Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination
Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze da...
Saved in:
Published in | PLoS computational biology Vol. 17; no. 10; p. e1009468 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.10.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically. |
---|---|
AbstractList | Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ~ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically. Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically. Immunological memory, generated in response to infection or vaccination, may provide complete or partial protection from antigenically similar infections for the lifetime. Memory CD8 T cells are important players in protection from secondary viral infections but quantitative understanding of their dynamics in humans is limited. We analyze data from two studies where immunization with the yellow fever virus vaccine (YFV-17D) generates a mild acute infection and long-term memory. We find that: (i) the division rate of YFV-17D-specific CD8 T cells drops and stabilizes at ∼ 0.1% per day during the first year following vaccination whereas the death rate declines more gradually, and (ii) the number of these cells declines approximately in accordance with a power law (∝ time −0.75 ) for at least several decades following vaccination. Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically. Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically. |
Audience | Academic |
Author | Moore, Mia Ahmed, Hasan Zarnitsyna, Veronika I. Akondy, Rama S. Hellerstein, Marc K. Antia, Rustom Ahmed, Rafi Li, Kelvin W. McGuire, Donald J. Zarnitsyn, Vladimir G. Johnson, Philip L. F. |
AuthorAffiliation | 5 Moonlight Therapeutics Inc., Atlanta, Georgia, United States of America 6 Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America Inria, FRANCE 2 Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America 7 Department of Biology, University of Maryland, College Park, Maryland, United States of America 8 Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, California, United States of America 3 Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India 4 Department of Biology, Emory University, Atlanta, Georgia, United States of America 1 Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America |
AuthorAffiliation_xml | – name: 2 Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America – name: 7 Department of Biology, University of Maryland, College Park, Maryland, United States of America – name: 8 Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, California, United States of America – name: 1 Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America – name: Inria, FRANCE – name: 3 Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India – name: 6 Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America – name: 4 Department of Biology, Emory University, Atlanta, Georgia, United States of America – name: 5 Moonlight Therapeutics Inc., Atlanta, Georgia, United States of America |
Author_xml | – sequence: 1 givenname: Veronika I. orcidid: 0000-0003-3096-3695 surname: Zarnitsyna fullname: Zarnitsyna, Veronika I. – sequence: 2 givenname: Rama S. orcidid: 0000-0003-4737-5240 surname: Akondy fullname: Akondy, Rama S. – sequence: 3 givenname: Hasan surname: Ahmed fullname: Ahmed, Hasan – sequence: 4 givenname: Donald J. orcidid: 0000-0002-3742-9594 surname: McGuire fullname: McGuire, Donald J. – sequence: 5 givenname: Vladimir G. orcidid: 0000-0003-4166-325X surname: Zarnitsyn fullname: Zarnitsyn, Vladimir G. – sequence: 6 givenname: Mia orcidid: 0000-0001-5055-7075 surname: Moore fullname: Moore, Mia – sequence: 7 givenname: Philip L. F. orcidid: 0000-0001-6087-7064 surname: Johnson fullname: Johnson, Philip L. F. – sequence: 8 givenname: Rafi surname: Ahmed fullname: Ahmed, Rafi – sequence: 9 givenname: Kelvin W. orcidid: 0000-0002-1771-1998 surname: Li fullname: Li, Kelvin W. – sequence: 10 givenname: Marc K. orcidid: 0000-0002-2327-0834 surname: Hellerstein fullname: Hellerstein, Marc K. – sequence: 11 givenname: Rustom orcidid: 0000-0001-7991-614X surname: Antia fullname: Antia, Rustom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34648489$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl1v0zAUhiM0xD7gHyCwxA1ctNhxnDi7QJo6PipNIMEQl5ZjHxdXiV3stFv_Pc6aTes0IaFcxDp53vf4nLzH2YHzDrLsJcFTQivyfunXwcl2ulKNnRKM66LkT7IjwhidVJTxg3vnw-w4xiXG6ViXz7JDWpQFL3h9lP063zrZWRWRdBr1ydJvICBvUAedD1s0O-foEiloWxQgrryLEJHxbeuvrFugLQwnZGBQbaRS1sneevc8e2pkG-HF-D7Jfn76eDn7Mrn49nk-O7uYqLIk_aTWeSOr3GiWU6ZpRUmhuCaV5NiALrU0lcmJMk1TG9LkrG6KkjHNQUvFoWroSfZ657tqfRTjTqJIJCeY56xIxHxHaC-XYhVsJ8NWeGnFTcGHhZCht6oFoTmlklADFdCiobxhmkCqYdkQLHOTvD6M3dZNB1qB64Ns90z3vzj7Wyz8RnBWclIPl3k7GgT_Zw2xF52Nw3KlA78e7s1zTiijNKFvHqCPTzdSC5kGsM741FcNpuIstcSEUzJ4TR-h0qMh_fuUK2NTfU_wbk-QmB6u-4VcxyjmP77_B_t1n311f4F3m7sNZAKKHaCCjzGAuUMIFkPub7cghtyLMfdJdvpApmx_E8Q0qG3_Lf4LbMYKDQ |
CitedBy_id | crossref_primary_10_1371_journal_pbio_3002380 crossref_primary_10_3389_fimmu_2023_1250916 crossref_primary_10_3389_fimmu_2024_1420284 crossref_primary_10_3389_fimmu_2022_1004656 crossref_primary_10_1093_infdis_jiad193 crossref_primary_10_1146_annurev_immunol_101721_040924 crossref_primary_10_1016_j_mbs_2024_109274 crossref_primary_10_1200_JCO_22_00088 crossref_primary_10_1016_j_immuni_2024_02_005 crossref_primary_10_1016_j_it_2023_05_004 |
Cites_doi | 10.1371/journal.pcbi.1000666 10.1073/pnas.95.2.708 10.4049/jimmunol.180.12.7907 10.3389/fimmu.2018.02054 10.1056/NEJMoa066092 10.1038/nature25144 10.1016/j.jtbi.2012.12.025 10.4049/jimmunol.180.11.7230 10.1002/(SICI)1099-1654(200001/02)10:1<3::AID-RMV261>3.0.CO;2-O 10.1038/s41467-017-01901-w 10.1128/jvi.67.3.1538-1544.1993 10.1073/pnas.1500475112 10.1016/S0952-7915(97)80084-2 10.1016/S1074-7613(00)80470-7 10.1182/blood-2013-03-488411 10.1126/scitranslmed.aaa3700 10.1038/s41577-020-0332-3 10.1084/jem.20040341 10.1016/j.immuni.2008.02.020 10.1038/nm917 10.1007/s11538-017-0365-3 10.1016/j.immuni.2018.02.010 10.4049/jimmunol.173.3.1787 10.1038/360264a0 10.1006/bulm.2001.0282 10.1371/journal.pbio.2006601 10.4049/jimmunol.0803903 10.1016/S1074-7613(00)80541-5 10.1214/14-EJS890 10.1002/eji.200323763 10.1084/jem.179.4.1127 10.4049/jimmunol.165.12.6833 10.1038/nm.2446 10.1038/nprot.2007.420 10.1073/pnas.0709713105 10.1172/JCI200317533 10.1371/journal.pbio.2005523 10.4049/jimmunol.1001421 10.1016/j.epidem.2016.04.001 10.1111/acel.12311 10.1038/nature24633 10.1038/nri778 10.1016/j.celrep.2016.11.037 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Zarnitsyna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Zarnitsyna et al 2021 Zarnitsyna et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Zarnitsyna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Zarnitsyna et al 2021 Zarnitsyna et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1009468 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination |
EISSN | 1553-7358 |
ExternalDocumentID | 2598108254 oai_doaj_org_article_d833a13fe7e34b38b5d1e8330ab10a2f PMC8568194 A681018313 34648489 10_1371_journal_pcbi_1009468 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI057266 – fundername: NHLBI NIH HHS grantid: U01 HL139483 – fundername: NIAID NIH HHS grantid: U01 AI144616 – fundername: NIAID NIH HHS grantid: U01 AI150747 – fundername: ; grantid: U01 AI150747 – fundername: ; grantid: U01 AI144616 – fundername: ; grantid: U01 HL139483 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ PMFND 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK COVID FR3 JQ2 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM PUEGO - AAPBV ABPTK ADACO BBAFP |
ID | FETCH-LOGICAL-c661t-9d2ba72fd5235d37314c8d17a80fed6daf7f21cfbb9f1b259b4655d8edac8e7b3 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun Dec 05 00:11:23 EST 2021 Wed Aug 27 01:29:39 EDT 2025 Thu Aug 21 17:42:22 EDT 2025 Mon Jul 21 10:40:22 EDT 2025 Fri Jul 25 12:07:39 EDT 2025 Tue Jun 17 21:17:32 EDT 2025 Tue Jun 10 20:37:42 EDT 2025 Fri Jun 27 05:10:18 EDT 2025 Fri Jun 27 04:40:01 EDT 2025 Wed Feb 19 02:26:45 EST 2025 Tue Jul 01 04:06:53 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-9d2ba72fd5235d37314c8d17a80fed6daf7f21cfbb9f1b259b4655d8edac8e7b3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-2327-0834 0000-0003-3096-3695 0000-0001-5055-7075 0000-0003-4737-5240 0000-0001-6087-7064 0000-0001-7991-614X 0000-0002-3742-9594 0000-0002-1771-1998 0000-0003-4166-325X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009468 |
PMID | 34648489 |
PQID | 2598108254 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2598108254 doaj_primary_oai_doaj_org_article_d833a13fe7e34b38b5d1e8330ab10a2f pubmedcentral_primary_oai_pubmedcentral_nih_gov_8568194 proquest_miscellaneous_2582813533 proquest_journals_2598108254 gale_infotracmisc_A681018313 gale_infotracacademiconefile_A681018313 gale_incontextgauss_ISR_A681018313 gale_incontextgauss_ISN_A681018313 pubmed_primary_34648489 crossref_primary_10_1371_journal_pcbi_1009468 crossref_citationtrail_10_1371_journal_pcbi_1009468 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | RS Akondy (pcbi.1009468.ref024) 2017; 552 B Youngblood (pcbi.1009468.ref008) 2017; 552 IJ Amanna (pcbi.1009468.ref031) 2007; 357 E Hammarlund (pcbi.1009468.ref011) 2003; 9 E Hammarlund (pcbi.1009468.ref032) 2017; 8 DL Wallace (pcbi.1009468.ref038) 2004; 173 K Ladell (pcbi.1009468.ref040) 2008; 180 CA Michie (pcbi.1009468.ref015) 1992; 360 RS Akondy (pcbi.1009468.ref027) 2015; 112 JD Miller (pcbi.1009468.ref010) 2008; 28 J Sprent (pcbi.1009468.ref002) 1997; 9 M Theiler (pcbi.1009468.ref026) 2000; 10 DF Tough (pcbi.1009468.ref001) 1994; 179 M Delattre (pcbi.1009468.ref028) 2014; 8 K Murali-Krishna (pcbi.1009468.ref003) 1998; 8 DC Macallan (pcbi.1009468.ref035) 2003; 33 SM Kaech (pcbi.1009468.ref005) 2002; 2 L Westera (pcbi.1009468.ref020) 2015; 14 P Costa Del Amo (pcbi.1009468.ref022) 2018; 16 MK Hellerstein (pcbi.1009468.ref036) 2003; 112 WE Demkowicz (pcbi.1009468.ref012) 1993; 67 R Busch (pcbi.1009468.ref042) 2007; 2 MP Davenport (pcbi.1009468.ref025) 2020; 20 M Baliu-Piqué (pcbi.1009468.ref009) 2018; 9 A Antia (pcbi.1009468.ref033) 2018; 16 SC Jameson (pcbi.1009468.ref041) 2018; 48 R Ahmed (pcbi.1009468.ref021) 2016; 17 DC Macallan (pcbi.1009468.ref037) 2004; 200 RS Akondy (pcbi.1009468.ref023) 2009; 183 MK Slifka (pcbi.1009468.ref034) 1998; 8 R Nanan (pcbi.1009468.ref013) 2000; 81 VV Ganusov (pcbi.1009468.ref043) 2010; 6 RJ De Boer (pcbi.1009468.ref044) 2013; 327 E Parretta (pcbi.1009468.ref007) 2008; 180 L Westera (pcbi.1009468.ref019) 2013; 122 R Mercado (pcbi.1009468.ref004) 2000; 165 DK Choo (pcbi.1009468.ref006) 2010; 185 RM Ribeiro (pcbi.1009468.ref017) 2002; 64 J Moore (pcbi.1009468.ref030) 2018; 80 DC Macallan (pcbi.1009468.ref016) 1998; 95 SA Fuertes Marraco (pcbi.1009468.ref014) 2015; 7 L Gattinoni (pcbi.1009468.ref039) 2011; 17 N Vrisekoop (pcbi.1009468.ref018) 2008; 105 PFM Teunis (pcbi.1009468.ref029) 2016; 16 |
References_xml | – volume: 6 start-page: e1000666 issue: 2 year: 2010 ident: pcbi.1009468.ref043 article-title: Explicit kinetic heterogeneity: mathematical models for interpretation of deuterium labeling of heterogeneous cell populations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000666 – volume: 95 start-page: 708 issue: 2 year: 1998 ident: pcbi.1009468.ref016 article-title: Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.2.708 – volume: 180 start-page: 7907 issue: 12 year: 2008 ident: pcbi.1009468.ref040 article-title: Central memory CD8+ T cells appear to have a shorter lifespan and reduced abundance as a function of HIV disease progression publication-title: J Immunol doi: 10.4049/jimmunol.180.12.7907 – volume: 9 start-page: 2054 year: 2018 ident: pcbi.1009468.ref009 article-title: Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells publication-title: Front Immunol doi: 10.3389/fimmu.2018.02054 – volume: 357 start-page: 1903 issue: 19 year: 2007 ident: pcbi.1009468.ref031 article-title: Duration of humoral immunity to common viral and vaccine antigens publication-title: N Engl J Med doi: 10.1056/NEJMoa066092 – volume: 552 start-page: 404 issue: 7685 year: 2017 ident: pcbi.1009468.ref008 article-title: Effector CD8 T cells dedifferentiate into long-lived memory cells publication-title: Nature doi: 10.1038/nature25144 – volume: 327 start-page: 45 year: 2013 ident: pcbi.1009468.ref044 article-title: Quantifying T lymphocyte turnover publication-title: J Theor Biol doi: 10.1016/j.jtbi.2012.12.025 – volume: 180 start-page: 7230 issue: 11 year: 2008 ident: pcbi.1009468.ref007 article-title: Kinetics of in vivo proliferation and death of memory and naive CD8 T cells: parameter estimation based on 5-bromo-2’-deoxyuridine incorporation in spleen, lymph nodes, and bone marrow publication-title: J Immunol doi: 10.4049/jimmunol.180.11.7230 – volume: 10 start-page: 6 issue: 1 year: 2000 ident: pcbi.1009468.ref026 article-title: The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 65, 787-800 (1937) publication-title: Rev Med Virol doi: 10.1002/(SICI)1099-1654(200001/02)10:1<3::AID-RMV261>3.0.CO;2-O – volume: 8 start-page: 1781 issue: 1 year: 2017 ident: pcbi.1009468.ref032 article-title: Plasma cell survival in the absence of B cell memory publication-title: Nat Commun doi: 10.1038/s41467-017-01901-w – volume: 67 start-page: 1538 issue: 3 year: 1993 ident: pcbi.1009468.ref012 article-title: Vaccinia virus-specific CD8+ cytotoxic T lymphocytes in humans publication-title: J Virol doi: 10.1128/jvi.67.3.1538-1544.1993 – volume: 112 start-page: 3050 issue: 10 year: 2015 ident: pcbi.1009468.ref027 article-title: Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1500475112 – volume: 9 start-page: 371 issue: 3 year: 1997 ident: pcbi.1009468.ref002 article-title: Immunological memory publication-title: Current Opinion in Immunology doi: 10.1016/S0952-7915(97)80084-2 – volume: 8 start-page: 177 issue: 2 year: 1998 ident: pcbi.1009468.ref003 article-title: Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection publication-title: Immunity doi: 10.1016/S1074-7613(00)80470-7 – volume: 122 start-page: 2205 issue: 13 year: 2013 ident: pcbi.1009468.ref019 article-title: Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans publication-title: Blood doi: 10.1182/blood-2013-03-488411 – volume: 7 start-page: 282ra48 issue: 282 year: 2015 ident: pcbi.1009468.ref014 article-title: Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa3700 – volume: 20 start-page: 499 issue: 8 year: 2020 ident: pcbi.1009468.ref025 article-title: Building a T cell compartment: how immune cell development shapes function publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0332-3 – volume: 200 start-page: 255 issue: 2 year: 2004 ident: pcbi.1009468.ref037 article-title: Rapid turnover of effector-memory CD4(+) T cells in healthy humans publication-title: J Exp Med doi: 10.1084/jem.20040341 – volume: 28 start-page: 710 issue: 5 year: 2008 ident: pcbi.1009468.ref010 article-title: Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines publication-title: Immunity doi: 10.1016/j.immuni.2008.02.020 – volume: 9 start-page: 1131 issue: 9 year: 2003 ident: pcbi.1009468.ref011 article-title: Duration of antiviral immunity after smallpox vaccination publication-title: Nat Med doi: 10.1038/nm917 – volume: 80 start-page: 46 issue: 1 year: 2018 ident: pcbi.1009468.ref030 article-title: What Controls the Acute Viral Infection Following Yellow Fever Vaccination? publication-title: Bull Math Biol doi: 10.1007/s11538-017-0365-3 – volume: 48 start-page: 214 issue: 2 year: 2018 ident: pcbi.1009468.ref041 article-title: Understanding Subset Diversity in T Cell Memory publication-title: Immunity doi: 10.1016/j.immuni.2018.02.010 – volume: 173 start-page: 1787 issue: 3 year: 2004 ident: pcbi.1009468.ref038 article-title: Direct measurement of T cell subset kinetics in vivo in elderly men and women publication-title: J Immunol doi: 10.4049/jimmunol.173.3.1787 – volume: 360 start-page: 264 issue: 6401 year: 1992 ident: pcbi.1009468.ref015 article-title: Lifespan of human lymphocyte subsets defined by CD45 isoforms publication-title: Nature doi: 10.1038/360264a0 – volume: 64 start-page: 385 issue: 2 year: 2002 ident: pcbi.1009468.ref017 article-title: Modeling deuterated glucose labeling of T-lymphocytes publication-title: Bull Math Biol doi: 10.1006/bulm.2001.0282 – volume: 16 start-page: e2006601 issue: 8 year: 2018 ident: pcbi.1009468.ref033 article-title: Heterogeneity and longevity of antibody memory to viruses and vaccines publication-title: PLoS Biol doi: 10.1371/journal.pbio.2006601 – volume: 183 start-page: 7919 issue: 12 year: 2009 ident: pcbi.1009468.ref023 article-title: The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response publication-title: J Immunol doi: 10.4049/jimmunol.0803903 – volume: 81 start-page: 1313 issue: Pt 5 year: 2000 ident: pcbi.1009468.ref013 article-title: A novel sensitive approach for frequency analysis of measles virus-specific memory T-lymphocytes in healthy adults with a childhood history of natural measles publication-title: J Gen Virol – volume: 8 start-page: 363 issue: 3 year: 1998 ident: pcbi.1009468.ref034 article-title: Humoral immunity due to long-lived plasma cells publication-title: Immunity doi: 10.1016/S1074-7613(00)80541-5 – volume: 8 start-page: 456 issue: 1 year: 2014 ident: pcbi.1009468.ref028 article-title: A note on BIC in mixed-effects models publication-title: Electron J Statist doi: 10.1214/14-EJS890 – volume: 33 start-page: 2316 issue: 8 year: 2003 ident: pcbi.1009468.ref035 article-title: Measurement and modeling of human T cell kinetics publication-title: Eur J Immunol doi: 10.1002/eji.200323763 – volume: 179 start-page: 1127 issue: 4 year: 1994 ident: pcbi.1009468.ref001 article-title: Turnover of naive- and memory-phenotype T cells publication-title: J Exp Med doi: 10.1084/jem.179.4.1127 – volume: 165 start-page: 6833 issue: 12 year: 2000 ident: pcbi.1009468.ref004 article-title: Early programming of T cell populations responding to bacterial infection publication-title: J Immunol doi: 10.4049/jimmunol.165.12.6833 – volume: 17 start-page: 1290 issue: 10 year: 2011 ident: pcbi.1009468.ref039 article-title: A human memory T cell subset with stem cell-like properties publication-title: Nat Med doi: 10.1038/nm.2446 – volume: 2 start-page: 3045 issue: 12 year: 2007 ident: pcbi.1009468.ref042 article-title: Measurement of cell proliferation by heavy water labeling publication-title: Nat Protoc doi: 10.1038/nprot.2007.420 – volume: 105 start-page: 6115 issue: 16 year: 2008 ident: pcbi.1009468.ref018 article-title: Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0709713105 – volume: 112 start-page: 956 issue: 6 year: 2003 ident: pcbi.1009468.ref036 article-title: Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection publication-title: J Clin Invest doi: 10.1172/JCI200317533 – volume: 16 start-page: e2005523 issue: 6 year: 2018 ident: pcbi.1009468.ref022 article-title: Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness publication-title: PLoS Biol doi: 10.1371/journal.pbio.2005523 – volume: 185 start-page: 3436 issue: 6 year: 2010 ident: pcbi.1009468.ref006 article-title: Homeostatic turnover of virus-specific memory CD8 T cells occurs stochastically and is independent of CD4 T cell help publication-title: J Immunol doi: 10.4049/jimmunol.1001421 – volume: 16 start-page: 33 year: 2016 ident: pcbi.1009468.ref029 article-title: Linking the seroresponse to infection to within-host heterogeneity in antibody production publication-title: Epidemics doi: 10.1016/j.epidem.2016.04.001 – volume: 14 start-page: 219 issue: 2 year: 2015 ident: pcbi.1009468.ref020 article-title: Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover publication-title: Aging Cell doi: 10.1111/acel.12311 – volume: 552 start-page: 362 issue: 7685 year: 2017 ident: pcbi.1009468.ref024 article-title: Origin and differentiation of human memory CD8 T cells after vaccination publication-title: Nature doi: 10.1038/nature24633 – volume: 2 start-page: 251 issue: 4 year: 2002 ident: pcbi.1009468.ref005 article-title: Effector and memory T-cell differentiation: implications for vaccine development publication-title: Nat Rev Immunol doi: 10.1038/nri778 – volume: 17 start-page: 2811 issue: 11 year: 2016 ident: pcbi.1009468.ref021 article-title: Human Stem Cell-like Memory T Cells Are Maintained in a State of Dynamic Flux publication-title: Cell Rep doi: 10.1016/j.celrep.2016.11.037 |
SSID | ssj0035896 |
Score | 2.42895 |
Snippet | Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1009468 |
SubjectTerms | Biology and Life Sciences CD8 antigen CD8-Positive T-Lymphocytes - immunology Cell culture Cell death Cell division Computational Biology Deuterium Differential equations Epidemic models Epidemiology Fever Health aspects Humans Immunologic Memory - immunology Immunological memory Immunology Infections Labeling Low level Lymphocytes Lymphocytes T Medicine and Health Sciences Memory cells Models, Immunological Mortality Pathogens Physical Sciences Physiological aspects Population Prevention Research and Analysis Methods T cells Vaccination Vaccines Vector-borne diseases Viral infections Viral vaccines Viruses Yellow fever Yellow Fever Vaccine - immunology Yellow fever virus - immunology |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8uFGQQEqfQdezEzrG0VAWJHqAVe7P8hJVKsmp2qfbfMxNnow0q6oVrZhzJM2OPJ_n8DSFvhYiG2whlalWKTPjK4JKqsoqLYGbeCdZdCvtyVp5eiM_zYr7T6gsxYYkeOBnuwCvODeMxyMCF5coWngV4NjOWzUwecfeFnLctptIezAvVdebCpjiZ5GLeX5rjkh30Pnq_dHaBGIFKIM3qTlLquPuHHXqyvGzam46ff6Mod9LSyQNyvz9P0sM0j4fkTqgfkbupw-TmMfl-nDrOt9TUnkJ6qRGySZtIfyHEdkOPjhU9p_j5nl4luGxoaYTgaK4hqdEN_pu5pjHgqN_GuUX6eviEXJx8PD86zfpeCpmDDLzKKp9bI_PoofAsPJecCac8k0bNYvClN1HGnLlobRWZhZrIIrGaV8Ebp4K0_CmZ1E0d9ggNsih9njtnbSHAFSYK74WRQc3AWb6YEr41pnY90Tj2u7jU3d8zCQVHso1GF-jeBVOSDaOWiWjjFv0P6KdBF2myuwcQPLoPHn1b8EzJG_SyRiKMGpE2P8y6bfWnb2f6EInaYL9j_J9KX0dK73ql2MBknelvN4DJkGBrpLk_0oTl7EbiPYy47ZxbDb4AGRbyMHIbhTeLXw9ifCmi5-rQrFEH6mpscAJvf5aCdrAbF6VQQlVTIkfhPDLsWFIvfnY85ArJ6yrx_H944gW5lyNaqINJ7pPJ6modXsJxb2VfdSv7D6AzUww priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXxLtLCzIIiVPoOnZi54RKS1WQ6AFasTfLz3alkiyb3Vb77_E43tCgAtd4bDkz48fYn79B6A1jXlHtQ5halSxjtlIwpKqsosypiTWMxEdhX47Lo1P2eVpM04Fbm2CVmzkxTtS2MXBGvhu26YLEeOb9_GcGWaPgdjWl0LiN7gB1GUC6-LQPuGghYn4uSI2Tccqm6ekc5WQ3Werd3OgZIAUqBmSr15amyODfz9Oj-UXT3rQJ_RNLeW1xOnyA7qddJd7r3OAhuuXqR-hul2dy_Rh9P-jyzrdY1RaHRaYG4CZuPP4BQNs13j8Q-ATDIT5edKBZ12IfXKS5CksbXsMNzRX2DmpdKmNm3RniE3R6-PFk_yhLGRUyE9bhZVbZXCueexvCz8JSTgkzwhKuxMQ7W1rluc-J8VpXnuigcg30alY4q4xwXNOnaFQ3tdtC2PGitHlujNYFc4Iqz6xlijsxsYLaYozoRpnSJLpxyHpxIeMdGg9hR6cbCSaQyQRjlPW15h3dxn_kP4Cdelkgy44fmsWZTGNPhv5QRah33FGmqdCFJaHHdKI0majcj9FrsLIEOowa8DZnatW28tO3Y7kHdG1h1iP0r0JfB0Jvk5Bvws8ald44BJUBzdZAcmcgGQa1GRRvgcdt_rmVv90_1Nx44c3Fr_piaBQwdLVrViATomtIcxJaf9Y5ba83ykommKjGiA_ceaDYYUk9O49s5AIo7Cr2_N_d2kb3ckADRRjkDhotFyv3ImznlvplHLO_AOM6SkM priority: 102 providerName: ProQuest |
Title | Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34648489 https://www.proquest.com/docview/2598108254 https://www.proquest.com/docview/2582813533 https://pubmed.ncbi.nlm.nih.gov/PMC8568194 https://doaj.org/article/d833a13fe7e34b38b5d1e8330ab10a2f http://dx.doi.org/10.1371/journal.pcbi.1009468 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TqC9IL5XGJVBSDxlamIndh4QateVgbQKjVX0LfLnqFSS0rSM_vf48qUFdULiJZFyZys53-V89vl-CL2l1AoirQtT44h6VMcCTCr2YkKN6GtF_eJQ2MUkOp_Sz7NwtodqzNZKgPnO0A7wpKarxcnvn9sPzuDfF6gNzK8bnSyVnMOuf0wjvo8OnG9iYKoXtNlXICEvELsALMdjhM6qw3R39XKI7hMaUU4BBf6W3yrK-zc_8c5ykeW7Zqh_J1re8lzjh-hBNeXEg1JHHqE9kz5G90oQyu0T9G1UgtLnWKQaOw-UQlYnziz-AVm4W3w64vgKwwo_XpUZtSbH1ulPduP8Ht7C9s0NtgZa_RJKzcsFxqdoOj67Oj33KrgFTzknvfZiHUjBAqtdbBpqwohPFdc-E7xvjY60sMwGvrJSxtaXLmySUHtNc6OF4oZJ8gx10iw1RwgbFkY6CJSSMqSGE2Gp1lQww_uaEx12EamFmaiqFjlAYiySYoONuZiklE0Co5FUo9FFXtNqWdbi-Af_EMap4YVK2sWDbHWdVIaZuPchwifWMEOoJFyG2ndvTPpC-n0R2C56A6OcQK2MFJJxrsUmz5NPXyfJAGq5uV-iT-5kumwxvauYbOY-VonqAIQTGdTganEetzidxasW-Qg0rv7mPHFj4WgQ67uWtRbuJr9uyNApJNilJtsAjwu9AQPF9f68VNpGbrUJdBFrqXNLsG1KOv9elCrnUN8upi_-u-VLdBhAFlGRPnmMOuvVxrxy08C17KF9NmPuyscfe-hgMBwNx-4-PJt8uewVSyu9wvb_ABKXYzU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUMAxcGN4NFBAMDCdT25It-cAwpaGT0DYHSIfcjJ4lM8UOcUImf4rfiNYvaqbAqVdrJcurfWit1X4IvaDUCiKtC1OTmHpUJwJUKvESQo3wtaJBeSnseBwPT-iHaTTdQj-buzCQVtnYxNJQ61zBP_Jdt03nQRnPvJ1_9wA1Ck5XGwiNSiwOzWbtQrbizWjg1vdlGB68n-wPvRpVwFPOFy29RIdSsNBqF4JFmjASUMV1wAT3rdGxFpbZMFBWysQG0r1WQokxzY0WihsmiRv3CrrqHK8PGsWmbYBHIl7igQEUj8cIndZX9QgLdmvJeD1XcgaZCQmF4q7nXGGJGND6hd78LC8u2vT-mbt5zhke3EI3610s3qvE7jbaMtkddK3CtdzcRZ8HFc59gUWmsXNqGSSK4tzib5DYu8H7A44nGA4N8KJK0jUFtk4k87VzpXgDJ0JrbA30-iGUmlX_LO-hk0vh9X3Uy_LMbCNsWBTrMFRKyogaToSlWlPBDPc1JzrqI9IwM1V1eXNA2ThLyzM75sKcijcpLEFaL0EfeW2veVXe4z_072CdWloozl0-yBenaa3rqZsPEQGxhhlCJeEy0oGbMfGFDHwR2j56DqucQvmNDPJ7TsWqKNLRp3G6B-XhnJUNyF-JPnaIXtVENncfq0R9p8KxDMp6dSh3OpTOiKhO8zZIXPPNRfpb3VzPRgovbn7WNsOgkLOXmXwFNC6aB1gVN_qDSmhbvhEaU0550kesI84dxnZbstnXsvo5h5J5CX3472k9RdeHk-Oj9Gg0PnyEboSQiVSmYO6g3nKxMo_dVnIpn5T6i9GXyzYYvwDZSYk2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEIgL4t1AAYNAnJbEa2_sPSBUGqKGQoSgVXNb_CyRym7IJkT5a_w6PPuiiwqcel2PLe_MeMZjj-dD6BljTlLlfJgaD1jATCxhScVBTJmVfaMZKR6FfZgM9o_Yu2k03UI_67cwkFZZ28TCUJtMwxl5z2_TBSnimZ6r0iI-Dkev598DQJCCm9YaTqNUkQO7WfvwLX81HnpZPw_D0dvDvf2gQhgItPdLyyA2oZI8dMaHY5GhnBKmhSFcir6zZmCk4y4k2ikVO6L8FBSUGzPCGqmF5Yr6cS-hy5xGBNYYnzbBHo1EgQ0GsDwBp2xaPdujnPQqLXk512oGWQoxg0KvZ9xigR7Q-IjO_DTLz9sA_5nHecYxjm6g69WOFu-WKngTbdn0FrpSYlxubqPjYYl5n2OZGuwdXApJozhz-Bsk-W7w3lDgQwwXCHhRJuzaHDuvntnau1W8gduhNXYWev2QWs_K88s76OhCeH0XddIstdsIWx4NTBhqrVTErKDSMWOY5Fb0jaAm6iJaMzPRValzQNw4TYr7O-5DnpI3CYggqUTQRUHTa16W-vgP_RuQU0MLhbqLD9niJKnWfeLnQyWhznJLmaJCRYb4GdO-VKQvQ9dFT0HKCZTiSEGpT-Qqz5Px50myC6XivMUl9K9En1pELyoil_mf1bJ6X-FZBiW-WpQ7LUpvUHSreRs0rv7nPPm99HzPWgvPb37SNMOgkL-X2mwFND6yB4gVP_q9UmkbvlE2YIKJuIt4S51bjG23pLOvRSV0AeXzYnb_39N6jK56U5G8H08OHqBrISQlFdmYO6izXKzsQ7-rXKpHxfLF6MtF24tfJDyNbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+turnover+of+memory+CD8+T+cell+responses+following+yellow+fever+vaccination&rft.jtitle=PLoS+computational+biology&rft.au=Zarnitsyna%2C+Veronika+I.&rft.au=Akondy%2C+Rama+S.&rft.au=Ahmed%2C+Hasan&rft.au=McGuire%2C+Donald+J.&rft.date=2021-10-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=17&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009468&rft_id=info%3Apmid%2F34648489&rft.externalDocID=PMC8568194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |