Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari
Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in...
Saved in:
Published in | Breeding Science Vol. 68; no. 2; pp. 210 - 218 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Society of Breeding
01.03.2018
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven (qGL11, qGWh5, qGWh10, qGWt6-2, qGWt10-2, qDTH3, and qDTH6) that were detected in F2 and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that qGWt10-2 was only detected in early-flowering RILs, while qGWt5 (in the same region as qGWh5) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice. |
---|---|
AbstractList | Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven (
qGL11
,
qGWh5
,
qGWh10
,
qGWt6-2
,
qGWt10-2
,
qDTH3
, and
qDTH6
) that were detected in F
2
and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that
qGWt10-2
was only detected in early-flowering RILs, while
qGWt5
(in the same region as
qGWh5
) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice. Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven ( , , , , , , and ) that were detected in F and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that was only detected in early-flowering RILs, while (in the same region as ) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice. Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven (qGL11, qGWh5, qGWh10, qGWt6-2, qGWt10-2, qDTH3, and qDTH6) that were detected in F2 and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that qGWt10-2 was only detected in early-flowering RILs, while qGWt5 (in the same region as qGWh5) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice. |
Author | Yamasaki, Masanori Yokoyama, Wakana Onogi, Akio Suehiro, Miki Okada, Satoshi Iijima, Ken Hori, Kiyosumi Iwata, Hiroyoshi |
AuthorAffiliation | 2 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Yayoi, Bunkyo-Ku, Tokyo 113-8657 , Japan 3 Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba, Ibaraki 305-8518 , Japan 1 Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University , Kasai, Hyogo 675-2103 , Japan |
AuthorAffiliation_xml | – name: 2 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Yayoi, Bunkyo-Ku, Tokyo 113-8657 , Japan – name: 1 Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University , Kasai, Hyogo 675-2103 , Japan – name: 3 Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba, Ibaraki 305-8518 , Japan |
Author_xml | – sequence: 1 fullname: Okada, Satoshi organization: Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University – sequence: 2 fullname: Onogi, Akio organization: Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo – sequence: 3 fullname: Iijima, Ken organization: Institute of Crop Science, National Agriculture and Food Research Organization – sequence: 4 fullname: Hori, Kiyosumi organization: Institute of Crop Science, National Agriculture and Food Research Organization – sequence: 5 fullname: Iwata, Hiroyoshi organization: Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo – sequence: 6 fullname: Yokoyama, Wakana organization: Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University – sequence: 7 fullname: Suehiro, Miki organization: Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University – sequence: 8 fullname: Yamasaki, Masanori organization: Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29875604$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkkuLFDEQgBtZcR968i4BL4LMmqQ7SeciLIuriwMirAdPoTpd3ZPZ7mRNugf0J-2vNPNwUC9JSH18VZXUeXHig8eieMnoJeOKvlunpkmXTDHGnxRnrKzUolSlONmdq4WSjJ4W5ymtKeWCVuJZccp1rYSk1VnxeNuin1znLEwueBI68vVumUgXIonOIukjOE-S-4VkTs73BIgPGxxIwmlL21UMY0hhhO1VP2YbSXOTJjfNO-PgPCbSYnQbbEmXafIdRmjBu7Ry945k_bTKidDj5CxpwN73Mcy-3eo_hwxlDKJ7XjztYEj44rBfFN9uPtxdf1osv3y8vb5aLqyUbFrUUpRWC2StBqaxbiR0knJaIaXItWgFoxyU7riUoqnq1ioo60op0J1mAOVF8X7vfZibEVubO4owmIfoRog_TQBn_o14tzJ92Biha87qOgveHAQx_JgxTWZ0yeIwgMcwJ8OpYFJorVlGX_-HrsMcfW4vU5Xiuqpkmam3e8rGkFLE7lgMo2Y7A2Y3A2Y3A5l-9Xf9R_bPp2fgag-s0wQ9HgGI-f0HPMhkbfh22UmPMbuCaNCXvwHlXMr2 |
CitedBy_id | crossref_primary_10_1007_s00122_020_03578_0 crossref_primary_10_1186_s12284_018_0246_x crossref_primary_10_1270_jsbbs_18166 crossref_primary_10_1016_j_molp_2023_09_002 crossref_primary_10_32604_phyton_2022_018707 crossref_primary_10_1080_10715762_2023_2215914 crossref_primary_10_6013_jbrewsocjapan_114_190 crossref_primary_10_3389_fpls_2018_01685 crossref_primary_10_1016_j_plantsci_2020_110715 crossref_primary_10_1007_s10681_024_03310_9 crossref_primary_10_1186_s12284_023_00621_8 crossref_primary_10_3390_genes13050735 crossref_primary_10_7717_peerj_6966 crossref_primary_10_1038_s41598_020_76949_8 crossref_primary_10_1007_s11032_022_01284_x crossref_primary_10_6090_jarq_55_307 crossref_primary_10_1007_s11032_020_01166_0 |
Cites_doi | 10.1186/1471-2164-11-267 10.1270/jsbbs.55.65 10.1626/jcs.28.46 10.1073/pnas.1421127112 10.1007/BF02712670 10.1186/1471-2156-11-16 10.1038/ng.2327 10.1038/ng.169 10.1093/pcp/pcs028 10.1146/annurev-genet-120213-092138 10.1023/A:1009683603862 10.5334/jors.80 10.1007/s00122-004-1668-y 10.1139/g96-045 10.1016/j.tplants.2012.11.001 10.1270/jsbbs.64.273 10.1270/jsbbs.52.309 10.1270/jsbbs.60.305 10.1038/cr.2008.307 10.1038/ng.977 10.1093/genetics/138.3.963 10.1007/s00122-006-0218-1 10.1104/pp.106.077081 10.1270/jsbbs.63.468 10.1007/s10681-012-0822-x 10.1038/ng2014 10.1038/ng.2612 10.1007/s00122-010-1445-z 10.1093/genetics/136.4.1457 10.1534/genetics.109.103002 10.1038/srep11254 10.1007/s00122-008-0722-6 10.1270/jsbbs.63.49 10.1007/s00122-017-2977-2 10.1186/s12863-016-0409-y 10.1073/pnas.111136798 10.1111/tpj.12268 10.1016/j.jcs.2014.02.011 10.1270/jsbbs.60.648 10.1270/jsbbs.65.308 10.1007/BF00223452 10.1007/s00122-010-1406-6 10.1186/1471-2105-12-186 10.1270/jsbbs.65.120 |
ContentType | Journal Article |
Copyright | 2018 by JAPANESE SOCIETY OF BREEDING Copyright Japan Science and Technology Agency 2018 Copyright © 2018 by JAPANESE SOCIETY OF BREEDING 2018 |
Copyright_xml | – notice: 2018 by JAPANESE SOCIETY OF BREEDING – notice: Copyright Japan Science and Technology Agency 2018 – notice: Copyright © 2018 by JAPANESE SOCIETY OF BREEDING 2018 |
DBID | NPM AAYXX CITATION 7QO 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1270/jsbbs.17112 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1347-3735 |
EndPage | 218 |
ExternalDocumentID | 10_1270_jsbbs_17112 29875604 article_jsbbs_68_2_68_17112_article_char_en |
Genre | Journal Article |
GroupedDBID | 23N 2WC 5GY A8Z ABDBF ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBD EBS ECGQY EJD ESTFP ESX EYRJQ GX1 HYE JSF JSH KQ8 M48 M~E N5S OK1 QF4 QN7 RJT RNS RPM RYR RZJ TKC TR2 XSB NPM AAYXX CITATION 7QO 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c661t-8653c95e1d9a19e8b6af60204e00e295d5102a79f2665b48dc7a38477a9f91aa3 |
IEDL.DBID | RPM |
ISSN | 1344-7610 |
IngestDate | Tue Apr 09 21:54:07 EDT 2024 Fri Aug 16 09:28:05 EDT 2024 Thu Oct 10 21:22:54 EDT 2024 Fri Aug 23 02:50:26 EDT 2024 Wed Oct 16 00:58:36 EDT 2024 Sun Jul 28 05:07:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | QTL QTL-by-environment interaction grain size brewing-rice cultivar CSSLs |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-8653c95e1d9a19e8b6af60204e00e295d5102a79f2665b48dc7a38477a9f91aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Communicated by Motoyuki Ashikari |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982188/ |
PMID | 29875604 |
PQID | 2047294463 |
PQPubID | 1966357 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982188 proquest_miscellaneous_2051659991 proquest_journals_2047294463 crossref_primary_10_1270_jsbbs_17112 pubmed_primary_29875604 jstage_primary_article_jsbbs_68_2_68_17112_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Breeding Science |
PublicationTitleAlternate | Breeding Science |
PublicationYear | 2018 |
Publisher | Japanese Society of Breeding Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society of Breeding – name: Japan Science and Technology Agency |
References | Horigane, K.A., K. Suzuki and M. Yoshida (2014) Moisture distribution in rice grains used for sake brewing analyzed by magnetic resonance imaging. J. Cereal Sci. 60: 193–201. Lu, B., C. Yang, K. Xie, L. Zhang, T. Wu, L. Li, X. Liu, L. Jiang and J. Wan (2013) Quantitative trait loci for grain-quality traits across a rice F2 population and backcross inbred lines. Euphytica 192: 25–35. Yoshida, S., M. Ikegami, J. Kuze, K. Sawada, Z. Hashimoto, T. Ishii, C. Nakamura and O. Kamijima (2002) QTL analysis for plant and grain characters of Sake-brewing rice using a doubled haploid population. Breed. Sci. 52: 309–317. Dellaporta, S.L., J. Wood and J.B. Hicks (1983) A plant DNA minipreparation version II. Plant Mol. Biol. Rep. 1: 19–21. Moreau, L., A. Charcosset and A. Gallais (2004) Use of trial clustering to study QTL × environment effects for grain yield and related traits in maize. Theor. Appl. Genet. 110: 92–105. Hori, K., E. Ogiso-Tanaka, K. Matsubara, U. Yamanouchi, K. Ebana and M. Yano (2013) Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J. 76: 36–46. Wang, S., C.J. Basten and Z.B. Zeng (2012b) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NC. Weng, J., S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo et al. (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18: 1199–1209. Zeng, Z.B. (1994) Precision mapping of quantitative trait loci. Genetics 136: 1457–1468. Huang, N., A. Parco, T. Mew, G. Magpantay, S. McCouch, E. Guiderdoni, J. Xu, P. Subudhi, E.R. Angeles and G.S. Khush (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol. Breed. 3: 105–113. Howell, P.M., D.J. Lydiate and D.F. Marshall (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39: 348–358. Huang, R., L. Jiang, J. Zheng, T. Wang, H. Wang, Y. Huang and Z. Hong (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends in Plant Sci. 18: 218–226. Song, X.J., T. Kuroha, M. Ayano, T. Furuta, K. Nagai, N. Komeda, S. Segami, K. Miura, D. Ogawa, T. Kamura et al. (2015) Rare allele of a previously unidentified histone H4 acetyltrainsferase enhances grain weight, yield, and plant biomass in rice. Proc. Natl. Acad. Sci. USA 112: 76–81. Nagata, K., T. Ando, Y. Nonoue, T. Mizubayashi, N. Kitazawa, A. Shomura, K. Matsubara, N. Ono, R. Mizobuchi, T. Shibaya et al. (2015) Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica × indica cross. Breed. Sci. 65: 308–318. Takahashi, Y., A. Shomura, T. Sasaki and M. Yano (2001) Hd6, a rice quantitative trait locus involved photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 98: 7922–7927. Nagasaki, H., K. Ebana, T. Shibaya, J. Yonemaru and M. Yano (2010) Core single-nucleotide polymorphisms—a tool for genetic analysis of the Japanese rice population. Breed. Sci. 60: 648–655. Matsubara, K., E. Ogiso-Tanaka, K. Hori, K. Ebana, T. Ando and M. Yano (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol. 53: 709–716. Ebitani, T., Y. Takeuchi, Y. Nonoue, T. Yamamoto, K. Takeuchi and M. Yano (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed. Sci. 55: 65–73. Li, J.X., S.B. Yu, C.G. Xu, Y.F. Tan, Y.J. Gao, X.H. Li and Q. Zhang (2000) Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor. Appl. Genet. 101: 248–254. Yamasaki, M. and O. Ideta (2013) Population structure in Japanese rice population. Breed. Sci. 63: 49–57. Ishimaru, K., N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B. Shimizu, A. Onishi et al. (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45: 707–711. Aramaki, K., K. Ogawa, K. Yamamoto, J. Suzuki, M. Kanno, Y. Kizaki and N. Okazaki (1995) Polishing properties of white-core and non-white-core grains fractionated from the same variety of rice. Seibutsu-kogaku 73: 381–386. Furuta, T., K. Uehara, R.B. Angeles-Shim, J. Shim, M. Ashikari and T. Takashi (2014) Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breed. Sci. 63: 468–475. Lu, C., L. Shen, Z. Tan, Y. Xu, P. He, Y. Chen and L. Zhu (1996) Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 93: 1211–1217. Morinaka, Y., T. Sakamoto, Y. Inukai, M. Agetsuma, H. Kitano, M. Ashikari and M. Matsuoka (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol. 141: 924–931. Dang, X., T.G.T. Thi, W.M. Edzesi, L. Liang, Q. Liu, E. Liu, Y. Wang, S. Qiang, L. Liu and D. Hong (2015) Population genetic structure of Oryza sativa in east and southeast Asia and the discovery of elite alleles for grain traits. Sci. Rep. 5: 11254. Takano-Kai, N., H. Jiang, T. Kubo, M. Sweeney, T. Matsumoto, H. Kanamori, B. Padhukasahasram, C. Bustamante, A. Yoshimura, K. Doi et al. (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182: 1323–1334. Aluko, G., C. Martinez, J. Tohme, C. Castano, C. Bergman and J.H. Oard (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor. Appl. Genet. 109: 630–639. Bian, J.M., L. Jiang, L.L. Liu, X.J. Wei, Y.H. Xiao, L.J. Zhang, Z.G. Zhao, H.Q. Zhai and J.M. Wan (2010) Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs. Breed. Sci. 60: 305–313. Ando, T., T. Yamamoto, T. Shimizu, X.F. Ma, A. Shomura, Y. Takeuchi, S.Y. Lin and M. Yano (2008) Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor. Appl. Genet. 116: 881–890. Shomura, A., T. Izawa, K. Ebana, T. Ebitani, H. Kanegae, S. Konishi and M. Yano (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40: 1023–1028. Churchill, G.A. and R.W. Doerge (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971. McCouch, S.R., Y.G. Cho, M. Yano, E. Paul, M. Blinstrub, H. Morishima and T. Kinoshita (1997) Report on QTL nomenclature. Rice Genet. Newsl. 14: 11–13. Murata, K., Y. Iyama, T. Yamaguchi, H. Ozaki, Y. Kidani and T. Ebitani (2014) Identification of a novel gene (Apq1) from the indica rice cultivar ‘Habataki’ that improves the quality of grains produced under high temperature stress. Breed. Sci. 64: 273–281. Onogi, A. and H. Iwata (2016) VIGoR: Variational bayesian inference for genome-wide regression. Journal of Open Research Software 4: e11. Nelson, J.C., A.M. McClung, R.G. Fjellstrom, K.A.K. Moldenhauer, E. Boza, F. Jodari, J.H. Oard, S. Linscombe, B.E. Scheffler and K.M. Yeater (2011) Mapping QTL main and interaction influences on milling quality in elite US rice germplasm. Theor. Appl. Genet. 122: 291–309. Habier, D., R.L. Fernando, K. Kizilkaya and D.J. Garrick (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12: 186. Zhen, W., C. Jun-yu, Z. Yu-jun, F. Ye-yang and Z. Jie-yun (2017) Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.). J. Integr. Agric. 16: 16–26. Yanagiuchi, T., H. Yamamoto, N. Miyazaki, T. Nagano, T. Mizuma and Y. Wakai (1997) Influence of grain type on suitability of rice for sake brewing. Seibutsu-kogaku 75: 169–176. Song, X.J., W. Huang, M. Shi, M.Z. Zhu and H.X. Lin (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39: 623–630. Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li and Q. Zhang (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112: 1164–1171. Wang, S., K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Qian et al. (2012a) Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44: 950–954. Zheng, B.S., J.L. Gouis, M. Leflon, W.Y. Rong, A. Laperche and M. Brancourt-Hulmel (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor. Appl. Genet. 121: 1501–1517. Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li, J. Xiao et al. (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43: 1266–1269. Bai, X., L. Luo, W. Yan, M.R. Kovi, W. Zhan and Y. Xing (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet. 11: 16. Zuo, J. and J. Li (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48: 99–118. Nagato, K. and M. Ebata (1959) Studies on white-core rice kernel II. On the physical properties of the kernel. Jpn. J. Crop Sci. 28: 46–50. Zheng, J., Y. Zhang and C. Wang (2015) Molecular functions of genes related to grain shape in rice. Breed. Sci. 65: 120–126. R Core Team (2015) R: A language and environment for statistical com 28887658 - Theor Appl Genet. 2017 Dec;130(12 ):2567-2585 23583977 - Nat Genet. 2013 Jun;45(6):707-11 16714407 - Plant Physiol. 2006 Jul;141(3):924-31 27388211 - BMC Genet. 2016 Jul 07;17 (1):103 25914581 - Breed Sci. 2014 Dec;64(4):273-81 25149369 - Annu Rev Genet. 2014;48:99-118 8013918 - Genetics. 1994 Apr;136(4):1457-68 26366113 - Breed Sci. 2015 Sep;65(4):308-18 18604208 - Nat Genet. 2008 Aug;40(8):1023-8 23789941 - Plant J. 2013 Oct;76(1):36-46 20423466 - BMC Genomics. 2010 Apr 27;11:267 20857082 - Theor Appl Genet. 2011 Feb;122(2):291-309 22729225 - Nat Genet. 2012 Jun 24;44(8):950-4 18469898 - Genome. 1996 Apr;39(2):348-58 18274726 - Theor Appl Genet. 2008 Apr;116(6):881-90 15105992 - Theor Appl Genet. 2004 Aug;109(3):630-9 17417637 - Nat Genet. 2007 May;39(5):623-30 20697687 - Theor Appl Genet. 2010 Nov;121(8):1501-17 19506305 - Genetics. 2009 Aug;182(4):1323-34 19015668 - Cell Res. 2008 Dec;18(12):1199-209 22019783 - Nat Genet. 2011 Oct 23;43(12):1266-9 24162532 - Theor Appl Genet. 1996 Dec;93(8):1211-7 23641181 - Breed Sci. 2013 Mar;63(1):49-57 16453132 - Theor Appl Genet. 2006 Apr;112(6):1164-71 11416158 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7922-7 7851788 - Genetics. 1994 Nov;138(3):963-71 23218902 - Trends Plant Sci. 2013 Apr;18(4):218-26 21605355 - BMC Bioinformatics. 2011 May 23;12:186 25535376 - Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):76-81 26059752 - Sci Rep. 2015 Jun 10;5:11254 22399582 - Plant Cell Physiol. 2012 Apr;53(4):709-16 20184774 - BMC Genet. 2010 Feb 26;11:16 24757386 - Breed Sci. 2014 Mar;63(5):468-75 26069441 - Breed Sci. 2015 Mar;65(2):120-6 15551040 - Theor Appl Genet. 2004 Dec;110(1):92-105 44 46 47 48 G.A. Churchill (6) 1994; 138 50 51 52 53 10 11 12 13 14 15 16 17 18 19 1 2 T. Yamamoto (45) 2010; 11 3 4 5 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Z.B. Zeng (49) 1994; 136 39 40 41 42 43 |
References_xml | – volume: 11 start-page: 267 issn: 1471-2164 year: 2010 ident: 45 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-267 contributor: fullname: T. Yamamoto – ident: 9 doi: 10.1270/jsbbs.55.65 – ident: 31 doi: 10.1626/jcs.28.46 – ident: 38 doi: 10.1073/pnas.1421127112 – ident: 35 – ident: 8 doi: 10.1007/BF02712670 – ident: 4 doi: 10.1186/1471-2156-11-16 – ident: 42 doi: 10.1038/ng.2327 – ident: 36 doi: 10.1038/ng.169 – ident: 26 – ident: 24 doi: 10.1093/pcp/pcs028 – ident: 53 doi: 10.1146/annurev-genet-120213-092138 – ident: 50 – ident: 16 doi: 10.1023/A:1009683603862 – ident: 34 doi: 10.5334/jors.80 – ident: 1 doi: 10.1007/s00122-004-1668-y – ident: 15 doi: 10.1139/g96-045 – ident: 17 doi: 10.1016/j.tplants.2012.11.001 – ident: 28 doi: 10.1270/jsbbs.64.273 – ident: 48 doi: 10.1270/jsbbs.52.309 – ident: 5 doi: 10.1270/jsbbs.60.305 – ident: 43 – ident: 44 doi: 10.1038/cr.2008.307 – ident: 21 doi: 10.1038/ng.977 – volume: 138 start-page: 963 issn: 0016-6731 year: 1994 ident: 6 publication-title: Genetics doi: 10.1093/genetics/138.3.963 contributor: fullname: G.A. Churchill – ident: 10 doi: 10.1007/s00122-006-0218-1 – ident: 27 doi: 10.1104/pp.106.077081 – ident: 11 doi: 10.1270/jsbbs.63.468 – ident: 22 doi: 10.1007/s10681-012-0822-x – ident: 37 doi: 10.1038/ng2014 – ident: 18 doi: 10.1038/ng.2612 – ident: 32 doi: 10.1007/s00122-010-1445-z – volume: 136 start-page: 1457 issn: 0016-6731 year: 1994 ident: 49 publication-title: Genetics doi: 10.1093/genetics/136.4.1457 contributor: fullname: Z.B. Zeng – ident: 40 doi: 10.1534/genetics.109.103002 – ident: 7 doi: 10.1038/srep11254 – ident: 47 – ident: 2 doi: 10.1007/s00122-008-0722-6 – ident: 20 – ident: 46 doi: 10.1270/jsbbs.63.49 – ident: 33 doi: 10.1007/s00122-017-2977-2 – ident: 3 – ident: 41 doi: 10.1186/s12863-016-0409-y – ident: 39 doi: 10.1073/pnas.111136798 – ident: 13 doi: 10.1111/tpj.12268 – ident: 14 doi: 10.1016/j.jcs.2014.02.011 – ident: 29 doi: 10.1270/jsbbs.60.648 – ident: 30 doi: 10.1270/jsbbs.65.308 – ident: 19 – ident: 23 doi: 10.1007/BF00223452 – ident: 51 doi: 10.1007/s00122-010-1406-6 – ident: 12 doi: 10.1186/1471-2105-12-186 – ident: 25 – ident: 52 doi: 10.1270/jsbbs.65.120 |
SSID | ssj0025045 |
Score | 2.292627 |
Snippet | Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size... |
SourceID | pubmedcentral proquest crossref pubmed jstage |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 210 |
SubjectTerms | Breweries Brewing brewing-rice cultivar Cooking CSSLs Cultivars Flowering Gene loci Grain size Inbreeding Oryza Particle size Plant breeding QTL QTL-by-environment interaction Quantitative trait loci Research Paper Rice Sake Substitutes |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb5VAEN401Qd9MN6lVjMmfaWywN6aGNMYm8ZbYtKT1Ceyyy709AJ6OG3Un-SvdAY4xNP0zRce2GEJzAz7zTLzDWM7CLqzCgOP2IvcYoCiZKxN0JQ0rhAtJ5Y7KhT-_EUezvIPx-J4g62acY4vsLsxtKN-UrPF-e7PH7_eosO_6bkRVPL6tHOu2-WKU7fhWykxclEOXz79TiCaLtFHXnkeY9yejIV61y5eW5punyI6q8NNwPN6_uQ_C9LBfXZvRJKwP6j-AdsIzUN2d79ejGwa4RH7M5ThVuO-HLQVfD361AECVSAyIaipQQR0898BKAG-BgtNexXOoQtLki5PKFuvay8snappJxE6_NT0-QU0I4HUDjya8VXwQLUq8M1eWG8b2ts6mwNOjxAT0EypWhKcLc-okKTxNP3HFoVQDOP1x2x28P7o3WE8NmeIS1zSl7GWIiuNCNwby1G7TtpKUqVtSJKQGuHR2VOrTIUIQLhc-1LZDJdCZU1luLXZE7bZtE14xiBPk1JlPHhnHV4ujTfaa6G4L0XichWxnZVeiu8DB0dBsQuqr-jVV_Tqi9jeoLNJaHS-UUjqIqVDLzyNUXEbfiEitr3Sc7EywiIlKk2DAXMWsVfTMPof_VSxTWgvSUZwKQhmR-zpYBbT_VOD0aBM8oipNYOZBIjbe32kmZ_0HN_Eq8i13vqfZ3rO7iC800PG3DbbXC4uwwuEUEv3snePv5zMIkc priority: 102 providerName: Scholars Portal |
Title | Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari |
URI | https://www.jstage.jst.go.jp/article/jsbbs/68/2/68_17112/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/29875604 https://www.proquest.com/docview/2047294463 https://search.proquest.com/docview/2051659991 https://pubmed.ncbi.nlm.nih.gov/PMC5982188 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Breeding Science, 2018, Vol.68(2), pp.210-218 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11Kw5wQHw3UCoj9ZrdOInjmFtVUSpgEUittJwiO3bSbbtJ1Wx74CfxK5lJnBWLOHHJIZ44K81z5j3vzBjgEEl3UqHwCK1INQoUmYW5cjkljUtky5HmhgqF51-z0_P000IsdkCMtTB90n5pltPmejVtlhd9buXNqpyNeWKzb_NjajrHUblNYIIAHSW6V1ki6k8m5kmahqjRI1-UF8todtkZ0025RI5BTYBRbmO8T7ci0oNLJGW1-xff_Dtt8o84dPIEHnsCyY6GH_oUdlzzDB4d1be-iYZ7Dr-G6tvKb8extmLfz750DPkpox5CrKZzIVi3_OkY5b3XTLOmvXfXrHNrsi4vKEmva1eabtW0gcg6_ML0aQU0I3HTjllE772zjEpU2A-90lY3tKV1tWQ4PTJLhuikIklmdHlF9SONpek_t2iEZijTX8D5yYez49PQn8kQlhjJ12GeiaRUwnGrNEenmkxXGRXYuihysRIW13ispaow8AuT5raUOsEIKLWqFNc6eQm7Tdu4PWBpHJUy4c4abfDxTFmV21xIbksRmVQGcDj6pbgZWm8UJFnQk0XvyaL3ZADvB59tjDxUvFGWFzFdeuPNGNW04YchgP3Rz4VfvF0RUwdNhTo5CeDdZhiXHf2XohvX3pGN4Jkgdh3AqwEWm_ePwApAbgFmY0AtvbdHEOl9a2-P7Nf__eQbeIiULh-y5PZhd317594ibVqbA5h8XHC8ztP8oF8yvwFCKh6X |
link.rule.ids | 230,315,730,783,787,888,2228,24332,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qBQlY8H4EChip22Tycpywqyqqgc5UIE1RWUV27KTT6STVZKaLfhJfyb15ianYwGYW8Y1HUY7tc51zrgH2kXQHOSYetuahxARFRHacmJhE4wLZsis9RUbh6Uk0Pg2_nvGzHeC9F6YR7Wdq7pSXS6ecnzfayqtlNup1YqNv00MqOudh5nYH7uJ4daM-Se_yLO42ZxN7QRjamKW7nS3PF-7oolaqdjyBLIPKAGPCjSt-uLUm3btAWlaYvzHO28LJP1aio8fwo3-GVoCycDZr5WQ3t8o7_vNDPoFHHTdlB23zU9gx5TN4eFCsuvoc5jn8ao29ebfTx6qcfZ9NaobUl1F5IlbQkROsnt8YRpL6gklWVtfmktVmTdHZOen_6mop6VJBe5OsxsmrUSxQj0R7a6ZxYFwbzcj9wn7KpdSypN2yxZxh90haGQKf_JdMyWxB1pRSU_fHFQZhmFzNX8Dp0efZ4djujnuwMyQJazuOeJAl3Hg6kR7iRUUyj8i7a1zX-AnXOH34UiQ5cgquwlhnQga4uAqZ5IknZfASdsuqNK-Bhb6bicAzWkmFt0eJTmIdc-HpjLsqFBbs9y88vWqreqSUDSFE0gYiaQMRCz61YBiCuhfUBUVx6tNPEzy0kV0O5xwL9noApd28UKc-FedMMAUPLPg4NOOIps80sjTVhmK4F3Ei7ha8avE2_H-PWAvEFhKHAKoWvt2C-Gqqhnd4evPfd36A--PZdJJOvpwcv4UHyBzjVoy3B7vr1ca8Q3a2Vu-bsfgb5FU-zQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIEQPvKGBAkbqNdm8HMfcqsKq0IeK1EqFS2THTppuN1ltsj30J_ErmclL3YpTLznEE0dWvrG_cb4ZE7IDpDvIIPCwNQslBCg8smNhYhSNc2DLrvQUJgofHUf7Z-HPc3Z-66ivVrSfqsIpr-ZOWVy02srFPJ0MOrHJydEeFp3zIHJb6GzykDwCn3XjIVDvYy3mtucTe0EY2hCpu31qns_dyWWtVO14HJgGlgKGoBtW_XBtXXp8CdQsN_9jnXfFk7dWo-lz8mcYRydCmTmrRjnpzZ0Sj_ca6AvyrOeodLczeUkemPIV2dzNl32dDvOa_O0SfLN-x49WGf11elhToMAUyxTRHI-eoHVxYyhK63MqaVldmytamwat0wvUAdbVXOKtHPcoaQ2TWKtcwB6R_tZUg4NcG00xC4b-lnOpZYm7ZrOCQvdAXik4AOZhUiXTGaaolBq7P6jACMzksnhDzqbfT_f27f7YBzsFstDYccSCVDDjaSE9wI2KZBZhDq9xXeMLpmEa8SUXGXALpsJYp1wGsMhyKTLhSRm8JRtlVZotQkPfTXngGa2kgscjoUWsY8Y9nTJXhdwiO8NHTxZddY8EoyKASdLCJGlhYpGvHSBGo_4j9UZRnPh4aY3HNkybg7nHItsDiJJ-fqgTH4t0CgjFA4t8GZvBs_F3jSxNtUIb5kUMCbxF3nWYG98_oNYifA2NowFWDV9vAYy11cN7TL2_95OfyZOTb9Pk8MfxwQfyFAhk3GnytslGs1yZj0DSGvWpdcd_mz9BTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+QTLs+for+rice+grain+size+using+a+novel+set+of+chromosomal+segment+substitution+lines+derived+from+Yamadanishiki+in+the+genetic+background+of+Koshihikari&rft.jtitle=Breeding+Science&rft.au=Okada%2C+Satoshi&rft.au=Onogi%2C+Akio&rft.au=Iijima%2C+Ken&rft.au=Hori%2C+Kiyosumi&rft.date=2018-03-01&rft.pub=Japanese+Society+of+Breeding&rft.issn=1344-7610&rft.eissn=1347-3735&rft.volume=68&rft.issue=2&rft.spage=210&rft.epage=218&rft_id=info:doi/10.1270%2Fjsbbs.17112&rft.externalDocID=article_jsbbs_68_2_68_17112_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7610&client=summon |