Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions

Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. We show that the oomyce...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 19; no. 1; p. 181
Main Authors Chen, Han, Shu, Haidong, Wang, Liyuan, Zhang, Fan, Li, Xi, Ochola, Sylvans Ochieng, Mao, Fei, Ma, Hongyu, Ye, Wenwu, Gu, Tingting, Jiang, Lubin, Wu, Yufeng, Wang, Yuanchao, Kamoun, Sophien, Dong, Suomeng
Format Journal Article
LanguageEnglish
Published England BioMed Central 31.10.2018
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.
AbstractList Background Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. Results We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. Conclusions Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.
Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.
Abstract Background Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. Results We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. Conclusions Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.
Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown.BACKGROUNDFilamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown.We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed.RESULTSWe show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed.Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.CONCLUSIONSOur findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.
ArticleNumber 181
Author Gu, Tingting
Jiang, Lubin
Mao, Fei
Ma, Hongyu
Zhang, Fan
Li, Xi
Dong, Suomeng
Kamoun, Sophien
Wu, Yufeng
Ye, Wenwu
Wang, Liyuan
Ochola, Sylvans Ochieng
Shu, Haidong
Chen, Han
Wang, Yuanchao
Author_xml – sequence: 1
  givenname: Han
  surname: Chen
  fullname: Chen, Han
– sequence: 2
  givenname: Haidong
  surname: Shu
  fullname: Shu, Haidong
– sequence: 3
  givenname: Liyuan
  surname: Wang
  fullname: Wang, Liyuan
– sequence: 4
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
– sequence: 5
  givenname: Xi
  surname: Li
  fullname: Li, Xi
– sequence: 6
  givenname: Sylvans Ochieng
  surname: Ochola
  fullname: Ochola, Sylvans Ochieng
– sequence: 7
  givenname: Fei
  surname: Mao
  fullname: Mao, Fei
– sequence: 8
  givenname: Hongyu
  surname: Ma
  fullname: Ma, Hongyu
– sequence: 9
  givenname: Wenwu
  surname: Ye
  fullname: Ye, Wenwu
– sequence: 10
  givenname: Tingting
  surname: Gu
  fullname: Gu, Tingting
– sequence: 11
  givenname: Lubin
  surname: Jiang
  fullname: Jiang, Lubin
– sequence: 12
  givenname: Yufeng
  surname: Wu
  fullname: Wu, Yufeng
– sequence: 13
  givenname: Yuanchao
  surname: Wang
  fullname: Wang, Yuanchao
– sequence: 14
  givenname: Sophien
  surname: Kamoun
  fullname: Kamoun, Sophien
– sequence: 15
  givenname: Suomeng
  orcidid: 0000-0002-9623-6776
  surname: Dong
  fullname: Dong, Suomeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30382931$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAQgCNURB_wA7igSFy4BDx-xb4gVRUtlSrBASRulteebLIk8WJ7i_bf4-0uVdsDnGx5vvk045nT6mgOM1bVayDvAZT8kIARoRsCqgEhecOfVSfAW960kvw4enA_rk5TWhECmlP5ojpmhCmqGZxUP7_22xzWfe5DtPWEud-OYcJU24j1FPxmtBl9vdjWcjo_xHO0c-ow2rTjZl_blIIb7sDfQ-5r6-06D7dYL3Eusjricghzelk97-yY8NXhPKu-X376dvG5uflydX1xftM4KSE3wjIKWjMHHRGedS3VRDqtuBctSkS00mrnUQnBHe20sp0XVDLmBTi0C3ZWXe-9PtiVWcdhsnFrgh3M3UOIS2NjHtyIRqH2QCkXHe24FUw5jV47qoFb51teXB_3rvVmMaF3OJfux0fSx5F56M0y3BpJATjfCd4dBDH82mDKZhqSw3G0M4ZNMpRSINBKJf6PAm21IK1QBX37BF2FTZzLrxYhaUEp4LpQbx4Wf1_13_EXAPaAiyGliN09AsTsVszsV8yUFTO7FTO7htonOW7INpcBl_6H8R-ZfwAzjdcc
CitedBy_id crossref_primary_10_1111_nph_17120
crossref_primary_10_1016_j_tplants_2022_06_011
crossref_primary_10_15252_embj_2022112934
crossref_primary_10_1111_mpp_13497
crossref_primary_10_3389_fmicb_2024_1341803
crossref_primary_10_1016_j_tube_2019_101890
crossref_primary_10_1002_adfm_202213143
crossref_primary_10_3389_fmicb_2021_679936
crossref_primary_10_1371_journal_pgen_1010927
crossref_primary_10_1098_rsob_210282
crossref_primary_10_1111_1758_2229_12954
crossref_primary_10_1186_s12864_021_07488_3
crossref_primary_10_1093_nar_gkz1160
crossref_primary_10_7554_eLife_62208
crossref_primary_10_3389_fmicb_2019_02792
crossref_primary_10_1094_PHYTO_05_20_0208_FI
crossref_primary_10_1016_j_canlet_2020_08_025
crossref_primary_10_1111_jipb_12883
crossref_primary_10_1111_jipb_13213
crossref_primary_10_3389_fmicb_2022_925868
crossref_primary_10_1016_j_plaphy_2024_109129
crossref_primary_10_1111_jipb_13892
crossref_primary_10_1128_mbio_03177_23
crossref_primary_10_12998_wjcc_v10_i2_448
crossref_primary_10_1016_j_jia_2024_03_077
crossref_primary_10_1038_s41576_019_0106_6
crossref_primary_10_1371_journal_ppat_1011346
crossref_primary_10_1093_femsre_fuab002
crossref_primary_10_1186_s42483_023_00196_8
crossref_primary_10_3389_fbioe_2020_00502
crossref_primary_10_1016_j_psj_2023_102528
crossref_primary_10_3389_fmicb_2021_645331
crossref_primary_10_1134_S1021443721020072
crossref_primary_10_1094_PHYTO_07_21_0280_R
crossref_primary_10_1128_spectrum_02268_21
crossref_primary_10_1186_s12864_024_10074_y
crossref_primary_10_5483_BMBRep_2024_0175
crossref_primary_10_3389_fgene_2022_914404
crossref_primary_10_1038_s41467_022_28471_w
crossref_primary_10_1111_nph_17758
crossref_primary_10_1007_s44297_023_00003_y
crossref_primary_10_1016_j_pbi_2021_102027
crossref_primary_10_3389_fmicb_2020_00490
Cites_doi 10.1126/science.1190614
10.1038/s41467-017-02233-5
10.1128/jb.179.18.5869-5877.1997
10.1093/molbev/mst197
10.1002/bies.201500104
10.1186/s12862-018-1201-6
10.1016/B978-0-12-387685-0.00002-0
10.1046/j.1364-3703.2003.00158.x
10.1093/nar/gku365
10.1128/IAI.74.1.410-424.2006
10.1038/nature17640
10.1016/j.cell.2016.09.038
10.1038/nmeth.2089
10.1111/nph.13540
10.1186/1471-2164-11-637
10.1016/j.cub.2017.02.044
10.1186/s13059-014-0550-8
10.1038/ng.3859
10.1002/bies.20342
10.1111/nph.14137
10.1038/nature05913
10.1111/j.1364-3703.2011.00710.x
10.1038/ncomms2354
10.1093/bioinformatics/btp340
10.1126/science.1128796
10.1126/science.1193070
10.1094/MPMI-05-11-0106
10.1016/j.cell.2015.04.018
10.1038/nature08358
10.1093/nar/21.20.4659
10.1093/nar/gkm960
10.1016/j.cell.2015.04.010
10.1371/journal.pgen.1004227
10.1111/mpp.12318
10.1038/ncomms13052
10.1038/nrg3230
10.1128/JB.183.10.3065-3075.2001
10.1016/j.gde.2015.09.001
10.1016/S0022-2836(62)80058-8
10.1016/j.cell.2015.04.005
10.1093/emboj/cdf490
10.1007/978-1-62703-986-4_3
10.1128/IAI.69.12.7610-7615.2001
10.1094/MPMI-01-12-0023-R
10.1371/journal.ppat.1002940
10.1038/nchembio.1432
10.1016/j.molcel.2012.10.015
10.1128/MMBR.00044-12
10.1038/nrmicro2790
10.1186/s12864-017-3585-x
10.1099/mic.0.2007/015545-0
10.1111/1462-2920.12609
10.1038/nsmb.3412
10.1093/bioinformatics/btl567
10.1038/ncomms11301
10.1093/bib/bbs017
10.1016/j.tim.2007.10.013
10.1371/journal.ppat.1005920
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-018-1564-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 181
ExternalDocumentID oai_doaj_org_article_8e9d12245f2f4a538c9ed9c2914acd74
PMC6211444
30382931
10_1186_s13059_018_1564_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 31721004; 31772144
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c661t-5a321993c1f05d3f72906c984d57e6eeea6a9cde8554c2f98afd52633d51ceab3
IEDL.DBID DOA
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Aug 21 13:43:44 EDT 2025
Fri Jul 11 08:11:12 EDT 2025
Fri Jul 11 11:47:14 EDT 2025
Fri Jul 25 11:59:50 EDT 2025
Thu Apr 03 07:08:06 EDT 2025
Tue Jul 01 03:10:42 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DNA methylation
Phytophthora
Methyltransferases
Adaptive genome
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-5a321993c1f05d3f72906c984d57e6eeea6a9cde8554c2f98afd52633d51ceab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9623-6776
OpenAccessLink https://doaj.org/article/8e9d12245f2f4a538c9ed9c2914acd74
PMID 30382931
PQID 2207188149
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8e9d12245f2f4a538c9ed9c2914acd74
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211444
proquest_miscellaneous_2221017685
proquest_miscellaneous_2127950758
proquest_journals_2207188149
pubmed_primary_30382931
crossref_primary_10_1186_s13059_018_1564_4
crossref_citationtrail_10_1186_s13059_018_1564_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-31
PublicationDateYYYYMMDD 2018-10-31
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-31
  day: 31
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome Biology
PublicationTitleAlternate Genome Biol
PublicationYear 2018
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References Y Fu (1564_CR15) 2015; 161
EL Greer (1564_CR13) 2015; 161
D Qutob (1564_CR49) 2013; 4
S Feng (1564_CR4) 2010; 330
S Dong (1564_CR39) 2018
M Pais (1564_CR50) 2018; 18
TE Erova (1564_CR35) 2006; 74
MF Seidl (1564_CR46) 2016; 12
RD Finn (1564_CR30) 2010; 36
AM Ah-Fong (1564_CR34) 2017; 18
W Ye (1564_CR33) 2011; 24
X Zhong (1564_CR6) 2016; 210
VG Kossykh (1564_CR32) 1993; 21
Y Fang (1564_CR57) 2016; 17
L Kong (1564_CR41) 2017; 27
LM Iyer (1564_CR20) 2011; 101
GZ Luo (1564_CR36) 2017; 24
A Bird (1564_CR1) 2007; 447
S Raffaele (1564_CR27) 2010; 330
G Zheng (1564_CR23) 2013; 49
L Kahng (1564_CR8) 2001; 183
BJ Haas (1564_CR25) 2009; 461
A Reisenauer (1564_CR10) 2002; 21
J Huang (1564_CR42) 2017; 8
SM Julio (1564_CR9) 2001; 69
S Dong (1564_CR37) 2018
S. Falcon (1564_CR63) 2006; 23
R Wright (1564_CR11) 1997; 179
J Liu (1564_CR18) 2016; 7
W Arber (1564_CR7) 1962; 5
AJ Phillips (1564_CR24) 2008; 16
Y Sheng (1564_CR40) 2015; 17
L Derevnina (1564_CR45) 2016; 212
H Thorvaldsdóttir (1564_CR59) 2013; 14
SJ Mondo (1564_CR12) 2017; 49
F Ramírez (1564_CR58) 2014; 42
S Raffaele (1564_CR28) 2012; 10
PA Jones (1564_CR5) 2012; 13
TP Wu (1564_CR16) 2016; 532
CA Schneider (1564_CR56) 2012; 9
K Vasu (1564_CR3) 2013; 77
LM Iyer (1564_CR19) 2016; 38
F Liu (1564_CR22) 2016; 167
K Tamura (1564_CR55) 2013; 30
G Zhang (1564_CR14) 2015; 161
RR Vetukuri (1564_CR54) 2011; 12
D Ratel (1564_CR2) 2006; 28
BM Tyler (1564_CR26) 2006; 313
D Qutob (1564_CR44) 2003; 4
C Zang (1564_CR38) 2009; 25
P van West (1564_CR53) 2008; 154
MF Seidl (1564_CR47) 2017
S Raffaele (1564_CR48) 2010; 11
J Liu (1564_CR21) 2014; 10
SR Eddy (1564_CR31) 1998
MI Love (1564_CR62) 2014; 15
S Dong (1564_CR29) 2015; 35
DE Cooke (1564_CR51) 2012; 8
S Dong (1564_CR43) 2012; 25
DG Saunders (1564_CR60) 2014; 1127
JL Soyer (1564_CR52) 2014; 10
1564_CR61
GZ Luo (1564_CR17) 2016; 7
References_xml – volume: 330
  start-page: 622
  year: 2010
  ident: 1564_CR4
  publication-title: Science
  doi: 10.1126/science.1190614
– volume: 8
  start-page: 2051
  year: 2017
  ident: 1564_CR42
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02233-5
– volume: 179
  start-page: 5869
  year: 1997
  ident: 1564_CR11
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.18.5869-5877.1997
– volume: 30
  start-page: 2725
  year: 2013
  ident: 1564_CR55
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst197
– volume: 38
  start-page: 27
  year: 2016
  ident: 1564_CR19
  publication-title: Bioessays
  doi: 10.1002/bies.201500104
– volume: 18
  start-page: 93
  year: 2018
  ident: 1564_CR50
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-018-1201-6
– volume: 101
  start-page: 25
  year: 2011
  ident: 1564_CR20
  publication-title: Prog Mol Biol Transl Sci
  doi: 10.1016/B978-0-12-387685-0.00002-0
– volume: 4
  start-page: 119
  year: 2003
  ident: 1564_CR44
  publication-title: Mol Plant Pathol
  doi: 10.1046/j.1364-3703.2003.00158.x
– volume: 42
  start-page: 187
  year: 2014
  ident: 1564_CR58
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku365
– volume: 74
  start-page: 410
  year: 2006
  ident: 1564_CR35
  publication-title: Infect Immun
  doi: 10.1128/IAI.74.1.410-424.2006
– volume-title: Transposable elements direct the coevolution between plants and microbes
  year: 2017
  ident: 1564_CR47
– volume: 532
  start-page: 329
  year: 2016
  ident: 1564_CR16
  publication-title: Nature
  doi: 10.1038/nature17640
– volume: 167
  start-page: 816
  year: 2016
  ident: 1564_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.038
– volume: 9
  start-page: 671
  year: 2012
  ident: 1564_CR56
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– volume: 210
  start-page: 76
  year: 2016
  ident: 1564_CR6
  publication-title: New Phytol
  doi: 10.1111/nph.13540
– volume: 11
  start-page: 637
  year: 2010
  ident: 1564_CR48
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-637
– volume: 27
  start-page: 981
  year: 2017
  ident: 1564_CR41
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2017.02.044
– volume: 15
  start-page: 550
  year: 2014
  ident: 1564_CR62
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 49
  start-page: 964
  year: 2017
  ident: 1564_CR12
  publication-title: Nat Genet
  doi: 10.1038/ng.3859
– volume: 28
  start-page: 309
  year: 2006
  ident: 1564_CR2
  publication-title: Bioessays
  doi: 10.1002/bies.20342
– volume: 212
  start-page: 888
  year: 2016
  ident: 1564_CR45
  publication-title: New Phytol
  doi: 10.1111/nph.14137
– volume: 447
  start-page: 396
  year: 2007
  ident: 1564_CR1
  publication-title: Nature
  doi: 10.1038/nature05913
– volume: 12
  start-page: 772
  year: 2011
  ident: 1564_CR54
  publication-title: Mol Plant Pathol
  doi: 10.1111/j.1364-3703.2011.00710.x
– volume: 4
  start-page: 1349
  year: 2013
  ident: 1564_CR49
  publication-title: Nat Commun
  doi: 10.1038/ncomms2354
– volume: 25
  start-page: 1952
  year: 2009
  ident: 1564_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp340
– volume: 313
  start-page: 1261
  year: 2006
  ident: 1564_CR26
  publication-title: Science
  doi: 10.1126/science.1128796
– volume: 330
  start-page: 1540
  year: 2010
  ident: 1564_CR27
  publication-title: Science
  doi: 10.1126/science.1193070
– volume: 24
  start-page: 1530
  year: 2011
  ident: 1564_CR33
  publication-title: Mol Plant-Microbe Interact
  doi: 10.1094/MPMI-05-11-0106
– volume: 161
  start-page: 893
  year: 2015
  ident: 1564_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.018
– volume: 461
  start-page: 393
  year: 2009
  ident: 1564_CR25
  publication-title: Nature
  doi: 10.1038/nature08358
– volume: 21
  start-page: 4659
  year: 1993
  ident: 1564_CR32
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/21.20.4659
– volume: 36
  start-page: D281
  year: 2010
  ident: 1564_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm960
– volume: 161
  start-page: 879
  year: 2015
  ident: 1564_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.010
– volume: 10
  start-page: e1004227
  year: 2014
  ident: 1564_CR52
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004227
– volume: 17
  start-page: 127
  year: 2016
  ident: 1564_CR57
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12318
– volume: 7
  start-page: 13052
  year: 2016
  ident: 1564_CR18
  publication-title: Nat Commun
  doi: 10.1038/ncomms13052
– volume-title: HMMER: profile HMMs for protein sequence analysis
  year: 1998
  ident: 1564_CR31
– volume-title: Transcriptomes of two phytophthora species at mycelium stage
  year: 2018
  ident: 1564_CR39
– volume: 13
  start-page: 484
  year: 2012
  ident: 1564_CR5
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3230
– volume: 183
  start-page: 3065
  year: 2001
  ident: 1564_CR8
  publication-title: J Bacteriol
  doi: 10.1128/JB.183.10.3065-3075.2001
– volume: 35
  start-page: 57
  year: 2015
  ident: 1564_CR29
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2015.09.001
– volume: 5
  start-page: 18
  year: 1962
  ident: 1564_CR7
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(62)80058-8
– volume: 161
  start-page: 868
  year: 2015
  ident: 1564_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.005
– volume: 21
  start-page: 4969
  year: 2002
  ident: 1564_CR10
  publication-title: EMBO J
  doi: 10.1093/emboj/cdf490
– volume: 1127
  start-page: 29
  year: 2014
  ident: 1564_CR60
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-986-4_3
– volume: 69
  start-page: 7610
  year: 2001
  ident: 1564_CR9
  publication-title: Infect Immun
  doi: 10.1128/IAI.69.12.7610-7615.2001
– volume: 25
  start-page: 896
  year: 2012
  ident: 1564_CR43
  publication-title: Mol Plant-Microbe Interact
  doi: 10.1094/MPMI-01-12-0023-R
– volume: 8
  start-page: e1002940
  year: 2012
  ident: 1564_CR51
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002940
– volume: 10
  start-page: 93
  year: 2014
  ident: 1564_CR21
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1432
– volume: 49
  start-page: 18
  year: 2013
  ident: 1564_CR23
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.015
– volume: 77
  start-page: 53
  year: 2013
  ident: 1564_CR3
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00044-12
– volume: 10
  start-page: 417
  year: 2012
  ident: 1564_CR28
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2790
– volume-title: MeDIP-seq of two phytophthora species at mycelium stage
  year: 2018
  ident: 1564_CR37
– volume: 18
  start-page: 198
  year: 2017
  ident: 1564_CR34
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3585-x
– volume: 154
  start-page: 1482
  year: 2008
  ident: 1564_CR53
  publication-title: Microbiology
  doi: 10.1099/mic.0.2007/015545-0
– volume: 17
  start-page: 1351
  year: 2015
  ident: 1564_CR40
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12609
– volume: 24
  start-page: 503
  year: 2017
  ident: 1564_CR36
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.3412
– volume: 23
  start-page: 257
  issue: 2
  year: 2006
  ident: 1564_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl567
– volume: 7
  start-page: 11301
  year: 2016
  ident: 1564_CR17
  publication-title: Nat Commun
  doi: 10.1038/ncomms11301
– volume: 14
  start-page: 178
  year: 2013
  ident: 1564_CR59
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs017
– volume: 16
  start-page: 13
  year: 2008
  ident: 1564_CR24
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2007.10.013
– volume: 12
  start-page: e1005920
  year: 2016
  ident: 1564_CR46
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005920
– ident: 1564_CR61
SSID ssj0019426
ssj0017866
Score 2.4773505
Snippet Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive...
Background Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for...
BACKGROUND: Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for...
Abstract Background Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 181
SubjectTerms 5-methylcytosine
Adaptive genome
Adenine
Chromatography
Deoxyribonucleic acid
DNA
DNA Methylation
DNA sequencing
Enzymatic activity
Enzymes
Epigenetics
Evolution
Evolution & development
evolutionary adaptation
Famine
Fungi
Gene expression
Gene Expression Regulation
genes
Genome
Genomes
Genomics
Glycine max - parasitology
Insects
Localization
Mammals
Methyltransferases
Methyltransferases - metabolism
mutants
N6-methyladenosine
Nematodes
Pathogens
Phylogeny
Phytophthora
Phytophthora - classification
Phytophthora - enzymology
Phytophthora - genetics
Phytophthora infestans
Phytophthora sojae
plant pathogens
Prokaryotes
Proteins
Stem cells
Transcription
Virulence
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozECSnaxLEd-4QWxGqFBOLASr1Fjj2mCJqUNnvov2cmcQNFqMfWU8nNvL6xJ98w9loXvhYRHcloiQWK12XeOl3lMYJsIdoSgA70P33Wl1fy40It0oHbNrVV7mPiGKhD7-mM_EwITIbGIKB_u_6V09Qoul1NIzRusltEXUZWXS_mgqusDWGV9MFKMb1qRA2Iyup0xVkafbbFQK6obQgLKqVlLg-S1Mjl_z8A-m8f5V-J6eIeu5sQJT-fTOA-uwHdA3Z7mjG5e8h-fFnuiDxgWKKyOQ2MxhJ9BVvuNsBXfaDxXRB4u-N6dZ7WhxHNwgYzHMp1gbukRBSkg1vugltTnORE8boCTuMd0HwfsauLD1_fX-ZpwkLuMS8PuXKVoA4-X8ZChSrWRP7urZFB1aABwGlnfQDqZfMiWuNiUEJXVVClB9dWj9lJ13fwlHHhKHY4VFOoZSjKFsFUZZ2NCFnqtlAZK_aPtPGJfpymYPxsxjLE6GbSQoNaaEgLjczYm_kn64l745jwO9LTLEi02eMX_eZbk7ywMWADXSWqKKJ0GOu9hWC9sKV0HvedsdO9lpvky9vmj-Vl7NW8jF5IVyuug_4aZUpRW4TWyhyREYLinzb4LJ5MhjPvFoGEQeBVZqw-MKmDv3O40n1fjmzgGkt4KeWz41t_zu6I0b4p656yk2FzDS8QTg3ty9FnfgNonhyo
  priority: 102
  providerName: ProQuest
Title Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions
URI https://www.ncbi.nlm.nih.gov/pubmed/30382931
https://www.proquest.com/docview/2207188149
https://www.proquest.com/docview/2127950758
https://www.proquest.com/docview/2221017685
https://pubmed.ncbi.nlm.nih.gov/PMC6211444
https://doaj.org/article/8e9d12245f2f4a538c9ed9c2914acd74
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVtSqGX0u-6TRcVeiqY2LIkS8dsSQiFhhAaWHoRsjRiS7PesOsc9t93xvYu2VLSSy8-WGOwNDOaN9LwhrFPugi1SOhIRktMUIIu88brKk8JZAPJlgB0oP_tXJ9dya8zNbvT6otqwgZ64GHhjgzYSLc_KokkPbpnsBBtELaUPsS6ZwLFmLdNpsb7A4uBZ7zDLI0-WuNOraguCDMmpWUu96JQT9b_N4T5Z6Hknchz-ow9HSEjPx5-9Tl7AO0L9nhoIrl5yX5dzDfEDtDNUZucOkJjDr6ANfcr4ItlpP5cEHmz4XpxPI53PVyFFYYwlGsj96OWUJBOZrmP_oY2Qk4crgvg1L8B7fMVuzo9-f7lLB9bKOQBA2-XK18JKtELZSpUrFJN7O7BGhlVDRoAvPY2RKBitSCSNT5FJXRVRVUG8E31mh20yxbeMi48bQ5eiAJXPRZlg2ipst4mxCR1U6iMFdsldWHkF6c2F9euzzOMdoMWHGrBkRaczNjn3Sc3A7nGfcJT0tNOkHix-xdoLW60Fvcva8nY4VbLbnTWtcMpYYQ2mCtm7ONuGN2M7k58C8tblClFbRE7K3OPjBC0wWmDa_FmMJzd3yJSMIisyozVeya1N539kfbnvKf71pijSynf_Y_5v2dPRO8FFHwP2UG3uoUPiKq6ZsIe1rN6wh5NT84vLie9O-HzcvrjN09-JDQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkWChgJLkhRE8d27ANC5VFt6UMcWmlvxvGDRXSTZTcV2j_Fb2QmyS4sQnvrMfEkcjyvb-zJDCEvZeoKFkGRlOQQoDiZJaWVeRJj4GWIOgsBN_RPTuXwnH8aidEW-bX8FwbTKpc2sTXUvna4R77HGDhDpQDQv53-SLBrFJ6uLltodGJxFBY_IWSbvzn8APx9xdjBx7P3w6TvKpA48EVNImzOMGvNZTEVPo8FFjx3WnEviiBDCFZa7XzA_C3HolY2esFknnuRuWDLHN57jVwHx5tisFeMVgFeVijERv2F5qz7tQkTHoWW_ZFqpuTeHByHwDQlCOCE5Alfc4pt74D_Ad5_8zb_coQHd8jtHsHS_U7k7pKtUN0jN7qelov75Pvn8QKLFTRjEC6KDaoXF_UkzKmdBTqpPbYLC56WCyon-_1406LnMAOPCnSVp7YXGiDEjWJqvZ2iXaZYUnYSKLaTAHV5QM6vZO0fku2qrsIjQplFW2VBLHzBfZqVAN5ybXUEiFSUqRiQdLmkxvXlzrHrxoVpwx4lTccFA1wwyAXDB-T16pFpV-tjE_E75NOKEMt0tzfq2VfTa71RQXs8uhSRRW7BtzgdvHZMZ9w6mPeA7C65bHrbMTd_JH1AXqyGQevxKMdWob4EmowVGqC8UBtoGEN7KxWsxU4nOKvZAnBRAPSyASnWRGrtc9ZHqm_jtvq4ZBBCc_5489Sfk5vDs5Njc3x4evSE3GKtrKPH3yXbzewyPAUo15TPWv2h5MtVK-xvcPBaMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytophthora+methylomes+are+modulated+by+6mA+methyltransferases+and+associated+with+adaptive+genome+regions&rft.jtitle=Genome+biology&rft.au=Chen%2C+Han&rft.au=Shu%2C+Haidong&rft.au=Wang%2C+Liyuan&rft.au=Zhang%2C+Fan&rft.date=2018-10-31&rft.eissn=1474-760X&rft.volume=19&rft.issue=1&rft.spage=181&rft_id=info:doi/10.1186%2Fs13059-018-1564-4&rft_id=info%3Apmid%2F30382931&rft.externalDocID=30382931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon