Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination

Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze da...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 10; p. e1009468
Main Authors Zarnitsyna, Veronika I., Akondy, Rama S., Ahmed, Hasan, McGuire, Donald J., Zarnitsyn, Vladimir G., Moore, Mia, Johnson, Philip L. F., Ahmed, Rafi, Li, Kelvin W., Hellerstein, Marc K., Antia, Rustom
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.
AbstractList Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ~ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.
Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically. Immunological memory, generated in response to infection or vaccination, may provide complete or partial protection from antigenically similar infections for the lifetime. Memory CD8 T cells are important players in protection from secondary viral infections but quantitative understanding of their dynamics in humans is limited. We analyze data from two studies where immunization with the yellow fever virus vaccine (YFV-17D) generates a mild acute infection and long-term memory. We find that: (i) the division rate of YFV-17D-specific CD8 T cells drops and stabilizes at ∼ 0.1% per day during the first year following vaccination whereas the death rate declines more gradually, and (ii) the number of these cells declines approximately in accordance with a power law (∝ time −0.75 ) for at least several decades following vaccination.
Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.
Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.
Audience Academic
Author Moore, Mia
Ahmed, Hasan
Zarnitsyna, Veronika I.
Akondy, Rama S.
Hellerstein, Marc K.
Antia, Rustom
Ahmed, Rafi
Li, Kelvin W.
McGuire, Donald J.
Zarnitsyn, Vladimir G.
Johnson, Philip L. F.
AuthorAffiliation 5 Moonlight Therapeutics Inc., Atlanta, Georgia, United States of America
6 Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
Inria, FRANCE
2 Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
7 Department of Biology, University of Maryland, College Park, Maryland, United States of America
8 Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, California, United States of America
3 Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India
4 Department of Biology, Emory University, Atlanta, Georgia, United States of America
1 Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
AuthorAffiliation_xml – name: 2 Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
– name: 7 Department of Biology, University of Maryland, College Park, Maryland, United States of America
– name: 8 Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, California, United States of America
– name: 1 Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
– name: Inria, FRANCE
– name: 3 Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India
– name: 6 Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
– name: 4 Department of Biology, Emory University, Atlanta, Georgia, United States of America
– name: 5 Moonlight Therapeutics Inc., Atlanta, Georgia, United States of America
Author_xml – sequence: 1
  givenname: Veronika I.
  orcidid: 0000-0003-3096-3695
  surname: Zarnitsyna
  fullname: Zarnitsyna, Veronika I.
– sequence: 2
  givenname: Rama S.
  orcidid: 0000-0003-4737-5240
  surname: Akondy
  fullname: Akondy, Rama S.
– sequence: 3
  givenname: Hasan
  surname: Ahmed
  fullname: Ahmed, Hasan
– sequence: 4
  givenname: Donald J.
  orcidid: 0000-0002-3742-9594
  surname: McGuire
  fullname: McGuire, Donald J.
– sequence: 5
  givenname: Vladimir G.
  orcidid: 0000-0003-4166-325X
  surname: Zarnitsyn
  fullname: Zarnitsyn, Vladimir G.
– sequence: 6
  givenname: Mia
  orcidid: 0000-0001-5055-7075
  surname: Moore
  fullname: Moore, Mia
– sequence: 7
  givenname: Philip L. F.
  orcidid: 0000-0001-6087-7064
  surname: Johnson
  fullname: Johnson, Philip L. F.
– sequence: 8
  givenname: Rafi
  surname: Ahmed
  fullname: Ahmed, Rafi
– sequence: 9
  givenname: Kelvin W.
  orcidid: 0000-0002-1771-1998
  surname: Li
  fullname: Li, Kelvin W.
– sequence: 10
  givenname: Marc K.
  orcidid: 0000-0002-2327-0834
  surname: Hellerstein
  fullname: Hellerstein, Marc K.
– sequence: 11
  givenname: Rustom
  orcidid: 0000-0001-7991-614X
  surname: Antia
  fullname: Antia, Rustom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34648489$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1v0zAUhiM0xD7gHyCwxA1ctNhxnDi7QJo6PipNIMEQl5ZjHxdXiV3stFv_Pc6aTes0IaFcxDp53vf4nLzH2YHzDrLsJcFTQivyfunXwcl2ulKNnRKM66LkT7IjwhidVJTxg3vnw-w4xiXG6ViXz7JDWpQFL3h9lP063zrZWRWRdBr1ydJvICBvUAedD1s0O-foEiloWxQgrryLEJHxbeuvrFugLQwnZGBQbaRS1sneevc8e2pkG-HF-D7Jfn76eDn7Mrn49nk-O7uYqLIk_aTWeSOr3GiWU6ZpRUmhuCaV5NiALrU0lcmJMk1TG9LkrG6KkjHNQUvFoWroSfZ657tqfRTjTqJIJCeY56xIxHxHaC-XYhVsJ8NWeGnFTcGHhZCht6oFoTmlklADFdCiobxhmkCqYdkQLHOTvD6M3dZNB1qB64Ns90z3vzj7Wyz8RnBWclIPl3k7GgT_Zw2xF52Nw3KlA78e7s1zTiijNKFvHqCPTzdSC5kGsM741FcNpuIstcSEUzJ4TR-h0qMh_fuUK2NTfU_wbk-QmB6u-4VcxyjmP77_B_t1n311f4F3m7sNZAKKHaCCjzGAuUMIFkPub7cghtyLMfdJdvpApmx_E8Q0qG3_Lf4LbMYKDQ
CitedBy_id crossref_primary_10_1371_journal_pbio_3002380
crossref_primary_10_3389_fimmu_2023_1250916
crossref_primary_10_3389_fimmu_2024_1420284
crossref_primary_10_3389_fimmu_2022_1004656
crossref_primary_10_1093_infdis_jiad193
crossref_primary_10_1146_annurev_immunol_101721_040924
crossref_primary_10_1016_j_mbs_2024_109274
crossref_primary_10_1200_JCO_22_00088
crossref_primary_10_1016_j_immuni_2024_02_005
crossref_primary_10_1016_j_it_2023_05_004
Cites_doi 10.1371/journal.pcbi.1000666
10.1073/pnas.95.2.708
10.4049/jimmunol.180.12.7907
10.3389/fimmu.2018.02054
10.1056/NEJMoa066092
10.1038/nature25144
10.1016/j.jtbi.2012.12.025
10.4049/jimmunol.180.11.7230
10.1002/(SICI)1099-1654(200001/02)10:1<3::AID-RMV261>3.0.CO;2-O
10.1038/s41467-017-01901-w
10.1128/jvi.67.3.1538-1544.1993
10.1073/pnas.1500475112
10.1016/S0952-7915(97)80084-2
10.1016/S1074-7613(00)80470-7
10.1182/blood-2013-03-488411
10.1126/scitranslmed.aaa3700
10.1038/s41577-020-0332-3
10.1084/jem.20040341
10.1016/j.immuni.2008.02.020
10.1038/nm917
10.1007/s11538-017-0365-3
10.1016/j.immuni.2018.02.010
10.4049/jimmunol.173.3.1787
10.1038/360264a0
10.1006/bulm.2001.0282
10.1371/journal.pbio.2006601
10.4049/jimmunol.0803903
10.1016/S1074-7613(00)80541-5
10.1214/14-EJS890
10.1002/eji.200323763
10.1084/jem.179.4.1127
10.4049/jimmunol.165.12.6833
10.1038/nm.2446
10.1038/nprot.2007.420
10.1073/pnas.0709713105
10.1172/JCI200317533
10.1371/journal.pbio.2005523
10.4049/jimmunol.1001421
10.1016/j.epidem.2016.04.001
10.1111/acel.12311
10.1038/nature24633
10.1038/nri778
10.1016/j.celrep.2016.11.037
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Zarnitsyna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Zarnitsyna et al 2021 Zarnitsyna et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Zarnitsyna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Zarnitsyna et al 2021 Zarnitsyna et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009468
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination
EISSN 1553-7358
ExternalDocumentID 2598108254
oai_doaj_org_article_d833a13fe7e34b38b5d1e8330ab10a2f
PMC8568194
A681018313
34648489
10_1371_journal_pcbi_1009468
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI057266
– fundername: NHLBI NIH HHS
  grantid: U01 HL139483
– fundername: NIAID NIH HHS
  grantid: U01 AI144616
– fundername: NIAID NIH HHS
  grantid: U01 AI150747
– fundername: ;
  grantid: U01 AI150747
– fundername: ;
  grantid: U01 AI144616
– fundername: ;
  grantid: U01 HL139483
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
PMFND
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
5PM
PUEGO
-
AAPBV
ABPTK
ADACO
BBAFP
ID FETCH-LOGICAL-c661t-9d2ba72fd5235d37314c8d17a80fed6daf7f21cfbb9f1b259b4655d8edac8e7b3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Dec 05 00:11:23 EST 2021
Wed Aug 27 01:29:39 EDT 2025
Thu Aug 21 17:42:22 EDT 2025
Mon Jul 21 10:40:22 EDT 2025
Fri Jul 25 12:07:39 EDT 2025
Tue Jun 17 21:17:32 EDT 2025
Tue Jun 10 20:37:42 EDT 2025
Fri Jun 27 05:10:18 EDT 2025
Fri Jun 27 04:40:01 EDT 2025
Wed Feb 19 02:26:45 EST 2025
Tue Jul 01 04:06:53 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-9d2ba72fd5235d37314c8d17a80fed6daf7f21cfbb9f1b259b4655d8edac8e7b3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-2327-0834
0000-0003-3096-3695
0000-0001-5055-7075
0000-0003-4737-5240
0000-0001-6087-7064
0000-0001-7991-614X
0000-0002-3742-9594
0000-0002-1771-1998
0000-0003-4166-325X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009468
PMID 34648489
PQID 2598108254
PQPubID 1436340
ParticipantIDs plos_journals_2598108254
doaj_primary_oai_doaj_org_article_d833a13fe7e34b38b5d1e8330ab10a2f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8568194
proquest_miscellaneous_2582813533
proquest_journals_2598108254
gale_infotracmisc_A681018313
gale_infotracacademiconefile_A681018313
gale_incontextgauss_ISR_A681018313
gale_incontextgauss_ISN_A681018313
pubmed_primary_34648489
crossref_primary_10_1371_journal_pcbi_1009468
crossref_citationtrail_10_1371_journal_pcbi_1009468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RS Akondy (pcbi.1009468.ref024) 2017; 552
B Youngblood (pcbi.1009468.ref008) 2017; 552
IJ Amanna (pcbi.1009468.ref031) 2007; 357
E Hammarlund (pcbi.1009468.ref011) 2003; 9
E Hammarlund (pcbi.1009468.ref032) 2017; 8
DL Wallace (pcbi.1009468.ref038) 2004; 173
K Ladell (pcbi.1009468.ref040) 2008; 180
CA Michie (pcbi.1009468.ref015) 1992; 360
RS Akondy (pcbi.1009468.ref027) 2015; 112
JD Miller (pcbi.1009468.ref010) 2008; 28
J Sprent (pcbi.1009468.ref002) 1997; 9
M Theiler (pcbi.1009468.ref026) 2000; 10
DF Tough (pcbi.1009468.ref001) 1994; 179
M Delattre (pcbi.1009468.ref028) 2014; 8
K Murali-Krishna (pcbi.1009468.ref003) 1998; 8
DC Macallan (pcbi.1009468.ref035) 2003; 33
SM Kaech (pcbi.1009468.ref005) 2002; 2
L Westera (pcbi.1009468.ref020) 2015; 14
P Costa Del Amo (pcbi.1009468.ref022) 2018; 16
MK Hellerstein (pcbi.1009468.ref036) 2003; 112
WE Demkowicz (pcbi.1009468.ref012) 1993; 67
R Busch (pcbi.1009468.ref042) 2007; 2
MP Davenport (pcbi.1009468.ref025) 2020; 20
M Baliu-Piqué (pcbi.1009468.ref009) 2018; 9
A Antia (pcbi.1009468.ref033) 2018; 16
SC Jameson (pcbi.1009468.ref041) 2018; 48
R Ahmed (pcbi.1009468.ref021) 2016; 17
DC Macallan (pcbi.1009468.ref037) 2004; 200
RS Akondy (pcbi.1009468.ref023) 2009; 183
MK Slifka (pcbi.1009468.ref034) 1998; 8
R Nanan (pcbi.1009468.ref013) 2000; 81
VV Ganusov (pcbi.1009468.ref043) 2010; 6
RJ De Boer (pcbi.1009468.ref044) 2013; 327
E Parretta (pcbi.1009468.ref007) 2008; 180
L Westera (pcbi.1009468.ref019) 2013; 122
R Mercado (pcbi.1009468.ref004) 2000; 165
DK Choo (pcbi.1009468.ref006) 2010; 185
RM Ribeiro (pcbi.1009468.ref017) 2002; 64
J Moore (pcbi.1009468.ref030) 2018; 80
DC Macallan (pcbi.1009468.ref016) 1998; 95
SA Fuertes Marraco (pcbi.1009468.ref014) 2015; 7
L Gattinoni (pcbi.1009468.ref039) 2011; 17
N Vrisekoop (pcbi.1009468.ref018) 2008; 105
PFM Teunis (pcbi.1009468.ref029) 2016; 16
References_xml – volume: 6
  start-page: e1000666
  issue: 2
  year: 2010
  ident: pcbi.1009468.ref043
  article-title: Explicit kinetic heterogeneity: mathematical models for interpretation of deuterium labeling of heterogeneous cell populations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000666
– volume: 95
  start-page: 708
  issue: 2
  year: 1998
  ident: pcbi.1009468.ref016
  article-title: Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.2.708
– volume: 180
  start-page: 7907
  issue: 12
  year: 2008
  ident: pcbi.1009468.ref040
  article-title: Central memory CD8+ T cells appear to have a shorter lifespan and reduced abundance as a function of HIV disease progression
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.12.7907
– volume: 9
  start-page: 2054
  year: 2018
  ident: pcbi.1009468.ref009
  article-title: Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02054
– volume: 357
  start-page: 1903
  issue: 19
  year: 2007
  ident: pcbi.1009468.ref031
  article-title: Duration of humoral immunity to common viral and vaccine antigens
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa066092
– volume: 552
  start-page: 404
  issue: 7685
  year: 2017
  ident: pcbi.1009468.ref008
  article-title: Effector CD8 T cells dedifferentiate into long-lived memory cells
  publication-title: Nature
  doi: 10.1038/nature25144
– volume: 327
  start-page: 45
  year: 2013
  ident: pcbi.1009468.ref044
  article-title: Quantifying T lymphocyte turnover
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2012.12.025
– volume: 180
  start-page: 7230
  issue: 11
  year: 2008
  ident: pcbi.1009468.ref007
  article-title: Kinetics of in vivo proliferation and death of memory and naive CD8 T cells: parameter estimation based on 5-bromo-2’-deoxyuridine incorporation in spleen, lymph nodes, and bone marrow
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.11.7230
– volume: 10
  start-page: 6
  issue: 1
  year: 2000
  ident: pcbi.1009468.ref026
  article-title: The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 65, 787-800 (1937)
  publication-title: Rev Med Virol
  doi: 10.1002/(SICI)1099-1654(200001/02)10:1<3::AID-RMV261>3.0.CO;2-O
– volume: 8
  start-page: 1781
  issue: 1
  year: 2017
  ident: pcbi.1009468.ref032
  article-title: Plasma cell survival in the absence of B cell memory
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01901-w
– volume: 67
  start-page: 1538
  issue: 3
  year: 1993
  ident: pcbi.1009468.ref012
  article-title: Vaccinia virus-specific CD8+ cytotoxic T lymphocytes in humans
  publication-title: J Virol
  doi: 10.1128/jvi.67.3.1538-1544.1993
– volume: 112
  start-page: 3050
  issue: 10
  year: 2015
  ident: pcbi.1009468.ref027
  article-title: Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1500475112
– volume: 9
  start-page: 371
  issue: 3
  year: 1997
  ident: pcbi.1009468.ref002
  article-title: Immunological memory
  publication-title: Current Opinion in Immunology
  doi: 10.1016/S0952-7915(97)80084-2
– volume: 8
  start-page: 177
  issue: 2
  year: 1998
  ident: pcbi.1009468.ref003
  article-title: Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80470-7
– volume: 122
  start-page: 2205
  issue: 13
  year: 2013
  ident: pcbi.1009468.ref019
  article-title: Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans
  publication-title: Blood
  doi: 10.1182/blood-2013-03-488411
– volume: 7
  start-page: 282ra48
  issue: 282
  year: 2015
  ident: pcbi.1009468.ref014
  article-title: Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa3700
– volume: 20
  start-page: 499
  issue: 8
  year: 2020
  ident: pcbi.1009468.ref025
  article-title: Building a T cell compartment: how immune cell development shapes function
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-0332-3
– volume: 200
  start-page: 255
  issue: 2
  year: 2004
  ident: pcbi.1009468.ref037
  article-title: Rapid turnover of effector-memory CD4(+) T cells in healthy humans
  publication-title: J Exp Med
  doi: 10.1084/jem.20040341
– volume: 28
  start-page: 710
  issue: 5
  year: 2008
  ident: pcbi.1009468.ref010
  article-title: Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.02.020
– volume: 9
  start-page: 1131
  issue: 9
  year: 2003
  ident: pcbi.1009468.ref011
  article-title: Duration of antiviral immunity after smallpox vaccination
  publication-title: Nat Med
  doi: 10.1038/nm917
– volume: 80
  start-page: 46
  issue: 1
  year: 2018
  ident: pcbi.1009468.ref030
  article-title: What Controls the Acute Viral Infection Following Yellow Fever Vaccination?
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-017-0365-3
– volume: 48
  start-page: 214
  issue: 2
  year: 2018
  ident: pcbi.1009468.ref041
  article-title: Understanding Subset Diversity in T Cell Memory
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.02.010
– volume: 173
  start-page: 1787
  issue: 3
  year: 2004
  ident: pcbi.1009468.ref038
  article-title: Direct measurement of T cell subset kinetics in vivo in elderly men and women
  publication-title: J Immunol
  doi: 10.4049/jimmunol.173.3.1787
– volume: 360
  start-page: 264
  issue: 6401
  year: 1992
  ident: pcbi.1009468.ref015
  article-title: Lifespan of human lymphocyte subsets defined by CD45 isoforms
  publication-title: Nature
  doi: 10.1038/360264a0
– volume: 64
  start-page: 385
  issue: 2
  year: 2002
  ident: pcbi.1009468.ref017
  article-title: Modeling deuterated glucose labeling of T-lymphocytes
  publication-title: Bull Math Biol
  doi: 10.1006/bulm.2001.0282
– volume: 16
  start-page: e2006601
  issue: 8
  year: 2018
  ident: pcbi.1009468.ref033
  article-title: Heterogeneity and longevity of antibody memory to viruses and vaccines
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2006601
– volume: 183
  start-page: 7919
  issue: 12
  year: 2009
  ident: pcbi.1009468.ref023
  article-title: The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0803903
– volume: 81
  start-page: 1313
  issue: Pt 5
  year: 2000
  ident: pcbi.1009468.ref013
  article-title: A novel sensitive approach for frequency analysis of measles virus-specific memory T-lymphocytes in healthy adults with a childhood history of natural measles
  publication-title: J Gen Virol
– volume: 8
  start-page: 363
  issue: 3
  year: 1998
  ident: pcbi.1009468.ref034
  article-title: Humoral immunity due to long-lived plasma cells
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80541-5
– volume: 8
  start-page: 456
  issue: 1
  year: 2014
  ident: pcbi.1009468.ref028
  article-title: A note on BIC in mixed-effects models
  publication-title: Electron J Statist
  doi: 10.1214/14-EJS890
– volume: 33
  start-page: 2316
  issue: 8
  year: 2003
  ident: pcbi.1009468.ref035
  article-title: Measurement and modeling of human T cell kinetics
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200323763
– volume: 179
  start-page: 1127
  issue: 4
  year: 1994
  ident: pcbi.1009468.ref001
  article-title: Turnover of naive- and memory-phenotype T cells
  publication-title: J Exp Med
  doi: 10.1084/jem.179.4.1127
– volume: 165
  start-page: 6833
  issue: 12
  year: 2000
  ident: pcbi.1009468.ref004
  article-title: Early programming of T cell populations responding to bacterial infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.165.12.6833
– volume: 17
  start-page: 1290
  issue: 10
  year: 2011
  ident: pcbi.1009468.ref039
  article-title: A human memory T cell subset with stem cell-like properties
  publication-title: Nat Med
  doi: 10.1038/nm.2446
– volume: 2
  start-page: 3045
  issue: 12
  year: 2007
  ident: pcbi.1009468.ref042
  article-title: Measurement of cell proliferation by heavy water labeling
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.420
– volume: 105
  start-page: 6115
  issue: 16
  year: 2008
  ident: pcbi.1009468.ref018
  article-title: Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0709713105
– volume: 112
  start-page: 956
  issue: 6
  year: 2003
  ident: pcbi.1009468.ref036
  article-title: Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection
  publication-title: J Clin Invest
  doi: 10.1172/JCI200317533
– volume: 16
  start-page: e2005523
  issue: 6
  year: 2018
  ident: pcbi.1009468.ref022
  article-title: Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2005523
– volume: 185
  start-page: 3436
  issue: 6
  year: 2010
  ident: pcbi.1009468.ref006
  article-title: Homeostatic turnover of virus-specific memory CD8 T cells occurs stochastically and is independent of CD4 T cell help
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1001421
– volume: 16
  start-page: 33
  year: 2016
  ident: pcbi.1009468.ref029
  article-title: Linking the seroresponse to infection to within-host heterogeneity in antibody production
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2016.04.001
– volume: 14
  start-page: 219
  issue: 2
  year: 2015
  ident: pcbi.1009468.ref020
  article-title: Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover
  publication-title: Aging Cell
  doi: 10.1111/acel.12311
– volume: 552
  start-page: 362
  issue: 7685
  year: 2017
  ident: pcbi.1009468.ref024
  article-title: Origin and differentiation of human memory CD8 T cells after vaccination
  publication-title: Nature
  doi: 10.1038/nature24633
– volume: 2
  start-page: 251
  issue: 4
  year: 2002
  ident: pcbi.1009468.ref005
  article-title: Effector and memory T-cell differentiation: implications for vaccine development
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri778
– volume: 17
  start-page: 2811
  issue: 11
  year: 2016
  ident: pcbi.1009468.ref021
  article-title: Human Stem Cell-like Memory T Cells Are Maintained in a State of Dynamic Flux
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.11.037
SSID ssj0035896
Score 2.42895
Snippet Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009468
SubjectTerms Biology and Life Sciences
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
Cell culture
Cell death
Cell division
Computational Biology
Deuterium
Differential equations
Epidemic models
Epidemiology
Fever
Health aspects
Humans
Immunologic Memory - immunology
Immunological memory
Immunology
Infections
Labeling
Low level
Lymphocytes
Lymphocytes T
Medicine and Health Sciences
Memory cells
Models, Immunological
Mortality
Pathogens
Physical Sciences
Physiological aspects
Population
Prevention
Research and Analysis Methods
T cells
Vaccination
Vaccines
Vector-borne diseases
Viral infections
Viral vaccines
Viruses
Yellow fever
Yellow Fever Vaccine - immunology
Yellow fever virus - immunology
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8uFGQQEqfQdezEzrG0VAWJHqAVe7P8hJVKsmp2qfbfMxNnow0q6oVrZhzJM2OPJ_n8DSFvhYiG2whlalWKTPjK4JKqsoqLYGbeCdZdCvtyVp5eiM_zYr7T6gsxYYkeOBnuwCvODeMxyMCF5coWngV4NjOWzUwecfeFnLctptIezAvVdebCpjiZ5GLeX5rjkh30Pnq_dHaBGIFKIM3qTlLquPuHHXqyvGzam46ff6Mod9LSyQNyvz9P0sM0j4fkTqgfkbupw-TmMfl-nDrOt9TUnkJ6qRGySZtIfyHEdkOPjhU9p_j5nl4luGxoaYTgaK4hqdEN_pu5pjHgqN_GuUX6eviEXJx8PD86zfpeCpmDDLzKKp9bI_PoofAsPJecCac8k0bNYvClN1HGnLlobRWZhZrIIrGaV8Ebp4K0_CmZ1E0d9ggNsih9njtnbSHAFSYK74WRQc3AWb6YEr41pnY90Tj2u7jU3d8zCQVHso1GF-jeBVOSDaOWiWjjFv0P6KdBF2myuwcQPLoPHn1b8EzJG_SyRiKMGpE2P8y6bfWnb2f6EInaYL9j_J9KX0dK73ql2MBknelvN4DJkGBrpLk_0oTl7EbiPYy47ZxbDb4AGRbyMHIbhTeLXw9ifCmi5-rQrFEH6mpscAJvf5aCdrAbF6VQQlVTIkfhPDLsWFIvfnY85ArJ6yrx_H944gW5lyNaqINJ7pPJ6modXsJxb2VfdSv7D6AzUww
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXxLtLCzIIiVPoOnZi54RKS1WQ6AFasTfLz3alkiyb3Vb77_E43tCgAtd4bDkz48fYn79B6A1jXlHtQ5halSxjtlIwpKqsosypiTWMxEdhX47Lo1P2eVpM04Fbm2CVmzkxTtS2MXBGvhu26YLEeOb9_GcGWaPgdjWl0LiN7gB1GUC6-LQPuGghYn4uSI2Tccqm6ekc5WQ3Werd3OgZIAUqBmSr15amyODfz9Oj-UXT3rQJ_RNLeW1xOnyA7qddJd7r3OAhuuXqR-hul2dy_Rh9P-jyzrdY1RaHRaYG4CZuPP4BQNs13j8Q-ATDIT5edKBZ12IfXKS5CksbXsMNzRX2DmpdKmNm3RniE3R6-PFk_yhLGRUyE9bhZVbZXCueexvCz8JSTgkzwhKuxMQ7W1rluc-J8VpXnuigcg30alY4q4xwXNOnaFQ3tdtC2PGitHlujNYFc4Iqz6xlijsxsYLaYozoRpnSJLpxyHpxIeMdGg9hR6cbCSaQyQRjlPW15h3dxn_kP4Cdelkgy44fmsWZTGNPhv5QRah33FGmqdCFJaHHdKI0majcj9FrsLIEOowa8DZnatW28tO3Y7kHdG1h1iP0r0JfB0Jvk5Bvws8ald44BJUBzdZAcmcgGQa1GRRvgcdt_rmVv90_1Nx44c3Fr_piaBQwdLVrViATomtIcxJaf9Y5ba83ykommKjGiA_ceaDYYUk9O49s5AIo7Cr2_N_d2kb3ckADRRjkDhotFyv3ImznlvplHLO_AOM6SkM
  priority: 102
  providerName: ProQuest
Title Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination
URI https://www.ncbi.nlm.nih.gov/pubmed/34648489
https://www.proquest.com/docview/2598108254
https://www.proquest.com/docview/2582813533
https://pubmed.ncbi.nlm.nih.gov/PMC8568194
https://doaj.org/article/d833a13fe7e34b38b5d1e8330ab10a2f
http://dx.doi.org/10.1371/journal.pcbi.1009468
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TqC9IL5XGJVBSDxlamIndh4QateVgbQKjVX0LfLnqFSS0rSM_vf48qUFdULiJZFyZys53-V89vl-CL2l1AoirQtT44h6VMcCTCr2YkKN6GtF_eJQ2MUkOp_Sz7NwtodqzNZKgPnO0A7wpKarxcnvn9sPzuDfF6gNzK8bnSyVnMOuf0wjvo8OnG9iYKoXtNlXICEvELsALMdjhM6qw3R39XKI7hMaUU4BBf6W3yrK-zc_8c5ykeW7Zqh_J1re8lzjh-hBNeXEg1JHHqE9kz5G90oQyu0T9G1UgtLnWKQaOw-UQlYnziz-AVm4W3w64vgKwwo_XpUZtSbH1ulPduP8Ht7C9s0NtgZa_RJKzcsFxqdoOj67Oj33KrgFTzknvfZiHUjBAqtdbBpqwohPFdc-E7xvjY60sMwGvrJSxtaXLmySUHtNc6OF4oZJ8gx10iw1RwgbFkY6CJSSMqSGE2Gp1lQww_uaEx12EamFmaiqFjlAYiySYoONuZiklE0Co5FUo9FFXtNqWdbi-Af_EMap4YVK2sWDbHWdVIaZuPchwifWMEOoJFyG2ndvTPpC-n0R2C56A6OcQK2MFJJxrsUmz5NPXyfJAGq5uV-iT-5kumwxvauYbOY-VonqAIQTGdTganEetzidxasW-Qg0rv7mPHFj4WgQ67uWtRbuJr9uyNApJNilJtsAjwu9AQPF9f68VNpGbrUJdBFrqXNLsG1KOv9elCrnUN8upi_-u-VLdBhAFlGRPnmMOuvVxrxy08C17KF9NmPuyscfe-hgMBwNx-4-PJt8uewVSyu9wvb_ABKXYzU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUMAxcGN4NFBAMDCdT25It-cAwpaGT0DYHSIfcjJ4lM8UOcUImf4rfiNYvaqbAqVdrJcurfWit1X4IvaDUCiKtC1OTmHpUJwJUKvESQo3wtaJBeSnseBwPT-iHaTTdQj-buzCQVtnYxNJQ61zBP_Jdt03nQRnPvJ1_9wA1Ck5XGwiNSiwOzWbtQrbizWjg1vdlGB68n-wPvRpVwFPOFy29RIdSsNBqF4JFmjASUMV1wAT3rdGxFpbZMFBWysQG0r1WQokxzY0WihsmiRv3CrrqHK8PGsWmbYBHIl7igQEUj8cIndZX9QgLdmvJeD1XcgaZCQmF4q7nXGGJGND6hd78LC8u2vT-mbt5zhke3EI3610s3qvE7jbaMtkddK3CtdzcRZ8HFc59gUWmsXNqGSSK4tzib5DYu8H7A44nGA4N8KJK0jUFtk4k87VzpXgDJ0JrbA30-iGUmlX_LO-hk0vh9X3Uy_LMbCNsWBTrMFRKyogaToSlWlPBDPc1JzrqI9IwM1V1eXNA2ThLyzM75sKcijcpLEFaL0EfeW2veVXe4z_072CdWloozl0-yBenaa3rqZsPEQGxhhlCJeEy0oGbMfGFDHwR2j56DqucQvmNDPJ7TsWqKNLRp3G6B-XhnJUNyF-JPnaIXtVENncfq0R9p8KxDMp6dSh3OpTOiKhO8zZIXPPNRfpb3VzPRgovbn7WNsOgkLOXmXwFNC6aB1gVN_qDSmhbvhEaU0550kesI84dxnZbstnXsvo5h5J5CX3472k9RdeHk-Oj9Gg0PnyEboSQiVSmYO6g3nKxMo_dVnIpn5T6i9GXyzYYvwDZSYk2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEIgL4t1AAYNAnJbEa2_sPSBUGqKGQoSgVXNb_CyRym7IJkT5a_w6PPuiiwqcel2PLe_MeMZjj-dD6BljTlLlfJgaD1jATCxhScVBTJmVfaMZKR6FfZgM9o_Yu2k03UI_67cwkFZZ28TCUJtMwxl5z2_TBSnimZ6r0iI-Dkev598DQJCCm9YaTqNUkQO7WfvwLX81HnpZPw_D0dvDvf2gQhgItPdLyyA2oZI8dMaHY5GhnBKmhSFcir6zZmCk4y4k2ikVO6L8FBSUGzPCGqmF5Yr6cS-hy5xGBNYYnzbBHo1EgQ0GsDwBp2xaPdujnPQqLXk512oGWQoxg0KvZ9xigR7Q-IjO_DTLz9sA_5nHecYxjm6g69WOFu-WKngTbdn0FrpSYlxubqPjYYl5n2OZGuwdXApJozhz-Bsk-W7w3lDgQwwXCHhRJuzaHDuvntnau1W8gduhNXYWev2QWs_K88s76OhCeH0XddIstdsIWx4NTBhqrVTErKDSMWOY5Fb0jaAm6iJaMzPRValzQNw4TYr7O-5DnpI3CYggqUTQRUHTa16W-vgP_RuQU0MLhbqLD9niJKnWfeLnQyWhznJLmaJCRYb4GdO-VKQvQ9dFT0HKCZTiSEGpT-Qqz5Px50myC6XivMUl9K9En1pELyoil_mf1bJ6X-FZBiW-WpQ7LUpvUHSreRs0rv7nPPm99HzPWgvPb37SNMOgkL-X2mwFND6yB4gVP_q9UmkbvlE2YIKJuIt4S51bjG23pLOvRSV0AeXzYnb_39N6jK56U5G8H08OHqBrISQlFdmYO6izXKzsQ7-rXKpHxfLF6MtF24tfJDyNbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+turnover+of+memory+CD8+T+cell+responses+following+yellow+fever+vaccination&rft.jtitle=PLoS+computational+biology&rft.au=Zarnitsyna%2C+Veronika+I.&rft.au=Akondy%2C+Rama+S.&rft.au=Ahmed%2C+Hasan&rft.au=McGuire%2C+Donald+J.&rft.date=2021-10-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=17&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009468&rft_id=info%3Apmid%2F34648489&rft.externalDocID=PMC8568194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon