Whole-genome sequence analysis of Shiga toxin-producing Escherichia coli O157 strains isolated from wild deer and boar in Japan
The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classifie...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 83; no. 12; pp. 1860 - 1868 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2021
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption. |
---|---|
AbstractList | The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption. The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption. The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into five and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA , a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption. |
ArticleNumber | 21-0454 |
Author | UCHIUMI, Masako MAEDA, Ken MURAKAMI, Kou MARUYAMA, Soichi ASAKURA, Hiroshi INADA, Kazuya KABEYA, Hidenori YOKOYAMA, Eiji SATO, Shingo TAKAI, Shinji MORITA, Satoshi NAGASAKA, Mariko SUGIYAMA, Hiromu |
Author_xml | – sequence: 1 fullname: MORITA, Satoshi organization: Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan – sequence: 2 fullname: SATO, Shingo organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan – sequence: 3 fullname: MARUYAMA, Soichi organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan – sequence: 4 fullname: NAGASAKA, Mariko organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan – sequence: 5 fullname: MURAKAMI, Kou organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan – sequence: 6 fullname: INADA, Kazuya organization: Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan – sequence: 7 fullname: UCHIUMI, Masako organization: Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan – sequence: 8 fullname: YOKOYAMA, Eiji organization: Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba 260-8715, Japan – sequence: 9 fullname: ASAKURA, Hiroshi organization: Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan – sequence: 10 fullname: SUGIYAMA, Hiromu organization: Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan – sequence: 11 fullname: TAKAI, Shinji organization: Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan – sequence: 12 fullname: MAEDA, Ken organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan – sequence: 13 fullname: KABEYA, Hidenori organization: Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34629335$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9vFCEUx4mpsdvqzbMh8eKhU4EBhrmYNJvWH2nSgxqPhGXe7LBhYIXZak_-6zLZdaNNTAgc3uf7fY_3PUMnIQZA6CUll5S17O3mfsyXjFaEC_4ELWjNm6rhdXuCFqSlsmqYIKfoLOcNIYxy2T5DpzWXrK1rsUC_vg3RQ7WGEEfAGb7vIFjAJhj_kF3GscefB7c2eIo_Xai2KXY768IaX2c7QHJ2cAbb6B2-o6LBeUrGhYxdjt5M0OE-xRH_cL7DHUAqvh1eRZOwC_iT2ZrwHD3tjc_w4vCeo68311-WH6rbu_cfl1e3lZWSTpVqhVLQyp52jVKMN3zVgDREkLqjvZCUCKOkFIZ1nLeNAtIqqla2Vx1w1cn6HL3b-253qxE6C6FM6vU2udGkBx2N0_9Wghv0Ot5r1UjGCSsGbw4GKZYl5UmPLlvw3gSIu6yZUKSstOW0oK8foZu4S2WjhZJE1OWImXr190THUf5kU4CLPWBTzDlBf0Qo0XP0eo5eM6rn6AvOHuHWTWZycf6P8_8TLfeiTZ7MGo4dTJqc9bCHVV2U831QHat2MElDqH8Do1LLDw |
CitedBy_id | crossref_primary_10_3390_foods12081689 crossref_primary_10_1038_s41467_023_44285_w crossref_primary_10_12935_jvma_76_e213 crossref_primary_10_1186_s12917_024_04462_5 crossref_primary_10_3390_ijms23147502 |
Cites_doi | 10.1046/j.1365-2958.2003.03911.x 10.3389/fcimb.2016.00129 10.1016/j.vetmic.2009.10.009 10.1051/vetres:2004057 10.1016/j.meegid.2010.10.007 10.1093/dnares/5.1.1 10.1128/genomeA.00300-18 10.1128/jcm.33.1.248-250.1995 10.1128/iai.46.3.740-746.1984 10.1292/jvms.19-0265 10.1128/JCM.03617-13 10.1128/AAC.39.3.577 10.1371/journal.pone.0214620 10.1038/s41467-018-07641-9 10.1016/j.ijfoodmicro.2021.109233 10.1128/JCM.37.2.396-399.1999 10.1371/journal.ppat.1006706 10.3201/eid0805.010373 10.1016/j.ijfoodmicro.2016.04.032 10.1001/jama.277.15.1229 10.1016/j.ijfoodmicro.2008.08.011 10.1016/j.meegid.2012.07.003 10.1046/j.1442-200X.1999.4121041.x 10.1128/AEM.70.11.6846-6854.2004 10.1086/517342 10.1186/1471-2164-8-121 10.1073/pnas.0604891103 10.1080/01652176.2015.1023404 10.1016/j.ijfoodmicro.2020.108589 10.2478/aslh-2018-0003 10.1099/ijs.0.64483-0 10.1292/jvms.21-0005 10.1089/fpd.2013.1548 10.1128/genomeA.01455-16 10.1038/35054089 10.1016/j.micpath.2016.11.022 10.1292/jvms.19-0554 10.1128/AEM.02634-07 10.1016/j.vetmic.2012.12.026 10.1099/jmm.0.05381-0 10.1073/pnas.0710834105 10.1016/j.meegid.2013.05.006 10.1016/j.jpeds.2009.02.051 10.1056/NEJM198303243081203 10.3201/eid1104.040739 10.1073/pnas.87.20.7839 10.1128/JCM.40.10.3613-3619.2002 10.1128/CMR.11.1.142 10.1093/jac/dkw371 10.1128/JCM.01066-15 10.1136/vr.153.3.74 10.1016/j.vetmic.2009.11.016 10.1128/AAC.49.1.281-288.2005 10.7589/0090-3558-40.2.361 10.2460/javma.1999.215.06.792 |
ContentType | Journal Article |
Copyright | 2021 by the Japanese Society of Veterinary Science 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Japanese Society of Veterinary Science 2021 |
Copyright_xml | – notice: 2021 by the Japanese Society of Veterinary Science – notice: 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Japanese Society of Veterinary Science 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.21-0454 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Public Health |
EISSN | 1347-7439 |
EndPage | 1868 |
ExternalDocumentID | PMC8762402 34629335 10_1292_jvms_21_0454 article_jvms_83_12_83_21_0454_article_char_en |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c661t-89588e96f1d7882474b7e6a0503d1f56105a8665a2d44978e09818bcf8de48d63 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 18:20:43 EDT 2025 Fri Jul 11 04:35:52 EDT 2025 Sun Jun 29 15:24:16 EDT 2025 Thu Apr 03 07:00:51 EDT 2025 Tue Jul 01 00:31:09 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Sun Jul 28 05:07:44 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | boar deer game meat shiga toxin-producing Escherichia coli (STEC) public health |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-89588e96f1d7882474b7e6a0503d1f56105a8665a2d44978e09818bcf8de48d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.21-0454 |
PMID | 34629335 |
PQID | 2605305351 |
PQPubID | 2028964 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8762402 proquest_miscellaneous_2580933941 proquest_journals_2605305351 pubmed_primary_34629335 crossref_primary_10_1292_jvms_21_0454 crossref_citationtrail_10_1292_jvms_21_0454 jstage_primary_article_jvms_83_12_83_21_0454_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2021 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 7. Cebula, T. A., Payne, W. L. and Feng, P. 1995. Simultaneous identification of strains of Escherichia coli serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J. Clin. Microbiol. 33: 248–250. 23. Holmes, A., Allison, L., Ward, M., Dallman, T. J., Clark, R., Fawkes, A., Murphy, L. and Hanson, M. 2015. Utility of whole-genome sequencing of Escherichia coli O157 for outbreak detection and epidemiological surveillance. J. Clin. Microbiol. 53: 3565–3573. 46. Sargeant, J. M., Hafer, D. J., Gillespie, J. R., Oberst, R. D. and Flood, S. J. 1999. Prevalence of Escherichia coli O157:H7 in white-tailed deer sharing rangeland with cattle. J. Am. Vet. Med. Assoc. 215: 792–794. 59. Zhang, Y., Laing, C., Steele, M., Ziebell, K., Johnson, R., Benson, A. K., Taboada, E. and Gannon, V. P. 2007. Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8: 121. 47. Sasaki, Y., Goshima, T., Mori, T., Murakami, M., Haruna, M., Ito, K. and Yamada, Y. 2013. Prevalence and antimicrobial susceptibility of foodborne bacteria in wild boars (Sus scrofa) and wild deer (Cervus nippon) in Japan. Foodborne Pathog. Dis. 10: 985–991. 30. Karmali, M. A., Petric, M. and Bielaszewska, M. 1999. Evaluation of a microplate latex agglutination method (Verotox-F assay) for detecting and characterizing verotoxins (Shiga toxins) in Escherichia coli. J. Clin. Microbiol. 37: 396–399. 16. González, J., Sanso, A. M., Cadona, J. S. and Bustamante, A. V. 2017. Virulence traits and different nle profiles in cattle and human verotoxin-producing Escherichia coli O157:H7 strains from Argentina. Microb. Pathog. 102: 102–108. 11. Díaz-Sánchez, S., Sánchez, S., Herrera-León, S., Porrero, C., Blanco, J., Dahbi, G., Blanco, J. E., Mora, A., Mateo, R., Hanning, I. and Vidal, D. 2013. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence. Vet. Microbiol. 163: 274–281. 50. Tobe, T., Beatson, S. A., Taniguchi, H., Abe, H., Bailey, C. M., Fivian, A., Younis, R., Matthews, S., Marches, O., Frankel, G., Hayashi, T. and Pallen, M. J. 2006. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl. Acad. Sci. USA 103: 14941–14946. 58. Yokoyama, E., Hirai, S., Hashimoto, R. and Uchimura, M. 2012. Clade analysis of enterohemorrhagic Escherichia coli serotype O157:H7/H- strains and hierarchy of their phylogenetic relationships. Infect. Genet. Evol. 12: 1724–1728. 14. Fukushima, H., Hashizume, T., Morita, Y., Tanaka, J., Azuma, K., Mizumoto, Y., Kaneno, M., Matsuura, M., Konma, K. and Kitani, T. 1999. Clinical experiences in Sakai City Hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr. Int. 41: 213–217. 43. Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J. and Nolan, L. K. 2005. Characterizing the APEC pathotype. Vet. Res. 36: 241–256. 27. Jerse, A. E., Yu, J., Tall, B. D. and Kaper, J. B. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. USA 87: 7839–7843. 2. Ahn, C. K., Russo, A. J., Howell, K. R., Holt, N. J., Sellenriek, P. L., Rothbaum, R. J., Beck, A. M., Luebbering, L. J. and Tarr, P. I. 2009. Deer sausage: a newly identified vehicle of transmission of Escherichia coli O157:H7. J. Pediatr. 155: 587–589. 5. Ateba, C. N. and Bezuidenhout, C. C. 2008. Characterisation of Escherichia coli O157 strains from humans, cattle and pigs in the North-West Province, South Africa. Int. J. Food Microbiol. 128: 181–188. 18. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. and Tiedje, J. M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81–91. 28. Joensen, K. G., Scheutz, F., Lund, O., Hasman, H., Kaas, R. S., Nielsen, E. M. and Aarestrup, F. M. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52: 1501–1510. 31. Keene, W. E., Sazie, E., Kok, J., Rice, D. H., Hancock, D. D., Balan, V. K., Zhao, T. and Doyle, M. P. 1997. An outbreak of Escherichia coli O157:H7 infections traced to jerky made from deer meat. JAMA 277: 1229–1231. 4. Asakura, H., Ikeda, T., Yamamoto, S., Kabeya, H., Sugiyama, H. and Takai, S. 2017. Draft genome sequence of five shiga toxin-producing Escherichia coli strains isolated from wild deer in Japan. Genome Announc. 5: e01455–e16. 13. Dunn, J. R., Keen, J. E., Moreland, D. and Alex, T. 2004. Prevalence of Escherichia coli O157:H7 in white-tailed deer from Louisiana. J. Wildl. Dis. 40: 361–365. 40. Rani, A., Ravindran, V. B., Surapaneni, A., Mantri, N. and Ball, A. S. 2021. Review: trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int. J. Food Microbiol. 349: 109233. 1. Agüero, M. E., Aron, L., DeLuca, A. G., Timmis, K. N. and Cabello, F. C. 1984. A plasmid-encoded outer membrane protein, TraT, enhances resistance of Escherichia coli to phagocytosis. Infect. Immun. 46: 740–746. 15. Gaytán, M. O., Martínez-Santos, V. I., Soto, E. and González-Pedrajo, B. 2016. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 6: 129. 33. Manning, S. D., Motiwala, A. S., Springman, A. C., Qi, W., Lacher, D. W., Ouellette, L. M., Mladonicky, J. M., Somsel, P., Rudrik, J. T., Dietrich, S. E., Zhang, W., Swaminathan, B., Alland, D. and Whittam, T. S. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. USA 105: 4868–4873. 53. Wang, G., Clark, C. G. and Rodgers, F. G. 2002. Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. J. Clin. Microbiol. 40: 3613–3619. 8. Cepeda-Molero, M., Berger, C. N., Walsham, A. D. S., Ellis, S. J., Wemyss-Holden, S., Schüller, S., Frankel, G. and Fernández, L. A. 2017. Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors. PLoS Pathog. 13: e1006706. 25. Janoska, F., Farkas, A., Marosan, M. and Fodor, J. T. 2018. Wild boar (Sus scrofa) home range and habitat use in two Romanian habitats. Acta Silv. Lignaria Hung. 14: 51–63. 34. Nagano, H., Hirochi, T., Fujita, K., Wakamori, Y., Takeshi, K. and Yano, S. 2004. Phenotypic and genotypic characterization of beta-D-glucuronidase-positive Shiga toxin-producing Escherichia coli O157:H7 isolates from deer. J. Med. Microbiol. 53: 1037–1043. 3. Asai, T., Usui, M., Sugiyama, M., Izumi, K., Ikeda, T. and Andoh, M. 2020. Antimicrobial susceptibility of Escherichia coli isolates obtained from wild mammals between 2013 and 2017 in Japan. J. Vet. Med. Sci. 82: 345–349. 12. Douëllou, T., Delannoy, S., Ganet, S., Mariani-Kurkdjian, P., Fach, P., Loukiadis, E., Montel, M. and Thevenot-Sergentet, D. 2016. Shiga toxin-producing Escherichia coli strains isolated from dairy products-Genetic diversity and virulence gene profiles. Int. J. Food Microbiol. 232: 52–62. 22. Hirai, S., Yokoyama, E. and Yamamoto, T. 2013. Linkage disequilibrium of the IS629 insertion among different clades of enterohemorrhagic Escherichia coli O157:H7/H-strains. Infect. Genet. Evol. 18: 94–99. 9. Clinical and Laboratory Standards Institute (CLSI). 2010. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement M100-S20, CLSI, Wayne. 36. Navarro-Gonzalez, N., Porrero, M. C., Mentaberre, G., Serrano, E., Mateos, A., Cabal, A., Domínguez, L. and Lavín, S. 2015. Escherichia coli O157:H7 in wild boars (Sus scrofa) and Iberian ibex (Capra pyrenaica) sharing pastures with free-ranging livestock in a natural environment in Spain. Vet. Q. 35: 102–106. 55. Xiong, L., Korkhin, Y. and Mankin, A. S. 2005. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob. Agents Chemother. 49: 281–288. 29. Johnson, T. J., Wannemuehler, Y. M. and Nolan, L. K. 2008. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 74: 2360–2369. 20. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K., Murata, T., Tanaka, M., Tobe, T., Iida, T., Takami, H., Honda, T., Sasakawa, C., Ogasawara, N., Yasunaga, T., Kuhara, S., Shiba, T., Hattori, M. and Shinagawa, H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 11–22. 24. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. and Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9: 5114. 42. Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., Hebert, R. J., Olcott, E. S., Johnson, L. M., Hargrett, N. T., Blake, P. A. and Cohen, M. L. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308: 681–685. 10. Day, M., Doumith, M., Jenkins, C., Dallman, T. J., Hopkins, K. L., Elson, R., Godbole, G. and Woodford, N. 2017. Antimicrobial resistance in Shiga toxin-producing Escherichia coli serogroups O157 and O26 isolated from human cases of diarrhoeal disease in England, 2015. J. Antimicrob. Chemother. 72: 145–152. 17. González-Escalona, N. and Kase, J. A. 2019. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010–2017. PLoS One 14: e0214620. 32. Makino, K., Ishii, K., Yasunaga, T., Hattori, M., Yokoyama, K., Yutsudo, C. H., Kubota, Y., Ya 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 48. Tamamura-Andoh, Y., Tanaka, N., Sato, K., Mizuno, Y., Arai, N., Watanabe-Yanai, A., Akiba, M. and Kusumoto, M. 2021. A survey of antimicrobial resistance in Escherichia coli isolated from wild sika deer (Cervus nippon) in Japan. J. Vet. Med. Sci. 83: 754–758. – reference: 6. Browne, A. S., Biggs, P. J., Elliott, A., Jaros, P., French, N. P. and Midwinter, A. C. 2018. Draft whole-genome sequences of three diarrheagenic Escherichia coli strains isolated from farmed deer in New Zealand. Genome Announc. 6: e00300–e00318. – reference: 43. Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J. and Nolan, L. K. 2005. Characterizing the APEC pathotype. Vet. Res. 36: 241–256. – reference: 34. Nagano, H., Hirochi, T., Fujita, K., Wakamori, Y., Takeshi, K. and Yano, S. 2004. Phenotypic and genotypic characterization of beta-D-glucuronidase-positive Shiga toxin-producing Escherichia coli O157:H7 isolates from deer. J. Med. Microbiol. 53: 1037–1043. – reference: 30. Karmali, M. A., Petric, M. and Bielaszewska, M. 1999. Evaluation of a microplate latex agglutination method (Verotox-F assay) for detecting and characterizing verotoxins (Shiga toxins) in Escherichia coli. J. Clin. Microbiol. 37: 396–399. – reference: 36. Navarro-Gonzalez, N., Porrero, M. C., Mentaberre, G., Serrano, E., Mateos, A., Cabal, A., Domínguez, L. and Lavín, S. 2015. Escherichia coli O157:H7 in wild boars (Sus scrofa) and Iberian ibex (Capra pyrenaica) sharing pastures with free-ranging livestock in a natural environment in Spain. Vet. Q. 35: 102–106. – reference: 40. Rani, A., Ravindran, V. B., Surapaneni, A., Mantri, N. and Ball, A. S. 2021. Review: trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int. J. Food Microbiol. 349: 109233. – reference: 19. Gruenheid, S., Sekirov, I., Thomas, N. A., Deng, W., O’Donnell, P., Goode, D., Li, Y., Frey, E. A., Brown, N. F., Metalnikov, P., Pawson, T., Ashman, K. and Finlay, B. B. 2004. Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 51: 1233–1249. – reference: 52. Wahlström, H., Tysén, E., Olsson Engvall, E., Brändström, B., Eriksson, E., Mörner, T. and Vågsholm, I. 2003. Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Vet. Rec. 153: 74–80. – reference: 44. Sánchez, S., Martínez, R., García, A., Vidal, D., Blanco, J., Blanco, M., Blanco, J. E., Mora, A., Herrera-León, S., Echeita, A., Alonso, J. M. and Rey, J. 2010. Detection and characterisation of O157:H7 and non-O157 Shiga toxin-producing Escherichia coli in wild boars. Vet. Microbiol. 143: 420–423. – reference: 57. Yokoyama, E., Hashimoto, R., Etoh, Y., Ichihara, S., Horikawa, K. and Uchimura, M. 2011. Biased distribution of IS629 among strains in different lineages of enterohemorrhagic Escherichia coli serovar O157. Infect. Genet. Evol. 11: 78–82. – reference: 17. González-Escalona, N. and Kase, J. A. 2019. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010–2017. PLoS One 14: e0214620. – reference: 23. Holmes, A., Allison, L., Ward, M., Dallman, T. J., Clark, R., Fawkes, A., Murphy, L. and Hanson, M. 2015. Utility of whole-genome sequencing of Escherichia coli O157 for outbreak detection and epidemiological surveillance. J. Clin. Microbiol. 53: 3565–3573. – reference: 50. Tobe, T., Beatson, S. A., Taniguchi, H., Abe, H., Bailey, C. M., Fivian, A., Younis, R., Matthews, S., Marches, O., Frankel, G., Hayashi, T. and Pallen, M. J. 2006. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl. Acad. Sci. USA 103: 14941–14946. – reference: 35. Nataro, J. P. and Kaper, J. B. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142–201. – reference: 15. Gaytán, M. O., Martínez-Santos, V. I., Soto, E. and González-Pedrajo, B. 2016. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 6: 129. – reference: 14. Fukushima, H., Hashizume, T., Morita, Y., Tanaka, J., Azuma, K., Mizumoto, Y., Kaneno, M., Matsuura, M., Konma, K. and Kitani, T. 1999. Clinical experiences in Sakai City Hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr. Int. 41: 213–217. – reference: 21. Hedberg, C. W., Savarino, S. J., Besser, J. M., Paulus, C. J., Thelen, V. M., Myers, L. J., Cameron, D. N., Barrett, T. J., Kaper, J. B. and Osterholm, M. T. 1997. An outbreak of foodborne illness caused by Escherichia coli O39:NM, an agent not fitting into the existing scheme for classifying diarrheogenic E. coli. J. Infect. Dis. 176: 1625–1628. – reference: 28. Joensen, K. G., Scheutz, F., Lund, O., Hasman, H., Kaas, R. S., Nielsen, E. M. and Aarestrup, F. M. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52: 1501–1510. – reference: 13. Dunn, J. R., Keen, J. E., Moreland, D. and Alex, T. 2004. Prevalence of Escherichia coli O157:H7 in white-tailed deer from Louisiana. J. Wildl. Dis. 40: 361–365. – reference: 7. Cebula, T. A., Payne, W. L. and Feng, P. 1995. Simultaneous identification of strains of Escherichia coli serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J. Clin. Microbiol. 33: 248–250. – reference: 16. González, J., Sanso, A. M., Cadona, J. S. and Bustamante, A. V. 2017. Virulence traits and different nle profiles in cattle and human verotoxin-producing Escherichia coli O157:H7 strains from Argentina. Microb. Pathog. 102: 102–108. – reference: 4. Asakura, H., Ikeda, T., Yamamoto, S., Kabeya, H., Sugiyama, H. and Takai, S. 2017. Draft genome sequence of five shiga toxin-producing Escherichia coli strains isolated from wild deer in Japan. Genome Announc. 5: e01455–e16. – reference: 3. Asai, T., Usui, M., Sugiyama, M., Izumi, K., Ikeda, T. and Andoh, M. 2020. Antimicrobial susceptibility of Escherichia coli isolates obtained from wild mammals between 2013 and 2017 in Japan. J. Vet. Med. Sci. 82: 345–349. – reference: 45. Sánchez, S., Martínez, R., Rey, J., García, A., Blanco, J., Blanco, M., Blanco, J. E., Mora, A., Herrera-León, S., Echeita, A. and Alonso, J. M. 2010. Pheno-genotypic characterisation of Escherichia coli O157:H7 isolates from domestic and wild ruminants. Vet. Microbiol. 142: 445–449. – reference: 56. Yang, Z., Kovar, J., Kim, J., Nietfeldt, J., Smith, D. R., Moxley, R. A., Olson, M. E., Fey, P. D. and Benson, A. K. 2004. Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl. Environ. Microbiol. 70: 6846–6854. – reference: 46. Sargeant, J. M., Hafer, D. J., Gillespie, J. R., Oberst, R. D. and Flood, S. J. 1999. Prevalence of Escherichia coli O157:H7 in white-tailed deer sharing rangeland with cattle. J. Am. Vet. Med. Assoc. 215: 792–794. – reference: 41. Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M. and Swerdlow, D. L. 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11: 603–609. – reference: 54. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39: 577–585. – reference: 9. Clinical and Laboratory Standards Institute (CLSI). 2010. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement M100-S20, CLSI, Wayne. – reference: 58. Yokoyama, E., Hirai, S., Hashimoto, R. and Uchimura, M. 2012. Clade analysis of enterohemorrhagic Escherichia coli serotype O157:H7/H- strains and hierarchy of their phylogenetic relationships. Infect. Genet. Evol. 12: 1724–1728. – reference: 55. Xiong, L., Korkhin, Y. and Mankin, A. S. 2005. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob. Agents Chemother. 49: 281–288. – reference: 22. Hirai, S., Yokoyama, E. and Yamamoto, T. 2013. Linkage disequilibrium of the IS629 insertion among different clades of enterohemorrhagic Escherichia coli O157:H7/H-strains. Infect. Genet. Evol. 18: 94–99. – reference: 26. Japan Ministry of Agriculture Fishery and Forest (Ministry of the Environment). 2020. Provision session for Damagae control by animals and birds. https://www.maff.go.jp/j/press/nousin/tyozyu/201223.html (in Japanese) [accessed on August 12, 2021]. – reference: 39. Rabatsky-Ehr, T., Dingman, D., Marcus, R., Howard, R., Kinney, A. and Mshar, P. 2002. Deer meat as the source for a sporadic case of Escherichia coli O157:H7 infection, Connecticut. Emerg. Infect. Dis. 8: 525–527. – reference: 47. Sasaki, Y., Goshima, T., Mori, T., Murakami, M., Haruna, M., Ito, K. and Yamada, Y. 2013. Prevalence and antimicrobial susceptibility of foodborne bacteria in wild boars (Sus scrofa) and wild deer (Cervus nippon) in Japan. Foodborne Pathog. Dis. 10: 985–991. – reference: 27. Jerse, A. E., Yu, J., Tall, B. D. and Kaper, J. B. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. USA 87: 7839–7843. – reference: 29. Johnson, T. J., Wannemuehler, Y. M. and Nolan, L. K. 2008. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 74: 2360–2369. – reference: 24. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. and Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9: 5114. – reference: 8. Cepeda-Molero, M., Berger, C. N., Walsham, A. D. S., Ellis, S. J., Wemyss-Holden, S., Schüller, S., Frankel, G. and Fernández, L. A. 2017. Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors. PLoS Pathog. 13: e1006706. – reference: 32. Makino, K., Ishii, K., Yasunaga, T., Hattori, M., Yokoyama, K., Yutsudo, C. H., Kubota, Y., Yamaichi, Y., Iida, T., Yamamoto, K., Honda, T., Han, C. G., Ohtsubo, E., Kasamatsu, M., Hayashi, T., Kuhara, S. and Shinagawa, H. 1998. Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res. 5: 1–9. – reference: 38. Perna, N. T., Plunkett, G. 3rd., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W., Lim, A., Dimalanta, E. T., Potamousis, K. D., Apodaca, J., Anantharaman, T. S., Lin, J., Yen, G., Schwartz, D. C., Welch, R. A. and Blattner, F. R. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–533. – reference: 42. Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., Hebert, R. J., Olcott, E. S., Johnson, L. M., Hargrett, N. T., Blake, P. A. and Cohen, M. L. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308: 681–685. – reference: 51. Tomino, Y., Andoh, M., Horiuchi, Y., Shin, J., Ai, R., Nakamura, T., Toda, M., Yonemitsu, K., Takano, A., Shimoda, H., Maeda, K., Kodera, Y., Oshima, I., Takayama, K., Inadome, T., Shioya, K., Fukazawa, M., Ishihara, K. and Chuma, T. 2020. Surveillance of Shiga toxin-producing Escherichia coli and Campylobacter spp. in wild Japanese deer (Cervus nippon) and boar (Sus scrofa). J. Vet. Med. Sci. 82: 1287–1294. – reference: 49. Thierry, S. I. L., Gannon, J. E., Jaufeerally-Fakim, Y. and Santchurn, S. J. 2020. Shiga-toxigenic Escherichia coli from animal food sources in Mauritius: Prevalence, serogroup diversity and virulence profiles. Int. J. Food Microbiol. 324: 108589. – reference: 31. Keene, W. E., Sazie, E., Kok, J., Rice, D. H., Hancock, D. D., Balan, V. K., Zhao, T. and Doyle, M. P. 1997. An outbreak of Escherichia coli O157:H7 infections traced to jerky made from deer meat. JAMA 277: 1229–1231. – reference: 59. Zhang, Y., Laing, C., Steele, M., Ziebell, K., Johnson, R., Benson, A. K., Taboada, E. and Gannon, V. P. 2007. Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8: 121. – reference: 18. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. and Tiedje, J. M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81–91. – reference: 2. Ahn, C. K., Russo, A. J., Howell, K. R., Holt, N. J., Sellenriek, P. L., Rothbaum, R. J., Beck, A. M., Luebbering, L. J. and Tarr, P. I. 2009. Deer sausage: a newly identified vehicle of transmission of Escherichia coli O157:H7. J. Pediatr. 155: 587–589. – reference: 1. Agüero, M. E., Aron, L., DeLuca, A. G., Timmis, K. N. and Cabello, F. C. 1984. A plasmid-encoded outer membrane protein, TraT, enhances resistance of Escherichia coli to phagocytosis. Infect. Immun. 46: 740–746. – reference: 33. Manning, S. D., Motiwala, A. S., Springman, A. C., Qi, W., Lacher, D. W., Ouellette, L. M., Mladonicky, J. M., Somsel, P., Rudrik, J. T., Dietrich, S. E., Zhang, W., Swaminathan, B., Alland, D. and Whittam, T. S. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. USA 105: 4868–4873. – reference: 20. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K., Murata, T., Tanaka, M., Tobe, T., Iida, T., Takami, H., Honda, T., Sasakawa, C., Ogasawara, N., Yasunaga, T., Kuhara, S., Shiba, T., Hattori, M. and Shinagawa, H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 11–22. – reference: 10. Day, M., Doumith, M., Jenkins, C., Dallman, T. J., Hopkins, K. L., Elson, R., Godbole, G. and Woodford, N. 2017. Antimicrobial resistance in Shiga toxin-producing Escherichia coli serogroups O157 and O26 isolated from human cases of diarrhoeal disease in England, 2015. J. Antimicrob. Chemother. 72: 145–152. – reference: 37. National Veterinary Assay Laboratory (NVAL). 2009. A report on the Japanese Veterinary Antimicrobial Resistance Monitoring System, 2000 to 2007. http://www.maff.go.jp/nval/tyosa_kenkyu/taiseiki/pdf/jvarm2000_2007_final_201005.pdf#search=’JVARM 2009 report’ [accessed June 29, 2012]. – reference: 11. Díaz-Sánchez, S., Sánchez, S., Herrera-León, S., Porrero, C., Blanco, J., Dahbi, G., Blanco, J. E., Mora, A., Mateo, R., Hanning, I. and Vidal, D. 2013. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence. Vet. Microbiol. 163: 274–281. – reference: 53. Wang, G., Clark, C. G. and Rodgers, F. G. 2002. Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. J. Clin. Microbiol. 40: 3613–3619. – reference: 5. Ateba, C. N. and Bezuidenhout, C. C. 2008. Characterisation of Escherichia coli O157 strains from humans, cattle and pigs in the North-West Province, South Africa. Int. J. Food Microbiol. 128: 181–188. – reference: 25. Janoska, F., Farkas, A., Marosan, M. and Fodor, J. T. 2018. Wild boar (Sus scrofa) home range and habitat use in two Romanian habitats. Acta Silv. Lignaria Hung. 14: 51–63. – reference: 12. Douëllou, T., Delannoy, S., Ganet, S., Mariani-Kurkdjian, P., Fach, P., Loukiadis, E., Montel, M. and Thevenot-Sergentet, D. 2016. Shiga toxin-producing Escherichia coli strains isolated from dairy products-Genetic diversity and virulence gene profiles. Int. J. Food Microbiol. 232: 52–62. – ident: 19 doi: 10.1046/j.1365-2958.2003.03911.x – ident: 15 doi: 10.3389/fcimb.2016.00129 – ident: 45 doi: 10.1016/j.vetmic.2009.10.009 – ident: 43 doi: 10.1051/vetres:2004057 – ident: 57 doi: 10.1016/j.meegid.2010.10.007 – ident: 32 doi: 10.1093/dnares/5.1.1 – ident: 6 doi: 10.1128/genomeA.00300-18 – ident: 7 doi: 10.1128/jcm.33.1.248-250.1995 – ident: 1 doi: 10.1128/iai.46.3.740-746.1984 – ident: 51 doi: 10.1292/jvms.19-0265 – ident: 28 doi: 10.1128/JCM.03617-13 – ident: 9 – ident: 54 doi: 10.1128/AAC.39.3.577 – ident: 17 doi: 10.1371/journal.pone.0214620 – ident: 24 doi: 10.1038/s41467-018-07641-9 – ident: 26 – ident: 40 doi: 10.1016/j.ijfoodmicro.2021.109233 – ident: 30 doi: 10.1128/JCM.37.2.396-399.1999 – ident: 8 doi: 10.1371/journal.ppat.1006706 – ident: 39 doi: 10.3201/eid0805.010373 – ident: 12 doi: 10.1016/j.ijfoodmicro.2016.04.032 – ident: 31 doi: 10.1001/jama.277.15.1229 – ident: 5 doi: 10.1016/j.ijfoodmicro.2008.08.011 – ident: 58 doi: 10.1016/j.meegid.2012.07.003 – ident: 14 doi: 10.1046/j.1442-200X.1999.4121041.x – ident: 56 doi: 10.1128/AEM.70.11.6846-6854.2004 – ident: 21 doi: 10.1086/517342 – ident: 59 doi: 10.1186/1471-2164-8-121 – ident: 50 doi: 10.1073/pnas.0604891103 – ident: 36 doi: 10.1080/01652176.2015.1023404 – ident: 49 doi: 10.1016/j.ijfoodmicro.2020.108589 – ident: 25 doi: 10.2478/aslh-2018-0003 – ident: 18 doi: 10.1099/ijs.0.64483-0 – ident: 48 doi: 10.1292/jvms.21-0005 – ident: 37 – ident: 47 doi: 10.1089/fpd.2013.1548 – ident: 4 doi: 10.1128/genomeA.01455-16 – ident: 38 doi: 10.1038/35054089 – ident: 16 doi: 10.1016/j.micpath.2016.11.022 – ident: 3 doi: 10.1292/jvms.19-0554 – ident: 29 doi: 10.1128/AEM.02634-07 – ident: 20 – ident: 11 doi: 10.1016/j.vetmic.2012.12.026 – ident: 34 doi: 10.1099/jmm.0.05381-0 – ident: 33 doi: 10.1073/pnas.0710834105 – ident: 22 doi: 10.1016/j.meegid.2013.05.006 – ident: 2 doi: 10.1016/j.jpeds.2009.02.051 – ident: 42 doi: 10.1056/NEJM198303243081203 – ident: 41 doi: 10.3201/eid1104.040739 – ident: 27 doi: 10.1073/pnas.87.20.7839 – ident: 53 doi: 10.1128/JCM.40.10.3613-3619.2002 – ident: 35 doi: 10.1128/CMR.11.1.142 – ident: 10 doi: 10.1093/jac/dkw371 – ident: 23 doi: 10.1128/JCM.01066-15 – ident: 52 doi: 10.1136/vr.153.3.74 – ident: 44 doi: 10.1016/j.vetmic.2009.11.016 – ident: 55 doi: 10.1128/AAC.49.1.281-288.2005 – ident: 13 doi: 10.7589/0090-3558-40.2.361 – ident: 46 doi: 10.2460/javma.1999.215.06.792 |
SSID | ssj0021469 |
Score | 2.272661 |
Snippet | The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were... The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1860 |
SubjectTerms | Animals Animals, Wild boar Cattle Cattle Diseases Deer Drug resistance E coli Escherichia coli Escherichia coli Infections - epidemiology Escherichia coli Infections - veterinary Escherichia coli Proteins - genetics Food processing game meat Gel electrophoresis Genomes Hygiene Japan - epidemiology Macrolide antibiotics Meat Membrane Transport Proteins Nucleotide sequence Pathogenicity Public Health Pulsed-field gel electrophoresis Sequence analysis Sequence Analysis - veterinary Shiga toxin shiga toxin-producing Escherichia coli (STEC) Shiga-Toxigenic Escherichia coli - genetics Sus scrofa Swine Swine Diseases - epidemiology |
Title | Whole-genome sequence analysis of Shiga toxin-producing Escherichia coli O157 strains isolated from wild deer and boar in Japan |
URI | https://www.jstage.jst.go.jp/article/jvms/83/12/83_21-0454/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/34629335 https://www.proquest.com/docview/2605305351 https://www.proquest.com/docview/2580933941 https://pubmed.ncbi.nlm.nih.gov/PMC8762402 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2021, Vol.83(12), pp.1860-1868 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PT9VAEJ4gGsPFKP6qAhkTPZni23bbbhOMIQaCmKcHfcqt2Xa3UAItvj4MnvjXndn-UAhcetlp03Zm-810Z78P4LUJRVzoPPSVSrUvi0D7uZXCL1SchxNbCuuax6df4r2Z3D-IDpZgUBvtX2B7Y2nHelKz-cnmxa8_H2jCv3fcCGnw7vj3absZUFUsI3kH7hImJaxlMJXjegKrV6d92_v1M1bgfihjQj2n-PYPm-4dU3p2aG_KPK83UP6HSLsP4UGfSuJ25_tHsGTrVVj9wf0tbpMtTvt188dw-ZNlcH0mZD21OLRPo-4ZSbAp8dtRdahx0VxUtX_maGAJ1HCnZadW3BCNFDIVfhVRgq0TlmixosClXNUgb1JByroNGmvndF2DeaPnWNW4T2hcP4HZ7s73j3t-L73gFwTYC1-lkVI2jUthqEYOZCLzxMaayWOMKDnnijQz5enASNaos5OUkD8vSmWsVCYOn8Jy3dT2OWBcKMHMTkymJm2UaPqsTVKKB5WkpognHrwdXnpW9Lzk_BQnGdcn5K2MvZUFImNvefBmtD7r-Dhusdvq_Dda9TOxs1IhncLH3nwc5b1u9MHwYG3wejbEZMalX8h8OMKDV-MwTUdeY9G1bc7JJlL8jyiVZPOsC5LxDoYw8yC5Ej6jAVN9Xx2pqyNH-c2YRZX-i1uv-RJWAu62cT-H1mB5MT-365QuLfINKhQ-fd5w8-EvT-0Wtg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-genome+sequence+analysis+of+Shiga+toxin-producing+Escherichia+coli+O157+strains+isolated+from+wild+deer+and+boar+in+Japan&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Morita%2C+Satoshi&rft.au=Sato%2C+Shingo&rft.au=Maruyama%2C+Soichi&rft.au=Nagasaka%2C+Mariko&rft.date=2021&rft.eissn=1347-7439&rft.volume=83&rft.issue=12&rft.spage=1860&rft_id=info:doi/10.1292%2Fjvms.21-0454&rft_id=info%3Apmid%2F34629335&rft.externalDocID=34629335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |