Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions
Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. We show that the oomyce...
Saved in:
Published in | Genome Biology Vol. 19; no. 1; p. 181 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
31.10.2018
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown.
We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed.
Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens. |
---|---|
AbstractList | Background Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. Results We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. Conclusions Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens. Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens. Abstract Background Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. Results We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. Conclusions Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens. Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown.BACKGROUNDFilamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown.We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed.RESULTSWe show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed.Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.CONCLUSIONSOur findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens. |
ArticleNumber | 181 |
Author | Gu, Tingting Jiang, Lubin Mao, Fei Ma, Hongyu Zhang, Fan Li, Xi Dong, Suomeng Kamoun, Sophien Wu, Yufeng Ye, Wenwu Wang, Liyuan Ochola, Sylvans Ochieng Shu, Haidong Chen, Han Wang, Yuanchao |
Author_xml | – sequence: 1 givenname: Han surname: Chen fullname: Chen, Han – sequence: 2 givenname: Haidong surname: Shu fullname: Shu, Haidong – sequence: 3 givenname: Liyuan surname: Wang fullname: Wang, Liyuan – sequence: 4 givenname: Fan surname: Zhang fullname: Zhang, Fan – sequence: 5 givenname: Xi surname: Li fullname: Li, Xi – sequence: 6 givenname: Sylvans Ochieng surname: Ochola fullname: Ochola, Sylvans Ochieng – sequence: 7 givenname: Fei surname: Mao fullname: Mao, Fei – sequence: 8 givenname: Hongyu surname: Ma fullname: Ma, Hongyu – sequence: 9 givenname: Wenwu surname: Ye fullname: Ye, Wenwu – sequence: 10 givenname: Tingting surname: Gu fullname: Gu, Tingting – sequence: 11 givenname: Lubin surname: Jiang fullname: Jiang, Lubin – sequence: 12 givenname: Yufeng surname: Wu fullname: Wu, Yufeng – sequence: 13 givenname: Yuanchao surname: Wang fullname: Wang, Yuanchao – sequence: 14 givenname: Sophien surname: Kamoun fullname: Kamoun, Sophien – sequence: 15 givenname: Suomeng orcidid: 0000-0002-9623-6776 surname: Dong fullname: Dong, Suomeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30382931$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAQgCNURB_wA7igSFy4BDx-xb4gVRUtlSrBASRulteebLIk8WJ7i_bf4-0uVdsDnGx5vvk045nT6mgOM1bVayDvAZT8kIARoRsCqgEhecOfVSfAW960kvw4enA_rk5TWhECmlP5ojpmhCmqGZxUP7_22xzWfe5DtPWEud-OYcJU24j1FPxmtBl9vdjWcjo_xHO0c-ow2rTjZl_blIIb7sDfQ-5r6-06D7dYL3Eusjricghzelk97-yY8NXhPKu-X376dvG5uflydX1xftM4KSE3wjIKWjMHHRGedS3VRDqtuBctSkS00mrnUQnBHe20sp0XVDLmBTi0C3ZWXe-9PtiVWcdhsnFrgh3M3UOIS2NjHtyIRqH2QCkXHe24FUw5jV47qoFb51teXB_3rvVmMaF3OJfux0fSx5F56M0y3BpJATjfCd4dBDH82mDKZhqSw3G0M4ZNMpRSINBKJf6PAm21IK1QBX37BF2FTZzLrxYhaUEp4LpQbx4Wf1_13_EXAPaAiyGliN09AsTsVszsV8yUFTO7FTO7htonOW7INpcBl_6H8R-ZfwAzjdcc |
CitedBy_id | crossref_primary_10_1111_nph_17120 crossref_primary_10_1016_j_tplants_2022_06_011 crossref_primary_10_15252_embj_2022112934 crossref_primary_10_1111_mpp_13497 crossref_primary_10_3389_fmicb_2024_1341803 crossref_primary_10_1016_j_tube_2019_101890 crossref_primary_10_1002_adfm_202213143 crossref_primary_10_3389_fmicb_2021_679936 crossref_primary_10_1371_journal_pgen_1010927 crossref_primary_10_1098_rsob_210282 crossref_primary_10_1111_1758_2229_12954 crossref_primary_10_1186_s12864_021_07488_3 crossref_primary_10_1093_nar_gkz1160 crossref_primary_10_7554_eLife_62208 crossref_primary_10_3389_fmicb_2019_02792 crossref_primary_10_1094_PHYTO_05_20_0208_FI crossref_primary_10_1016_j_canlet_2020_08_025 crossref_primary_10_1111_jipb_12883 crossref_primary_10_1111_jipb_13213 crossref_primary_10_3389_fmicb_2022_925868 crossref_primary_10_1016_j_plaphy_2024_109129 crossref_primary_10_1111_jipb_13892 crossref_primary_10_1128_mbio_03177_23 crossref_primary_10_12998_wjcc_v10_i2_448 crossref_primary_10_1016_j_jia_2024_03_077 crossref_primary_10_1038_s41576_019_0106_6 crossref_primary_10_1371_journal_ppat_1011346 crossref_primary_10_1093_femsre_fuab002 crossref_primary_10_1186_s42483_023_00196_8 crossref_primary_10_3389_fbioe_2020_00502 crossref_primary_10_1016_j_psj_2023_102528 crossref_primary_10_3389_fmicb_2021_645331 crossref_primary_10_1134_S1021443721020072 crossref_primary_10_1094_PHYTO_07_21_0280_R crossref_primary_10_1128_spectrum_02268_21 crossref_primary_10_1186_s12864_024_10074_y crossref_primary_10_5483_BMBRep_2024_0175 crossref_primary_10_3389_fgene_2022_914404 crossref_primary_10_1038_s41467_022_28471_w crossref_primary_10_1111_nph_17758 crossref_primary_10_1007_s44297_023_00003_y crossref_primary_10_1016_j_pbi_2021_102027 crossref_primary_10_3389_fmicb_2020_00490 |
Cites_doi | 10.1126/science.1190614 10.1038/s41467-017-02233-5 10.1128/jb.179.18.5869-5877.1997 10.1093/molbev/mst197 10.1002/bies.201500104 10.1186/s12862-018-1201-6 10.1016/B978-0-12-387685-0.00002-0 10.1046/j.1364-3703.2003.00158.x 10.1093/nar/gku365 10.1128/IAI.74.1.410-424.2006 10.1038/nature17640 10.1016/j.cell.2016.09.038 10.1038/nmeth.2089 10.1111/nph.13540 10.1186/1471-2164-11-637 10.1016/j.cub.2017.02.044 10.1186/s13059-014-0550-8 10.1038/ng.3859 10.1002/bies.20342 10.1111/nph.14137 10.1038/nature05913 10.1111/j.1364-3703.2011.00710.x 10.1038/ncomms2354 10.1093/bioinformatics/btp340 10.1126/science.1128796 10.1126/science.1193070 10.1094/MPMI-05-11-0106 10.1016/j.cell.2015.04.018 10.1038/nature08358 10.1093/nar/21.20.4659 10.1093/nar/gkm960 10.1016/j.cell.2015.04.010 10.1371/journal.pgen.1004227 10.1111/mpp.12318 10.1038/ncomms13052 10.1038/nrg3230 10.1128/JB.183.10.3065-3075.2001 10.1016/j.gde.2015.09.001 10.1016/S0022-2836(62)80058-8 10.1016/j.cell.2015.04.005 10.1093/emboj/cdf490 10.1007/978-1-62703-986-4_3 10.1128/IAI.69.12.7610-7615.2001 10.1094/MPMI-01-12-0023-R 10.1371/journal.ppat.1002940 10.1038/nchembio.1432 10.1016/j.molcel.2012.10.015 10.1128/MMBR.00044-12 10.1038/nrmicro2790 10.1186/s12864-017-3585-x 10.1099/mic.0.2007/015545-0 10.1111/1462-2920.12609 10.1038/nsmb.3412 10.1093/bioinformatics/btl567 10.1038/ncomms11301 10.1093/bib/bbs017 10.1016/j.tim.2007.10.013 10.1371/journal.ppat.1005920 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2018 |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13059-018-1564-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 181 |
ExternalDocumentID | oai_doaj_org_article_8e9d12245f2f4a538c9ed9c2914acd74 PMC6211444 30382931 10_1186_s13059_018_1564_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 31721004; 31772144 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c661t-5a321993c1f05d3f72906c984d57e6eeea6a9cde8554c2f98afd52633d51ceab3 |
IEDL.DBID | DOA |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Aug 21 13:43:44 EDT 2025 Fri Jul 11 08:11:12 EDT 2025 Fri Jul 11 11:47:14 EDT 2025 Fri Jul 25 11:59:50 EDT 2025 Thu Apr 03 07:08:06 EDT 2025 Tue Jul 01 03:10:42 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | DNA methylation Phytophthora Methyltransferases Adaptive genome |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-5a321993c1f05d3f72906c984d57e6eeea6a9cde8554c2f98afd52633d51ceab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9623-6776 |
OpenAccessLink | https://doaj.org/article/8e9d12245f2f4a538c9ed9c2914acd74 |
PMID | 30382931 |
PQID | 2207188149 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8e9d12245f2f4a538c9ed9c2914acd74 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211444 proquest_miscellaneous_2221017685 proquest_miscellaneous_2127950758 proquest_journals_2207188149 pubmed_primary_30382931 crossref_primary_10_1186_s13059_018_1564_4 crossref_citationtrail_10_1186_s13059_018_1564_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-31 |
PublicationDateYYYYMMDD | 2018-10-31 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2018 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | Y Fu (1564_CR15) 2015; 161 EL Greer (1564_CR13) 2015; 161 D Qutob (1564_CR49) 2013; 4 S Feng (1564_CR4) 2010; 330 S Dong (1564_CR39) 2018 M Pais (1564_CR50) 2018; 18 TE Erova (1564_CR35) 2006; 74 MF Seidl (1564_CR46) 2016; 12 RD Finn (1564_CR30) 2010; 36 AM Ah-Fong (1564_CR34) 2017; 18 W Ye (1564_CR33) 2011; 24 X Zhong (1564_CR6) 2016; 210 VG Kossykh (1564_CR32) 1993; 21 Y Fang (1564_CR57) 2016; 17 L Kong (1564_CR41) 2017; 27 LM Iyer (1564_CR20) 2011; 101 GZ Luo (1564_CR36) 2017; 24 A Bird (1564_CR1) 2007; 447 S Raffaele (1564_CR27) 2010; 330 G Zheng (1564_CR23) 2013; 49 L Kahng (1564_CR8) 2001; 183 BJ Haas (1564_CR25) 2009; 461 A Reisenauer (1564_CR10) 2002; 21 J Huang (1564_CR42) 2017; 8 SM Julio (1564_CR9) 2001; 69 S Dong (1564_CR37) 2018 S. Falcon (1564_CR63) 2006; 23 R Wright (1564_CR11) 1997; 179 J Liu (1564_CR18) 2016; 7 W Arber (1564_CR7) 1962; 5 AJ Phillips (1564_CR24) 2008; 16 Y Sheng (1564_CR40) 2015; 17 L Derevnina (1564_CR45) 2016; 212 H Thorvaldsdóttir (1564_CR59) 2013; 14 SJ Mondo (1564_CR12) 2017; 49 F Ramírez (1564_CR58) 2014; 42 S Raffaele (1564_CR28) 2012; 10 PA Jones (1564_CR5) 2012; 13 TP Wu (1564_CR16) 2016; 532 CA Schneider (1564_CR56) 2012; 9 K Vasu (1564_CR3) 2013; 77 LM Iyer (1564_CR19) 2016; 38 F Liu (1564_CR22) 2016; 167 K Tamura (1564_CR55) 2013; 30 G Zhang (1564_CR14) 2015; 161 RR Vetukuri (1564_CR54) 2011; 12 D Ratel (1564_CR2) 2006; 28 BM Tyler (1564_CR26) 2006; 313 D Qutob (1564_CR44) 2003; 4 C Zang (1564_CR38) 2009; 25 P van West (1564_CR53) 2008; 154 MF Seidl (1564_CR47) 2017 S Raffaele (1564_CR48) 2010; 11 J Liu (1564_CR21) 2014; 10 SR Eddy (1564_CR31) 1998 MI Love (1564_CR62) 2014; 15 S Dong (1564_CR29) 2015; 35 DE Cooke (1564_CR51) 2012; 8 S Dong (1564_CR43) 2012; 25 DG Saunders (1564_CR60) 2014; 1127 JL Soyer (1564_CR52) 2014; 10 1564_CR61 GZ Luo (1564_CR17) 2016; 7 |
References_xml | – volume: 330 start-page: 622 year: 2010 ident: 1564_CR4 publication-title: Science doi: 10.1126/science.1190614 – volume: 8 start-page: 2051 year: 2017 ident: 1564_CR42 publication-title: Nat Commun doi: 10.1038/s41467-017-02233-5 – volume: 179 start-page: 5869 year: 1997 ident: 1564_CR11 publication-title: J Bacteriol doi: 10.1128/jb.179.18.5869-5877.1997 – volume: 30 start-page: 2725 year: 2013 ident: 1564_CR55 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst197 – volume: 38 start-page: 27 year: 2016 ident: 1564_CR19 publication-title: Bioessays doi: 10.1002/bies.201500104 – volume: 18 start-page: 93 year: 2018 ident: 1564_CR50 publication-title: BMC Evol Biol doi: 10.1186/s12862-018-1201-6 – volume: 101 start-page: 25 year: 2011 ident: 1564_CR20 publication-title: Prog Mol Biol Transl Sci doi: 10.1016/B978-0-12-387685-0.00002-0 – volume: 4 start-page: 119 year: 2003 ident: 1564_CR44 publication-title: Mol Plant Pathol doi: 10.1046/j.1364-3703.2003.00158.x – volume: 42 start-page: 187 year: 2014 ident: 1564_CR58 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku365 – volume: 74 start-page: 410 year: 2006 ident: 1564_CR35 publication-title: Infect Immun doi: 10.1128/IAI.74.1.410-424.2006 – volume-title: Transposable elements direct the coevolution between plants and microbes year: 2017 ident: 1564_CR47 – volume: 532 start-page: 329 year: 2016 ident: 1564_CR16 publication-title: Nature doi: 10.1038/nature17640 – volume: 167 start-page: 816 year: 2016 ident: 1564_CR22 publication-title: Cell doi: 10.1016/j.cell.2016.09.038 – volume: 9 start-page: 671 year: 2012 ident: 1564_CR56 publication-title: Nat Methods doi: 10.1038/nmeth.2089 – volume: 210 start-page: 76 year: 2016 ident: 1564_CR6 publication-title: New Phytol doi: 10.1111/nph.13540 – volume: 11 start-page: 637 year: 2010 ident: 1564_CR48 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-637 – volume: 27 start-page: 981 year: 2017 ident: 1564_CR41 publication-title: Curr Biol doi: 10.1016/j.cub.2017.02.044 – volume: 15 start-page: 550 year: 2014 ident: 1564_CR62 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 49 start-page: 964 year: 2017 ident: 1564_CR12 publication-title: Nat Genet doi: 10.1038/ng.3859 – volume: 28 start-page: 309 year: 2006 ident: 1564_CR2 publication-title: Bioessays doi: 10.1002/bies.20342 – volume: 212 start-page: 888 year: 2016 ident: 1564_CR45 publication-title: New Phytol doi: 10.1111/nph.14137 – volume: 447 start-page: 396 year: 2007 ident: 1564_CR1 publication-title: Nature doi: 10.1038/nature05913 – volume: 12 start-page: 772 year: 2011 ident: 1564_CR54 publication-title: Mol Plant Pathol doi: 10.1111/j.1364-3703.2011.00710.x – volume: 4 start-page: 1349 year: 2013 ident: 1564_CR49 publication-title: Nat Commun doi: 10.1038/ncomms2354 – volume: 25 start-page: 1952 year: 2009 ident: 1564_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp340 – volume: 313 start-page: 1261 year: 2006 ident: 1564_CR26 publication-title: Science doi: 10.1126/science.1128796 – volume: 330 start-page: 1540 year: 2010 ident: 1564_CR27 publication-title: Science doi: 10.1126/science.1193070 – volume: 24 start-page: 1530 year: 2011 ident: 1564_CR33 publication-title: Mol Plant-Microbe Interact doi: 10.1094/MPMI-05-11-0106 – volume: 161 start-page: 893 year: 2015 ident: 1564_CR14 publication-title: Cell doi: 10.1016/j.cell.2015.04.018 – volume: 461 start-page: 393 year: 2009 ident: 1564_CR25 publication-title: Nature doi: 10.1038/nature08358 – volume: 21 start-page: 4659 year: 1993 ident: 1564_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/21.20.4659 – volume: 36 start-page: D281 year: 2010 ident: 1564_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm960 – volume: 161 start-page: 879 year: 2015 ident: 1564_CR15 publication-title: Cell doi: 10.1016/j.cell.2015.04.010 – volume: 10 start-page: e1004227 year: 2014 ident: 1564_CR52 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004227 – volume: 17 start-page: 127 year: 2016 ident: 1564_CR57 publication-title: Mol Plant Pathol doi: 10.1111/mpp.12318 – volume: 7 start-page: 13052 year: 2016 ident: 1564_CR18 publication-title: Nat Commun doi: 10.1038/ncomms13052 – volume-title: HMMER: profile HMMs for protein sequence analysis year: 1998 ident: 1564_CR31 – volume-title: Transcriptomes of two phytophthora species at mycelium stage year: 2018 ident: 1564_CR39 – volume: 13 start-page: 484 year: 2012 ident: 1564_CR5 publication-title: Nat Rev Genet doi: 10.1038/nrg3230 – volume: 183 start-page: 3065 year: 2001 ident: 1564_CR8 publication-title: J Bacteriol doi: 10.1128/JB.183.10.3065-3075.2001 – volume: 35 start-page: 57 year: 2015 ident: 1564_CR29 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2015.09.001 – volume: 5 start-page: 18 year: 1962 ident: 1564_CR7 publication-title: J Mol Biol doi: 10.1016/S0022-2836(62)80058-8 – volume: 161 start-page: 868 year: 2015 ident: 1564_CR13 publication-title: Cell doi: 10.1016/j.cell.2015.04.005 – volume: 21 start-page: 4969 year: 2002 ident: 1564_CR10 publication-title: EMBO J doi: 10.1093/emboj/cdf490 – volume: 1127 start-page: 29 year: 2014 ident: 1564_CR60 publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-986-4_3 – volume: 69 start-page: 7610 year: 2001 ident: 1564_CR9 publication-title: Infect Immun doi: 10.1128/IAI.69.12.7610-7615.2001 – volume: 25 start-page: 896 year: 2012 ident: 1564_CR43 publication-title: Mol Plant-Microbe Interact doi: 10.1094/MPMI-01-12-0023-R – volume: 8 start-page: e1002940 year: 2012 ident: 1564_CR51 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002940 – volume: 10 start-page: 93 year: 2014 ident: 1564_CR21 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1432 – volume: 49 start-page: 18 year: 2013 ident: 1564_CR23 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 77 start-page: 53 year: 2013 ident: 1564_CR3 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00044-12 – volume: 10 start-page: 417 year: 2012 ident: 1564_CR28 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2790 – volume-title: MeDIP-seq of two phytophthora species at mycelium stage year: 2018 ident: 1564_CR37 – volume: 18 start-page: 198 year: 2017 ident: 1564_CR34 publication-title: BMC Genomics doi: 10.1186/s12864-017-3585-x – volume: 154 start-page: 1482 year: 2008 ident: 1564_CR53 publication-title: Microbiology doi: 10.1099/mic.0.2007/015545-0 – volume: 17 start-page: 1351 year: 2015 ident: 1564_CR40 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12609 – volume: 24 start-page: 503 year: 2017 ident: 1564_CR36 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.3412 – volume: 23 start-page: 257 issue: 2 year: 2006 ident: 1564_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl567 – volume: 7 start-page: 11301 year: 2016 ident: 1564_CR17 publication-title: Nat Commun doi: 10.1038/ncomms11301 – volume: 14 start-page: 178 year: 2013 ident: 1564_CR59 publication-title: Brief Bioinform doi: 10.1093/bib/bbs017 – volume: 16 start-page: 13 year: 2008 ident: 1564_CR24 publication-title: Trends Microbiol doi: 10.1016/j.tim.2007.10.013 – volume: 12 start-page: e1005920 year: 2016 ident: 1564_CR46 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005920 – ident: 1564_CR61 |
SSID | ssj0019426 ssj0017866 |
Score | 2.4773505 |
Snippet | Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive... Background Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for... BACKGROUND: Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for... Abstract Background Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 181 |
SubjectTerms | 5-methylcytosine Adaptive genome Adenine Chromatography Deoxyribonucleic acid DNA DNA Methylation DNA sequencing Enzymatic activity Enzymes Epigenetics Evolution Evolution & development evolutionary adaptation Famine Fungi Gene expression Gene Expression Regulation genes Genome Genomes Genomics Glycine max - parasitology Insects Localization Mammals Methyltransferases Methyltransferases - metabolism mutants N6-methyladenosine Nematodes Pathogens Phylogeny Phytophthora Phytophthora - classification Phytophthora - enzymology Phytophthora - genetics Phytophthora infestans Phytophthora sojae plant pathogens Prokaryotes Proteins Stem cells Transcription Virulence |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozECSnaxLEd-4QWxGqFBOLASr1Fjj2mCJqUNnvov2cmcQNFqMfWU8nNvL6xJ98w9loXvhYRHcloiQWK12XeOl3lMYJsIdoSgA70P33Wl1fy40It0oHbNrVV7mPiGKhD7-mM_EwITIbGIKB_u_6V09Qoul1NIzRusltEXUZWXS_mgqusDWGV9MFKMb1qRA2Iyup0xVkafbbFQK6obQgLKqVlLg-S1Mjl_z8A-m8f5V-J6eIeu5sQJT-fTOA-uwHdA3Z7mjG5e8h-fFnuiDxgWKKyOQ2MxhJ9BVvuNsBXfaDxXRB4u-N6dZ7WhxHNwgYzHMp1gbukRBSkg1vugltTnORE8boCTuMd0HwfsauLD1_fX-ZpwkLuMS8PuXKVoA4-X8ZChSrWRP7urZFB1aABwGlnfQDqZfMiWuNiUEJXVVClB9dWj9lJ13fwlHHhKHY4VFOoZSjKFsFUZZ2NCFnqtlAZK_aPtPGJfpymYPxsxjLE6GbSQoNaaEgLjczYm_kn64l745jwO9LTLEi02eMX_eZbk7ywMWADXSWqKKJ0GOu9hWC9sKV0HvedsdO9lpvky9vmj-Vl7NW8jF5IVyuug_4aZUpRW4TWyhyREYLinzb4LJ5MhjPvFoGEQeBVZqw-MKmDv3O40n1fjmzgGkt4KeWz41t_zu6I0b4p656yk2FzDS8QTg3ty9FnfgNonhyo priority: 102 providerName: ProQuest |
Title | Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30382931 https://www.proquest.com/docview/2207188149 https://www.proquest.com/docview/2127950758 https://www.proquest.com/docview/2221017685 https://pubmed.ncbi.nlm.nih.gov/PMC6211444 https://doaj.org/article/8e9d12245f2f4a538c9ed9c2914acd74 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVtSqGX0u-6TRcVeiqY2LIkS8dsSQiFhhAaWHoRsjRiS7PesOsc9t93xvYu2VLSSy8-WGOwNDOaN9LwhrFPugi1SOhIRktMUIIu88brKk8JZAPJlgB0oP_tXJ9dya8zNbvT6otqwgZ64GHhjgzYSLc_KokkPbpnsBBtELaUPsS6ZwLFmLdNpsb7A4uBZ7zDLI0-WuNOraguCDMmpWUu96JQT9b_N4T5Z6Hknchz-ow9HSEjPx5-9Tl7AO0L9nhoIrl5yX5dzDfEDtDNUZucOkJjDr6ANfcr4ItlpP5cEHmz4XpxPI53PVyFFYYwlGsj96OWUJBOZrmP_oY2Qk4crgvg1L8B7fMVuzo9-f7lLB9bKOQBA2-XK18JKtELZSpUrFJN7O7BGhlVDRoAvPY2RKBitSCSNT5FJXRVRVUG8E31mh20yxbeMi48bQ5eiAJXPRZlg2ipst4mxCR1U6iMFdsldWHkF6c2F9euzzOMdoMWHGrBkRaczNjn3Sc3A7nGfcJT0tNOkHix-xdoLW60Fvcva8nY4VbLbnTWtcMpYYQ2mCtm7ONuGN2M7k58C8tblClFbRE7K3OPjBC0wWmDa_FmMJzd3yJSMIisyozVeya1N539kfbnvKf71pijSynf_Y_5v2dPRO8FFHwP2UG3uoUPiKq6ZsIe1rN6wh5NT84vLie9O-HzcvrjN09-JDQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkWChgJLkhRE8d27ANC5VFt6UMcWmlvxvGDRXSTZTcV2j_Fb2QmyS4sQnvrMfEkcjyvb-zJDCEvZeoKFkGRlOQQoDiZJaWVeRJj4GWIOgsBN_RPTuXwnH8aidEW-bX8FwbTKpc2sTXUvna4R77HGDhDpQDQv53-SLBrFJ6uLltodGJxFBY_IWSbvzn8APx9xdjBx7P3w6TvKpA48EVNImzOMGvNZTEVPo8FFjx3WnEviiBDCFZa7XzA_C3HolY2esFknnuRuWDLHN57jVwHx5tisFeMVgFeVijERv2F5qz7tQkTHoWW_ZFqpuTeHByHwDQlCOCE5Alfc4pt74D_Ad5_8zb_coQHd8jtHsHS_U7k7pKtUN0jN7qelov75Pvn8QKLFTRjEC6KDaoXF_UkzKmdBTqpPbYLC56WCyon-_1406LnMAOPCnSVp7YXGiDEjWJqvZ2iXaZYUnYSKLaTAHV5QM6vZO0fku2qrsIjQplFW2VBLHzBfZqVAN5ybXUEiFSUqRiQdLmkxvXlzrHrxoVpwx4lTccFA1wwyAXDB-T16pFpV-tjE_E75NOKEMt0tzfq2VfTa71RQXs8uhSRRW7BtzgdvHZMZ9w6mPeA7C65bHrbMTd_JH1AXqyGQevxKMdWob4EmowVGqC8UBtoGEN7KxWsxU4nOKvZAnBRAPSyASnWRGrtc9ZHqm_jtvq4ZBBCc_5489Sfk5vDs5Njc3x4evSE3GKtrKPH3yXbzewyPAUo15TPWv2h5MtVK-xvcPBaMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytophthora+methylomes+are+modulated+by+6mA+methyltransferases+and+associated+with+adaptive+genome+regions&rft.jtitle=Genome+biology&rft.au=Chen%2C+Han&rft.au=Shu%2C+Haidong&rft.au=Wang%2C+Liyuan&rft.au=Zhang%2C+Fan&rft.date=2018-10-31&rft.eissn=1474-760X&rft.volume=19&rft.issue=1&rft.spage=181&rft_id=info:doi/10.1186%2Fs13059-018-1564-4&rft_id=info%3Apmid%2F30382931&rft.externalDocID=30382931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |