1007872.ref034
  article-title: DBMDA: A Unified Embedding for Sequence-Based miRNA Similarity Measure with Applications to Predict and Validate miRNA-Disease Associations.
  publication-title: Molecular Therapy-Nucleic Acids.
  doi: 10.1016/j.omtn.2019.12.010
– volume: 18
  start-page: 2163
  issue: 8
  year: 1990
  ident: pcbi.1007872.ref029
  article-title: Chaos game representation of gene structure
  publication-title: Nucleic acids research
  doi: 10.1093/nar/18.8.2163
– volume: 27
  start-page: 3036
  issue: 21
  year: 2011
  ident: pcbi.1007872.ref038
  article-title: Gaussian interaction profile kernels for predicting drug–target interaction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr500
– volume: 8
  start-page: 11018
  issue: 1
  year: 2018
  ident: pcbi.1007872.ref024
  article-title: Circ2Disease: A manually curated database of experimentally validated circRNAs in human disease.
  publication-title: Scientific reports.
  doi: 10.1038/s41598-018-29360-3
– volume: 23
  start-page: 1274
  issue: 10
  year: 2007
  ident: pcbi.1007872.ref031
  article-title: A new method to measure the semantic similarity of GO terms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm087
– volume: 44
  start-page: D209
  issue: D1
  year: 2015
  ident: pcbi.1007872.ref020
  article-title: CircNet: a database of circular RNAs derived from transcriptome sequencing data
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkv940
– volume: 51
  start-page: 792
  issue: 6
  year: 2013
  ident: pcbi.1007872.ref006
  article-title: Circular intronic long noncoding RNAs
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2013.08.017
– year: 2019
  ident: pcbi.1007872.ref016
  article-title: MISSIM: Improved miRNA-Disease Association Prediction Model Based on Chaos Game Representation and Broad Learning System.
  publication-title: International Conference on Intelligent Computing
– year: 2019
  ident: pcbi.1007872.ref026
  article-title: Computational prediction of human disease-associated circRNAs based on manifold regularization Learning framework
  publication-title: IEEE journal of biomedical and health informatics
– volume: 7
  start-page: 1566
  issue: 7
  year: 2017
  ident: pcbi.1007872.ref010
  article-title: Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271.
  publication-title: American journal of cancer research.
– volume: 5
  start-page: 12453
  year: 2015
  ident: pcbi.1007872.ref007
  article-title: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells.
  publication-title: Scientific reports.
  doi: 10.1038/srep12453
– volume: 8
  start-page: e70204
  issue: 8
  year: 2013
  ident: pcbi.1007872.ref032
  article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors.
  publication-title: PloS one.
  doi: 10.1371/journal.pone.0070204
– volume: 15
  start-page: e1006865
  issue: 3
  year: 2019
  ident: pcbi.1007872.ref013
  article-title: LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities.
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1006865
– volume: 9
  start-page: 475
  issue: 5
  year: 2018
  ident: pcbi.1007872.ref023
  article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations
  publication-title: Cell death & disease
  doi: 10.1038/s41419-018-0503-3
– volume: 22
  start-page: 256
  issue: 3
  year: 2015
  ident: pcbi.1007872.ref005
  article-title: Exon-intron circular RNAs regulate transcription in the nucleus
  publication-title: Nature structural & molecular biology
  doi: 10.1038/nsmb.2959
– volume: 14
  start-page: 905
  issue: 4
  year: 2016
  ident: pcbi.1007872.ref037
  article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources
  publication-title: IEEE/ACM transactions on computational biology and bioinformatics
  doi: 10.1109/TCBB.2016.2550432
– volume: 44
  start-page: 1302
  issue: 12
  year: 2012
  ident: pcbi.1007872.ref004
  article-title: Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models
  publication-title: Nature genetics
  doi: 10.1038/ng.2434
– volume: 444
  start-page: 132
  year: 2015
  ident: pcbi.1007872.ref011
  article-title: Using circular RNA as a novel type of biomarker in the screening of gastric cancer
  publication-title: Clinica Chimica Acta
  doi: 10.1016/j.cca.2015.02.018
– volume: 38
  start-page: D123
  issue: suppl_1
  year: 2009
  ident: pcbi.1007872.ref019
  article-title: deepBase: a database for deeply annotating and mining deep sequencing data
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkp943
– volume: 24
  start-page: 357
  issue: 2
  year: 2017
  ident: pcbi.1007872.ref003
  article-title: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity
  publication-title: Cell death and differentiation
  doi: 10.1038/cdd.2016.133
– volume: 56
  start-page: 55
  issue: 1
  year: 2014
  ident: pcbi.1007872.ref001
  article-title: circRNA biogenesis competes with pre-mRNA splicing
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2014.08.019
– volume: 34
  start-page: 812
  issue: 5
  year: 2018
  ident: pcbi.1007872.ref036
  article-title: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx672
– volume: 461
  start-page: 230
  year: 2019
  ident: pcbi.1007872.ref012
  article-title: Prediction of RNA-protein interactions by combining deep convolutional neural network with feature selection ensemble method
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2018.10.029
– volume: 2019
  year: 2019
  ident: pcbi.1007872.ref025
  article-title: CircFunBase: a database for functional circular RNAs.
  publication-title: Database
  doi: 10.1093/database/baz003
– volume: 6
  start-page: 6001
  issue: 8
  year: 2015
  ident: pcbi.1007872.ref008
  article-title: Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3469
– volume: 20
  start-page: 1666
  issue: 11
  year: 2014
  ident: pcbi.1007872.ref017
  article-title: circBase: a database for circular RNAs
  publication-title: Rna
  doi: 10.1261/rna.043687.113
SSID ssj0035896
Score 2.54613
Snippet Found in recent research, tumor cell invasion, proliferation, or other biological processes are controlled by circular RNA. Understanding the association...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1007872
SubjectTerms Authorship
Biological activity
Breast cancer
Circular RNA
Colorectal cancer
Computer and Information Sciences
Datasets
Disease
Diseases
Engineering and Technology
Fractals
Gastric cancer
Genetic disorders
Genetic susceptibility
Homology
Medicine and Health Sciences
Nucleic acids
Pathogenesis
Physical Sciences
Physics
Prediction models
Representations
Research and Analysis Methods
Research methodology
Ribonucleic acid
Risk factors
RNA
Semantics
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQJSQuiO8tLCggJE5mY8exHW6lsLsg0UNhpUocIn-ylZak2rQH_j1jxw0btGgvXOtJJc-bZN4k4zcIvXbES2vzEjPFFAYG7rBkmmDlaS49VzyPOgVfFvz0jH1elasro75CT1gvD9w77kiqvNK8JJYbwRh12gaVJlmZypZUmKheCjlvX0z1z-CilHEyVxiKg0XBVunQXCHIUcLo7cbodewRkIKOklLU7h-e0JPNRdtdRz__7qK8kpaO76G7iU9ms34f99Et1zxAt_sJk78eou_r-YcZnp8s32X9kVyf3tFlrc_M-tIsFzOcPtJk6g9UXRbSm83AcH6u2i47UT9dtoxts-m0UvMInR1__DY_xWmeAjaQhbdYaaFFSQEAyUrNaa5oZbSmzOTEktA-QsvCWCB03BPrCmIr7V0pGPdQBRJVPEaTpm3cAcqCih0wGyMg4QeFM5kza4wvjFeGucJNUbF3aG2S2HiYeXFRxy9oAoqO3j91gKFOMEwRHq7a9GIbN9i_D1gNtkEqO_4AAVSnAKpvCqApehWQroMYRhO6bX6oXdfVn74u6hkvaAUVb87_abQcGb1JRr6FzRqVTjiAy4LI1sjycGQJt7QZLR-EqNvvuasp40DtKikZXLmPxOuXXw7L4U9DB13j2l2wCdpwFfC5KXrSB-7gt0CqiSDgCjEK6ZFjxyvN-jxqkQsonwH8p_8DiWfoDg1vM2I76SGabC937jlQvq1-Ee_u3yW6UPU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELagCIkL4r1dFhQQEiezsePYDhdUCu2CRA-FlSpxiBw_distSbdpD_x7PI7bJWiBWxRPomRm7Bnbn79B6JUlThqT5pgpprDPwC2WrCJYOZpKxxVPA0_Blxk_OWWfF_kiLri1EVa5GxPDQG0aDWvkx5RxH90KKdm71SWGqlGwuxpLaNxEt4iPNADpkpPpbiTOchnqc0FpHCwytohH5zJBjqOl3qx0tQxIASloLzQFBv_9OD1YXTTtdUnon1jK34LT5B66G7PKZNS5wX10w9YP0O2uzuRPfxVwnrp9iL4vxx9GeDydv026I7ourtkljUv0cq3nsxGOmzaJujJdm0C4M4kXHJ-rpk2m6odN5gFGG08v1Y_Q6eTjt_EJjvUVsPZReYNVJSqRU28QyfKK01TRQlcVZTolhgCchOaZNj7B444YmxFTVM7mgnHnZ4VEZY_RoG5qe4ASYLXzmY4WPgEAxjOZMqO1y7RTmtnMDlG2U22pI_k41MC4KMOOmvCTkE5TJRikjAYZIrx_atWRb_xH_j1YbS8L1NnhRrM-K2NPLKVKi4rnxHAtGKO2MkD7JQtdmJwKnQ_RS7B5CeQYNaBvztS2bctPX2fliGe08DPglP9VaN4Teh2FXON_Vqt44sGrDEi3epJHPUnfxXWv-QD8b_fPbXnVGfyTO5-8vvnFvhleCoi62jZbkAGuuMLnd0P0pHPhvd4gySaCeFWInnP3FNtvqZfngZtc-Om0N_7hvz_rKbpDYd0iAEeP0GCz3tpnPrnbVM9DD_4FxKhMAg
  priority: 102
  providerName: ProQuest
Title iCDA-CGR: Identification of circRNA-disease associations based on Chaos Game Representation
URI https://www.ncbi.nlm.nih.gov/pubmed/32421715
https://www.proquest.com/docview/2460759884
https://www.proquest.com/docview/2404639812
https://pubmed.ncbi.nlm.nih.gov/PMC7259804
https://doaj.org/article/8a09b651d6c7442ebd978189c9d527c5
http://dx.doi.org/10.1371/journal.pcbi.1007872
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZdymAvY7-brgveGOzJxZZlSx6MkaRNukHDyBYI7MHIstwGMjuNE1j_-93JijePlL3sxQbrZPDdyfpOOn1HyFvt5yLLvNBlkkkXELh2BUt9V-bUE3kkI8_wFFxOoosZ-zwP5wdkV7PVKrDaG9phPanZenn68-b2Iwz4D6ZqA_d3nU5XKl2YXX_B4ad8CHMTx5oGl6zZVwhCYSp2YbEclwdsbg_T3fWW1mRlOP2bP3dntSyrfbD07-zKP6ar0SPy0OJMp187xmNyoIsn5H5defL2Kfm-GJ713eF4-t6pj-rmdu3OKXNHLdZqOum7dvPGkb9NWDk47WUOCA6vZVk5Y_lDO1OTTmtPMRXPyGx0_m144do6C66C2XnjypSnPKRgGMHCNKKepLFKU8qU52c-ppXQMFAZAL0o9zMd-Fmc5jrkLMohOvRl8Jx0irLQR8RBdjtAPIoDEEDmM-GxTKk8ULlUTAe6S4KdQhNlScixFsYyMTtrHIKRWj8JmiGxZugSt-m1qkk4_iE_QFs1skihbR6U66vEjshESC9Oo9DPIsUZozrNkP5LxCrOQspV2CVv0NIJkmQUmIVzJbdVlXz6Okn6UUBjiIS96E6haUvonRXKS_hYJe3JB1AZkm-1JE9akjDUVav5CL1u981VQlkEkC8WgkHPnSfub37dNONLMbOu0OUWZZAzLgac1yUvasdt9IZg2-c-qIK3XLql2HZLsbg2HOUcwmow_vH_sMRL8oDiKodJMz0hnc16q18BFNykPXKPzzlcxWjcI4f9wdlgBPfB-eTLtGeWV3pm_P8CIvBhQg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGEYIXxP8VBgQE4ilb4jhxgoRQ6ehatvWhbFIlHoJjO1ulkZSmFdqX4jNy5zgdQQOe9hbFlyi5O_vu7LvfEfJK-3mslBe6TDDhggeu3Zhlvity6sV5JCLP4BQcjqPhMfs0Dacb5GdTC4Nplc2aaBZqVUrcI9-hLALrlsQxez__7mLXKDxdbVpo1Gqxr89_QMhWvRvtgnxfUzr4eNQfurargCvBFi1dkfGMhxQ-I2ZhFlFP0ERmGWXS85WPSRQ0DKQCtybKfaUDXyVZrkPOohxiIV8E8N5r5DoLwJJjZfpgr1n5gzA2_cCwFY_LAza1pXoB93esZmzPZTYzmQkxpy1TaDoGrO1CZ35WVpc5vX_mbv5mDAd3yG3rxTq9Wu3ukg1d3CM36r6W53Bl8kpldZ98mfV3e25_b_LWqUuCc7tH6JS5I2cLORn3XHtI5IgLVakcNK_KAcL-qSgrZ098087EpO3aaqniATm-Es4_JJ2iLPQmcRBFDzwrycHhQIS12GNKyjyQuZBMB7pLgoa1qbRg59hz4yw1J3gcgp6aUykKJLUC6RJ3_dS8Bvv4D_0HlNqaFqG6zY1ycZLamZ_GwkuyKPRVJDljVGcKYcbiRCYqpFyGXfISZZ4iGEeB2T4nYlVV6ejzOO1FAU0g4vaivxJNWkRvLFFews9KYSssgGUI8tWi3GpRwpIiW8ObqH_NP1fpxeSDJxudvHz4xXoYX4oZfIUuV0iD2HQJ-JNd8qhW4TXf0Kn3uQ-s4C3lbjG2PVLMTg0WOofwHYT_-N-f9ZzcHB4dHqQHo_H-E3KL4p6JSVrdIp3lYqWfgmO5zJ6Z2eyQr1e9fPwC7VWJTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiHcDBQwCcTKx12uvjYRQmr5CIapCK0XiYNb7aCMVO8SJUP8av44Ze51iVODUW5QdW_bMeB67M98Q8lL7JlbKC10mmHAhAtduzDLfFYZ6sYlE5FU4BZ9G0f4x-zAJJ2vkZ9MLg2WVjU2sDLUqJO6R9yiLwLslccx6xpZFHG7vvp99d3GCFJ60NuM0ahU50Oc_IH0r3w23QdavKN3dORrsu3bCgCvBLy1ckfGMhxQeKWZhFlFP0ERmGWXS85WPBRU0DKSCECcyvtKBr5LM6JCzyEBe5IsA7nuNrHPMijpkfWtndDhu_EAQxtV0MBzM4_KATWzjXsD9ntWTNzOZTas6hZjTlmOs5gesvERndlaUl4XAf1Zy_uYad2-TWzamdfq1Et4hazq_S67XUy7P4VdVZSrLe-TLdLDddwd747dO3SBs7I6hUxhHTudyPOq79sjIEReKUzrobJUDhINTUZTOnvimnXFVxGt7p_L75PhKeP-AdPIi1xvEQUw9iLMkh_AD8dZijykpTSCNkEwHukuChrWptNDnOIHjLK3O8zikQDWnUhRIagXSJe7qqlkN_fEf-i2U2ooWgburP4r5SWrtQBoLL8mi0FeR5IxRnSkEHYsTmaiQchl2yQuUeYrQHDkq-YlYlmU6_DxK-1FAE9A0L_or0bhF9NoSmQJeVgrbbwEsQ8ivFuVmixIMjGwtb6D-Ne9cphefIlzZ6OTly89Xy3hTrOfLdbFEGkSqSyC67JKHtQqv-IYhvs99YAVvKXeLse2VfHpaIaNzSOZB-I_-_VjPyA0wHenH4ejgMblJcQOlqmDdJJ3FfKmfQJS5yJ7az9khX6_agvwC_0mO3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iCDA-CGR%3A+Identification+of+circRNA-disease+associations+based+on+Chaos+Game+Representation&rft.jtitle=PLoS+computational+biology&rft.au=Kai+Zheng&rft.au=Zhu-Hong+You&rft.au=Jian-Qiang+Li&rft.au=Lei+Wang&rft.date=2020-05-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=16&rft.issue=5&rft.spage=e1007872&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007872&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a09b651d6c7442ebd978189c9d527c5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon