Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari

Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in...

Full description

Saved in:
Bibliographic Details
Published inBreeding Science Vol. 68; no. 2; pp. 210 - 218
Main Authors Okada, Satoshi, Onogi, Akio, Iijima, Ken, Hori, Kiyosumi, Iwata, Hiroyoshi, Yokoyama, Wakana, Suehiro, Miki, Yamasaki, Masanori
Format Journal Article
LanguageEnglish
Published Japan Japanese Society of Breeding 01.03.2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven (qGL11, qGWh5, qGWh10, qGWt6-2, qGWt10-2, qDTH3, and qDTH6) that were detected in F2 and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that qGWt10-2 was only detected in early-flowering RILs, while qGWt5 (in the same region as qGWh5) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice.
AbstractList Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven ( qGL11 , qGWh5 , qGWh10 , qGWt6-2 , qGWt10-2 , qDTH3 , and qDTH6 ) that were detected in F 2 and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that qGWt10-2 was only detected in early-flowering RILs, while qGWt5 (in the same region as qGWh5 ) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice.
Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven ( , , , , , , and ) that were detected in F and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that was only detected in early-flowering RILs, while (in the same region as ) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice.
Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven (qGL11, qGWh5, qGWh10, qGWt6-2, qGWt10-2, qDTH3, and qDTH6) that were detected in F2 and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that qGWt10-2 was only detected in early-flowering RILs, while qGWt5 (in the same region as qGWh5) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice.
Author Yamasaki, Masanori
Yokoyama, Wakana
Onogi, Akio
Suehiro, Miki
Okada, Satoshi
Iijima, Ken
Hori, Kiyosumi
Iwata, Hiroyoshi
AuthorAffiliation 2 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Yayoi, Bunkyo-Ku, Tokyo 113-8657 , Japan
3 Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba, Ibaraki 305-8518 , Japan
1 Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University , Kasai, Hyogo 675-2103 , Japan
AuthorAffiliation_xml – name: 2 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Yayoi, Bunkyo-Ku, Tokyo 113-8657 , Japan
– name: 1 Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University , Kasai, Hyogo 675-2103 , Japan
– name: 3 Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba, Ibaraki 305-8518 , Japan
Author_xml – sequence: 1
  fullname: Okada, Satoshi
  organization: Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University
– sequence: 2
  fullname: Onogi, Akio
  organization: Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
– sequence: 3
  fullname: Iijima, Ken
  organization: Institute of Crop Science, National Agriculture and Food Research Organization
– sequence: 4
  fullname: Hori, Kiyosumi
  organization: Institute of Crop Science, National Agriculture and Food Research Organization
– sequence: 5
  fullname: Iwata, Hiroyoshi
  organization: Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
– sequence: 6
  fullname: Yokoyama, Wakana
  organization: Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University
– sequence: 7
  fullname: Suehiro, Miki
  organization: Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University
– sequence: 8
  fullname: Yamasaki, Masanori
  organization: Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29875604$$D View this record in MEDLINE/PubMed
BookMark eNpdkkuLFDEQgBtZcR968i4BL4LMmqQ7SeciLIuriwMirAdPoTpd3ZPZ7mRNugf0J-2vNPNwUC9JSH18VZXUeXHig8eieMnoJeOKvlunpkmXTDHGnxRnrKzUolSlONmdq4WSjJ4W5ymtKeWCVuJZccp1rYSk1VnxeNuin1znLEwueBI68vVumUgXIonOIukjOE-S-4VkTs73BIgPGxxIwmlL21UMY0hhhO1VP2YbSXOTJjfNO-PgPCbSYnQbbEmXafIdRmjBu7Ry945k_bTKidDj5CxpwN73Mcy-3eo_hwxlDKJ7XjztYEj44rBfFN9uPtxdf1osv3y8vb5aLqyUbFrUUpRWC2StBqaxbiR0knJaIaXItWgFoxyU7riUoqnq1ioo60op0J1mAOVF8X7vfZibEVubO4owmIfoRog_TQBn_o14tzJ92Biha87qOgveHAQx_JgxTWZ0yeIwgMcwJ8OpYFJorVlGX_-HrsMcfW4vU5Xiuqpkmam3e8rGkFLE7lgMo2Y7A2Y3A2Y3A5l-9Xf9R_bPp2fgag-s0wQ9HgGI-f0HPMhkbfh22UmPMbuCaNCXvwHlXMr2
CitedBy_id crossref_primary_10_1007_s00122_020_03578_0
crossref_primary_10_1186_s12284_018_0246_x
crossref_primary_10_1270_jsbbs_18166
crossref_primary_10_1016_j_molp_2023_09_002
crossref_primary_10_32604_phyton_2022_018707
crossref_primary_10_1080_10715762_2023_2215914
crossref_primary_10_6013_jbrewsocjapan_114_190
crossref_primary_10_3389_fpls_2018_01685
crossref_primary_10_1016_j_plantsci_2020_110715
crossref_primary_10_1007_s10681_024_03310_9
crossref_primary_10_1186_s12284_023_00621_8
crossref_primary_10_3390_genes13050735
crossref_primary_10_7717_peerj_6966
crossref_primary_10_1038_s41598_020_76949_8
crossref_primary_10_1007_s11032_022_01284_x
crossref_primary_10_6090_jarq_55_307
crossref_primary_10_1007_s11032_020_01166_0
Cites_doi 10.1186/1471-2164-11-267
10.1270/jsbbs.55.65
10.1626/jcs.28.46
10.1073/pnas.1421127112
10.1007/BF02712670
10.1186/1471-2156-11-16
10.1038/ng.2327
10.1038/ng.169
10.1093/pcp/pcs028
10.1146/annurev-genet-120213-092138
10.1023/A:1009683603862
10.5334/jors.80
10.1007/s00122-004-1668-y
10.1139/g96-045
10.1016/j.tplants.2012.11.001
10.1270/jsbbs.64.273
10.1270/jsbbs.52.309
10.1270/jsbbs.60.305
10.1038/cr.2008.307
10.1038/ng.977
10.1093/genetics/138.3.963
10.1007/s00122-006-0218-1
10.1104/pp.106.077081
10.1270/jsbbs.63.468
10.1007/s10681-012-0822-x
10.1038/ng2014
10.1038/ng.2612
10.1007/s00122-010-1445-z
10.1093/genetics/136.4.1457
10.1534/genetics.109.103002
10.1038/srep11254
10.1007/s00122-008-0722-6
10.1270/jsbbs.63.49
10.1007/s00122-017-2977-2
10.1186/s12863-016-0409-y
10.1073/pnas.111136798
10.1111/tpj.12268
10.1016/j.jcs.2014.02.011
10.1270/jsbbs.60.648
10.1270/jsbbs.65.308
10.1007/BF00223452
10.1007/s00122-010-1406-6
10.1186/1471-2105-12-186
10.1270/jsbbs.65.120
ContentType Journal Article
Copyright 2018 by JAPANESE SOCIETY OF BREEDING
Copyright Japan Science and Technology Agency 2018
Copyright © 2018 by JAPANESE SOCIETY OF BREEDING 2018
Copyright_xml – notice: 2018 by JAPANESE SOCIETY OF BREEDING
– notice: Copyright Japan Science and Technology Agency 2018
– notice: Copyright © 2018 by JAPANESE SOCIETY OF BREEDING 2018
DBID NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1270/jsbbs.17112
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1347-3735
EndPage 218
ExternalDocumentID 10_1270_jsbbs_17112
29875604
article_jsbbs_68_2_68_17112_article_char_en
Genre Journal Article
GroupedDBID 23N
2WC
5GY
A8Z
ABDBF
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
ECGQY
EJD
ESTFP
ESX
EYRJQ
GX1
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
QF4
QN7
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
XSB
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c661t-8653c95e1d9a19e8b6af60204e00e295d5102a79f2665b48dc7a38477a9f91aa3
IEDL.DBID RPM
ISSN 1344-7610
IngestDate Tue Apr 09 21:54:07 EDT 2024
Fri Aug 16 09:28:05 EDT 2024
Thu Oct 10 21:22:54 EDT 2024
Fri Aug 23 02:50:26 EDT 2024
Wed Oct 16 00:58:36 EDT 2024
Sun Jul 28 05:07:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords QTL
QTL-by-environment interaction
grain size
brewing-rice cultivar
CSSLs
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-8653c95e1d9a19e8b6af60204e00e295d5102a79f2665b48dc7a38477a9f91aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Communicated by Motoyuki Ashikari
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982188/
PMID 29875604
PQID 2047294463
PQPubID 1966357
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982188
proquest_miscellaneous_2051659991
proquest_journals_2047294463
crossref_primary_10_1270_jsbbs_17112
pubmed_primary_29875604
jstage_primary_article_jsbbs_68_2_68_17112_article_char_en
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Breeding Science
PublicationTitleAlternate Breeding Science
PublicationYear 2018
Publisher Japanese Society of Breeding
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Breeding
– name: Japan Science and Technology Agency
References Horigane, K.A., K. Suzuki and M. Yoshida (2014) Moisture distribution in rice grains used for sake brewing analyzed by magnetic resonance imaging. J. Cereal Sci. 60: 193–201.
Lu, B., C. Yang, K. Xie, L. Zhang, T. Wu, L. Li, X. Liu, L. Jiang and J. Wan (2013) Quantitative trait loci for grain-quality traits across a rice F2 population and backcross inbred lines. Euphytica 192: 25–35.
Yoshida, S., M. Ikegami, J. Kuze, K. Sawada, Z. Hashimoto, T. Ishii, C. Nakamura and O. Kamijima (2002) QTL analysis for plant and grain characters of Sake-brewing rice using a doubled haploid population. Breed. Sci. 52: 309–317.
Dellaporta, S.L., J. Wood and J.B. Hicks (1983) A plant DNA minipreparation version II. Plant Mol. Biol. Rep. 1: 19–21.
Moreau, L., A. Charcosset and A. Gallais (2004) Use of trial clustering to study QTL × environment effects for grain yield and related traits in maize. Theor. Appl. Genet. 110: 92–105.
Hori, K., E. Ogiso-Tanaka, K. Matsubara, U. Yamanouchi, K. Ebana and M. Yano (2013) Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J. 76: 36–46.
Wang, S., C.J. Basten and Z.B. Zeng (2012b) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NC.
Weng, J., S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo et al. (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18: 1199–1209.
Zeng, Z.B. (1994) Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.
Huang, N., A. Parco, T. Mew, G. Magpantay, S. McCouch, E. Guiderdoni, J. Xu, P. Subudhi, E.R. Angeles and G.S. Khush (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol. Breed. 3: 105–113.
Howell, P.M., D.J. Lydiate and D.F. Marshall (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39: 348–358.
Huang, R., L. Jiang, J. Zheng, T. Wang, H. Wang, Y. Huang and Z. Hong (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends in Plant Sci. 18: 218–226.
Song, X.J., T. Kuroha, M. Ayano, T. Furuta, K. Nagai, N. Komeda, S. Segami, K. Miura, D. Ogawa, T. Kamura et al. (2015) Rare allele of a previously unidentified histone H4 acetyltrainsferase enhances grain weight, yield, and plant biomass in rice. Proc. Natl. Acad. Sci. USA 112: 76–81.
Nagata, K., T. Ando, Y. Nonoue, T. Mizubayashi, N. Kitazawa, A. Shomura, K. Matsubara, N. Ono, R. Mizobuchi, T. Shibaya et al. (2015) Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica × indica cross. Breed. Sci. 65: 308–318.
Takahashi, Y., A. Shomura, T. Sasaki and M. Yano (2001) Hd6, a rice quantitative trait locus involved photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 98: 7922–7927.
Nagasaki, H., K. Ebana, T. Shibaya, J. Yonemaru and M. Yano (2010) Core single-nucleotide polymorphisms—a tool for genetic analysis of the Japanese rice population. Breed. Sci. 60: 648–655.
Matsubara, K., E. Ogiso-Tanaka, K. Hori, K. Ebana, T. Ando and M. Yano (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol. 53: 709–716.
Ebitani, T., Y. Takeuchi, Y. Nonoue, T. Yamamoto, K. Takeuchi and M. Yano (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed. Sci. 55: 65–73.
Li, J.X., S.B. Yu, C.G. Xu, Y.F. Tan, Y.J. Gao, X.H. Li and Q. Zhang (2000) Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor. Appl. Genet. 101: 248–254.
Yamasaki, M. and O. Ideta (2013) Population structure in Japanese rice population. Breed. Sci. 63: 49–57.
Ishimaru, K., N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B. Shimizu, A. Onishi et al. (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45: 707–711.
Aramaki, K., K. Ogawa, K. Yamamoto, J. Suzuki, M. Kanno, Y. Kizaki and N. Okazaki (1995) Polishing properties of white-core and non-white-core grains fractionated from the same variety of rice. Seibutsu-kogaku 73: 381–386.
Furuta, T., K. Uehara, R.B. Angeles-Shim, J. Shim, M. Ashikari and T. Takashi (2014) Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breed. Sci. 63: 468–475.
Lu, C., L. Shen, Z. Tan, Y. Xu, P. He, Y. Chen and L. Zhu (1996) Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 93: 1211–1217.
Morinaka, Y., T. Sakamoto, Y. Inukai, M. Agetsuma, H. Kitano, M. Ashikari and M. Matsuoka (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol. 141: 924–931.
Dang, X., T.G.T. Thi, W.M. Edzesi, L. Liang, Q. Liu, E. Liu, Y. Wang, S. Qiang, L. Liu and D. Hong (2015) Population genetic structure of Oryza sativa in east and southeast Asia and the discovery of elite alleles for grain traits. Sci. Rep. 5: 11254.
Takano-Kai, N., H. Jiang, T. Kubo, M. Sweeney, T. Matsumoto, H. Kanamori, B. Padhukasahasram, C. Bustamante, A. Yoshimura, K. Doi et al. (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182: 1323–1334.
Aluko, G., C. Martinez, J. Tohme, C. Castano, C. Bergman and J.H. Oard (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor. Appl. Genet. 109: 630–639.
Bian, J.M., L. Jiang, L.L. Liu, X.J. Wei, Y.H. Xiao, L.J. Zhang, Z.G. Zhao, H.Q. Zhai and J.M. Wan (2010) Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs. Breed. Sci. 60: 305–313.
Ando, T., T. Yamamoto, T. Shimizu, X.F. Ma, A. Shomura, Y. Takeuchi, S.Y. Lin and M. Yano (2008) Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor. Appl. Genet. 116: 881–890.
Shomura, A., T. Izawa, K. Ebana, T. Ebitani, H. Kanegae, S. Konishi and M. Yano (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40: 1023–1028.
Churchill, G.A. and R.W. Doerge (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.
McCouch, S.R., Y.G. Cho, M. Yano, E. Paul, M. Blinstrub, H. Morishima and T. Kinoshita (1997) Report on QTL nomenclature. Rice Genet. Newsl. 14: 11–13.
Murata, K., Y. Iyama, T. Yamaguchi, H. Ozaki, Y. Kidani and T. Ebitani (2014) Identification of a novel gene (Apq1) from the indica rice cultivar ‘Habataki’ that improves the quality of grains produced under high temperature stress. Breed. Sci. 64: 273–281.
Onogi, A. and H. Iwata (2016) VIGoR: Variational bayesian inference for genome-wide regression. Journal of Open Research Software 4: e11.
Nelson, J.C., A.M. McClung, R.G. Fjellstrom, K.A.K. Moldenhauer, E. Boza, F. Jodari, J.H. Oard, S. Linscombe, B.E. Scheffler and K.M. Yeater (2011) Mapping QTL main and interaction influences on milling quality in elite US rice germplasm. Theor. Appl. Genet. 122: 291–309.
Habier, D., R.L. Fernando, K. Kizilkaya and D.J. Garrick (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12: 186.
Zhen, W., C. Jun-yu, Z. Yu-jun, F. Ye-yang and Z. Jie-yun (2017) Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.). J. Integr. Agric. 16: 16–26.
Yanagiuchi, T., H. Yamamoto, N. Miyazaki, T. Nagano, T. Mizuma and Y. Wakai (1997) Influence of grain type on suitability of rice for sake brewing. Seibutsu-kogaku 75: 169–176.
Song, X.J., W. Huang, M. Shi, M.Z. Zhu and H.X. Lin (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39: 623–630.
Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li and Q. Zhang (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112: 1164–1171.
Wang, S., K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Qian et al. (2012a) Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44: 950–954.
Zheng, B.S., J.L. Gouis, M. Leflon, W.Y. Rong, A. Laperche and M. Brancourt-Hulmel (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor. Appl. Genet. 121: 1501–1517.
Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li, J. Xiao et al. (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43: 1266–1269.
Bai, X., L. Luo, W. Yan, M.R. Kovi, W. Zhan and Y. Xing (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet. 11: 16.
Zuo, J. and J. Li (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48: 99–118.
Nagato, K. and M. Ebata (1959) Studies on white-core rice kernel II. On the physical properties of the kernel. Jpn. J. Crop Sci. 28: 46–50.
Zheng, J., Y. Zhang and C. Wang (2015) Molecular functions of genes related to grain shape in rice. Breed. Sci. 65: 120–126.
R Core Team (2015) R: A language and environment for statistical com
28887658 - Theor Appl Genet. 2017 Dec;130(12 ):2567-2585
23583977 - Nat Genet. 2013 Jun;45(6):707-11
16714407 - Plant Physiol. 2006 Jul;141(3):924-31
27388211 - BMC Genet. 2016 Jul 07;17 (1):103
25914581 - Breed Sci. 2014 Dec;64(4):273-81
25149369 - Annu Rev Genet. 2014;48:99-118
8013918 - Genetics. 1994 Apr;136(4):1457-68
26366113 - Breed Sci. 2015 Sep;65(4):308-18
18604208 - Nat Genet. 2008 Aug;40(8):1023-8
23789941 - Plant J. 2013 Oct;76(1):36-46
20423466 - BMC Genomics. 2010 Apr 27;11:267
20857082 - Theor Appl Genet. 2011 Feb;122(2):291-309
22729225 - Nat Genet. 2012 Jun 24;44(8):950-4
18469898 - Genome. 1996 Apr;39(2):348-58
18274726 - Theor Appl Genet. 2008 Apr;116(6):881-90
15105992 - Theor Appl Genet. 2004 Aug;109(3):630-9
17417637 - Nat Genet. 2007 May;39(5):623-30
20697687 - Theor Appl Genet. 2010 Nov;121(8):1501-17
19506305 - Genetics. 2009 Aug;182(4):1323-34
19015668 - Cell Res. 2008 Dec;18(12):1199-209
22019783 - Nat Genet. 2011 Oct 23;43(12):1266-9
24162532 - Theor Appl Genet. 1996 Dec;93(8):1211-7
23641181 - Breed Sci. 2013 Mar;63(1):49-57
16453132 - Theor Appl Genet. 2006 Apr;112(6):1164-71
11416158 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7922-7
7851788 - Genetics. 1994 Nov;138(3):963-71
23218902 - Trends Plant Sci. 2013 Apr;18(4):218-26
21605355 - BMC Bioinformatics. 2011 May 23;12:186
25535376 - Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):76-81
26059752 - Sci Rep. 2015 Jun 10;5:11254
22399582 - Plant Cell Physiol. 2012 Apr;53(4):709-16
20184774 - BMC Genet. 2010 Feb 26;11:16
24757386 - Breed Sci. 2014 Mar;63(5):468-75
26069441 - Breed Sci. 2015 Mar;65(2):120-6
15551040 - Theor Appl Genet. 2004 Dec;110(1):92-105
44
46
47
48
G.A. Churchill (6) 1994; 138
50
51
52
53
10
11
12
13
14
15
16
17
18
19
1
2
T. Yamamoto (45) 2010; 11
3
4
5
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Z.B. Zeng (49) 1994; 136
39
40
41
42
43
References_xml – volume: 11
  start-page: 267
  issn: 1471-2164
  year: 2010
  ident: 45
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-267
  contributor:
    fullname: T. Yamamoto
– ident: 9
  doi: 10.1270/jsbbs.55.65
– ident: 31
  doi: 10.1626/jcs.28.46
– ident: 38
  doi: 10.1073/pnas.1421127112
– ident: 35
– ident: 8
  doi: 10.1007/BF02712670
– ident: 4
  doi: 10.1186/1471-2156-11-16
– ident: 42
  doi: 10.1038/ng.2327
– ident: 36
  doi: 10.1038/ng.169
– ident: 26
– ident: 24
  doi: 10.1093/pcp/pcs028
– ident: 53
  doi: 10.1146/annurev-genet-120213-092138
– ident: 50
– ident: 16
  doi: 10.1023/A:1009683603862
– ident: 34
  doi: 10.5334/jors.80
– ident: 1
  doi: 10.1007/s00122-004-1668-y
– ident: 15
  doi: 10.1139/g96-045
– ident: 17
  doi: 10.1016/j.tplants.2012.11.001
– ident: 28
  doi: 10.1270/jsbbs.64.273
– ident: 48
  doi: 10.1270/jsbbs.52.309
– ident: 5
  doi: 10.1270/jsbbs.60.305
– ident: 43
– ident: 44
  doi: 10.1038/cr.2008.307
– ident: 21
  doi: 10.1038/ng.977
– volume: 138
  start-page: 963
  issn: 0016-6731
  year: 1994
  ident: 6
  publication-title: Genetics
  doi: 10.1093/genetics/138.3.963
  contributor:
    fullname: G.A. Churchill
– ident: 10
  doi: 10.1007/s00122-006-0218-1
– ident: 27
  doi: 10.1104/pp.106.077081
– ident: 11
  doi: 10.1270/jsbbs.63.468
– ident: 22
  doi: 10.1007/s10681-012-0822-x
– ident: 37
  doi: 10.1038/ng2014
– ident: 18
  doi: 10.1038/ng.2612
– ident: 32
  doi: 10.1007/s00122-010-1445-z
– volume: 136
  start-page: 1457
  issn: 0016-6731
  year: 1994
  ident: 49
  publication-title: Genetics
  doi: 10.1093/genetics/136.4.1457
  contributor:
    fullname: Z.B. Zeng
– ident: 40
  doi: 10.1534/genetics.109.103002
– ident: 7
  doi: 10.1038/srep11254
– ident: 47
– ident: 2
  doi: 10.1007/s00122-008-0722-6
– ident: 20
– ident: 46
  doi: 10.1270/jsbbs.63.49
– ident: 33
  doi: 10.1007/s00122-017-2977-2
– ident: 3
– ident: 41
  doi: 10.1186/s12863-016-0409-y
– ident: 39
  doi: 10.1073/pnas.111136798
– ident: 13
  doi: 10.1111/tpj.12268
– ident: 14
  doi: 10.1016/j.jcs.2014.02.011
– ident: 29
  doi: 10.1270/jsbbs.60.648
– ident: 30
  doi: 10.1270/jsbbs.65.308
– ident: 19
– ident: 23
  doi: 10.1007/BF00223452
– ident: 51
  doi: 10.1007/s00122-010-1406-6
– ident: 12
  doi: 10.1186/1471-2105-12-186
– ident: 25
– ident: 52
  doi: 10.1270/jsbbs.65.120
SSID ssj0025045
Score 2.292627
Snippet Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size...
SourceID pubmedcentral
proquest
crossref
pubmed
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 210
SubjectTerms Breweries
Brewing
brewing-rice cultivar
Cooking
CSSLs
Cultivars
Flowering
Gene loci
Grain size
Inbreeding
Oryza
Particle size
Plant breeding
QTL
QTL-by-environment interaction
Quantitative trait loci
Research Paper
Rice
Sake
Substitutes
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb5VAEN401Qd9MN6lVjMmfaWywN6aGNMYm8ZbYtKT1Ceyyy709AJ6OG3Un-SvdAY4xNP0zRce2GEJzAz7zTLzDWM7CLqzCgOP2IvcYoCiZKxN0JQ0rhAtJ5Y7KhT-_EUezvIPx-J4g62acY4vsLsxtKN-UrPF-e7PH7_eosO_6bkRVPL6tHOu2-WKU7fhWykxclEOXz79TiCaLtFHXnkeY9yejIV61y5eW5punyI6q8NNwPN6_uQ_C9LBfXZvRJKwP6j-AdsIzUN2d79ejGwa4RH7M5ThVuO-HLQVfD361AECVSAyIaipQQR0898BKAG-BgtNexXOoQtLki5PKFuvay8snappJxE6_NT0-QU0I4HUDjya8VXwQLUq8M1eWG8b2ts6mwNOjxAT0EypWhKcLc-okKTxNP3HFoVQDOP1x2x28P7o3WE8NmeIS1zSl7GWIiuNCNwby1G7TtpKUqVtSJKQGuHR2VOrTIUIQLhc-1LZDJdCZU1luLXZE7bZtE14xiBPk1JlPHhnHV4ujTfaa6G4L0XichWxnZVeiu8DB0dBsQuqr-jVV_Tqi9jeoLNJaHS-UUjqIqVDLzyNUXEbfiEitr3Sc7EywiIlKk2DAXMWsVfTMPof_VSxTWgvSUZwKQhmR-zpYBbT_VOD0aBM8oipNYOZBIjbe32kmZ_0HN_Eq8i13vqfZ3rO7iC800PG3DbbXC4uwwuEUEv3snePv5zMIkc
  priority: 102
  providerName: Scholars Portal
Title Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari
URI https://www.jstage.jst.go.jp/article/jsbbs/68/2/68_17112/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29875604
https://www.proquest.com/docview/2047294463
https://search.proquest.com/docview/2051659991
https://pubmed.ncbi.nlm.nih.gov/PMC5982188
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Breeding Science, 2018, Vol.68(2), pp.210-218
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11Kw5wQHw3UCoj9ZrdOInjmFtVUSpgEUittJwiO3bSbbtJ1Wx74CfxK5lJnBWLOHHJIZ44K81z5j3vzBjgEEl3UqHwCK1INQoUmYW5cjkljUtky5HmhgqF51-z0_P000IsdkCMtTB90n5pltPmejVtlhd9buXNqpyNeWKzb_NjajrHUblNYIIAHSW6V1ki6k8m5kmahqjRI1-UF8todtkZ0025RI5BTYBRbmO8T7ci0oNLJGW1-xff_Dtt8o84dPIEHnsCyY6GH_oUdlzzDB4d1be-iYZ7Dr-G6tvKb8extmLfz750DPkpox5CrKZzIVi3_OkY5b3XTLOmvXfXrHNrsi4vKEmva1eabtW0gcg6_ML0aQU0I3HTjllE772zjEpU2A-90lY3tKV1tWQ4PTJLhuikIklmdHlF9SONpek_t2iEZijTX8D5yYez49PQn8kQlhjJ12GeiaRUwnGrNEenmkxXGRXYuihysRIW13ispaow8AuT5raUOsEIKLWqFNc6eQm7Tdu4PWBpHJUy4c4abfDxTFmV21xIbksRmVQGcDj6pbgZWm8UJFnQk0XvyaL3ZADvB59tjDxUvFGWFzFdeuPNGNW04YchgP3Rz4VfvF0RUwdNhTo5CeDdZhiXHf2XohvX3pGN4Jkgdh3AqwEWm_ePwApAbgFmY0AtvbdHEOl9a2-P7Nf__eQbeIiULh-y5PZhd317594ibVqbA5h8XHC8ztP8oF8yvwFCKh6X
link.rule.ids 230,315,730,783,787,888,2228,24332,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qBQlY8H4EChip22Tycpywqyqqgc5UIE1RWUV27KTT6STVZKaLfhJfyb15ianYwGYW8Y1HUY7tc51zrgH2kXQHOSYetuahxARFRHacmJhE4wLZsis9RUbh6Uk0Pg2_nvGzHeC9F6YR7Wdq7pSXS6ecnzfayqtlNup1YqNv00MqOudh5nYH7uJ4daM-Se_yLO42ZxN7QRjamKW7nS3PF-7oolaqdjyBLIPKAGPCjSt-uLUm3btAWlaYvzHO28LJP1aio8fwo3-GVoCycDZr5WQ3t8o7_vNDPoFHHTdlB23zU9gx5TN4eFCsuvoc5jn8ao29ebfTx6qcfZ9NaobUl1F5IlbQkROsnt8YRpL6gklWVtfmktVmTdHZOen_6mop6VJBe5OsxsmrUSxQj0R7a6ZxYFwbzcj9wn7KpdSypN2yxZxh90haGQKf_JdMyWxB1pRSU_fHFQZhmFzNX8Dp0efZ4djujnuwMyQJazuOeJAl3Hg6kR7iRUUyj8i7a1zX-AnXOH34UiQ5cgquwlhnQga4uAqZ5IknZfASdsuqNK-Bhb6bicAzWkmFt0eJTmIdc-HpjLsqFBbs9y88vWqreqSUDSFE0gYiaQMRCz61YBiCuhfUBUVx6tNPEzy0kV0O5xwL9noApd28UKc-FedMMAUPLPg4NOOIps80sjTVhmK4F3Ei7ha8avE2_H-PWAvEFhKHAKoWvt2C-Gqqhnd4evPfd36A--PZdJJOvpwcv4UHyBzjVoy3B7vr1ca8Q3a2Vu-bsfgb5FU-zQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIEQPvKGBAkbqNdm8HMfcqsKq0IeK1EqFS2THTppuN1ltsj30J_ErmclL3YpTLznEE0dWvrG_cb4ZE7IDpDvIIPCwNQslBCg8smNhYhSNc2DLrvQUJgofHUf7Z-HPc3Z-66ivVrSfqsIpr-ZOWVy02srFPJ0MOrHJydEeFp3zIHJb6GzykDwCn3XjIVDvYy3mtucTe0EY2hCpu31qns_dyWWtVO14HJgGlgKGoBtW_XBtXXp8CdQsN_9jnXfFk7dWo-lz8mcYRydCmTmrRjnpzZ0Sj_ca6AvyrOeodLczeUkemPIV2dzNl32dDvOa_O0SfLN-x49WGf11elhToMAUyxTRHI-eoHVxYyhK63MqaVldmytamwat0wvUAdbVXOKtHPcoaQ2TWKtcwB6R_tZUg4NcG00xC4b-lnOpZYm7ZrOCQvdAXik4AOZhUiXTGaaolBq7P6jACMzksnhDzqbfT_f27f7YBzsFstDYccSCVDDjaSE9wI2KZBZhDq9xXeMLpmEa8SUXGXALpsJYp1wGsMhyKTLhSRm8JRtlVZotQkPfTXngGa2kgscjoUWsY8Y9nTJXhdwiO8NHTxZddY8EoyKASdLCJGlhYpGvHSBGo_4j9UZRnPh4aY3HNkybg7nHItsDiJJ-fqgTH4t0CgjFA4t8GZvBs_F3jSxNtUIb5kUMCbxF3nWYG98_oNYifA2NowFWDV9vAYy11cN7TL2_95OfyZOTb9Pk8MfxwQfyFAhk3GnytslGs1yZj0DSGvWpdcd_mz9BTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+QTLs+for+rice+grain+size+using+a+novel+set+of+chromosomal+segment+substitution+lines+derived+from+Yamadanishiki+in+the+genetic+background+of+Koshihikari&rft.jtitle=Breeding+Science&rft.au=Okada%2C+Satoshi&rft.au=Onogi%2C+Akio&rft.au=Iijima%2C+Ken&rft.au=Hori%2C+Kiyosumi&rft.date=2018-03-01&rft.pub=Japanese+Society+of+Breeding&rft.issn=1344-7610&rft.eissn=1347-3735&rft.volume=68&rft.issue=2&rft.spage=210&rft.epage=218&rft_id=info:doi/10.1270%2Fjsbbs.17112&rft.externalDocID=article_jsbbs_68_2_68_17112_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7610&client=summon