Whole-genome sequence analysis of Shiga toxin-producing Escherichia coli O157 strains isolated from wild deer and boar in Japan

The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classifie...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 83; no. 12; pp. 1860 - 1868
Main Authors MORITA, Satoshi, SATO, Shingo, MARUYAMA, Soichi, NAGASAKA, Mariko, MURAKAMI, Kou, INADA, Kazuya, UCHIUMI, Masako, YOKOYAMA, Eiji, ASAKURA, Hiroshi, SUGIYAMA, Hiromu, TAKAI, Shinji, MAEDA, Ken, KABEYA, Hidenori
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2021
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.
AbstractList The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.
The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.
The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA , a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.
ArticleNumber 21-0454
Author UCHIUMI, Masako
MAEDA, Ken
MURAKAMI, Kou
MARUYAMA, Soichi
ASAKURA, Hiroshi
INADA, Kazuya
KABEYA, Hidenori
YOKOYAMA, Eiji
SATO, Shingo
TAKAI, Shinji
MORITA, Satoshi
NAGASAKA, Mariko
SUGIYAMA, Hiromu
Author_xml – sequence: 1
  fullname: MORITA, Satoshi
  organization: Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
– sequence: 2
  fullname: SATO, Shingo
  organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
– sequence: 3
  fullname: MARUYAMA, Soichi
  organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
– sequence: 4
  fullname: NAGASAKA, Mariko
  organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
– sequence: 5
  fullname: MURAKAMI, Kou
  organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
– sequence: 6
  fullname: INADA, Kazuya
  organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
– sequence: 7
  fullname: UCHIUMI, Masako
  organization: Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
– sequence: 8
  fullname: YOKOYAMA, Eiji
  organization: Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba 260-8715, Japan
– sequence: 9
  fullname: ASAKURA, Hiroshi
  organization: Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
– sequence: 10
  fullname: SUGIYAMA, Hiromu
  organization: Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
– sequence: 11
  fullname: TAKAI, Shinji
  organization: Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
– sequence: 12
  fullname: MAEDA, Ken
  organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
– sequence: 13
  fullname: KABEYA, Hidenori
  organization: Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34629335$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9vFCEUx4mpsdvqzbMh8eKhU4EBhrmYNJvWH2nSgxqPhGXe7LBhYIXZak_-6zLZdaNNTAgc3uf7fY_3PUMnIQZA6CUll5S17O3mfsyXjFaEC_4ELWjNm6rhdXuCFqSlsmqYIKfoLOcNIYxy2T5DpzWXrK1rsUC_vg3RQ7WGEEfAGb7vIFjAJhj_kF3GscefB7c2eIo_Xai2KXY768IaX2c7QHJ2cAbb6B2-o6LBeUrGhYxdjt5M0OE-xRH_cL7DHUAqvh1eRZOwC_iT2ZrwHD3tjc_w4vCeo68311-WH6rbu_cfl1e3lZWSTpVqhVLQyp52jVKMN3zVgDREkLqjvZCUCKOkFIZ1nLeNAtIqqla2Vx1w1cn6HL3b-253qxE6C6FM6vU2udGkBx2N0_9Wghv0Ot5r1UjGCSsGbw4GKZYl5UmPLlvw3gSIu6yZUKSstOW0oK8foZu4S2WjhZJE1OWImXr190THUf5kU4CLPWBTzDlBf0Qo0XP0eo5eM6rn6AvOHuHWTWZycf6P8_8TLfeiTZ7MGo4dTJqc9bCHVV2U831QHat2MElDqH8Do1LLDw
CitedBy_id crossref_primary_10_3390_foods12081689
crossref_primary_10_1038_s41467_023_44285_w
crossref_primary_10_12935_jvma_76_e213
crossref_primary_10_1186_s12917_024_04462_5
crossref_primary_10_3390_ijms23147502
Cites_doi 10.1046/j.1365-2958.2003.03911.x
10.3389/fcimb.2016.00129
10.1016/j.vetmic.2009.10.009
10.1051/vetres:2004057
10.1016/j.meegid.2010.10.007
10.1093/dnares/5.1.1
10.1128/genomeA.00300-18
10.1128/jcm.33.1.248-250.1995
10.1128/iai.46.3.740-746.1984
10.1292/jvms.19-0265
10.1128/JCM.03617-13
10.1128/AAC.39.3.577
10.1371/journal.pone.0214620
10.1038/s41467-018-07641-9
10.1016/j.ijfoodmicro.2021.109233
10.1128/JCM.37.2.396-399.1999
10.1371/journal.ppat.1006706
10.3201/eid0805.010373
10.1016/j.ijfoodmicro.2016.04.032
10.1001/jama.277.15.1229
10.1016/j.ijfoodmicro.2008.08.011
10.1016/j.meegid.2012.07.003
10.1046/j.1442-200X.1999.4121041.x
10.1128/AEM.70.11.6846-6854.2004
10.1086/517342
10.1186/1471-2164-8-121
10.1073/pnas.0604891103
10.1080/01652176.2015.1023404
10.1016/j.ijfoodmicro.2020.108589
10.2478/aslh-2018-0003
10.1099/ijs.0.64483-0
10.1292/jvms.21-0005
10.1089/fpd.2013.1548
10.1128/genomeA.01455-16
10.1038/35054089
10.1016/j.micpath.2016.11.022
10.1292/jvms.19-0554
10.1128/AEM.02634-07
10.1016/j.vetmic.2012.12.026
10.1099/jmm.0.05381-0
10.1073/pnas.0710834105
10.1016/j.meegid.2013.05.006
10.1016/j.jpeds.2009.02.051
10.1056/NEJM198303243081203
10.3201/eid1104.040739
10.1073/pnas.87.20.7839
10.1128/JCM.40.10.3613-3619.2002
10.1128/CMR.11.1.142
10.1093/jac/dkw371
10.1128/JCM.01066-15
10.1136/vr.153.3.74
10.1016/j.vetmic.2009.11.016
10.1128/AAC.49.1.281-288.2005
10.7589/0090-3558-40.2.361
10.2460/javma.1999.215.06.792
ContentType Journal Article
Copyright 2021 by the Japanese Society of Veterinary Science
2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Japanese Society of Veterinary Science 2021
Copyright_xml – notice: 2021 by the Japanese Society of Veterinary Science
– notice: 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Japanese Society of Veterinary Science 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.21-0454
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
Public Health
EISSN 1347-7439
EndPage 1868
ExternalDocumentID PMC8762402
34629335
10_1292_jvms_21_0454
article_jvms_83_12_83_21_0454_article_char_en
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c661t-89588e96f1d7882474b7e6a0503d1f56105a8665a2d44978e09818bcf8de48d63
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:20:43 EDT 2025
Fri Jul 11 04:35:52 EDT 2025
Sun Jun 29 15:24:16 EDT 2025
Thu Apr 03 07:00:51 EDT 2025
Tue Jul 01 00:31:09 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Sun Jul 28 05:07:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords boar
deer
game meat
shiga toxin-producing Escherichia coli (STEC)
public health
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-89588e96f1d7882474b7e6a0503d1f56105a8665a2d44978e09818bcf8de48d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.21-0454
PMID 34629335
PQID 2605305351
PQPubID 2028964
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8762402
proquest_miscellaneous_2580933941
proquest_journals_2605305351
pubmed_primary_34629335
crossref_primary_10_1292_jvms_21_0454
crossref_citationtrail_10_1292_jvms_21_0454
jstage_primary_article_jvms_83_12_83_21_0454_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2021
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 7. Cebula, T. A., Payne, W. L. and Feng, P. 1995. Simultaneous identification of strains of Escherichia coli serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J. Clin. Microbiol. 33: 248–250.
23. Holmes, A., Allison, L., Ward, M., Dallman, T. J., Clark, R., Fawkes, A., Murphy, L. and Hanson, M. 2015. Utility of whole-genome sequencing of Escherichia coli O157 for outbreak detection and epidemiological surveillance. J. Clin. Microbiol. 53: 3565–3573.
46. Sargeant, J. M., Hafer, D. J., Gillespie, J. R., Oberst, R. D. and Flood, S. J. 1999. Prevalence of Escherichia coli O157:H7 in white-tailed deer sharing rangeland with cattle. J. Am. Vet. Med. Assoc. 215: 792–794.
59. Zhang, Y., Laing, C., Steele, M., Ziebell, K., Johnson, R., Benson, A. K., Taboada, E. and Gannon, V. P. 2007. Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8: 121.
47. Sasaki, Y., Goshima, T., Mori, T., Murakami, M., Haruna, M., Ito, K. and Yamada, Y. 2013. Prevalence and antimicrobial susceptibility of foodborne bacteria in wild boars (Sus scrofa) and wild deer (Cervus nippon) in Japan. Foodborne Pathog. Dis. 10: 985–991.
30. Karmali, M. A., Petric, M. and Bielaszewska, M. 1999. Evaluation of a microplate latex agglutination method (Verotox-F assay) for detecting and characterizing verotoxins (Shiga toxins) in Escherichia coli. J. Clin. Microbiol. 37: 396–399.
16. González, J., Sanso, A. M., Cadona, J. S. and Bustamante, A. V. 2017. Virulence traits and different nle profiles in cattle and human verotoxin-producing Escherichia coli O157:H7 strains from Argentina. Microb. Pathog. 102: 102–108.
11. Díaz-Sánchez, S., Sánchez, S., Herrera-León, S., Porrero, C., Blanco, J., Dahbi, G., Blanco, J. E., Mora, A., Mateo, R., Hanning, I. and Vidal, D. 2013. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence. Vet. Microbiol. 163: 274–281.
50. Tobe, T., Beatson, S. A., Taniguchi, H., Abe, H., Bailey, C. M., Fivian, A., Younis, R., Matthews, S., Marches, O., Frankel, G., Hayashi, T. and Pallen, M. J. 2006. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl. Acad. Sci. USA 103: 14941–14946.
58. Yokoyama, E., Hirai, S., Hashimoto, R. and Uchimura, M. 2012. Clade analysis of enterohemorrhagic Escherichia coli serotype O157:H7/H- strains and hierarchy of their phylogenetic relationships. Infect. Genet. Evol. 12: 1724–1728.
14. Fukushima, H., Hashizume, T., Morita, Y., Tanaka, J., Azuma, K., Mizumoto, Y., Kaneno, M., Matsuura, M., Konma, K. and Kitani, T. 1999. Clinical experiences in Sakai City Hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr. Int. 41: 213–217.
43. Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J. and Nolan, L. K. 2005. Characterizing the APEC pathotype. Vet. Res. 36: 241–256.
27. Jerse, A. E., Yu, J., Tall, B. D. and Kaper, J. B. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. USA 87: 7839–7843.
2. Ahn, C. K., Russo, A. J., Howell, K. R., Holt, N. J., Sellenriek, P. L., Rothbaum, R. J., Beck, A. M., Luebbering, L. J. and Tarr, P. I. 2009. Deer sausage: a newly identified vehicle of transmission of Escherichia coli O157:H7. J. Pediatr. 155: 587–589.
5. Ateba, C. N. and Bezuidenhout, C. C. 2008. Characterisation of Escherichia coli O157 strains from humans, cattle and pigs in the North-West Province, South Africa. Int. J. Food Microbiol. 128: 181–188.
18. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. and Tiedje, J. M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81–91.
28. Joensen, K. G., Scheutz, F., Lund, O., Hasman, H., Kaas, R. S., Nielsen, E. M. and Aarestrup, F. M. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52: 1501–1510.
31. Keene, W. E., Sazie, E., Kok, J., Rice, D. H., Hancock, D. D., Balan, V. K., Zhao, T. and Doyle, M. P. 1997. An outbreak of Escherichia coli O157:H7 infections traced to jerky made from deer meat. JAMA 277: 1229–1231.
4. Asakura, H., Ikeda, T., Yamamoto, S., Kabeya, H., Sugiyama, H. and Takai, S. 2017. Draft genome sequence of five shiga toxin-producing Escherichia coli strains isolated from wild deer in Japan. Genome Announc. 5: e01455–e16.
13. Dunn, J. R., Keen, J. E., Moreland, D. and Alex, T. 2004. Prevalence of Escherichia coli O157:H7 in white-tailed deer from Louisiana. J. Wildl. Dis. 40: 361–365.
40. Rani, A., Ravindran, V. B., Surapaneni, A., Mantri, N. and Ball, A. S. 2021. Review: trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int. J. Food Microbiol. 349: 109233.
1. Agüero, M. E., Aron, L., DeLuca, A. G., Timmis, K. N. and Cabello, F. C. 1984. A plasmid-encoded outer membrane protein, TraT, enhances resistance of Escherichia coli to phagocytosis. Infect. Immun. 46: 740–746.
15. Gaytán, M. O., Martínez-Santos, V. I., Soto, E. and González-Pedrajo, B. 2016. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 6: 129.
33. Manning, S. D., Motiwala, A. S., Springman, A. C., Qi, W., Lacher, D. W., Ouellette, L. M., Mladonicky, J. M., Somsel, P., Rudrik, J. T., Dietrich, S. E., Zhang, W., Swaminathan, B., Alland, D. and Whittam, T. S. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. USA 105: 4868–4873.
53. Wang, G., Clark, C. G. and Rodgers, F. G. 2002. Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. J. Clin. Microbiol. 40: 3613–3619.
8. Cepeda-Molero, M., Berger, C. N., Walsham, A. D. S., Ellis, S. J., Wemyss-Holden, S., Schüller, S., Frankel, G. and Fernández, L. A. 2017. Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors. PLoS Pathog. 13: e1006706.
25. Janoska, F., Farkas, A., Marosan, M. and Fodor, J. T. 2018. Wild boar (Sus scrofa) home range and habitat use in two Romanian habitats. Acta Silv. Lignaria Hung. 14: 51–63.
34. Nagano, H., Hirochi, T., Fujita, K., Wakamori, Y., Takeshi, K. and Yano, S. 2004. Phenotypic and genotypic characterization of beta-D-glucuronidase-positive Shiga toxin-producing Escherichia coli O157:H7 isolates from deer. J. Med. Microbiol. 53: 1037–1043.
3. Asai, T., Usui, M., Sugiyama, M., Izumi, K., Ikeda, T. and Andoh, M. 2020. Antimicrobial susceptibility of Escherichia coli isolates obtained from wild mammals between 2013 and 2017 in Japan. J. Vet. Med. Sci. 82: 345–349.
12. Douëllou, T., Delannoy, S., Ganet, S., Mariani-Kurkdjian, P., Fach, P., Loukiadis, E., Montel, M. and Thevenot-Sergentet, D. 2016. Shiga toxin-producing Escherichia coli strains isolated from dairy products-Genetic diversity and virulence gene profiles. Int. J. Food Microbiol. 232: 52–62.
22. Hirai, S., Yokoyama, E. and Yamamoto, T. 2013. Linkage disequilibrium of the IS629 insertion among different clades of enterohemorrhagic Escherichia coli O157:H7/H-strains. Infect. Genet. Evol. 18: 94–99.
9. Clinical and Laboratory Standards Institute (CLSI). 2010. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement M100-S20, CLSI, Wayne.
36. Navarro-Gonzalez, N., Porrero, M. C., Mentaberre, G., Serrano, E., Mateos, A., Cabal, A., Domínguez, L. and Lavín, S. 2015. Escherichia coli O157:H7 in wild boars (Sus scrofa) and Iberian ibex (Capra pyrenaica) sharing pastures with free-ranging livestock in a natural environment in Spain. Vet. Q. 35: 102–106.
55. Xiong, L., Korkhin, Y. and Mankin, A. S. 2005. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob. Agents Chemother. 49: 281–288.
29. Johnson, T. J., Wannemuehler, Y. M. and Nolan, L. K. 2008. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 74: 2360–2369.
20. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K., Murata, T., Tanaka, M., Tobe, T., Iida, T., Takami, H., Honda, T., Sasakawa, C., Ogasawara, N., Yasunaga, T., Kuhara, S., Shiba, T., Hattori, M. and Shinagawa, H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 11–22.
24. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. and Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9: 5114.
42. Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., Hebert, R. J., Olcott, E. S., Johnson, L. M., Hargrett, N. T., Blake, P. A. and Cohen, M. L. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308: 681–685.
10. Day, M., Doumith, M., Jenkins, C., Dallman, T. J., Hopkins, K. L., Elson, R., Godbole, G. and Woodford, N. 2017. Antimicrobial resistance in Shiga toxin-producing Escherichia coli serogroups O157 and O26 isolated from human cases of diarrhoeal disease in England, 2015. J. Antimicrob. Chemother. 72: 145–152.
17. González-Escalona, N. and Kase, J. A. 2019. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010–2017. PLoS One 14: e0214620.
32. Makino, K., Ishii, K., Yasunaga, T., Hattori, M., Yokoyama, K., Yutsudo, C. H., Kubota, Y., Ya
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 48. Tamamura-Andoh, Y., Tanaka, N., Sato, K., Mizuno, Y., Arai, N., Watanabe-Yanai, A., Akiba, M. and Kusumoto, M. 2021. A survey of antimicrobial resistance in Escherichia coli isolated from wild sika deer (Cervus nippon) in Japan. J. Vet. Med. Sci. 83: 754–758.
– reference: 6. Browne, A. S., Biggs, P. J., Elliott, A., Jaros, P., French, N. P. and Midwinter, A. C. 2018. Draft whole-genome sequences of three diarrheagenic Escherichia coli strains isolated from farmed deer in New Zealand. Genome Announc. 6: e00300–e00318.
– reference: 43. Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J. and Nolan, L. K. 2005. Characterizing the APEC pathotype. Vet. Res. 36: 241–256.
– reference: 34. Nagano, H., Hirochi, T., Fujita, K., Wakamori, Y., Takeshi, K. and Yano, S. 2004. Phenotypic and genotypic characterization of beta-D-glucuronidase-positive Shiga toxin-producing Escherichia coli O157:H7 isolates from deer. J. Med. Microbiol. 53: 1037–1043.
– reference: 30. Karmali, M. A., Petric, M. and Bielaszewska, M. 1999. Evaluation of a microplate latex agglutination method (Verotox-F assay) for detecting and characterizing verotoxins (Shiga toxins) in Escherichia coli. J. Clin. Microbiol. 37: 396–399.
– reference: 36. Navarro-Gonzalez, N., Porrero, M. C., Mentaberre, G., Serrano, E., Mateos, A., Cabal, A., Domínguez, L. and Lavín, S. 2015. Escherichia coli O157:H7 in wild boars (Sus scrofa) and Iberian ibex (Capra pyrenaica) sharing pastures with free-ranging livestock in a natural environment in Spain. Vet. Q. 35: 102–106.
– reference: 40. Rani, A., Ravindran, V. B., Surapaneni, A., Mantri, N. and Ball, A. S. 2021. Review: trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int. J. Food Microbiol. 349: 109233.
– reference: 19. Gruenheid, S., Sekirov, I., Thomas, N. A., Deng, W., O’Donnell, P., Goode, D., Li, Y., Frey, E. A., Brown, N. F., Metalnikov, P., Pawson, T., Ashman, K. and Finlay, B. B. 2004. Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 51: 1233–1249.
– reference: 52. Wahlström, H., Tysén, E., Olsson Engvall, E., Brändström, B., Eriksson, E., Mörner, T. and Vågsholm, I. 2003. Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Vet. Rec. 153: 74–80.
– reference: 44. Sánchez, S., Martínez, R., García, A., Vidal, D., Blanco, J., Blanco, M., Blanco, J. E., Mora, A., Herrera-León, S., Echeita, A., Alonso, J. M. and Rey, J. 2010. Detection and characterisation of O157:H7 and non-O157 Shiga toxin-producing Escherichia coli in wild boars. Vet. Microbiol. 143: 420–423.
– reference: 57. Yokoyama, E., Hashimoto, R., Etoh, Y., Ichihara, S., Horikawa, K. and Uchimura, M. 2011. Biased distribution of IS629 among strains in different lineages of enterohemorrhagic Escherichia coli serovar O157. Infect. Genet. Evol. 11: 78–82.
– reference: 17. González-Escalona, N. and Kase, J. A. 2019. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010–2017. PLoS One 14: e0214620.
– reference: 23. Holmes, A., Allison, L., Ward, M., Dallman, T. J., Clark, R., Fawkes, A., Murphy, L. and Hanson, M. 2015. Utility of whole-genome sequencing of Escherichia coli O157 for outbreak detection and epidemiological surveillance. J. Clin. Microbiol. 53: 3565–3573.
– reference: 50. Tobe, T., Beatson, S. A., Taniguchi, H., Abe, H., Bailey, C. M., Fivian, A., Younis, R., Matthews, S., Marches, O., Frankel, G., Hayashi, T. and Pallen, M. J. 2006. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl. Acad. Sci. USA 103: 14941–14946.
– reference: 35. Nataro, J. P. and Kaper, J. B. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142–201.
– reference: 15. Gaytán, M. O., Martínez-Santos, V. I., Soto, E. and González-Pedrajo, B. 2016. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 6: 129.
– reference: 14. Fukushima, H., Hashizume, T., Morita, Y., Tanaka, J., Azuma, K., Mizumoto, Y., Kaneno, M., Matsuura, M., Konma, K. and Kitani, T. 1999. Clinical experiences in Sakai City Hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr. Int. 41: 213–217.
– reference: 21. Hedberg, C. W., Savarino, S. J., Besser, J. M., Paulus, C. J., Thelen, V. M., Myers, L. J., Cameron, D. N., Barrett, T. J., Kaper, J. B. and Osterholm, M. T. 1997. An outbreak of foodborne illness caused by Escherichia coli O39:NM, an agent not fitting into the existing scheme for classifying diarrheogenic E. coli. J. Infect. Dis. 176: 1625–1628.
– reference: 28. Joensen, K. G., Scheutz, F., Lund, O., Hasman, H., Kaas, R. S., Nielsen, E. M. and Aarestrup, F. M. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52: 1501–1510.
– reference: 13. Dunn, J. R., Keen, J. E., Moreland, D. and Alex, T. 2004. Prevalence of Escherichia coli O157:H7 in white-tailed deer from Louisiana. J. Wildl. Dis. 40: 361–365.
– reference: 7. Cebula, T. A., Payne, W. L. and Feng, P. 1995. Simultaneous identification of strains of Escherichia coli serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J. Clin. Microbiol. 33: 248–250.
– reference: 16. González, J., Sanso, A. M., Cadona, J. S. and Bustamante, A. V. 2017. Virulence traits and different nle profiles in cattle and human verotoxin-producing Escherichia coli O157:H7 strains from Argentina. Microb. Pathog. 102: 102–108.
– reference: 4. Asakura, H., Ikeda, T., Yamamoto, S., Kabeya, H., Sugiyama, H. and Takai, S. 2017. Draft genome sequence of five shiga toxin-producing Escherichia coli strains isolated from wild deer in Japan. Genome Announc. 5: e01455–e16.
– reference: 3. Asai, T., Usui, M., Sugiyama, M., Izumi, K., Ikeda, T. and Andoh, M. 2020. Antimicrobial susceptibility of Escherichia coli isolates obtained from wild mammals between 2013 and 2017 in Japan. J. Vet. Med. Sci. 82: 345–349.
– reference: 45. Sánchez, S., Martínez, R., Rey, J., García, A., Blanco, J., Blanco, M., Blanco, J. E., Mora, A., Herrera-León, S., Echeita, A. and Alonso, J. M. 2010. Pheno-genotypic characterisation of Escherichia coli O157:H7 isolates from domestic and wild ruminants. Vet. Microbiol. 142: 445–449.
– reference: 56. Yang, Z., Kovar, J., Kim, J., Nietfeldt, J., Smith, D. R., Moxley, R. A., Olson, M. E., Fey, P. D. and Benson, A. K. 2004. Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl. Environ. Microbiol. 70: 6846–6854.
– reference: 46. Sargeant, J. M., Hafer, D. J., Gillespie, J. R., Oberst, R. D. and Flood, S. J. 1999. Prevalence of Escherichia coli O157:H7 in white-tailed deer sharing rangeland with cattle. J. Am. Vet. Med. Assoc. 215: 792–794.
– reference: 41. Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M. and Swerdlow, D. L. 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11: 603–609.
– reference: 54. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39: 577–585.
– reference: 9. Clinical and Laboratory Standards Institute (CLSI). 2010. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement M100-S20, CLSI, Wayne.
– reference: 58. Yokoyama, E., Hirai, S., Hashimoto, R. and Uchimura, M. 2012. Clade analysis of enterohemorrhagic Escherichia coli serotype O157:H7/H- strains and hierarchy of their phylogenetic relationships. Infect. Genet. Evol. 12: 1724–1728.
– reference: 55. Xiong, L., Korkhin, Y. and Mankin, A. S. 2005. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob. Agents Chemother. 49: 281–288.
– reference: 22. Hirai, S., Yokoyama, E. and Yamamoto, T. 2013. Linkage disequilibrium of the IS629 insertion among different clades of enterohemorrhagic Escherichia coli O157:H7/H-strains. Infect. Genet. Evol. 18: 94–99.
– reference: 26. Japan Ministry of Agriculture Fishery and Forest (Ministry of the Environment). 2020. Provision session for Damagae control by animals and birds. https://www.maff.go.jp/j/press/nousin/tyozyu/201223.html (in Japanese) [accessed on August 12, 2021].
– reference: 39. Rabatsky-Ehr, T., Dingman, D., Marcus, R., Howard, R., Kinney, A. and Mshar, P. 2002. Deer meat as the source for a sporadic case of Escherichia coli O157:H7 infection, Connecticut. Emerg. Infect. Dis. 8: 525–527.
– reference: 47. Sasaki, Y., Goshima, T., Mori, T., Murakami, M., Haruna, M., Ito, K. and Yamada, Y. 2013. Prevalence and antimicrobial susceptibility of foodborne bacteria in wild boars (Sus scrofa) and wild deer (Cervus nippon) in Japan. Foodborne Pathog. Dis. 10: 985–991.
– reference: 27. Jerse, A. E., Yu, J., Tall, B. D. and Kaper, J. B. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. USA 87: 7839–7843.
– reference: 29. Johnson, T. J., Wannemuehler, Y. M. and Nolan, L. K. 2008. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 74: 2360–2369.
– reference: 24. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. and Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9: 5114.
– reference: 8. Cepeda-Molero, M., Berger, C. N., Walsham, A. D. S., Ellis, S. J., Wemyss-Holden, S., Schüller, S., Frankel, G. and Fernández, L. A. 2017. Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors. PLoS Pathog. 13: e1006706.
– reference: 32. Makino, K., Ishii, K., Yasunaga, T., Hattori, M., Yokoyama, K., Yutsudo, C. H., Kubota, Y., Yamaichi, Y., Iida, T., Yamamoto, K., Honda, T., Han, C. G., Ohtsubo, E., Kasamatsu, M., Hayashi, T., Kuhara, S. and Shinagawa, H. 1998. Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res. 5: 1–9.
– reference: 38. Perna, N. T., Plunkett, G. 3rd., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., Dimalanta, E. T., Potamousis, K. D., Apodaca, J., Anantharaman, T. S., Lin, J., Yen, G., Schwartz, D. C., Welch, R. A. and Blattner, F. R. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–533.
– reference: 42. Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., Hebert, R. J., Olcott, E. S., Johnson, L. M., Hargrett, N. T., Blake, P. A. and Cohen, M. L. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308: 681–685.
– reference: 51. Tomino, Y., Andoh, M., Horiuchi, Y., Shin, J., Ai, R., Nakamura, T., Toda, M., Yonemitsu, K., Takano, A., Shimoda, H., Maeda, K., Kodera, Y., Oshima, I., Takayama, K., Inadome, T., Shioya, K., Fukazawa, M., Ishihara, K. and Chuma, T. 2020. Surveillance of Shiga toxin-producing Escherichia coli and Campylobacter spp. in wild Japanese deer (Cervus nippon) and boar (Sus scrofa). J. Vet. Med. Sci. 82: 1287–1294.
– reference: 49. Thierry, S. I. L., Gannon, J. E., Jaufeerally-Fakim, Y. and Santchurn, S. J. 2020. Shiga-toxigenic Escherichia coli from animal food sources in Mauritius: Prevalence, serogroup diversity and virulence profiles. Int. J. Food Microbiol. 324: 108589.
– reference: 31. Keene, W. E., Sazie, E., Kok, J., Rice, D. H., Hancock, D. D., Balan, V. K., Zhao, T. and Doyle, M. P. 1997. An outbreak of Escherichia coli O157:H7 infections traced to jerky made from deer meat. JAMA 277: 1229–1231.
– reference: 59. Zhang, Y., Laing, C., Steele, M., Ziebell, K., Johnson, R., Benson, A. K., Taboada, E. and Gannon, V. P. 2007. Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8: 121.
– reference: 18. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. and Tiedje, J. M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81–91.
– reference: 2. Ahn, C. K., Russo, A. J., Howell, K. R., Holt, N. J., Sellenriek, P. L., Rothbaum, R. J., Beck, A. M., Luebbering, L. J. and Tarr, P. I. 2009. Deer sausage: a newly identified vehicle of transmission of Escherichia coli O157:H7. J. Pediatr. 155: 587–589.
– reference: 1. Agüero, M. E., Aron, L., DeLuca, A. G., Timmis, K. N. and Cabello, F. C. 1984. A plasmid-encoded outer membrane protein, TraT, enhances resistance of Escherichia coli to phagocytosis. Infect. Immun. 46: 740–746.
– reference: 33. Manning, S. D., Motiwala, A. S., Springman, A. C., Qi, W., Lacher, D. W., Ouellette, L. M., Mladonicky, J. M., Somsel, P., Rudrik, J. T., Dietrich, S. E., Zhang, W., Swaminathan, B., Alland, D. and Whittam, T. S. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. USA 105: 4868–4873.
– reference: 20. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K., Murata, T., Tanaka, M., Tobe, T., Iida, T., Takami, H., Honda, T., Sasakawa, C., Ogasawara, N., Yasunaga, T., Kuhara, S., Shiba, T., Hattori, M. and Shinagawa, H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 11–22.
– reference: 10. Day, M., Doumith, M., Jenkins, C., Dallman, T. J., Hopkins, K. L., Elson, R., Godbole, G. and Woodford, N. 2017. Antimicrobial resistance in Shiga toxin-producing Escherichia coli serogroups O157 and O26 isolated from human cases of diarrhoeal disease in England, 2015. J. Antimicrob. Chemother. 72: 145–152.
– reference: 37. National Veterinary Assay Laboratory (NVAL). 2009. A report on the Japanese Veterinary Antimicrobial Resistance Monitoring System, 2000 to 2007. http://www.maff.go.jp/nval/tyosa_kenkyu/taiseiki/pdf/jvarm2000_2007_final_201005.pdf#search=’JVARM 2009 report’ [accessed June 29, 2012].
– reference: 11. Díaz-Sánchez, S., Sánchez, S., Herrera-León, S., Porrero, C., Blanco, J., Dahbi, G., Blanco, J. E., Mora, A., Mateo, R., Hanning, I. and Vidal, D. 2013. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence. Vet. Microbiol. 163: 274–281.
– reference: 53. Wang, G., Clark, C. G. and Rodgers, F. G. 2002. Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. J. Clin. Microbiol. 40: 3613–3619.
– reference: 5. Ateba, C. N. and Bezuidenhout, C. C. 2008. Characterisation of Escherichia coli O157 strains from humans, cattle and pigs in the North-West Province, South Africa. Int. J. Food Microbiol. 128: 181–188.
– reference: 25. Janoska, F., Farkas, A., Marosan, M. and Fodor, J. T. 2018. Wild boar (Sus scrofa) home range and habitat use in two Romanian habitats. Acta Silv. Lignaria Hung. 14: 51–63.
– reference: 12. Douëllou, T., Delannoy, S., Ganet, S., Mariani-Kurkdjian, P., Fach, P., Loukiadis, E., Montel, M. and Thevenot-Sergentet, D. 2016. Shiga toxin-producing Escherichia coli strains isolated from dairy products-Genetic diversity and virulence gene profiles. Int. J. Food Microbiol. 232: 52–62.
– ident: 19
  doi: 10.1046/j.1365-2958.2003.03911.x
– ident: 15
  doi: 10.3389/fcimb.2016.00129
– ident: 45
  doi: 10.1016/j.vetmic.2009.10.009
– ident: 43
  doi: 10.1051/vetres:2004057
– ident: 57
  doi: 10.1016/j.meegid.2010.10.007
– ident: 32
  doi: 10.1093/dnares/5.1.1
– ident: 6
  doi: 10.1128/genomeA.00300-18
– ident: 7
  doi: 10.1128/jcm.33.1.248-250.1995
– ident: 1
  doi: 10.1128/iai.46.3.740-746.1984
– ident: 51
  doi: 10.1292/jvms.19-0265
– ident: 28
  doi: 10.1128/JCM.03617-13
– ident: 9
– ident: 54
  doi: 10.1128/AAC.39.3.577
– ident: 17
  doi: 10.1371/journal.pone.0214620
– ident: 24
  doi: 10.1038/s41467-018-07641-9
– ident: 26
– ident: 40
  doi: 10.1016/j.ijfoodmicro.2021.109233
– ident: 30
  doi: 10.1128/JCM.37.2.396-399.1999
– ident: 8
  doi: 10.1371/journal.ppat.1006706
– ident: 39
  doi: 10.3201/eid0805.010373
– ident: 12
  doi: 10.1016/j.ijfoodmicro.2016.04.032
– ident: 31
  doi: 10.1001/jama.277.15.1229
– ident: 5
  doi: 10.1016/j.ijfoodmicro.2008.08.011
– ident: 58
  doi: 10.1016/j.meegid.2012.07.003
– ident: 14
  doi: 10.1046/j.1442-200X.1999.4121041.x
– ident: 56
  doi: 10.1128/AEM.70.11.6846-6854.2004
– ident: 21
  doi: 10.1086/517342
– ident: 59
  doi: 10.1186/1471-2164-8-121
– ident: 50
  doi: 10.1073/pnas.0604891103
– ident: 36
  doi: 10.1080/01652176.2015.1023404
– ident: 49
  doi: 10.1016/j.ijfoodmicro.2020.108589
– ident: 25
  doi: 10.2478/aslh-2018-0003
– ident: 18
  doi: 10.1099/ijs.0.64483-0
– ident: 48
  doi: 10.1292/jvms.21-0005
– ident: 37
– ident: 47
  doi: 10.1089/fpd.2013.1548
– ident: 4
  doi: 10.1128/genomeA.01455-16
– ident: 38
  doi: 10.1038/35054089
– ident: 16
  doi: 10.1016/j.micpath.2016.11.022
– ident: 3
  doi: 10.1292/jvms.19-0554
– ident: 29
  doi: 10.1128/AEM.02634-07
– ident: 20
– ident: 11
  doi: 10.1016/j.vetmic.2012.12.026
– ident: 34
  doi: 10.1099/jmm.0.05381-0
– ident: 33
  doi: 10.1073/pnas.0710834105
– ident: 22
  doi: 10.1016/j.meegid.2013.05.006
– ident: 2
  doi: 10.1016/j.jpeds.2009.02.051
– ident: 42
  doi: 10.1056/NEJM198303243081203
– ident: 41
  doi: 10.3201/eid1104.040739
– ident: 27
  doi: 10.1073/pnas.87.20.7839
– ident: 53
  doi: 10.1128/JCM.40.10.3613-3619.2002
– ident: 35
  doi: 10.1128/CMR.11.1.142
– ident: 10
  doi: 10.1093/jac/dkw371
– ident: 23
  doi: 10.1128/JCM.01066-15
– ident: 52
  doi: 10.1136/vr.153.3.74
– ident: 44
  doi: 10.1016/j.vetmic.2009.11.016
– ident: 55
  doi: 10.1128/AAC.49.1.281-288.2005
– ident: 13
  doi: 10.7589/0090-3558-40.2.361
– ident: 46
  doi: 10.2460/javma.1999.215.06.792
SSID ssj0021469
Score 2.272661
Snippet The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were...
The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1860
SubjectTerms Animals
Animals, Wild
boar
Cattle
Cattle Diseases
Deer
Drug resistance
E coli
Escherichia coli
Escherichia coli Infections - epidemiology
Escherichia coli Infections - veterinary
Escherichia coli Proteins - genetics
Food processing
game meat
Gel electrophoresis
Genomes
Hygiene
Japan - epidemiology
Macrolide antibiotics
Meat
Membrane Transport Proteins
Nucleotide sequence
Pathogenicity
Public Health
Pulsed-field gel electrophoresis
Sequence analysis
Sequence Analysis - veterinary
Shiga toxin
shiga toxin-producing Escherichia coli (STEC)
Shiga-Toxigenic Escherichia coli - genetics
Sus scrofa
Swine
Swine Diseases - epidemiology
Title Whole-genome sequence analysis of Shiga toxin-producing Escherichia coli O157 strains isolated from wild deer and boar in Japan
URI https://www.jstage.jst.go.jp/article/jvms/83/12/83_21-0454/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/34629335
https://www.proquest.com/docview/2605305351
https://www.proquest.com/docview/2580933941
https://pubmed.ncbi.nlm.nih.gov/PMC8762402
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2021, Vol.83(12), pp.1860-1868
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PT9VAEJ4gGsPFKP6qAhkTPZni23bbbhOMIQaCmKcHfcqt2Xa3UAItvj4MnvjXndn-UAhcetlp03Zm-810Z78P4LUJRVzoPPSVSrUvi0D7uZXCL1SchxNbCuuax6df4r2Z3D-IDpZgUBvtX2B7Y2nHelKz-cnmxa8_H2jCv3fcCGnw7vj3absZUFUsI3kH7hImJaxlMJXjegKrV6d92_v1M1bgfihjQj2n-PYPm-4dU3p2aG_KPK83UP6HSLsP4UGfSuJ25_tHsGTrVVj9wf0tbpMtTvt188dw-ZNlcH0mZD21OLRPo-4ZSbAp8dtRdahx0VxUtX_maGAJ1HCnZadW3BCNFDIVfhVRgq0TlmixosClXNUgb1JByroNGmvndF2DeaPnWNW4T2hcP4HZ7s73j3t-L73gFwTYC1-lkVI2jUthqEYOZCLzxMaayWOMKDnnijQz5enASNaos5OUkD8vSmWsVCYOn8Jy3dT2OWBcKMHMTkymJm2UaPqsTVKKB5WkpognHrwdXnpW9Lzk_BQnGdcn5K2MvZUFImNvefBmtD7r-Dhusdvq_Dda9TOxs1IhncLH3nwc5b1u9MHwYG3wejbEZMalX8h8OMKDV-MwTUdeY9G1bc7JJlL8jyiVZPOsC5LxDoYw8yC5Ej6jAVN9Xx2pqyNH-c2YRZX-i1uv-RJWAu62cT-H1mB5MT-365QuLfINKhQ-fd5w8-EvT-0Wtg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-genome+sequence+analysis+of+Shiga+toxin-producing+Escherichia+coli+O157+strains+isolated+from+wild+deer+and+boar+in+Japan&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Morita%2C+Satoshi&rft.au=Sato%2C+Shingo&rft.au=Maruyama%2C+Soichi&rft.au=Nagasaka%2C+Mariko&rft.date=2021&rft.eissn=1347-7439&rft.volume=83&rft.issue=12&rft.spage=1860&rft_id=info:doi/10.1292%2Fjvms.21-0454&rft_id=info%3Apmid%2F34629335&rft.externalDocID=34629335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon