Focused ultrasound modulates region-specific brain activity

We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the an...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 56; no. 3; pp. 1267 - 1275
Main Authors Yoo, Seung-Schik, Bystritsky, Alexander, Lee, Jong-Hwan, Zhang, Yongzhi, Fischer, Krisztina, Min, Byoung-Kyong, McDannold, Nathan J., Pascual-Leone, Alvaro, Jolesz, Ferenc A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2011
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. ► Focused ultrasound (FUS) was applied for the modulation of regional brain activity. ► Pulsed FUS was delivered to the rabbit somatomotor and visual areas. ► The brain function was characterized by electroencephalogram and functional MRI. ► The effects were bimodal—neural excitability can be either increased or suppressed. ► FUS provides non-invasive regional modulation of neural tissue excitability.
AbstractList We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. ► Focused ultrasound (FUS) was applied for the modulation of regional brain activity. ► Pulsed FUS was delivered to the rabbit somatomotor and visual areas. ► The brain function was characterized by electroencephalogram and functional MRI. ► The effects were bimodal—neural excitability can be either increased or suppressed. ► FUS provides non-invasive regional modulation of neural tissue excitability.
We demonstrated thein vivofeasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.
We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.
We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.
We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.
Author Bystritsky, Alexander
Min, Byoung-Kyong
Jolesz, Ferenc A.
Fischer, Krisztina
Zhang, Yongzhi
Yoo, Seung-Schik
Pascual-Leone, Alvaro
McDannold, Nathan J.
Lee, Jong-Hwan
AuthorAffiliation d Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
b Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
a Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
c Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
AuthorAffiliation_xml – name: a Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– name: d Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
– name: b Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
– name: c Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
Author_xml – sequence: 1
  givenname: Seung-Schik
  surname: Yoo
  fullname: Yoo, Seung-Schik
  email: yoo@bwh.harvard.edu
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 2
  givenname: Alexander
  surname: Bystritsky
  fullname: Bystritsky, Alexander
  organization: Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
– sequence: 3
  givenname: Jong-Hwan
  surname: Lee
  fullname: Lee, Jong-Hwan
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 4
  givenname: Yongzhi
  surname: Zhang
  fullname: Zhang, Yongzhi
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 5
  givenname: Krisztina
  surname: Fischer
  fullname: Fischer, Krisztina
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 6
  givenname: Byoung-Kyong
  surname: Min
  fullname: Min, Byoung-Kyong
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 7
  givenname: Nathan J.
  surname: McDannold
  fullname: McDannold, Nathan J.
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 8
  givenname: Alvaro
  surname: Pascual-Leone
  fullname: Pascual-Leone, Alvaro
  organization: Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
– sequence: 9
  givenname: Ferenc A.
  surname: Jolesz
  fullname: Jolesz, Ferenc A.
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21354315$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URB_wF9BILFjN1O-HkBClohSpEhtYW47nTnCY2MGeiZR_j6O2FLIhK7-Ov3vPPefoJKYICDUEdwQTebnqIsw5hbVbQkcxIR2mHRb6GToj2IjWCEVP9nvBWk2IOUXnpawwxoZw_QKdUsIEZ0ScoXc3yc8F-mYep-xKmmPfrFM_j26C0mRYhhTbsgEfhuCbRXYhNs5PYRum3Uv0fHBjgVcP6wX6fvPp2_Vte_f185frq7vWS0mmVrDBUMFEPWmJqXCS1-q9AykxH7DwRrnBLYgnC6P4wOsFdlQBUZIprx27QO_vuZt5sYbeQ6ytjnaTq_-8s8kF--9LDD_sMm0tY5xKzSvg7QMgp18zlMmuQ_Ewji5CmovVihNtDFP_V0qulKZcV-WbA-UqzTnWOVhSjWJhtCFV9frv1v_0_BjAkzefUykZBuvD5KY69eokjJZgu0_cruxT4nafuMXU1sQrQB8AHmsc8fXj_Veo4W0DZFt8gOihDxn8ZPsUjoF8OID4McTg3fgTdschfgM_XuIg
CitedBy_id crossref_primary_10_1007_s40477_023_00810_7
crossref_primary_10_1038_s41467_021_22743_7
crossref_primary_10_1109_TUFFC_2017_2651648
crossref_primary_10_1016_j_brs_2014_06_011
crossref_primary_10_3390_jcm11133809
crossref_primary_10_1007_s13534_016_0007_y
crossref_primary_10_1121_10_0005764
crossref_primary_10_1016_j_brs_2023_09_004
crossref_primary_10_1111_ner_12075
crossref_primary_10_1016_j_brs_2013_12_012
crossref_primary_10_1038_s42003_024_07356_2
crossref_primary_10_1038_s41440_024_01977_0
crossref_primary_10_12786_bn_2021_14_e4
crossref_primary_10_1016_j_phmed_2020_100029
crossref_primary_10_7554_eLife_40541
crossref_primary_10_1016_j_clinph_2021_12_010
crossref_primary_10_1259_bjr_20170481
crossref_primary_10_1371_journal_pone_0224311
crossref_primary_10_1016_j_ultrasmedbio_2014_09_029
crossref_primary_10_1097_WNP_0000000000000488
crossref_primary_10_1038_s41598_020_72189_y
crossref_primary_10_3389_fpsyt_2022_825802
crossref_primary_10_1038_s41598_023_31383_4
crossref_primary_10_1016_j_cub_2019_08_021
crossref_primary_10_3390_mi13091536
crossref_primary_10_1007_s00117_015_0026_1
crossref_primary_10_1186_s40349_015_0044_5
crossref_primary_10_1227_NEU_0b013e3182672ac9
crossref_primary_10_1038_s41467_024_46461_y
crossref_primary_10_3171_2013_2_JNS13227
crossref_primary_10_1523_JNEUROSCI_0784_23_2024
crossref_primary_10_1111_cns_14303
crossref_primary_10_1080_07853890_2023_2251145
crossref_primary_10_14336_AD_2020_0623
crossref_primary_10_1016_j_ultrasmedbio_2022_02_006
crossref_primary_10_1016_j_neuroimage_2020_116597
crossref_primary_10_1093_brain_aww284
crossref_primary_10_1039_C7LC00163K
crossref_primary_10_1016_j_brs_2019_07_015
crossref_primary_10_1002_adbi_201800041
crossref_primary_10_1016_j_neuroscience_2023_07_019
crossref_primary_10_1038_s41598_020_78553_2
crossref_primary_10_1038_s43586_024_00368_6
crossref_primary_10_3389_fnins_2019_00696
crossref_primary_10_1111_cns_13463
crossref_primary_10_1016_j_ultrasmedbio_2018_09_005
crossref_primary_10_1016_j_brs_2024_03_001
crossref_primary_10_1523_ENEURO_0514_20_2021
crossref_primary_10_1016_j_brs_2019_07_024
crossref_primary_10_1016_j_cell_2016_03_047
crossref_primary_10_1126_sciadv_aaz4193
crossref_primary_10_1038_srep00989
crossref_primary_10_3389_fncom_2017_00001
crossref_primary_10_1088_1741_2552_abb14d
crossref_primary_10_1016_j_brainresbull_2018_12_004
crossref_primary_10_1109_TNSRE_2017_2682923
crossref_primary_10_3389_fnins_2017_00562
crossref_primary_10_1038_s41377_022_01004_2
crossref_primary_10_3389_fnhum_2022_981571
crossref_primary_10_1176_appi_focus_20210022
crossref_primary_10_1016_j_ultrasmedbio_2021_02_028
crossref_primary_10_1109_TUFFC_2020_3006781
crossref_primary_10_3389_fncom_2022_923247
crossref_primary_10_1021_acsnano_4c05270
crossref_primary_10_1088_1478_3975_11_5_051001
crossref_primary_10_1016_j_neuroimage_2023_120201
crossref_primary_10_1016_j_brs_2024_03_013
crossref_primary_10_1523_ENEURO_0136_15_2016
crossref_primary_10_1016_j_medengphy_2023_104023
crossref_primary_10_1016_j_jconrel_2015_08_059
crossref_primary_10_1016_j_ultsonch_2019_104745
crossref_primary_10_1038_srep35453
crossref_primary_10_1016_j_jmps_2023_105457
crossref_primary_10_3389_fnbeh_2021_820017
crossref_primary_10_1016_j_cmpb_2024_108458
crossref_primary_10_1109_TNSRE_2022_3224897
crossref_primary_10_3389_fnhum_2020_00066
crossref_primary_10_1186_s40349_015_0032_9
crossref_primary_10_14366_usg_23037
crossref_primary_10_31887_DCNS_2014_16_1_ffroehlich
crossref_primary_10_1186_s13195_019_0569_x
crossref_primary_10_3390_brainsci12020158
crossref_primary_10_1016_j_brs_2021_12_005
crossref_primary_10_1109_JBHI_2022_3198650
crossref_primary_10_1007_s10072_024_07704_4
crossref_primary_10_3390_bioengineering11111126
crossref_primary_10_3389_fnhum_2020_00052
crossref_primary_10_3389_fnins_2022_1011699
crossref_primary_10_1016_j_yebeh_2015_04_008
crossref_primary_10_1016_j_ultrasmedbio_2023_11_004
crossref_primary_10_1109_TNSRE_2017_2765001
crossref_primary_10_1093_qjmed_hcad098
crossref_primary_10_1016_j_ultrasmedbio_2023_11_003
crossref_primary_10_3389_fnhum_2022_872639
crossref_primary_10_1016_j_ultrasmedbio_2018_01_010
crossref_primary_10_1016_j_neuroimage_2024_120768
crossref_primary_10_3389_fnhum_2024_1392199
crossref_primary_10_1088_1741_2552_aa843e
crossref_primary_10_1103_PhysRevApplied_21_014011
crossref_primary_10_1093_braincomms_fcaf062
crossref_primary_10_1016_j_heliyon_2025_e43001
crossref_primary_10_1186_s12868_016_0303_6
crossref_primary_10_3390_brainsci12020289
crossref_primary_10_1016_j_brs_2021_06_003
crossref_primary_10_1038_srep34026
crossref_primary_10_1007_s10143_024_03078_5
crossref_primary_10_1002_adma_202303180
crossref_primary_10_3389_fnins_2022_893108
crossref_primary_10_1002_biot_202400561
crossref_primary_10_1016_j_neuropsychologia_2017_09_019
crossref_primary_10_1088_1741_2552_aaa140
crossref_primary_10_3389_fnhum_2024_1359396
crossref_primary_10_1155_2021_8534466
crossref_primary_10_3390_ma12203433
crossref_primary_10_1186_s40349_016_0061_z
crossref_primary_10_1371_journal_pone_0077115
crossref_primary_10_1088_1361_6560_aabe37
crossref_primary_10_3389_fpsyt_2024_1466506
crossref_primary_10_5213_inj_2015_19_1_3
crossref_primary_10_1016_j_brs_2021_04_021
crossref_primary_10_1016_j_ultrasmedbio_2014_11_008
crossref_primary_10_1109_TBCAS_2023_3299750
crossref_primary_10_1016_j_neuroimage_2021_118557
crossref_primary_10_1016_j_metabol_2017_01_012
crossref_primary_10_3389_fneur_2023_1279875
crossref_primary_10_1016_j_neuchi_2013_06_005
crossref_primary_10_1016_j_cub_2013_10_029
crossref_primary_10_1088_1674_1056_25_8_084301
crossref_primary_10_1109_TNSRE_2018_2821194
crossref_primary_10_1016_j_brs_2022_05_004
crossref_primary_10_1371_journal_pone_0267698
crossref_primary_10_34133_2021_2674692
crossref_primary_10_1016_j_brs_2018_08_014
crossref_primary_10_1016_j_brs_2018_08_013
crossref_primary_10_1088_1741_2560_13_3_031003
crossref_primary_10_3171_2016_11_JNS16976
crossref_primary_10_1007_s10237_024_01830_w
crossref_primary_10_1016_j_neuron_2018_05_009
crossref_primary_10_1109_ACCESS_2020_2972589
crossref_primary_10_1371_journal_pone_0033552
crossref_primary_10_1186_s12868_019_0493_9
crossref_primary_10_1016_j_neuroimage_2021_118441
crossref_primary_10_1016_j_ultrasmedbio_2019_05_023
crossref_primary_10_1109_RBME_2016_2555760
crossref_primary_10_15302_J_ENG_2015078
crossref_primary_10_1016_j_bbrep_2023_101604
crossref_primary_10_1016_j_brs_2021_03_004
crossref_primary_10_1088_1741_2552_abae8b
crossref_primary_10_1016_j_ultrasmedbio_2012_04_023
crossref_primary_10_1088_1741_2560_8_5_056012
crossref_primary_10_1063_5_0236108
crossref_primary_10_1016_j_brs_2019_09_007
crossref_primary_10_1038_s41467_022_28040_1
crossref_primary_10_1007_s40846_018_0391_0
crossref_primary_10_1038_s41598_018_26287_7
crossref_primary_10_1093_cercor_bhad330
crossref_primary_10_1186_s12868_018_0459_3
crossref_primary_10_3390_pharmaceutics13111980
crossref_primary_10_1177_1545968318790022
crossref_primary_10_3174_ajnr_A4902
crossref_primary_10_1002_mp_15358
crossref_primary_10_1088_2631_7990_ad62c6
crossref_primary_10_1002_aisy_202100082
crossref_primary_10_3389_fninf_2024_1470845
crossref_primary_10_3389_fphar_2019_00544
crossref_primary_10_1007_s40473_018_0156_7
crossref_primary_10_1134_S1063771012010083
crossref_primary_10_1523_JNEUROSCI_3521_12_2013
crossref_primary_10_1121_1_4984287
crossref_primary_10_1523_ENEURO_0213_20_2020
crossref_primary_10_1093_cercor_bhy187
crossref_primary_10_1007_s40473_015_0039_0
crossref_primary_10_1088_1741_2552_acb014
crossref_primary_10_1097_j_pain_0000000000003171
crossref_primary_10_1016_j_neuron_2023_02_018
crossref_primary_10_1016_j_ultrasmedbio_2015_08_010
crossref_primary_10_3389_fnins_2017_00607
crossref_primary_10_1109_TUFFC_2024_3383027
crossref_primary_10_1002_mrm_29587
crossref_primary_10_1103_PhysRevX_4_011004
crossref_primary_10_1016_j_tins_2024_12_010
crossref_primary_10_1002_jnr_23845
crossref_primary_10_3390_brainsci14060614
crossref_primary_10_1016_j_brs_2025_01_015
crossref_primary_10_1016_j_cmpb_2023_107591
crossref_primary_10_1109_TBME_2011_2174057
crossref_primary_10_1016_j_plrev_2023_05_004
crossref_primary_10_1118_1_4963208
crossref_primary_10_35848_1347_4065_ac9faf
crossref_primary_10_1016_j_brs_2017_07_007
crossref_primary_10_1109_TNSRE_2020_2978865
crossref_primary_10_3389_fnins_2024_1463038
crossref_primary_10_1109_TIM_2021_3125978
crossref_primary_10_1109_TBME_2019_2907556
crossref_primary_10_1016_j_brs_2022_12_003
crossref_primary_10_1088_1741_2552_acb104
crossref_primary_10_1038_srep24738
crossref_primary_10_1182_blood_2023023718
crossref_primary_10_1088_1361_6560_aaa037
crossref_primary_10_1109_TBME_2018_2845689
crossref_primary_10_2139_ssrn_4769614
crossref_primary_10_1016_j_yebeh_2015_02_033
crossref_primary_10_1002_hbm_23981
crossref_primary_10_1007_s12028_015_0203_0
crossref_primary_10_1109_TBME_2022_3233345
crossref_primary_10_1038_s41598_018_28320_1
crossref_primary_10_1209_0295_5075_ad239b
crossref_primary_10_3389_fnana_2024_1469250
crossref_primary_10_1002_smll_202406678
crossref_primary_10_1016_j_actbio_2022_07_034
crossref_primary_10_1016_j_ctim_2014_05_010
crossref_primary_10_1016_j_nec_2013_08_002
crossref_primary_10_1016_j_ultras_2024_107298
crossref_primary_10_1186_s40349_018_0119_1
crossref_primary_10_1016_j_neuron_2018_04_036
crossref_primary_10_1002_mds_27952
crossref_primary_10_1016_j_isci_2023_108372
crossref_primary_10_34133_2019_1748489
crossref_primary_10_1002_wnan_1781
crossref_primary_10_20517_ss_2023_36
crossref_primary_10_3389_fphy_2020_00150
crossref_primary_10_1007_s11277_016_3246_4
crossref_primary_10_1016_j_ultras_2022_106724
crossref_primary_10_1038_srep15477
crossref_primary_10_1088_1741_2552_acd870
crossref_primary_10_1016_j_gendis_2023_101112
crossref_primary_10_1371_journal_pone_0278865
crossref_primary_10_1002_ana_26294
crossref_primary_10_1016_j_ultrasmedbio_2020_11_022
crossref_primary_10_1016_j_ultrasmedbio_2017_11_008
crossref_primary_10_3390_jcm12227070
crossref_primary_10_1109_TBME_2020_2975279
crossref_primary_10_1109_TUFFC_2022_3192224
crossref_primary_10_1186_s12868_018_0456_6
crossref_primary_10_1186_s40035_021_00256_z
crossref_primary_10_1109_TUFFC_2020_3014780
crossref_primary_10_1371_journal_pone_0288654
crossref_primary_10_1038_s41598_021_85504_y
crossref_primary_10_3389_fnins_2022_807376
crossref_primary_10_3389_fneur_2018_01007
crossref_primary_10_1016_j_plrev_2023_04_006
crossref_primary_10_1088_1361_6560_aaa15c
crossref_primary_10_1109_TUFFC_2021_3052203
crossref_primary_10_1002_ima_22091
crossref_primary_10_1007_s40857_023_00289_6
crossref_primary_10_1016_j_ultrasmedbio_2016_08_003
crossref_primary_10_1038_s41598_022_20554_4
crossref_primary_10_1016_j_ultrasmedbio_2016_02_020
crossref_primary_10_1152_jn_00701_2020
crossref_primary_10_1371_journal_pone_0060410
crossref_primary_10_1016_j_ultrasmedbio_2017_12_020
crossref_primary_10_1088_1361_6560_ac08b1
crossref_primary_10_1364_BOE_460713
crossref_primary_10_1126_sciadv_abf6312
crossref_primary_10_1109_TBME_2013_2283970
crossref_primary_10_3389_fnagi_2021_656430
crossref_primary_10_1016_j_hrthm_2023_11_026
crossref_primary_10_1186_s12871_021_01381_y
crossref_primary_10_1016_j_brs_2020_08_014
crossref_primary_10_1093_cercor_bhae143
crossref_primary_10_1016_j_neuroimage_2023_119952
crossref_primary_10_2139_ssrn_4131980
crossref_primary_10_3390_ijms24032578
crossref_primary_10_1016_j_ultsonch_2023_106686
crossref_primary_10_1097_WNR_0000000000000745
crossref_primary_10_1002_nau_23241
crossref_primary_10_3390_jcm12175448
crossref_primary_10_1088_1674_1056_24_12_124302
crossref_primary_10_1109_TBME_2016_2543662
crossref_primary_10_1016_j_compbiomed_2021_105094
crossref_primary_10_1038_s41598_017_13572_0
crossref_primary_10_1109_TMECH_2021_3114852
crossref_primary_10_1111_jnc_70001
crossref_primary_10_1016_j_brs_2018_11_007
crossref_primary_10_3389_fnins_2016_00348
crossref_primary_10_1038_ncomms9264
crossref_primary_10_1093_cercor_bhac370
crossref_primary_10_1177_15357597221086111
crossref_primary_10_1109_TUFFC_2020_3028619
crossref_primary_10_1523_JNEUROSCI_1458_17_2018
crossref_primary_10_1109_TBME_2021_3104865
crossref_primary_10_1002_adfm_201908999
crossref_primary_10_1016_j_brs_2012_05_002
crossref_primary_10_1063_5_0052743
crossref_primary_10_1002_ima_22160
crossref_primary_10_1016_j_brs_2021_01_006
crossref_primary_10_59761_RCR5096
crossref_primary_10_1016_j_ultrasmedbio_2017_08_937
crossref_primary_10_1016_j_brs_2021_01_002
crossref_primary_10_1109_TUFFC_2020_3039743
crossref_primary_10_1109_TNSRE_2022_3199813
crossref_primary_10_1016_j_neuron_2020_09_003
crossref_primary_10_3171_2017_11_FOCUS17610
crossref_primary_10_1016_j_ultrasmedbio_2016_02_012
crossref_primary_10_1016_j_psc_2018_04_010
crossref_primary_10_1016_j_brs_2024_06_005
crossref_primary_10_1038_s41598_020_62265_8
crossref_primary_10_1016_j_ultrasmedbio_2012_09_009
crossref_primary_10_1016_j_brs_2014_08_008
crossref_primary_10_3390_brainsci11060711
crossref_primary_10_2217_nnm_15_52
crossref_primary_10_1007_s40473_015_0049_y
crossref_primary_10_1118_1_4789916
crossref_primary_10_3390_mi12081001
crossref_primary_10_1016_j_brainresbull_2021_07_028
crossref_primary_10_1016_j_brs_2024_07_019
crossref_primary_10_1007_s11916_018_0711_7
crossref_primary_10_1093_cercor_bhac037
crossref_primary_10_1186_s12868_023_00817_0
crossref_primary_10_1371_journal_pone_0086939
crossref_primary_10_1109_TUFFC_2020_3019932
crossref_primary_10_1002_ima_22020
crossref_primary_10_1002_ima_22262
crossref_primary_10_1016_j_heliyon_2023_e22522
crossref_primary_10_1109_TUFFC_2020_2968479
crossref_primary_10_1016_j_ultrasmedbio_2020_04_011
crossref_primary_10_1038_s41598_023_39640_2
crossref_primary_10_1016_j_brainresbull_2020_05_006
crossref_primary_10_1016_j_ultrasmedbio_2018_12_012
crossref_primary_10_1016_j_ultrasmedbio_2018_12_015
crossref_primary_10_1118_1_4812423
crossref_primary_10_1016_j_jns_2020_117149
crossref_primary_10_1016_j_jpsychires_2023_10_039
crossref_primary_10_1109_TBME_2020_3030892
crossref_primary_10_1016_j_brs_2011_03_007
crossref_primary_10_1016_j_brs_2019_03_005
crossref_primary_10_1109_TUFFC_2019_2903896
crossref_primary_10_1016_j_brs_2024_07_020
crossref_primary_10_1016_S1353_8020_13_70046_4
crossref_primary_10_1038_nprot_2011_371
crossref_primary_10_1109_TBME_2021_3050797
crossref_primary_10_1002_brb3_981
crossref_primary_10_1088_1674_1056_ac7453
crossref_primary_10_1016_j_ultsonch_2019_104935
crossref_primary_10_1371_journal_pone_0159892
crossref_primary_10_1021_acs_nanolett_8b00935
crossref_primary_10_1016_j_conb_2018_04_011
crossref_primary_10_1109_TBME_2016_2591924
crossref_primary_10_1016_j_brs_2024_05_003
crossref_primary_10_1063_5_0011837
crossref_primary_10_3390_mi15091106
crossref_primary_10_1016_j_brs_2019_10_018
crossref_primary_10_1080_14737175_2023_2221789
crossref_primary_10_1109_TBME_2015_2427339
crossref_primary_10_1186_s12917_015_0581_8
crossref_primary_10_1088_1674_1056_24_8_088704
crossref_primary_10_1109_TNSRE_2022_3148877
crossref_primary_10_1126_sciadv_ads6947
crossref_primary_10_1186_s12868_018_0462_8
crossref_primary_10_1002_ima_22110
crossref_primary_10_1002_ima_22113
crossref_primary_10_1038_s41598_021_98920_x
crossref_primary_10_1113_JP285613
crossref_primary_10_1002_advs_202407373
crossref_primary_10_1016_j_jneumeth_2023_110009
crossref_primary_10_1073_pnas_2300291120
crossref_primary_10_1016_j_ncl_2013_07_008
crossref_primary_10_1126_science_adp7206
crossref_primary_10_1080_21507740_2013_863246
crossref_primary_10_1002_jbio_201900201
crossref_primary_10_1088_1742_6596_581_1_012003
crossref_primary_10_1088_1741_2552_ac3f6d
crossref_primary_10_3109_02656736_2015_1007398
crossref_primary_10_1109_ACCESS_2021_3073506
crossref_primary_10_17116_neiro2016802108_118
crossref_primary_10_1021_acs_nanolett_9b04373
crossref_primary_10_3389_fneur_2023_1117188
crossref_primary_10_1016_j_neubiorev_2020_06_007
crossref_primary_10_1007_s13311_018_00691_3
crossref_primary_10_1109_TBCAS_2019_2959439
crossref_primary_10_1016_j_ultrasmedbio_2015_10_001
crossref_primary_10_1109_TUFFC_2021_3131752
crossref_primary_10_3389_fnins_2022_886584
crossref_primary_10_1109_TUFFC_2015_2498042
crossref_primary_10_1016_j_isci_2021_103085
crossref_primary_10_1097_WNR_0b013e32834b2957
crossref_primary_10_1016_j_ultrasmedbio_2017_05_008
crossref_primary_10_1016_j_bbr_2018_01_004
crossref_primary_10_1038_s41467_020_14706_1
crossref_primary_10_1186_s40349_016_0066_7
crossref_primary_10_1088_1741_2552_abdfb1
crossref_primary_10_1038_srep08743
crossref_primary_10_1038_s41598_022_17314_9
crossref_primary_10_1016_j_cobme_2018_10_004
crossref_primary_10_1038_srep16253
crossref_primary_10_1088_1741_2552_aaaee1
crossref_primary_10_3389_fneur_2023_1301956
crossref_primary_10_1038_s41598_018_35486_1
crossref_primary_10_3390_s21175962
crossref_primary_10_1109_TUFFC_2018_2847252
crossref_primary_10_1088_1741_2560_13_5_056002
crossref_primary_10_3390_pharmaceutics14102120
crossref_primary_10_4103_0028_3886_302469
crossref_primary_10_1016_j_neuroimage_2023_119979
crossref_primary_10_1051_epjap_2016150495
crossref_primary_10_33069_cim_2019_0009
crossref_primary_10_1002_advs_202101934
crossref_primary_10_1007_s13311_017_0515_1
crossref_primary_10_3788_CJL230708
crossref_primary_10_34133_research_0200
crossref_primary_10_1016_j_ultrasmedbio_2014_01_020
crossref_primary_10_1038_s41598_019_51876_5
crossref_primary_10_1038_srep24170
crossref_primary_10_12786_bn_2018_11_e16
crossref_primary_10_1016_j_brs_2024_11_005
crossref_primary_10_3390_mi11100929
crossref_primary_10_1007_s40134_013_0013_0
crossref_primary_10_1371_journal_pone_0178476
crossref_primary_10_1016_j_psc_2018_05_004
crossref_primary_10_3390_brainsci14030218
crossref_primary_10_1016_j_brs_2024_04_005
crossref_primary_10_1038_nn_3620
crossref_primary_10_1016_j_ultrasmedbio_2014_02_028
crossref_primary_10_1088_1741_2552_abf68d
crossref_primary_10_1080_09540261_2017_1302924
crossref_primary_10_1109_JBHI_2024_3389708
crossref_primary_10_1016_j_neuron_2019_01_019
crossref_primary_10_3390_brainsci13030451
crossref_primary_10_1109_TBME_2019_2899631
crossref_primary_10_1016_j_actbio_2019_07_041
crossref_primary_10_1088_1741_2552_ab98dc
crossref_primary_10_1088_1741_2552_ab1685
crossref_primary_10_3389_fphys_2020_01042
crossref_primary_10_3389_fnins_2022_964060
crossref_primary_10_1016_j_brs_2017_02_008
crossref_primary_10_1016_j_jconrel_2019_12_006
crossref_primary_10_1109_TUFFC_2018_2827899
Cites_doi 10.1186/1475-925X-2-6
10.1002/hbm.20377
10.7863/jum.2005.24.8.1117
10.1016/j.neulet.2008.11.024
10.1016/j.cortex.2008.05.004
10.1121/1.381829
10.1083/jcb.119.3.493
10.1016/j.neuron.2010.05.008
10.1038/nrneurol.2010.30
10.1038/ncpneuro0530
10.7863/jum.2004.23.5.723
10.1016/j.mric.2005.04.008
10.1126/science.2536958
10.1016/S1385-299X(00)00004-0
10.1002/mrm.1910340606
10.1038/npp.2009.87
10.1088/0031-9155/51/9/013
10.1016/S0301-5629(97)00269-X
10.1121/1.382016
10.1126/science.127.3289.83
10.1097/00002142-200006000-00005
10.1371/journal.pone.0003511
10.1097/01.rli.0000149491.69201.cb
10.1097/RMR.0b013e31803774a3
10.1146/annurev.bioeng.6.040803.140126
10.1016/0006-8993(91)90711-4
10.1227/01.NEU.0000360379.95800.2F
10.1016/j.ultrasmedbio.2009.05.002
10.1002/ana.21801
10.1088/0031-9155/44/2/022
10.1016/S0301-5629(99)00038-1
10.7863/jum.1993.12.12.747
10.1146/annurev.bioeng.9.061206.133100
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jun 1, 2011
2011 Elsevier Inc. All rights reserved. 2011
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jun 1, 2011
– notice: 2011 Elsevier Inc. All rights reserved. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2011.02.058
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
ProQuest One Psychology
Engineering Research Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1275
ExternalDocumentID PMC3342684
3642014731
21354315
10_1016_j_neuroimage_2011_02_058
S105381191100214X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: K24 RR018875
– fundername: NCRR NIH HHS
  grantid: UL1 RR025758
– fundername: National Center for Research Resources : NCRR
  grantid: K24 RR018875 || RR
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c661t-53f92535c6686025a64354dae6604f05c97afab1c1b974f45c90a27e17637c8a3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:00:45 EDT 2025
Fri Jul 11 08:53:26 EDT 2025
Thu Jul 10 17:25:06 EDT 2025
Wed Aug 13 11:34:32 EDT 2025
Thu Apr 03 07:03:55 EDT 2025
Tue Jul 01 02:14:41 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Fri Feb 23 02:20:31 EST 2024
Tue Aug 26 16:33:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-53f92535c6686025a64354dae6604f05c97afab1c1b974f45c90a27e17637c8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3342684
PMID 21354315
PQID 1668059891
PQPubID 2031077
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3342684
proquest_miscellaneous_874189937
proquest_miscellaneous_864778248
proquest_journals_1668059891
pubmed_primary_21354315
crossref_citationtrail_10_1016_j_neuroimage_2011_02_058
crossref_primary_10_1016_j_neuroimage_2011_02_058
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_02_058
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_02_058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2011
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Foster, Wiederhold (bb0035) 1978; 63
Gavrieli, Sherman, Ben-Sasson (bb0050) 1992; 119
Goss, Johnston, Dunn (bb0060) 1978; 64
NEMA, 2004. Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment.
(bb0005) 2004; 23
White, Clement, Hynynen (bb0165) 2006; 51
Wagner, Valero-Cabre, Pascual-Leone (bb0155) 2007; 9
Rinaldi, Jones, Reines, Price (bb0135) 1991; 558
Yoo, Park, Soul, Mamata, Park, Westin, Bassan, Du Plessis, Robertson, Maier, Ringer, Volpe, Zientara (bb0175) 2005; 40
Duck (bb0030) 1999; 25
Hoy, Fitzgerald (bb0065) 2010; 6
Martin, Jeanmonod, Morel, Zadicario, Werner (bb0105) 2009; 66
McDannold, Jolesz (bb0115) 2000; 11
Victorov, Prass, Dirnagl (bb0150) 2000; 5
Jolesz, Hynynen, McDannold, Tempany (bb0080) 2005; 13
Lee, Ryu, Jolesz, Cho, Yoo (bb0095) 2009; 450
Colucci, Strichartz, Jolesz, Vykhodtseva, Hynynen (bb0020) 2009; 35
Fry, Ades, Fry (bb0045) 1958; 127
White (bb0160) 2006; 17
Clement, White, King, McDannold, Hynynen (bb0015) 2005; 24
Dalecki (bb0025) 2004; 6
Tufail, Matyushov, Baldwin, Tauchmann, Georges, Yoshihiro, Tillery, Tyler (bb0140) 2010; 66
Catani, Thiebaut de Schotten (bb0010) 2008; 44
George, Aston-Jones (bb0055) 2010; 35
Norton (bb0130) 2003; 2
Hynynen, Jolesz (bb0070) 1998; 24
McDannold, Clement, Black, Jolesz, Hynynen (bb0110) 2010; 66
Wlodarczyk, Hentschel, Wust, Noeske, Hosten, Rinneberg, Felix (bb0170) 1999; 44
Ishihara, Calderon, Watanabe, Okamoto, Suzuki, Kuroda (bb0075) 1995; 34
Lee, O'Leary, Park, Jolesz, Yoo (bb0090) 2008; 29
Magee, Davies (bb0100) 1993; 12
Fregni, Pascual-Leone (bb0040) 2007; 3
Tyler, Tufail, Finsterwald, Tauchmann, Olson, Majestic (bb0145) 2008; 3
Morris, Sigurdson (bb0120) 1989; 243
Clement (10.1016/j.neuroimage.2011.02.058_bb0015) 2005; 24
Martin (10.1016/j.neuroimage.2011.02.058_bb0105) 2009; 66
10.1016/j.neuroimage.2011.02.058_bb0125
Colucci (10.1016/j.neuroimage.2011.02.058_bb0020) 2009; 35
Norton (10.1016/j.neuroimage.2011.02.058_bb0130) 2003; 2
Tyler (10.1016/j.neuroimage.2011.02.058_bb0145) 2008; 3
Catani (10.1016/j.neuroimage.2011.02.058_bb0010) 2008; 44
Jolesz (10.1016/j.neuroimage.2011.02.058_bb0080) 2005; 13
Duck (10.1016/j.neuroimage.2011.02.058_bb0030) 1999; 25
Dalecki (10.1016/j.neuroimage.2011.02.058_bb0025) 2004; 6
Lee (10.1016/j.neuroimage.2011.02.058_bb0095) 2009; 450
Morris (10.1016/j.neuroimage.2011.02.058_bb0120) 1989; 243
Lee (10.1016/j.neuroimage.2011.02.058_bb0090) 2008; 29
(10.1016/j.neuroimage.2011.02.058_bb0005) 2004; 23
George (10.1016/j.neuroimage.2011.02.058_bb0055) 2010; 35
Ishihara (10.1016/j.neuroimage.2011.02.058_bb0075) 1995; 34
Wagner (10.1016/j.neuroimage.2011.02.058_bb0155) 2007; 9
Victorov (10.1016/j.neuroimage.2011.02.058_bb0150) 2000; 5
White (10.1016/j.neuroimage.2011.02.058_bb0165) 2006; 51
Foster (10.1016/j.neuroimage.2011.02.058_bb0035) 1978; 63
Magee (10.1016/j.neuroimage.2011.02.058_bb0100) 1993; 12
Fry (10.1016/j.neuroimage.2011.02.058_bb0045) 1958; 127
Yoo (10.1016/j.neuroimage.2011.02.058_bb0175) 2005; 40
Fregni (10.1016/j.neuroimage.2011.02.058_bb0040) 2007; 3
White (10.1016/j.neuroimage.2011.02.058_bb0160) 2006; 17
Hoy (10.1016/j.neuroimage.2011.02.058_bb0065) 2010; 6
Hynynen (10.1016/j.neuroimage.2011.02.058_bb0070) 1998; 24
McDannold (10.1016/j.neuroimage.2011.02.058_bb0115) 2000; 11
McDannold (10.1016/j.neuroimage.2011.02.058_bb0110) 2010; 66
Goss (10.1016/j.neuroimage.2011.02.058_bb0060) 1978; 64
Wlodarczyk (10.1016/j.neuroimage.2011.02.058_bb0170) 1999; 44
Gavrieli (10.1016/j.neuroimage.2011.02.058_bb0050) 1992; 119
Tufail (10.1016/j.neuroimage.2011.02.058_bb0140) 2010; 66
Rinaldi (10.1016/j.neuroimage.2011.02.058_bb0135) 1991; 558
12702213 - Biomed Eng Online. 2003 Mar 4;2:6
20087132 - Neurosurgery. 2010 Feb;66(2):323-32; discussion 332
20033983 - Ann Neurol. 2009 Dec;66(6):858-61
8301715 - J Ultrasound Med. 1993 Dec;12(12):747-50
17370340 - Hum Brain Mapp. 2008 Feb;29(2):157-66
15654256 - Invest Radiol. 2005 Feb;40(2):110-5
10775832 - Brain Res Brain Res Protoc. 2000 Apr;5(2):135-9
19647923 - Ultrasound Med Biol. 2009 Oct;35(10):1737-47
16084419 - Magn Reson Imaging Clin N Am. 2005 Aug;13(3):545-60
15154543 - J Ultrasound Med. 2004 May;23(5):723-6
19693003 - Neuropsychopharmacology. 2010 Jan;35(1):301-16
18958151 - PLoS One. 2008;3(10):e3511
10070804 - Phys Med Biol. 1999 Feb;44(2):607-24
19026717 - Neurosci Lett. 2009 Jan 23;450(1):1-6
20547127 - Neuron. 2010 Jun 10;66(5):681-94
15255769 - Annu Rev Biomed Eng. 2004;6:229-48
11145211 - Top Magn Reson Imaging. 2000 Jun;11(3):191-202
16040827 - J Ultrasound Med. 2005 Aug;24(8):1117-25
2536958 - Science. 1989 Feb 10;243(4892):807-9
13495483 - Science. 1958 Jan 10;127(3289):83-4
16625043 - Phys Med Biol. 2006 May 7;51(9):2293-305
10461731 - Ultrasound Med Biol. 1999 Jul;25(6):1009-18
1400587 - J Cell Biol. 1992 Nov;119(3):493-501
17414073 - Top Magn Reson Imaging. 2006 Jun;17(3):165-72
17444810 - Annu Rev Biomed Eng. 2007;9:527-65
20368742 - Nat Rev Neurol. 2010 May;6(5):267-75
1933382 - Brain Res. 1991 Aug 30;558(1):36-42
18619589 - Cortex. 2008 Sep;44(8):1105-32
8598808 - Magn Reson Med. 1995 Dec;34(6):814-23
17611487 - Nat Clin Pract Neurol. 2007 Jul;3(7):383-93
649878 - J Acoust Soc Am. 1978 Apr;63(4):1199-205
361793 - J Acoust Soc Am. 1978 Aug;64(2):423-57
9550186 - Ultrasound Med Biol. 1998 Feb;24(2):275-83
References_xml – volume: 5
  start-page: 135
  year: 2000
  end-page: 139
  ident: bb0150
  article-title: Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin
  publication-title: Brain Res. Brain Res. Protoc.
– volume: 24
  start-page: 275
  year: 1998
  end-page: 283
  ident: bb0070
  article-title: Demonstration of potential noninvasive ultrasound brain therapy through an intact skull
  publication-title: Ultrasound Med. Biol.
– volume: 11
  start-page: 191
  year: 2000
  end-page: 202
  ident: bb0115
  article-title: Magnetic resonance image-guided thermal ablations
  publication-title: Top. Magn. Reson. Imaging
– volume: 40
  start-page: 110
  year: 2005
  end-page: 115
  ident: bb0175
  article-title: In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging
  publication-title: Invest. Radiol.
– volume: 12
  start-page: 747
  year: 1993
  end-page: 750
  ident: bb0100
  article-title: Auditory phenomena during transcranial Doppler insonation of the basilar artery
  publication-title: J. Ultrasound Med.
– volume: 35
  start-page: 301
  year: 2010
  end-page: 316
  ident: bb0055
  article-title: Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS)
  publication-title: Neuropsychopharmacology
– volume: 66
  start-page: 858
  year: 2009
  end-page: 861
  ident: bb0105
  article-title: High-intensity focused ultrasound for noninvasive functional neurosurgery
  publication-title: Ann. Neurol.
– volume: 35
  start-page: 1737
  year: 2009
  end-page: 1747
  ident: bb0020
  article-title: Focused ultrasound effects on nerve action potential in vitro
  publication-title: Ultrasound Med. Biol.
– volume: 127
  start-page: 83
  year: 1958
  end-page: 84
  ident: bb0045
  article-title: Production of reversible changes in the central nervous system by ultrasound
  publication-title: Science
– volume: 63
  start-page: 1199
  year: 1978
  end-page: 1205
  ident: bb0035
  article-title: Auditory responses in cats produced by pulsed ultrasound
  publication-title: J. Acoust. Soc. Am.
– volume: 243
  start-page: 807
  year: 1989
  end-page: 809
  ident: bb0120
  article-title: Stretch-inactivated ion channels coexist with stretch-activated ion channels
  publication-title: Science
– volume: 51
  start-page: 2293
  year: 2006
  end-page: 2305
  ident: bb0165
  article-title: Local frequency dependence in transcranial ultrasound transmission
  publication-title: Phys. Med. Biol.
– volume: 6
  start-page: 229
  year: 2004
  end-page: 248
  ident: bb0025
  article-title: Mechanical bioeffects of ultrasound
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 44
  start-page: 607
  year: 1999
  end-page: 624
  ident: bb0170
  article-title: Comparison of four magnetic resonance methods for mapping small temperature changes
  publication-title: Phys. Med. Biol.
– volume: 119
  start-page: 493
  year: 1992
  end-page: 501
  ident: bb0050
  article-title: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 1
  year: 2003
  ident: bb0130
  article-title: Can ultrasound be used to stimulate nerve tissue?
  publication-title: Biomed. Eng. Online
– volume: 24
  start-page: 1117
  year: 2005
  end-page: 1125
  ident: bb0015
  article-title: A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy
  publication-title: J. Ultrasound Med.
– volume: 13
  start-page: 545
  year: 2005
  end-page: 560
  ident: bb0080
  article-title: MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery
  publication-title: Magn. Reson. Imaging Clin. N. Am.
– volume: 3
  start-page: e3511
  year: 2008
  ident: bb0145
  article-title: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound
  publication-title: PLoS ONE
– volume: 29
  start-page: 157
  year: 2008
  end-page: 166
  ident: bb0090
  article-title: Atlas-based multichannel monitoring of functional MRI signals in real-time: automated approach
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: 527
  year: 2007
  end-page: 565
  ident: bb0155
  article-title: Noninvasive human brain stimulation
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 66
  start-page: 681
  year: 2010
  end-page: 694
  ident: bb0140
  article-title: Transcranial pulsed ultrasound stimulates intact brain circuits
  publication-title: Neuron
– volume: 450
  start-page: 1
  year: 2009
  end-page: 6
  ident: bb0095
  article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm
  publication-title: Neurosci. Lett.
– volume: 44
  start-page: 1105
  year: 2008
  end-page: 1132
  ident: bb0010
  article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections
  publication-title: Cortex
– volume: 34
  start-page: 814
  year: 1995
  end-page: 823
  ident: bb0075
  article-title: A precise and fast temperature mapping using water proton chemical shift
  publication-title: Magn. Reson. Med.
– reference: NEMA, 2004. Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment.
– volume: 25
  start-page: 1009
  year: 1999
  end-page: 1018
  ident: bb0030
  article-title: Acoustic saturation and output regulation
  publication-title: Ultrasound Med. Biol.
– volume: 64
  start-page: 423
  year: 1978
  end-page: 457
  ident: bb0060
  article-title: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues
  publication-title: J. Acoust. Soc. Am.
– volume: 6
  start-page: 267
  year: 2010
  end-page: 275
  ident: bb0065
  article-title: Brain stimulation in psychiatry and its effects on cognition
  publication-title: Nat. Rev. Neurol.
– volume: 558
  start-page: 36
  year: 1991
  end-page: 42
  ident: bb0135
  article-title: Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation
  publication-title: Brain Res.
– volume: 17
  start-page: 165
  year: 2006
  end-page: 172
  ident: bb0160
  article-title: Transcranial focused ultrasound surgery
  publication-title: Top. Magn. Reson. Imaging
– volume: 66
  start-page: 323
  year: 2010
  end-page: 332
  ident: bb0110
  article-title: Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients
  publication-title: Neurosurgery
– volume: 23
  start-page: 723
  year: 2004
  end-page: 726
  ident: bb0005
  article-title: How to interpret the ultrasound output display standard for higher acoustic output diagnostic ultrasound devices: version 2
  publication-title: J. Ultrasound Med.
– volume: 3
  start-page: 383
  year: 2007
  end-page: 393
  ident: bb0040
  article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS
  publication-title: Nat. Clin. Pract. Neurol.
– volume: 2
  start-page: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2011.02.058_bb0130
  article-title: Can ultrasound be used to stimulate nerve tissue?
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-2-6
– volume: 29
  start-page: 157
  year: 2008
  ident: 10.1016/j.neuroimage.2011.02.058_bb0090
  article-title: Atlas-based multichannel monitoring of functional MRI signals in real-time: automated approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20377
– volume: 24
  start-page: 1117
  year: 2005
  ident: 10.1016/j.neuroimage.2011.02.058_bb0015
  article-title: A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy
  publication-title: J. Ultrasound Med.
  doi: 10.7863/jum.2005.24.8.1117
– volume: 450
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2011.02.058_bb0095
  article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2008.11.024
– volume: 44
  start-page: 1105
  year: 2008
  ident: 10.1016/j.neuroimage.2011.02.058_bb0010
  article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections
  publication-title: Cortex
  doi: 10.1016/j.cortex.2008.05.004
– volume: 63
  start-page: 1199
  year: 1978
  ident: 10.1016/j.neuroimage.2011.02.058_bb0035
  article-title: Auditory responses in cats produced by pulsed ultrasound
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.381829
– volume: 119
  start-page: 493
  year: 1992
  ident: 10.1016/j.neuroimage.2011.02.058_bb0050
  article-title: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.119.3.493
– volume: 66
  start-page: 681
  year: 2010
  ident: 10.1016/j.neuroimage.2011.02.058_bb0140
  article-title: Transcranial pulsed ultrasound stimulates intact brain circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.05.008
– volume: 6
  start-page: 267
  year: 2010
  ident: 10.1016/j.neuroimage.2011.02.058_bb0065
  article-title: Brain stimulation in psychiatry and its effects on cognition
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2010.30
– ident: 10.1016/j.neuroimage.2011.02.058_bb0125
– volume: 3
  start-page: 383
  year: 2007
  ident: 10.1016/j.neuroimage.2011.02.058_bb0040
  article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS
  publication-title: Nat. Clin. Pract. Neurol.
  doi: 10.1038/ncpneuro0530
– volume: 23
  start-page: 723
  year: 2004
  ident: 10.1016/j.neuroimage.2011.02.058_bb0005
  article-title: How to interpret the ultrasound output display standard for higher acoustic output diagnostic ultrasound devices: version 2
  publication-title: J. Ultrasound Med.
  doi: 10.7863/jum.2004.23.5.723
– volume: 13
  start-page: 545
  year: 2005
  ident: 10.1016/j.neuroimage.2011.02.058_bb0080
  article-title: MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery
  publication-title: Magn. Reson. Imaging Clin. N. Am.
  doi: 10.1016/j.mric.2005.04.008
– volume: 243
  start-page: 807
  year: 1989
  ident: 10.1016/j.neuroimage.2011.02.058_bb0120
  article-title: Stretch-inactivated ion channels coexist with stretch-activated ion channels
  publication-title: Science
  doi: 10.1126/science.2536958
– volume: 5
  start-page: 135
  year: 2000
  ident: 10.1016/j.neuroimage.2011.02.058_bb0150
  article-title: Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin
  publication-title: Brain Res. Brain Res. Protoc.
  doi: 10.1016/S1385-299X(00)00004-0
– volume: 34
  start-page: 814
  year: 1995
  ident: 10.1016/j.neuroimage.2011.02.058_bb0075
  article-title: A precise and fast temperature mapping using water proton chemical shift
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340606
– volume: 35
  start-page: 301
  year: 2010
  ident: 10.1016/j.neuroimage.2011.02.058_bb0055
  article-title: Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS)
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.87
– volume: 51
  start-page: 2293
  year: 2006
  ident: 10.1016/j.neuroimage.2011.02.058_bb0165
  article-title: Local frequency dependence in transcranial ultrasound transmission
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/9/013
– volume: 24
  start-page: 275
  year: 1998
  ident: 10.1016/j.neuroimage.2011.02.058_bb0070
  article-title: Demonstration of potential noninvasive ultrasound brain therapy through an intact skull
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(97)00269-X
– volume: 64
  start-page: 423
  year: 1978
  ident: 10.1016/j.neuroimage.2011.02.058_bb0060
  article-title: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.382016
– volume: 127
  start-page: 83
  year: 1958
  ident: 10.1016/j.neuroimage.2011.02.058_bb0045
  article-title: Production of reversible changes in the central nervous system by ultrasound
  publication-title: Science
  doi: 10.1126/science.127.3289.83
– volume: 11
  start-page: 191
  year: 2000
  ident: 10.1016/j.neuroimage.2011.02.058_bb0115
  article-title: Magnetic resonance image-guided thermal ablations
  publication-title: Top. Magn. Reson. Imaging
  doi: 10.1097/00002142-200006000-00005
– volume: 3
  start-page: e3511
  year: 2008
  ident: 10.1016/j.neuroimage.2011.02.058_bb0145
  article-title: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003511
– volume: 40
  start-page: 110
  year: 2005
  ident: 10.1016/j.neuroimage.2011.02.058_bb0175
  article-title: In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging
  publication-title: Invest. Radiol.
  doi: 10.1097/01.rli.0000149491.69201.cb
– volume: 17
  start-page: 165
  year: 2006
  ident: 10.1016/j.neuroimage.2011.02.058_bb0160
  article-title: Transcranial focused ultrasound surgery
  publication-title: Top. Magn. Reson. Imaging
  doi: 10.1097/RMR.0b013e31803774a3
– volume: 6
  start-page: 229
  year: 2004
  ident: 10.1016/j.neuroimage.2011.02.058_bb0025
  article-title: Mechanical bioeffects of ultrasound
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.6.040803.140126
– volume: 558
  start-page: 36
  year: 1991
  ident: 10.1016/j.neuroimage.2011.02.058_bb0135
  article-title: Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(91)90711-4
– volume: 66
  start-page: 323
  year: 2010
  ident: 10.1016/j.neuroimage.2011.02.058_bb0110
  article-title: Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000360379.95800.2F
– volume: 35
  start-page: 1737
  year: 2009
  ident: 10.1016/j.neuroimage.2011.02.058_bb0020
  article-title: Focused ultrasound effects on nerve action potential in vitro
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2009.05.002
– volume: 66
  start-page: 858
  year: 2009
  ident: 10.1016/j.neuroimage.2011.02.058_bb0105
  article-title: High-intensity focused ultrasound for noninvasive functional neurosurgery
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21801
– volume: 44
  start-page: 607
  year: 1999
  ident: 10.1016/j.neuroimage.2011.02.058_bb0170
  article-title: Comparison of four magnetic resonance methods for mapping small temperature changes
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/44/2/022
– volume: 25
  start-page: 1009
  year: 1999
  ident: 10.1016/j.neuroimage.2011.02.058_bb0030
  article-title: Acoustic saturation and output regulation
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(99)00038-1
– volume: 12
  start-page: 747
  year: 1993
  ident: 10.1016/j.neuroimage.2011.02.058_bb0100
  article-title: Auditory phenomena during transcranial Doppler insonation of the basilar artery
  publication-title: J. Ultrasound Med.
  doi: 10.7863/jum.1993.12.12.747
– volume: 9
  start-page: 527
  year: 2007
  ident: 10.1016/j.neuroimage.2011.02.058_bb0155
  article-title: Noninvasive human brain stimulation
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.9.061206.133100
– reference: 19026717 - Neurosci Lett. 2009 Jan 23;450(1):1-6
– reference: 10461731 - Ultrasound Med Biol. 1999 Jul;25(6):1009-18
– reference: 649878 - J Acoust Soc Am. 1978 Apr;63(4):1199-205
– reference: 10070804 - Phys Med Biol. 1999 Feb;44(2):607-24
– reference: 16625043 - Phys Med Biol. 2006 May 7;51(9):2293-305
– reference: 18958151 - PLoS One. 2008;3(10):e3511
– reference: 16040827 - J Ultrasound Med. 2005 Aug;24(8):1117-25
– reference: 8301715 - J Ultrasound Med. 1993 Dec;12(12):747-50
– reference: 2536958 - Science. 1989 Feb 10;243(4892):807-9
– reference: 12702213 - Biomed Eng Online. 2003 Mar 4;2:6
– reference: 15654256 - Invest Radiol. 2005 Feb;40(2):110-5
– reference: 20368742 - Nat Rev Neurol. 2010 May;6(5):267-75
– reference: 17611487 - Nat Clin Pract Neurol. 2007 Jul;3(7):383-93
– reference: 1400587 - J Cell Biol. 1992 Nov;119(3):493-501
– reference: 11145211 - Top Magn Reson Imaging. 2000 Jun;11(3):191-202
– reference: 13495483 - Science. 1958 Jan 10;127(3289):83-4
– reference: 19693003 - Neuropsychopharmacology. 2010 Jan;35(1):301-16
– reference: 20547127 - Neuron. 2010 Jun 10;66(5):681-94
– reference: 17414073 - Top Magn Reson Imaging. 2006 Jun;17(3):165-72
– reference: 8598808 - Magn Reson Med. 1995 Dec;34(6):814-23
– reference: 17444810 - Annu Rev Biomed Eng. 2007;9:527-65
– reference: 1933382 - Brain Res. 1991 Aug 30;558(1):36-42
– reference: 19647923 - Ultrasound Med Biol. 2009 Oct;35(10):1737-47
– reference: 15255769 - Annu Rev Biomed Eng. 2004;6:229-48
– reference: 10775832 - Brain Res Brain Res Protoc. 2000 Apr;5(2):135-9
– reference: 9550186 - Ultrasound Med Biol. 1998 Feb;24(2):275-83
– reference: 15154543 - J Ultrasound Med. 2004 May;23(5):723-6
– reference: 361793 - J Acoust Soc Am. 1978 Aug;64(2):423-57
– reference: 17370340 - Hum Brain Mapp. 2008 Feb;29(2):157-66
– reference: 16084419 - Magn Reson Imaging Clin N Am. 2005 Aug;13(3):545-60
– reference: 18619589 - Cortex. 2008 Sep;44(8):1105-32
– reference: 20033983 - Ann Neurol. 2009 Dec;66(6):858-61
– reference: 20087132 - Neurosurgery. 2010 Feb;66(2):323-32; discussion 332
SSID ssj0009148
Score 2.5438054
Snippet We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of...
We demonstrated thein vivofeasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of...
We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1267
SubjectTerms Acoustics
Animals
Blood-Brain Barrier
Body Temperature
Brain - physiology
Brain - radiation effects
Brain Mapping
Electrophysiological Phenomena
Magnetic Resonance Imaging
Male
Medical research
Motor Cortex - physiology
Motor Cortex - radiation effects
NMR
Nuclear magnetic resonance
Rabbits
Somatosensory Cortex - physiology
Somatosensory Cortex - radiation effects
Transducers
Ultrasonic imaging
Ultrasonics
Visual Cortex - physiology
Visual Cortex - radiation effects
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA3iQbyI365f9OA1btMk2xZPIi4irBdd2FtI0hRXtBW7e_W3O9Om1VWRBY9tM9BOk5mXduY9Qs4MD0NtmaViYCUVJpdUA46lqZWw38DWSY0bxdHd4GYsbidyskKu2l4YLKv0sb-J6XW09mf63pv91-m0fw_IANIN7DdYTfw1wQ52EeMsP3__LPNImWja4SSnONpX8zQ1XjVn5PQFVq4n84zOQxR__z1F_YSg3yspv6Sm4SbZ8JgyuGxue4usuGKbrI38X_MdcjEs7bxyWTB_BvMKhZSClzJD4S5XBSjNUBYUWy6xbCgwKBoRYL8DykrskvHw-uHqhnrRBGoh1c6o5HkaSS7hCOWlpAbIIUWm3WAQijyUNo11rg2zzMBWIhdwItRR7BgEmtgmmu-R1aIs3AEJNKT-LMpZ5hIwTUxqDM85ywBzZElu4x6JWz8p6xnFUdjiWbWlY0_q08MKPazCSIGHe4R1lq8Nq8YSNmn7KlTbNQpxTkHoX8L2orNdmF1LWh-3b175FV4pBv4FaJqkrEeC7jKsTfzhogtXziuVYJdvEonkjyHIHoQYsUf2m6nUOSRiHIkKJLh5YZJ1A5AZfPFKMX2sGcI5F8jic_ivxz4i680HdPzkdExWZ29zdwIIbGZO6yX2AbrlMWg
  priority: 102
  providerName: Elsevier
Title Focused ultrasound modulates region-specific brain activity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191100214X
https://dx.doi.org/10.1016/j.neuroimage.2011.02.058
https://www.ncbi.nlm.nih.gov/pubmed/21354315
https://www.proquest.com/docview/1668059891
https://www.proquest.com/docview/864778248
https://www.proquest.com/docview/874189937
https://pubmed.ncbi.nlm.nih.gov/PMC3342684
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6xTUK8IH5TGFUeePWIYztxtAc00KoCWoUQk_pm2Y4jhrZkkPaVv527xkkZoKlPVRufVF3O58_23fcBvHYiTa3nnsncKyZdrZhFHMtKr3C_Qa2TljaKZ4t8fi4_LtUyHrh1saxyyImbRF21ns7I3_A81wgFdMnfXv9gpBpFt6tRQmMPDoi6jKK6WBZb0l0u-1Y4JZjGAbGSp6_v2vBFXlzhrI1EntlRSsLv_1-e_oWff1dR_rEszR7A_Ygnk5M-AB7CndA8grtn8cb8MRzPWr_uQpWsL9G8IxGl5KqtSLQrdAnJMrQNo3ZLKhlKHAlGJNTrQJIST-B8dvr1_ZxFwQTmcZldMSXqMlNC4TeSllIW4YaSlQ15nso6Vb4sbG0d99zhNqKW-ENqsyJwTDKF11Y8hf2mbcJzSCwu-1VW8ypoNNWudE7UgleINypd-2ICxeAn4yObOIlaXJqhbOy72XrYkIdNmhn08AT4aHndM2rsYFMOr8IMHaOY4wym_R1sj0fbiCp6tLCj9eHw5k2c3Z3ZxuIEkvExzku6bLFNaNed0dThqzOpbxlCzEGEDyfwrA-l0SEZF0RSoNDNN4JsHECs4DefNBffNuzgQkhi8Hlx-x9_Cff603E6TzqE_dXPdXiF8GrlprB39ItPNzNpCgcnHz7NF_j57nTx-ctv_AcqMQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxJtAAR_guOB92WtVCCEgSmnTUyvltqzXa7Wotds6EeJP8RuZiR-hgKpcekzsiaLZ3Zlvd2e-D-B1LuPYee6ZSrxmKi81c4hjWeY17jeoddLRRnG6n0wO1deZnm3Ar74Xhsoq-5i4DNRF7emM_B1PEoNQwGT8w9k5I9Uoul3tJTTaabEbfv7ALVvzfuczju8bIcZfDj5NWKcqwDzmojnTssyElho_kf6SdpiTtSpcSJJYlbH2WepKl3PPc8TapcIvYifSwHElpt44ib97A25i4o1ps5fO0hXJL1dt652WzHCedZVDbT3Zkp_y-BSjREccKt7GJDT__3T4L9z9u2rzjzQ4vgd3O_wafWwn3H3YCNUDuDXtbugfwva49osmFNHiBM0bEm2KTuuCRMJCE5EMRF0xau-kEqUoJ4GKiHorSMLiERxeiysfw2ZVV-EpRA5hRiFKXgSDpibP8lyWkhfo5sKUPh1B2vvJ-o69nEQ0TmxfpvbdrjxsycM2FhY9PAI-WJ61DB5r2GT9UNi-QxVjqsU0s4bt9mDboZgWnaxpvdWPvO2iSWNXc38E0fAY4wBd7rgq1IvGGuooNkKZK14hpiLCoyN40k6lwSGCSyJF0OjmS5NseIFYyC8_qY6PlmzkUipiDHp29R9_BbcnB9M9u7ezv_sc7rQn83SWtQWb84tFeIHQbp6_XK6nCL5d9wL-DbZkYTo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xIqG9TOwnHWzLw_boEcdx4ghN0zaoYIwKTUPizXMcR2OCBEgrxL-2v253jZOObUJ94bFNrqrOvvNn--77AF7nIgyN5ZbFiZUszkvJDOJYllmJ-w1qnTS0UTwYJ7tH8edjebwEv7peGCqr7HLiLFEXtaUz8k2eJAqhgMr4ZunLIg63R-_PLxgpSNFNayen0U6RfXd9hdu35t3eNo71myga7Xz7tMu8wgCzuC5NmBRlFkkh8RNpMUmD67OMC-OSJIzLUNosNaXJueU54u4yxi9CE6WOY1SmVhmBv3sPllPaFQ1g-ePO-PDrnPKXx20jnhRMcZ75OqK2umzGVnlyhjnD04hGb0OSnf__4vgv-P27hvOPRXG0Cg88mg0-tNPvISy56hGsHPj7-sewNarttHFFMD1F84YknIKzuiDJMNcEJApRV4yaPalgKchJriKgTgsStHgCR3fizKcwqOrKrUFgEHQUUckLp9BU5Vmei1LwAtFOoUqbDiHt_KSt5zInSY1T3RWt_dRzD2vysA4jjR4eAu8tz1s-jwVssm4odNevihlW46KzgO1Wb-sxTYtVFrTe6EZe-9zS6HkkDCHoH2NWoKseU7l62mhF_cUqitUtrxBvEaHTITxrp1LvkIgLokiQ6OYbk6x_gTjJbz6pTn7MuMmFiIk_6Pntf_wVrGDw6i974_11uN8e09PB1gYMJpdT9wJx3iR_6QMqgO93HcO_ASriZtU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focused+ultrasound+modulates+region-specific+brain+activity&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yoo%2C+Seung-Schik&rft.au=Bystritsky%2C+Alexander&rft.au=Lee%2C+Jong-Hwan&rft.au=Zhang%2C+Yongzhi&rft.date=2011-06-01&rft.issn=1053-8119&rft.volume=56&rft.issue=3&rft.spage=1267&rft.epage=1275&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.02.058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2011_02_058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon