Focused ultrasound modulates region-specific brain activity
We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the an...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 56; no. 3; pp. 1267 - 1275 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.
► Focused ultrasound (FUS) was applied for the modulation of regional brain activity. ► Pulsed FUS was delivered to the rabbit somatomotor and visual areas. ► The brain function was characterized by electroencephalogram and functional MRI. ► The effects were bimodal—neural excitability can be either increased or suppressed. ► FUS provides non-invasive regional modulation of neural tissue excitability. |
---|---|
AbstractList | We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.
► Focused ultrasound (FUS) was applied for the modulation of regional brain activity. ► Pulsed FUS was delivered to the rabbit somatomotor and visual areas. ► The brain function was characterized by electroencephalogram and functional MRI. ► The effects were bimodal—neural excitability can be either increased or suppressed. ► FUS provides non-invasive regional modulation of neural tissue excitability. We demonstrated thein vivofeasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders.We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. |
Author | Bystritsky, Alexander Min, Byoung-Kyong Jolesz, Ferenc A. Fischer, Krisztina Zhang, Yongzhi Yoo, Seung-Schik Pascual-Leone, Alvaro McDannold, Nathan J. Lee, Jong-Hwan |
AuthorAffiliation | d Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA b Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA a Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA c Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea |
AuthorAffiliation_xml | – name: a Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA – name: d Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA – name: b Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA – name: c Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea |
Author_xml | – sequence: 1 givenname: Seung-Schik surname: Yoo fullname: Yoo, Seung-Schik email: yoo@bwh.harvard.edu organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA – sequence: 2 givenname: Alexander surname: Bystritsky fullname: Bystritsky, Alexander organization: Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA – sequence: 3 givenname: Jong-Hwan surname: Lee fullname: Lee, Jong-Hwan organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA – sequence: 4 givenname: Yongzhi surname: Zhang fullname: Zhang, Yongzhi organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA – sequence: 5 givenname: Krisztina surname: Fischer fullname: Fischer, Krisztina organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA – sequence: 6 givenname: Byoung-Kyong surname: Min fullname: Min, Byoung-Kyong organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA – sequence: 7 givenname: Nathan J. surname: McDannold fullname: McDannold, Nathan J. organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA – sequence: 8 givenname: Alvaro surname: Pascual-Leone fullname: Pascual-Leone, Alvaro organization: Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA – sequence: 9 givenname: Ferenc A. surname: Jolesz fullname: Jolesz, Ferenc A. organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21354315$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhS1URB_wF9BILFjN1O-HkBClohSpEhtYW47nTnCY2MGeiZR_j6O2FLIhK7-Ov3vPPefoJKYICDUEdwQTebnqIsw5hbVbQkcxIR2mHRb6GToj2IjWCEVP9nvBWk2IOUXnpawwxoZw_QKdUsIEZ0ScoXc3yc8F-mYep-xKmmPfrFM_j26C0mRYhhTbsgEfhuCbRXYhNs5PYRum3Uv0fHBjgVcP6wX6fvPp2_Vte_f185frq7vWS0mmVrDBUMFEPWmJqXCS1-q9AykxH7DwRrnBLYgnC6P4wOsFdlQBUZIprx27QO_vuZt5sYbeQ6ytjnaTq_-8s8kF--9LDD_sMm0tY5xKzSvg7QMgp18zlMmuQ_Ewji5CmovVihNtDFP_V0qulKZcV-WbA-UqzTnWOVhSjWJhtCFV9frv1v_0_BjAkzefUykZBuvD5KY69eokjJZgu0_cruxT4nafuMXU1sQrQB8AHmsc8fXj_Veo4W0DZFt8gOihDxn8ZPsUjoF8OID4McTg3fgTdschfgM_XuIg |
CitedBy_id | crossref_primary_10_1007_s40477_023_00810_7 crossref_primary_10_1038_s41467_021_22743_7 crossref_primary_10_1109_TUFFC_2017_2651648 crossref_primary_10_1016_j_brs_2014_06_011 crossref_primary_10_3390_jcm11133809 crossref_primary_10_1007_s13534_016_0007_y crossref_primary_10_1121_10_0005764 crossref_primary_10_1016_j_brs_2023_09_004 crossref_primary_10_1111_ner_12075 crossref_primary_10_1016_j_brs_2013_12_012 crossref_primary_10_1038_s42003_024_07356_2 crossref_primary_10_1038_s41440_024_01977_0 crossref_primary_10_12786_bn_2021_14_e4 crossref_primary_10_1016_j_phmed_2020_100029 crossref_primary_10_7554_eLife_40541 crossref_primary_10_1016_j_clinph_2021_12_010 crossref_primary_10_1259_bjr_20170481 crossref_primary_10_1371_journal_pone_0224311 crossref_primary_10_1016_j_ultrasmedbio_2014_09_029 crossref_primary_10_1097_WNP_0000000000000488 crossref_primary_10_1038_s41598_020_72189_y crossref_primary_10_3389_fpsyt_2022_825802 crossref_primary_10_1038_s41598_023_31383_4 crossref_primary_10_1016_j_cub_2019_08_021 crossref_primary_10_3390_mi13091536 crossref_primary_10_1007_s00117_015_0026_1 crossref_primary_10_1186_s40349_015_0044_5 crossref_primary_10_1227_NEU_0b013e3182672ac9 crossref_primary_10_1038_s41467_024_46461_y crossref_primary_10_3171_2013_2_JNS13227 crossref_primary_10_1523_JNEUROSCI_0784_23_2024 crossref_primary_10_1111_cns_14303 crossref_primary_10_1080_07853890_2023_2251145 crossref_primary_10_14336_AD_2020_0623 crossref_primary_10_1016_j_ultrasmedbio_2022_02_006 crossref_primary_10_1016_j_neuroimage_2020_116597 crossref_primary_10_1093_brain_aww284 crossref_primary_10_1039_C7LC00163K crossref_primary_10_1016_j_brs_2019_07_015 crossref_primary_10_1002_adbi_201800041 crossref_primary_10_1016_j_neuroscience_2023_07_019 crossref_primary_10_1038_s41598_020_78553_2 crossref_primary_10_1038_s43586_024_00368_6 crossref_primary_10_3389_fnins_2019_00696 crossref_primary_10_1111_cns_13463 crossref_primary_10_1016_j_ultrasmedbio_2018_09_005 crossref_primary_10_1016_j_brs_2024_03_001 crossref_primary_10_1523_ENEURO_0514_20_2021 crossref_primary_10_1016_j_brs_2019_07_024 crossref_primary_10_1016_j_cell_2016_03_047 crossref_primary_10_1126_sciadv_aaz4193 crossref_primary_10_1038_srep00989 crossref_primary_10_3389_fncom_2017_00001 crossref_primary_10_1088_1741_2552_abb14d crossref_primary_10_1016_j_brainresbull_2018_12_004 crossref_primary_10_1109_TNSRE_2017_2682923 crossref_primary_10_3389_fnins_2017_00562 crossref_primary_10_1038_s41377_022_01004_2 crossref_primary_10_3389_fnhum_2022_981571 crossref_primary_10_1176_appi_focus_20210022 crossref_primary_10_1016_j_ultrasmedbio_2021_02_028 crossref_primary_10_1109_TUFFC_2020_3006781 crossref_primary_10_3389_fncom_2022_923247 crossref_primary_10_1021_acsnano_4c05270 crossref_primary_10_1088_1478_3975_11_5_051001 crossref_primary_10_1016_j_neuroimage_2023_120201 crossref_primary_10_1016_j_brs_2024_03_013 crossref_primary_10_1523_ENEURO_0136_15_2016 crossref_primary_10_1016_j_medengphy_2023_104023 crossref_primary_10_1016_j_jconrel_2015_08_059 crossref_primary_10_1016_j_ultsonch_2019_104745 crossref_primary_10_1038_srep35453 crossref_primary_10_1016_j_jmps_2023_105457 crossref_primary_10_3389_fnbeh_2021_820017 crossref_primary_10_1016_j_cmpb_2024_108458 crossref_primary_10_1109_TNSRE_2022_3224897 crossref_primary_10_3389_fnhum_2020_00066 crossref_primary_10_1186_s40349_015_0032_9 crossref_primary_10_14366_usg_23037 crossref_primary_10_31887_DCNS_2014_16_1_ffroehlich crossref_primary_10_1186_s13195_019_0569_x crossref_primary_10_3390_brainsci12020158 crossref_primary_10_1016_j_brs_2021_12_005 crossref_primary_10_1109_JBHI_2022_3198650 crossref_primary_10_1007_s10072_024_07704_4 crossref_primary_10_3390_bioengineering11111126 crossref_primary_10_3389_fnhum_2020_00052 crossref_primary_10_3389_fnins_2022_1011699 crossref_primary_10_1016_j_yebeh_2015_04_008 crossref_primary_10_1016_j_ultrasmedbio_2023_11_004 crossref_primary_10_1109_TNSRE_2017_2765001 crossref_primary_10_1093_qjmed_hcad098 crossref_primary_10_1016_j_ultrasmedbio_2023_11_003 crossref_primary_10_3389_fnhum_2022_872639 crossref_primary_10_1016_j_ultrasmedbio_2018_01_010 crossref_primary_10_1016_j_neuroimage_2024_120768 crossref_primary_10_3389_fnhum_2024_1392199 crossref_primary_10_1088_1741_2552_aa843e crossref_primary_10_1103_PhysRevApplied_21_014011 crossref_primary_10_1093_braincomms_fcaf062 crossref_primary_10_1016_j_heliyon_2025_e43001 crossref_primary_10_1186_s12868_016_0303_6 crossref_primary_10_3390_brainsci12020289 crossref_primary_10_1016_j_brs_2021_06_003 crossref_primary_10_1038_srep34026 crossref_primary_10_1007_s10143_024_03078_5 crossref_primary_10_1002_adma_202303180 crossref_primary_10_3389_fnins_2022_893108 crossref_primary_10_1002_biot_202400561 crossref_primary_10_1016_j_neuropsychologia_2017_09_019 crossref_primary_10_1088_1741_2552_aaa140 crossref_primary_10_3389_fnhum_2024_1359396 crossref_primary_10_1155_2021_8534466 crossref_primary_10_3390_ma12203433 crossref_primary_10_1186_s40349_016_0061_z crossref_primary_10_1371_journal_pone_0077115 crossref_primary_10_1088_1361_6560_aabe37 crossref_primary_10_3389_fpsyt_2024_1466506 crossref_primary_10_5213_inj_2015_19_1_3 crossref_primary_10_1016_j_brs_2021_04_021 crossref_primary_10_1016_j_ultrasmedbio_2014_11_008 crossref_primary_10_1109_TBCAS_2023_3299750 crossref_primary_10_1016_j_neuroimage_2021_118557 crossref_primary_10_1016_j_metabol_2017_01_012 crossref_primary_10_3389_fneur_2023_1279875 crossref_primary_10_1016_j_neuchi_2013_06_005 crossref_primary_10_1016_j_cub_2013_10_029 crossref_primary_10_1088_1674_1056_25_8_084301 crossref_primary_10_1109_TNSRE_2018_2821194 crossref_primary_10_1016_j_brs_2022_05_004 crossref_primary_10_1371_journal_pone_0267698 crossref_primary_10_34133_2021_2674692 crossref_primary_10_1016_j_brs_2018_08_014 crossref_primary_10_1016_j_brs_2018_08_013 crossref_primary_10_1088_1741_2560_13_3_031003 crossref_primary_10_3171_2016_11_JNS16976 crossref_primary_10_1007_s10237_024_01830_w crossref_primary_10_1016_j_neuron_2018_05_009 crossref_primary_10_1109_ACCESS_2020_2972589 crossref_primary_10_1371_journal_pone_0033552 crossref_primary_10_1186_s12868_019_0493_9 crossref_primary_10_1016_j_neuroimage_2021_118441 crossref_primary_10_1016_j_ultrasmedbio_2019_05_023 crossref_primary_10_1109_RBME_2016_2555760 crossref_primary_10_15302_J_ENG_2015078 crossref_primary_10_1016_j_bbrep_2023_101604 crossref_primary_10_1016_j_brs_2021_03_004 crossref_primary_10_1088_1741_2552_abae8b crossref_primary_10_1016_j_ultrasmedbio_2012_04_023 crossref_primary_10_1088_1741_2560_8_5_056012 crossref_primary_10_1063_5_0236108 crossref_primary_10_1016_j_brs_2019_09_007 crossref_primary_10_1038_s41467_022_28040_1 crossref_primary_10_1007_s40846_018_0391_0 crossref_primary_10_1038_s41598_018_26287_7 crossref_primary_10_1093_cercor_bhad330 crossref_primary_10_1186_s12868_018_0459_3 crossref_primary_10_3390_pharmaceutics13111980 crossref_primary_10_1177_1545968318790022 crossref_primary_10_3174_ajnr_A4902 crossref_primary_10_1002_mp_15358 crossref_primary_10_1088_2631_7990_ad62c6 crossref_primary_10_1002_aisy_202100082 crossref_primary_10_3389_fninf_2024_1470845 crossref_primary_10_3389_fphar_2019_00544 crossref_primary_10_1007_s40473_018_0156_7 crossref_primary_10_1134_S1063771012010083 crossref_primary_10_1523_JNEUROSCI_3521_12_2013 crossref_primary_10_1121_1_4984287 crossref_primary_10_1523_ENEURO_0213_20_2020 crossref_primary_10_1093_cercor_bhy187 crossref_primary_10_1007_s40473_015_0039_0 crossref_primary_10_1088_1741_2552_acb014 crossref_primary_10_1097_j_pain_0000000000003171 crossref_primary_10_1016_j_neuron_2023_02_018 crossref_primary_10_1016_j_ultrasmedbio_2015_08_010 crossref_primary_10_3389_fnins_2017_00607 crossref_primary_10_1109_TUFFC_2024_3383027 crossref_primary_10_1002_mrm_29587 crossref_primary_10_1103_PhysRevX_4_011004 crossref_primary_10_1016_j_tins_2024_12_010 crossref_primary_10_1002_jnr_23845 crossref_primary_10_3390_brainsci14060614 crossref_primary_10_1016_j_brs_2025_01_015 crossref_primary_10_1016_j_cmpb_2023_107591 crossref_primary_10_1109_TBME_2011_2174057 crossref_primary_10_1016_j_plrev_2023_05_004 crossref_primary_10_1118_1_4963208 crossref_primary_10_35848_1347_4065_ac9faf crossref_primary_10_1016_j_brs_2017_07_007 crossref_primary_10_1109_TNSRE_2020_2978865 crossref_primary_10_3389_fnins_2024_1463038 crossref_primary_10_1109_TIM_2021_3125978 crossref_primary_10_1109_TBME_2019_2907556 crossref_primary_10_1016_j_brs_2022_12_003 crossref_primary_10_1088_1741_2552_acb104 crossref_primary_10_1038_srep24738 crossref_primary_10_1182_blood_2023023718 crossref_primary_10_1088_1361_6560_aaa037 crossref_primary_10_1109_TBME_2018_2845689 crossref_primary_10_2139_ssrn_4769614 crossref_primary_10_1016_j_yebeh_2015_02_033 crossref_primary_10_1002_hbm_23981 crossref_primary_10_1007_s12028_015_0203_0 crossref_primary_10_1109_TBME_2022_3233345 crossref_primary_10_1038_s41598_018_28320_1 crossref_primary_10_1209_0295_5075_ad239b crossref_primary_10_3389_fnana_2024_1469250 crossref_primary_10_1002_smll_202406678 crossref_primary_10_1016_j_actbio_2022_07_034 crossref_primary_10_1016_j_ctim_2014_05_010 crossref_primary_10_1016_j_nec_2013_08_002 crossref_primary_10_1016_j_ultras_2024_107298 crossref_primary_10_1186_s40349_018_0119_1 crossref_primary_10_1016_j_neuron_2018_04_036 crossref_primary_10_1002_mds_27952 crossref_primary_10_1016_j_isci_2023_108372 crossref_primary_10_34133_2019_1748489 crossref_primary_10_1002_wnan_1781 crossref_primary_10_20517_ss_2023_36 crossref_primary_10_3389_fphy_2020_00150 crossref_primary_10_1007_s11277_016_3246_4 crossref_primary_10_1016_j_ultras_2022_106724 crossref_primary_10_1038_srep15477 crossref_primary_10_1088_1741_2552_acd870 crossref_primary_10_1016_j_gendis_2023_101112 crossref_primary_10_1371_journal_pone_0278865 crossref_primary_10_1002_ana_26294 crossref_primary_10_1016_j_ultrasmedbio_2020_11_022 crossref_primary_10_1016_j_ultrasmedbio_2017_11_008 crossref_primary_10_3390_jcm12227070 crossref_primary_10_1109_TBME_2020_2975279 crossref_primary_10_1109_TUFFC_2022_3192224 crossref_primary_10_1186_s12868_018_0456_6 crossref_primary_10_1186_s40035_021_00256_z crossref_primary_10_1109_TUFFC_2020_3014780 crossref_primary_10_1371_journal_pone_0288654 crossref_primary_10_1038_s41598_021_85504_y crossref_primary_10_3389_fnins_2022_807376 crossref_primary_10_3389_fneur_2018_01007 crossref_primary_10_1016_j_plrev_2023_04_006 crossref_primary_10_1088_1361_6560_aaa15c crossref_primary_10_1109_TUFFC_2021_3052203 crossref_primary_10_1002_ima_22091 crossref_primary_10_1007_s40857_023_00289_6 crossref_primary_10_1016_j_ultrasmedbio_2016_08_003 crossref_primary_10_1038_s41598_022_20554_4 crossref_primary_10_1016_j_ultrasmedbio_2016_02_020 crossref_primary_10_1152_jn_00701_2020 crossref_primary_10_1371_journal_pone_0060410 crossref_primary_10_1016_j_ultrasmedbio_2017_12_020 crossref_primary_10_1088_1361_6560_ac08b1 crossref_primary_10_1364_BOE_460713 crossref_primary_10_1126_sciadv_abf6312 crossref_primary_10_1109_TBME_2013_2283970 crossref_primary_10_3389_fnagi_2021_656430 crossref_primary_10_1016_j_hrthm_2023_11_026 crossref_primary_10_1186_s12871_021_01381_y crossref_primary_10_1016_j_brs_2020_08_014 crossref_primary_10_1093_cercor_bhae143 crossref_primary_10_1016_j_neuroimage_2023_119952 crossref_primary_10_2139_ssrn_4131980 crossref_primary_10_3390_ijms24032578 crossref_primary_10_1016_j_ultsonch_2023_106686 crossref_primary_10_1097_WNR_0000000000000745 crossref_primary_10_1002_nau_23241 crossref_primary_10_3390_jcm12175448 crossref_primary_10_1088_1674_1056_24_12_124302 crossref_primary_10_1109_TBME_2016_2543662 crossref_primary_10_1016_j_compbiomed_2021_105094 crossref_primary_10_1038_s41598_017_13572_0 crossref_primary_10_1109_TMECH_2021_3114852 crossref_primary_10_1111_jnc_70001 crossref_primary_10_1016_j_brs_2018_11_007 crossref_primary_10_3389_fnins_2016_00348 crossref_primary_10_1038_ncomms9264 crossref_primary_10_1093_cercor_bhac370 crossref_primary_10_1177_15357597221086111 crossref_primary_10_1109_TUFFC_2020_3028619 crossref_primary_10_1523_JNEUROSCI_1458_17_2018 crossref_primary_10_1109_TBME_2021_3104865 crossref_primary_10_1002_adfm_201908999 crossref_primary_10_1016_j_brs_2012_05_002 crossref_primary_10_1063_5_0052743 crossref_primary_10_1002_ima_22160 crossref_primary_10_1016_j_brs_2021_01_006 crossref_primary_10_59761_RCR5096 crossref_primary_10_1016_j_ultrasmedbio_2017_08_937 crossref_primary_10_1016_j_brs_2021_01_002 crossref_primary_10_1109_TUFFC_2020_3039743 crossref_primary_10_1109_TNSRE_2022_3199813 crossref_primary_10_1016_j_neuron_2020_09_003 crossref_primary_10_3171_2017_11_FOCUS17610 crossref_primary_10_1016_j_ultrasmedbio_2016_02_012 crossref_primary_10_1016_j_psc_2018_04_010 crossref_primary_10_1016_j_brs_2024_06_005 crossref_primary_10_1038_s41598_020_62265_8 crossref_primary_10_1016_j_ultrasmedbio_2012_09_009 crossref_primary_10_1016_j_brs_2014_08_008 crossref_primary_10_3390_brainsci11060711 crossref_primary_10_2217_nnm_15_52 crossref_primary_10_1007_s40473_015_0049_y crossref_primary_10_1118_1_4789916 crossref_primary_10_3390_mi12081001 crossref_primary_10_1016_j_brainresbull_2021_07_028 crossref_primary_10_1016_j_brs_2024_07_019 crossref_primary_10_1007_s11916_018_0711_7 crossref_primary_10_1093_cercor_bhac037 crossref_primary_10_1186_s12868_023_00817_0 crossref_primary_10_1371_journal_pone_0086939 crossref_primary_10_1109_TUFFC_2020_3019932 crossref_primary_10_1002_ima_22020 crossref_primary_10_1002_ima_22262 crossref_primary_10_1016_j_heliyon_2023_e22522 crossref_primary_10_1109_TUFFC_2020_2968479 crossref_primary_10_1016_j_ultrasmedbio_2020_04_011 crossref_primary_10_1038_s41598_023_39640_2 crossref_primary_10_1016_j_brainresbull_2020_05_006 crossref_primary_10_1016_j_ultrasmedbio_2018_12_012 crossref_primary_10_1016_j_ultrasmedbio_2018_12_015 crossref_primary_10_1118_1_4812423 crossref_primary_10_1016_j_jns_2020_117149 crossref_primary_10_1016_j_jpsychires_2023_10_039 crossref_primary_10_1109_TBME_2020_3030892 crossref_primary_10_1016_j_brs_2011_03_007 crossref_primary_10_1016_j_brs_2019_03_005 crossref_primary_10_1109_TUFFC_2019_2903896 crossref_primary_10_1016_j_brs_2024_07_020 crossref_primary_10_1016_S1353_8020_13_70046_4 crossref_primary_10_1038_nprot_2011_371 crossref_primary_10_1109_TBME_2021_3050797 crossref_primary_10_1002_brb3_981 crossref_primary_10_1088_1674_1056_ac7453 crossref_primary_10_1016_j_ultsonch_2019_104935 crossref_primary_10_1371_journal_pone_0159892 crossref_primary_10_1021_acs_nanolett_8b00935 crossref_primary_10_1016_j_conb_2018_04_011 crossref_primary_10_1109_TBME_2016_2591924 crossref_primary_10_1016_j_brs_2024_05_003 crossref_primary_10_1063_5_0011837 crossref_primary_10_3390_mi15091106 crossref_primary_10_1016_j_brs_2019_10_018 crossref_primary_10_1080_14737175_2023_2221789 crossref_primary_10_1109_TBME_2015_2427339 crossref_primary_10_1186_s12917_015_0581_8 crossref_primary_10_1088_1674_1056_24_8_088704 crossref_primary_10_1109_TNSRE_2022_3148877 crossref_primary_10_1126_sciadv_ads6947 crossref_primary_10_1186_s12868_018_0462_8 crossref_primary_10_1002_ima_22110 crossref_primary_10_1002_ima_22113 crossref_primary_10_1038_s41598_021_98920_x crossref_primary_10_1113_JP285613 crossref_primary_10_1002_advs_202407373 crossref_primary_10_1016_j_jneumeth_2023_110009 crossref_primary_10_1073_pnas_2300291120 crossref_primary_10_1016_j_ncl_2013_07_008 crossref_primary_10_1126_science_adp7206 crossref_primary_10_1080_21507740_2013_863246 crossref_primary_10_1002_jbio_201900201 crossref_primary_10_1088_1742_6596_581_1_012003 crossref_primary_10_1088_1741_2552_ac3f6d crossref_primary_10_3109_02656736_2015_1007398 crossref_primary_10_1109_ACCESS_2021_3073506 crossref_primary_10_17116_neiro2016802108_118 crossref_primary_10_1021_acs_nanolett_9b04373 crossref_primary_10_3389_fneur_2023_1117188 crossref_primary_10_1016_j_neubiorev_2020_06_007 crossref_primary_10_1007_s13311_018_00691_3 crossref_primary_10_1109_TBCAS_2019_2959439 crossref_primary_10_1016_j_ultrasmedbio_2015_10_001 crossref_primary_10_1109_TUFFC_2021_3131752 crossref_primary_10_3389_fnins_2022_886584 crossref_primary_10_1109_TUFFC_2015_2498042 crossref_primary_10_1016_j_isci_2021_103085 crossref_primary_10_1097_WNR_0b013e32834b2957 crossref_primary_10_1016_j_ultrasmedbio_2017_05_008 crossref_primary_10_1016_j_bbr_2018_01_004 crossref_primary_10_1038_s41467_020_14706_1 crossref_primary_10_1186_s40349_016_0066_7 crossref_primary_10_1088_1741_2552_abdfb1 crossref_primary_10_1038_srep08743 crossref_primary_10_1038_s41598_022_17314_9 crossref_primary_10_1016_j_cobme_2018_10_004 crossref_primary_10_1038_srep16253 crossref_primary_10_1088_1741_2552_aaaee1 crossref_primary_10_3389_fneur_2023_1301956 crossref_primary_10_1038_s41598_018_35486_1 crossref_primary_10_3390_s21175962 crossref_primary_10_1109_TUFFC_2018_2847252 crossref_primary_10_1088_1741_2560_13_5_056002 crossref_primary_10_3390_pharmaceutics14102120 crossref_primary_10_4103_0028_3886_302469 crossref_primary_10_1016_j_neuroimage_2023_119979 crossref_primary_10_1051_epjap_2016150495 crossref_primary_10_33069_cim_2019_0009 crossref_primary_10_1002_advs_202101934 crossref_primary_10_1007_s13311_017_0515_1 crossref_primary_10_3788_CJL230708 crossref_primary_10_34133_research_0200 crossref_primary_10_1016_j_ultrasmedbio_2014_01_020 crossref_primary_10_1038_s41598_019_51876_5 crossref_primary_10_1038_srep24170 crossref_primary_10_12786_bn_2018_11_e16 crossref_primary_10_1016_j_brs_2024_11_005 crossref_primary_10_3390_mi11100929 crossref_primary_10_1007_s40134_013_0013_0 crossref_primary_10_1371_journal_pone_0178476 crossref_primary_10_1016_j_psc_2018_05_004 crossref_primary_10_3390_brainsci14030218 crossref_primary_10_1016_j_brs_2024_04_005 crossref_primary_10_1038_nn_3620 crossref_primary_10_1016_j_ultrasmedbio_2014_02_028 crossref_primary_10_1088_1741_2552_abf68d crossref_primary_10_1080_09540261_2017_1302924 crossref_primary_10_1109_JBHI_2024_3389708 crossref_primary_10_1016_j_neuron_2019_01_019 crossref_primary_10_3390_brainsci13030451 crossref_primary_10_1109_TBME_2019_2899631 crossref_primary_10_1016_j_actbio_2019_07_041 crossref_primary_10_1088_1741_2552_ab98dc crossref_primary_10_1088_1741_2552_ab1685 crossref_primary_10_3389_fphys_2020_01042 crossref_primary_10_3389_fnins_2022_964060 crossref_primary_10_1016_j_brs_2017_02_008 crossref_primary_10_1016_j_jconrel_2019_12_006 crossref_primary_10_1109_TUFFC_2018_2827899 |
Cites_doi | 10.1186/1475-925X-2-6 10.1002/hbm.20377 10.7863/jum.2005.24.8.1117 10.1016/j.neulet.2008.11.024 10.1016/j.cortex.2008.05.004 10.1121/1.381829 10.1083/jcb.119.3.493 10.1016/j.neuron.2010.05.008 10.1038/nrneurol.2010.30 10.1038/ncpneuro0530 10.7863/jum.2004.23.5.723 10.1016/j.mric.2005.04.008 10.1126/science.2536958 10.1016/S1385-299X(00)00004-0 10.1002/mrm.1910340606 10.1038/npp.2009.87 10.1088/0031-9155/51/9/013 10.1016/S0301-5629(97)00269-X 10.1121/1.382016 10.1126/science.127.3289.83 10.1097/00002142-200006000-00005 10.1371/journal.pone.0003511 10.1097/01.rli.0000149491.69201.cb 10.1097/RMR.0b013e31803774a3 10.1146/annurev.bioeng.6.040803.140126 10.1016/0006-8993(91)90711-4 10.1227/01.NEU.0000360379.95800.2F 10.1016/j.ultrasmedbio.2009.05.002 10.1002/ana.21801 10.1088/0031-9155/44/2/022 10.1016/S0301-5629(99)00038-1 10.7863/jum.1993.12.12.747 10.1146/annurev.bioeng.9.061206.133100 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jun 1, 2011 2011 Elsevier Inc. All rights reserved. 2011 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jun 1, 2011 – notice: 2011 Elsevier Inc. All rights reserved. 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2011.02.058 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1275 |
ExternalDocumentID | PMC3342684 3642014731 21354315 10_1016_j_neuroimage_2011_02_058 S105381191100214X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: K24 RR018875 – fundername: NCRR NIH HHS grantid: UL1 RR025758 – fundername: National Center for Research Resources : NCRR grantid: K24 RR018875 || RR |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c661t-53f92535c6686025a64354dae6604f05c97afab1c1b974f45c90a27e17637c8a3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:00:45 EDT 2025 Fri Jul 11 08:53:26 EDT 2025 Thu Jul 10 17:25:06 EDT 2025 Wed Aug 13 11:34:32 EDT 2025 Thu Apr 03 07:03:55 EDT 2025 Tue Jul 01 02:14:41 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Fri Feb 23 02:20:31 EST 2024 Tue Aug 26 16:33:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-53f92535c6686025a64354dae6604f05c97afab1c1b974f45c90a27e17637c8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3342684 |
PMID | 21354315 |
PQID | 1668059891 |
PQPubID | 2031077 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3342684 proquest_miscellaneous_874189937 proquest_miscellaneous_864778248 proquest_journals_1668059891 pubmed_primary_21354315 crossref_citationtrail_10_1016_j_neuroimage_2011_02_058 crossref_primary_10_1016_j_neuroimage_2011_02_058 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_02_058 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_02_058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-01 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Foster, Wiederhold (bb0035) 1978; 63 Gavrieli, Sherman, Ben-Sasson (bb0050) 1992; 119 Goss, Johnston, Dunn (bb0060) 1978; 64 NEMA, 2004. Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment. (bb0005) 2004; 23 White, Clement, Hynynen (bb0165) 2006; 51 Wagner, Valero-Cabre, Pascual-Leone (bb0155) 2007; 9 Rinaldi, Jones, Reines, Price (bb0135) 1991; 558 Yoo, Park, Soul, Mamata, Park, Westin, Bassan, Du Plessis, Robertson, Maier, Ringer, Volpe, Zientara (bb0175) 2005; 40 Duck (bb0030) 1999; 25 Hoy, Fitzgerald (bb0065) 2010; 6 Martin, Jeanmonod, Morel, Zadicario, Werner (bb0105) 2009; 66 McDannold, Jolesz (bb0115) 2000; 11 Victorov, Prass, Dirnagl (bb0150) 2000; 5 Jolesz, Hynynen, McDannold, Tempany (bb0080) 2005; 13 Lee, Ryu, Jolesz, Cho, Yoo (bb0095) 2009; 450 Colucci, Strichartz, Jolesz, Vykhodtseva, Hynynen (bb0020) 2009; 35 Fry, Ades, Fry (bb0045) 1958; 127 White (bb0160) 2006; 17 Clement, White, King, McDannold, Hynynen (bb0015) 2005; 24 Dalecki (bb0025) 2004; 6 Tufail, Matyushov, Baldwin, Tauchmann, Georges, Yoshihiro, Tillery, Tyler (bb0140) 2010; 66 Catani, Thiebaut de Schotten (bb0010) 2008; 44 George, Aston-Jones (bb0055) 2010; 35 Norton (bb0130) 2003; 2 Hynynen, Jolesz (bb0070) 1998; 24 McDannold, Clement, Black, Jolesz, Hynynen (bb0110) 2010; 66 Wlodarczyk, Hentschel, Wust, Noeske, Hosten, Rinneberg, Felix (bb0170) 1999; 44 Ishihara, Calderon, Watanabe, Okamoto, Suzuki, Kuroda (bb0075) 1995; 34 Lee, O'Leary, Park, Jolesz, Yoo (bb0090) 2008; 29 Magee, Davies (bb0100) 1993; 12 Fregni, Pascual-Leone (bb0040) 2007; 3 Tyler, Tufail, Finsterwald, Tauchmann, Olson, Majestic (bb0145) 2008; 3 Morris, Sigurdson (bb0120) 1989; 243 Clement (10.1016/j.neuroimage.2011.02.058_bb0015) 2005; 24 Martin (10.1016/j.neuroimage.2011.02.058_bb0105) 2009; 66 10.1016/j.neuroimage.2011.02.058_bb0125 Colucci (10.1016/j.neuroimage.2011.02.058_bb0020) 2009; 35 Norton (10.1016/j.neuroimage.2011.02.058_bb0130) 2003; 2 Tyler (10.1016/j.neuroimage.2011.02.058_bb0145) 2008; 3 Catani (10.1016/j.neuroimage.2011.02.058_bb0010) 2008; 44 Jolesz (10.1016/j.neuroimage.2011.02.058_bb0080) 2005; 13 Duck (10.1016/j.neuroimage.2011.02.058_bb0030) 1999; 25 Dalecki (10.1016/j.neuroimage.2011.02.058_bb0025) 2004; 6 Lee (10.1016/j.neuroimage.2011.02.058_bb0095) 2009; 450 Morris (10.1016/j.neuroimage.2011.02.058_bb0120) 1989; 243 Lee (10.1016/j.neuroimage.2011.02.058_bb0090) 2008; 29 (10.1016/j.neuroimage.2011.02.058_bb0005) 2004; 23 George (10.1016/j.neuroimage.2011.02.058_bb0055) 2010; 35 Ishihara (10.1016/j.neuroimage.2011.02.058_bb0075) 1995; 34 Wagner (10.1016/j.neuroimage.2011.02.058_bb0155) 2007; 9 Victorov (10.1016/j.neuroimage.2011.02.058_bb0150) 2000; 5 White (10.1016/j.neuroimage.2011.02.058_bb0165) 2006; 51 Foster (10.1016/j.neuroimage.2011.02.058_bb0035) 1978; 63 Magee (10.1016/j.neuroimage.2011.02.058_bb0100) 1993; 12 Fry (10.1016/j.neuroimage.2011.02.058_bb0045) 1958; 127 Yoo (10.1016/j.neuroimage.2011.02.058_bb0175) 2005; 40 Fregni (10.1016/j.neuroimage.2011.02.058_bb0040) 2007; 3 White (10.1016/j.neuroimage.2011.02.058_bb0160) 2006; 17 Hoy (10.1016/j.neuroimage.2011.02.058_bb0065) 2010; 6 Hynynen (10.1016/j.neuroimage.2011.02.058_bb0070) 1998; 24 McDannold (10.1016/j.neuroimage.2011.02.058_bb0115) 2000; 11 McDannold (10.1016/j.neuroimage.2011.02.058_bb0110) 2010; 66 Goss (10.1016/j.neuroimage.2011.02.058_bb0060) 1978; 64 Wlodarczyk (10.1016/j.neuroimage.2011.02.058_bb0170) 1999; 44 Gavrieli (10.1016/j.neuroimage.2011.02.058_bb0050) 1992; 119 Tufail (10.1016/j.neuroimage.2011.02.058_bb0140) 2010; 66 Rinaldi (10.1016/j.neuroimage.2011.02.058_bb0135) 1991; 558 12702213 - Biomed Eng Online. 2003 Mar 4;2:6 20087132 - Neurosurgery. 2010 Feb;66(2):323-32; discussion 332 20033983 - Ann Neurol. 2009 Dec;66(6):858-61 8301715 - J Ultrasound Med. 1993 Dec;12(12):747-50 17370340 - Hum Brain Mapp. 2008 Feb;29(2):157-66 15654256 - Invest Radiol. 2005 Feb;40(2):110-5 10775832 - Brain Res Brain Res Protoc. 2000 Apr;5(2):135-9 19647923 - Ultrasound Med Biol. 2009 Oct;35(10):1737-47 16084419 - Magn Reson Imaging Clin N Am. 2005 Aug;13(3):545-60 15154543 - J Ultrasound Med. 2004 May;23(5):723-6 19693003 - Neuropsychopharmacology. 2010 Jan;35(1):301-16 18958151 - PLoS One. 2008;3(10):e3511 10070804 - Phys Med Biol. 1999 Feb;44(2):607-24 19026717 - Neurosci Lett. 2009 Jan 23;450(1):1-6 20547127 - Neuron. 2010 Jun 10;66(5):681-94 15255769 - Annu Rev Biomed Eng. 2004;6:229-48 11145211 - Top Magn Reson Imaging. 2000 Jun;11(3):191-202 16040827 - J Ultrasound Med. 2005 Aug;24(8):1117-25 2536958 - Science. 1989 Feb 10;243(4892):807-9 13495483 - Science. 1958 Jan 10;127(3289):83-4 16625043 - Phys Med Biol. 2006 May 7;51(9):2293-305 10461731 - Ultrasound Med Biol. 1999 Jul;25(6):1009-18 1400587 - J Cell Biol. 1992 Nov;119(3):493-501 17414073 - Top Magn Reson Imaging. 2006 Jun;17(3):165-72 17444810 - Annu Rev Biomed Eng. 2007;9:527-65 20368742 - Nat Rev Neurol. 2010 May;6(5):267-75 1933382 - Brain Res. 1991 Aug 30;558(1):36-42 18619589 - Cortex. 2008 Sep;44(8):1105-32 8598808 - Magn Reson Med. 1995 Dec;34(6):814-23 17611487 - Nat Clin Pract Neurol. 2007 Jul;3(7):383-93 649878 - J Acoust Soc Am. 1978 Apr;63(4):1199-205 361793 - J Acoust Soc Am. 1978 Aug;64(2):423-57 9550186 - Ultrasound Med Biol. 1998 Feb;24(2):275-83 |
References_xml | – volume: 5 start-page: 135 year: 2000 end-page: 139 ident: bb0150 article-title: Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin publication-title: Brain Res. Brain Res. Protoc. – volume: 24 start-page: 275 year: 1998 end-page: 283 ident: bb0070 article-title: Demonstration of potential noninvasive ultrasound brain therapy through an intact skull publication-title: Ultrasound Med. Biol. – volume: 11 start-page: 191 year: 2000 end-page: 202 ident: bb0115 article-title: Magnetic resonance image-guided thermal ablations publication-title: Top. Magn. Reson. Imaging – volume: 40 start-page: 110 year: 2005 end-page: 115 ident: bb0175 article-title: In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging publication-title: Invest. Radiol. – volume: 12 start-page: 747 year: 1993 end-page: 750 ident: bb0100 article-title: Auditory phenomena during transcranial Doppler insonation of the basilar artery publication-title: J. Ultrasound Med. – volume: 35 start-page: 301 year: 2010 end-page: 316 ident: bb0055 article-title: Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) publication-title: Neuropsychopharmacology – volume: 66 start-page: 858 year: 2009 end-page: 861 ident: bb0105 article-title: High-intensity focused ultrasound for noninvasive functional neurosurgery publication-title: Ann. Neurol. – volume: 35 start-page: 1737 year: 2009 end-page: 1747 ident: bb0020 article-title: Focused ultrasound effects on nerve action potential in vitro publication-title: Ultrasound Med. Biol. – volume: 127 start-page: 83 year: 1958 end-page: 84 ident: bb0045 article-title: Production of reversible changes in the central nervous system by ultrasound publication-title: Science – volume: 63 start-page: 1199 year: 1978 end-page: 1205 ident: bb0035 article-title: Auditory responses in cats produced by pulsed ultrasound publication-title: J. Acoust. Soc. Am. – volume: 243 start-page: 807 year: 1989 end-page: 809 ident: bb0120 article-title: Stretch-inactivated ion channels coexist with stretch-activated ion channels publication-title: Science – volume: 51 start-page: 2293 year: 2006 end-page: 2305 ident: bb0165 article-title: Local frequency dependence in transcranial ultrasound transmission publication-title: Phys. Med. Biol. – volume: 6 start-page: 229 year: 2004 end-page: 248 ident: bb0025 article-title: Mechanical bioeffects of ultrasound publication-title: Annu. Rev. Biomed. Eng. – volume: 44 start-page: 607 year: 1999 end-page: 624 ident: bb0170 article-title: Comparison of four magnetic resonance methods for mapping small temperature changes publication-title: Phys. Med. Biol. – volume: 119 start-page: 493 year: 1992 end-page: 501 ident: bb0050 article-title: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation publication-title: J. Cell Biol. – volume: 2 start-page: 1 year: 2003 ident: bb0130 article-title: Can ultrasound be used to stimulate nerve tissue? publication-title: Biomed. Eng. Online – volume: 24 start-page: 1117 year: 2005 end-page: 1125 ident: bb0015 article-title: A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy publication-title: J. Ultrasound Med. – volume: 13 start-page: 545 year: 2005 end-page: 560 ident: bb0080 article-title: MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery publication-title: Magn. Reson. Imaging Clin. N. Am. – volume: 3 start-page: e3511 year: 2008 ident: bb0145 article-title: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound publication-title: PLoS ONE – volume: 29 start-page: 157 year: 2008 end-page: 166 ident: bb0090 article-title: Atlas-based multichannel monitoring of functional MRI signals in real-time: automated approach publication-title: Hum. Brain Mapp. – volume: 9 start-page: 527 year: 2007 end-page: 565 ident: bb0155 article-title: Noninvasive human brain stimulation publication-title: Annu. Rev. Biomed. Eng. – volume: 66 start-page: 681 year: 2010 end-page: 694 ident: bb0140 article-title: Transcranial pulsed ultrasound stimulates intact brain circuits publication-title: Neuron – volume: 450 start-page: 1 year: 2009 end-page: 6 ident: bb0095 article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm publication-title: Neurosci. Lett. – volume: 44 start-page: 1105 year: 2008 end-page: 1132 ident: bb0010 article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections publication-title: Cortex – volume: 34 start-page: 814 year: 1995 end-page: 823 ident: bb0075 article-title: A precise and fast temperature mapping using water proton chemical shift publication-title: Magn. Reson. Med. – reference: NEMA, 2004. Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment. – volume: 25 start-page: 1009 year: 1999 end-page: 1018 ident: bb0030 article-title: Acoustic saturation and output regulation publication-title: Ultrasound Med. Biol. – volume: 64 start-page: 423 year: 1978 end-page: 457 ident: bb0060 article-title: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues publication-title: J. Acoust. Soc. Am. – volume: 6 start-page: 267 year: 2010 end-page: 275 ident: bb0065 article-title: Brain stimulation in psychiatry and its effects on cognition publication-title: Nat. Rev. Neurol. – volume: 558 start-page: 36 year: 1991 end-page: 42 ident: bb0135 article-title: Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation publication-title: Brain Res. – volume: 17 start-page: 165 year: 2006 end-page: 172 ident: bb0160 article-title: Transcranial focused ultrasound surgery publication-title: Top. Magn. Reson. Imaging – volume: 66 start-page: 323 year: 2010 end-page: 332 ident: bb0110 article-title: Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients publication-title: Neurosurgery – volume: 23 start-page: 723 year: 2004 end-page: 726 ident: bb0005 article-title: How to interpret the ultrasound output display standard for higher acoustic output diagnostic ultrasound devices: version 2 publication-title: J. Ultrasound Med. – volume: 3 start-page: 383 year: 2007 end-page: 393 ident: bb0040 article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS publication-title: Nat. Clin. Pract. Neurol. – volume: 2 start-page: 1 year: 2003 ident: 10.1016/j.neuroimage.2011.02.058_bb0130 article-title: Can ultrasound be used to stimulate nerve tissue? publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-2-6 – volume: 29 start-page: 157 year: 2008 ident: 10.1016/j.neuroimage.2011.02.058_bb0090 article-title: Atlas-based multichannel monitoring of functional MRI signals in real-time: automated approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20377 – volume: 24 start-page: 1117 year: 2005 ident: 10.1016/j.neuroimage.2011.02.058_bb0015 article-title: A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy publication-title: J. Ultrasound Med. doi: 10.7863/jum.2005.24.8.1117 – volume: 450 start-page: 1 year: 2009 ident: 10.1016/j.neuroimage.2011.02.058_bb0095 article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2008.11.024 – volume: 44 start-page: 1105 year: 2008 ident: 10.1016/j.neuroimage.2011.02.058_bb0010 article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections publication-title: Cortex doi: 10.1016/j.cortex.2008.05.004 – volume: 63 start-page: 1199 year: 1978 ident: 10.1016/j.neuroimage.2011.02.058_bb0035 article-title: Auditory responses in cats produced by pulsed ultrasound publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.381829 – volume: 119 start-page: 493 year: 1992 ident: 10.1016/j.neuroimage.2011.02.058_bb0050 article-title: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation publication-title: J. Cell Biol. doi: 10.1083/jcb.119.3.493 – volume: 66 start-page: 681 year: 2010 ident: 10.1016/j.neuroimage.2011.02.058_bb0140 article-title: Transcranial pulsed ultrasound stimulates intact brain circuits publication-title: Neuron doi: 10.1016/j.neuron.2010.05.008 – volume: 6 start-page: 267 year: 2010 ident: 10.1016/j.neuroimage.2011.02.058_bb0065 article-title: Brain stimulation in psychiatry and its effects on cognition publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2010.30 – ident: 10.1016/j.neuroimage.2011.02.058_bb0125 – volume: 3 start-page: 383 year: 2007 ident: 10.1016/j.neuroimage.2011.02.058_bb0040 article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS publication-title: Nat. Clin. Pract. Neurol. doi: 10.1038/ncpneuro0530 – volume: 23 start-page: 723 year: 2004 ident: 10.1016/j.neuroimage.2011.02.058_bb0005 article-title: How to interpret the ultrasound output display standard for higher acoustic output diagnostic ultrasound devices: version 2 publication-title: J. Ultrasound Med. doi: 10.7863/jum.2004.23.5.723 – volume: 13 start-page: 545 year: 2005 ident: 10.1016/j.neuroimage.2011.02.058_bb0080 article-title: MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery publication-title: Magn. Reson. Imaging Clin. N. Am. doi: 10.1016/j.mric.2005.04.008 – volume: 243 start-page: 807 year: 1989 ident: 10.1016/j.neuroimage.2011.02.058_bb0120 article-title: Stretch-inactivated ion channels coexist with stretch-activated ion channels publication-title: Science doi: 10.1126/science.2536958 – volume: 5 start-page: 135 year: 2000 ident: 10.1016/j.neuroimage.2011.02.058_bb0150 article-title: Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin publication-title: Brain Res. Brain Res. Protoc. doi: 10.1016/S1385-299X(00)00004-0 – volume: 34 start-page: 814 year: 1995 ident: 10.1016/j.neuroimage.2011.02.058_bb0075 article-title: A precise and fast temperature mapping using water proton chemical shift publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340606 – volume: 35 start-page: 301 year: 2010 ident: 10.1016/j.neuroimage.2011.02.058_bb0055 article-title: Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.87 – volume: 51 start-page: 2293 year: 2006 ident: 10.1016/j.neuroimage.2011.02.058_bb0165 article-title: Local frequency dependence in transcranial ultrasound transmission publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/9/013 – volume: 24 start-page: 275 year: 1998 ident: 10.1016/j.neuroimage.2011.02.058_bb0070 article-title: Demonstration of potential noninvasive ultrasound brain therapy through an intact skull publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(97)00269-X – volume: 64 start-page: 423 year: 1978 ident: 10.1016/j.neuroimage.2011.02.058_bb0060 article-title: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.382016 – volume: 127 start-page: 83 year: 1958 ident: 10.1016/j.neuroimage.2011.02.058_bb0045 article-title: Production of reversible changes in the central nervous system by ultrasound publication-title: Science doi: 10.1126/science.127.3289.83 – volume: 11 start-page: 191 year: 2000 ident: 10.1016/j.neuroimage.2011.02.058_bb0115 article-title: Magnetic resonance image-guided thermal ablations publication-title: Top. Magn. Reson. Imaging doi: 10.1097/00002142-200006000-00005 – volume: 3 start-page: e3511 year: 2008 ident: 10.1016/j.neuroimage.2011.02.058_bb0145 article-title: Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound publication-title: PLoS ONE doi: 10.1371/journal.pone.0003511 – volume: 40 start-page: 110 year: 2005 ident: 10.1016/j.neuroimage.2011.02.058_bb0175 article-title: In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging publication-title: Invest. Radiol. doi: 10.1097/01.rli.0000149491.69201.cb – volume: 17 start-page: 165 year: 2006 ident: 10.1016/j.neuroimage.2011.02.058_bb0160 article-title: Transcranial focused ultrasound surgery publication-title: Top. Magn. Reson. Imaging doi: 10.1097/RMR.0b013e31803774a3 – volume: 6 start-page: 229 year: 2004 ident: 10.1016/j.neuroimage.2011.02.058_bb0025 article-title: Mechanical bioeffects of ultrasound publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.6.040803.140126 – volume: 558 start-page: 36 year: 1991 ident: 10.1016/j.neuroimage.2011.02.058_bb0135 article-title: Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation publication-title: Brain Res. doi: 10.1016/0006-8993(91)90711-4 – volume: 66 start-page: 323 year: 2010 ident: 10.1016/j.neuroimage.2011.02.058_bb0110 article-title: Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients publication-title: Neurosurgery doi: 10.1227/01.NEU.0000360379.95800.2F – volume: 35 start-page: 1737 year: 2009 ident: 10.1016/j.neuroimage.2011.02.058_bb0020 article-title: Focused ultrasound effects on nerve action potential in vitro publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2009.05.002 – volume: 66 start-page: 858 year: 2009 ident: 10.1016/j.neuroimage.2011.02.058_bb0105 article-title: High-intensity focused ultrasound for noninvasive functional neurosurgery publication-title: Ann. Neurol. doi: 10.1002/ana.21801 – volume: 44 start-page: 607 year: 1999 ident: 10.1016/j.neuroimage.2011.02.058_bb0170 article-title: Comparison of four magnetic resonance methods for mapping small temperature changes publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/44/2/022 – volume: 25 start-page: 1009 year: 1999 ident: 10.1016/j.neuroimage.2011.02.058_bb0030 article-title: Acoustic saturation and output regulation publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(99)00038-1 – volume: 12 start-page: 747 year: 1993 ident: 10.1016/j.neuroimage.2011.02.058_bb0100 article-title: Auditory phenomena during transcranial Doppler insonation of the basilar artery publication-title: J. Ultrasound Med. doi: 10.7863/jum.1993.12.12.747 – volume: 9 start-page: 527 year: 2007 ident: 10.1016/j.neuroimage.2011.02.058_bb0155 article-title: Noninvasive human brain stimulation publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.9.061206.133100 – reference: 19026717 - Neurosci Lett. 2009 Jan 23;450(1):1-6 – reference: 10461731 - Ultrasound Med Biol. 1999 Jul;25(6):1009-18 – reference: 649878 - J Acoust Soc Am. 1978 Apr;63(4):1199-205 – reference: 10070804 - Phys Med Biol. 1999 Feb;44(2):607-24 – reference: 16625043 - Phys Med Biol. 2006 May 7;51(9):2293-305 – reference: 18958151 - PLoS One. 2008;3(10):e3511 – reference: 16040827 - J Ultrasound Med. 2005 Aug;24(8):1117-25 – reference: 8301715 - J Ultrasound Med. 1993 Dec;12(12):747-50 – reference: 2536958 - Science. 1989 Feb 10;243(4892):807-9 – reference: 12702213 - Biomed Eng Online. 2003 Mar 4;2:6 – reference: 15654256 - Invest Radiol. 2005 Feb;40(2):110-5 – reference: 20368742 - Nat Rev Neurol. 2010 May;6(5):267-75 – reference: 17611487 - Nat Clin Pract Neurol. 2007 Jul;3(7):383-93 – reference: 1400587 - J Cell Biol. 1992 Nov;119(3):493-501 – reference: 11145211 - Top Magn Reson Imaging. 2000 Jun;11(3):191-202 – reference: 13495483 - Science. 1958 Jan 10;127(3289):83-4 – reference: 19693003 - Neuropsychopharmacology. 2010 Jan;35(1):301-16 – reference: 20547127 - Neuron. 2010 Jun 10;66(5):681-94 – reference: 17414073 - Top Magn Reson Imaging. 2006 Jun;17(3):165-72 – reference: 8598808 - Magn Reson Med. 1995 Dec;34(6):814-23 – reference: 17444810 - Annu Rev Biomed Eng. 2007;9:527-65 – reference: 1933382 - Brain Res. 1991 Aug 30;558(1):36-42 – reference: 19647923 - Ultrasound Med Biol. 2009 Oct;35(10):1737-47 – reference: 15255769 - Annu Rev Biomed Eng. 2004;6:229-48 – reference: 10775832 - Brain Res Brain Res Protoc. 2000 Apr;5(2):135-9 – reference: 9550186 - Ultrasound Med Biol. 1998 Feb;24(2):275-83 – reference: 15154543 - J Ultrasound Med. 2004 May;23(5):723-6 – reference: 361793 - J Acoust Soc Am. 1978 Aug;64(2):423-57 – reference: 17370340 - Hum Brain Mapp. 2008 Feb;29(2):157-66 – reference: 16084419 - Magn Reson Imaging Clin N Am. 2005 Aug;13(3):545-60 – reference: 18619589 - Cortex. 2008 Sep;44(8):1105-32 – reference: 20033983 - Ann Neurol. 2009 Dec;66(6):858-61 – reference: 20087132 - Neurosurgery. 2010 Feb;66(2):323-32; discussion 332 |
SSID | ssj0009148 |
Score | 2.5438054 |
Snippet | We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of... We demonstrated thein vivofeasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of... We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1267 |
SubjectTerms | Acoustics Animals Blood-Brain Barrier Body Temperature Brain - physiology Brain - radiation effects Brain Mapping Electrophysiological Phenomena Magnetic Resonance Imaging Male Medical research Motor Cortex - physiology Motor Cortex - radiation effects NMR Nuclear magnetic resonance Rabbits Somatosensory Cortex - physiology Somatosensory Cortex - radiation effects Transducers Ultrasonic imaging Ultrasonics Visual Cortex - physiology Visual Cortex - radiation effects |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA3iQbyI365f9OA1btMk2xZPIi4irBdd2FtI0hRXtBW7e_W3O9Om1VWRBY9tM9BOk5mXduY9Qs4MD0NtmaViYCUVJpdUA46lqZWw38DWSY0bxdHd4GYsbidyskKu2l4YLKv0sb-J6XW09mf63pv91-m0fw_IANIN7DdYTfw1wQ52EeMsP3__LPNImWja4SSnONpX8zQ1XjVn5PQFVq4n84zOQxR__z1F_YSg3yspv6Sm4SbZ8JgyuGxue4usuGKbrI38X_MdcjEs7bxyWTB_BvMKhZSClzJD4S5XBSjNUBYUWy6xbCgwKBoRYL8DykrskvHw-uHqhnrRBGoh1c6o5HkaSS7hCOWlpAbIIUWm3WAQijyUNo11rg2zzMBWIhdwItRR7BgEmtgmmu-R1aIs3AEJNKT-LMpZ5hIwTUxqDM85ywBzZElu4x6JWz8p6xnFUdjiWbWlY0_q08MKPazCSIGHe4R1lq8Nq8YSNmn7KlTbNQpxTkHoX8L2orNdmF1LWh-3b175FV4pBv4FaJqkrEeC7jKsTfzhogtXziuVYJdvEonkjyHIHoQYsUf2m6nUOSRiHIkKJLh5YZJ1A5AZfPFKMX2sGcI5F8jic_ivxz4i680HdPzkdExWZ29zdwIIbGZO6yX2AbrlMWg priority: 102 providerName: Elsevier |
Title | Focused ultrasound modulates region-specific brain activity |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191100214X https://dx.doi.org/10.1016/j.neuroimage.2011.02.058 https://www.ncbi.nlm.nih.gov/pubmed/21354315 https://www.proquest.com/docview/1668059891 https://www.proquest.com/docview/864778248 https://www.proquest.com/docview/874189937 https://pubmed.ncbi.nlm.nih.gov/PMC3342684 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6xTUK8IH5TGFUeePWIYztxtAc00KoCWoUQk_pm2Y4jhrZkkPaVv527xkkZoKlPVRufVF3O58_23fcBvHYiTa3nnsncKyZdrZhFHMtKr3C_Qa2TljaKZ4t8fi4_LtUyHrh1saxyyImbRF21ns7I3_A81wgFdMnfXv9gpBpFt6tRQmMPDoi6jKK6WBZb0l0u-1Y4JZjGAbGSp6_v2vBFXlzhrI1EntlRSsLv_1-e_oWff1dR_rEszR7A_Ygnk5M-AB7CndA8grtn8cb8MRzPWr_uQpWsL9G8IxGl5KqtSLQrdAnJMrQNo3ZLKhlKHAlGJNTrQJIST-B8dvr1_ZxFwQTmcZldMSXqMlNC4TeSllIW4YaSlQ15nso6Vb4sbG0d99zhNqKW-ENqsyJwTDKF11Y8hf2mbcJzSCwu-1VW8ypoNNWudE7UgleINypd-2ICxeAn4yObOIlaXJqhbOy72XrYkIdNmhn08AT4aHndM2rsYFMOr8IMHaOY4wym_R1sj0fbiCp6tLCj9eHw5k2c3Z3ZxuIEkvExzku6bLFNaNed0dThqzOpbxlCzEGEDyfwrA-l0SEZF0RSoNDNN4JsHECs4DefNBffNuzgQkhi8Hlx-x9_Cff603E6TzqE_dXPdXiF8GrlprB39ItPNzNpCgcnHz7NF_j57nTx-ctv_AcqMQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxJtAAR_guOB92WtVCCEgSmnTUyvltqzXa7Wotds6EeJP8RuZiR-hgKpcekzsiaLZ3Zlvd2e-D-B1LuPYee6ZSrxmKi81c4hjWeY17jeoddLRRnG6n0wO1deZnm3Ar74Xhsoq-5i4DNRF7emM_B1PEoNQwGT8w9k5I9Uoul3tJTTaabEbfv7ALVvzfuczju8bIcZfDj5NWKcqwDzmojnTssyElho_kf6SdpiTtSpcSJJYlbH2WepKl3PPc8TapcIvYifSwHElpt44ib97A25i4o1ps5fO0hXJL1dt652WzHCedZVDbT3Zkp_y-BSjREccKt7GJDT__3T4L9z9u2rzjzQ4vgd3O_wafWwn3H3YCNUDuDXtbugfwva49osmFNHiBM0bEm2KTuuCRMJCE5EMRF0xau-kEqUoJ4GKiHorSMLiERxeiysfw2ZVV-EpRA5hRiFKXgSDpibP8lyWkhfo5sKUPh1B2vvJ-o69nEQ0TmxfpvbdrjxsycM2FhY9PAI-WJ61DB5r2GT9UNi-QxVjqsU0s4bt9mDboZgWnaxpvdWPvO2iSWNXc38E0fAY4wBd7rgq1IvGGuooNkKZK14hpiLCoyN40k6lwSGCSyJF0OjmS5NseIFYyC8_qY6PlmzkUipiDHp29R9_BbcnB9M9u7ezv_sc7rQn83SWtQWb84tFeIHQbp6_XK6nCL5d9wL-DbZkYTo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xIqG9TOwnHWzLw_boEcdx4ghN0zaoYIwKTUPizXMcR2OCBEgrxL-2v253jZOObUJ94bFNrqrOvvNn--77AF7nIgyN5ZbFiZUszkvJDOJYllmJ-w1qnTS0UTwYJ7tH8edjebwEv7peGCqr7HLiLFEXtaUz8k2eJAqhgMr4ZunLIg63R-_PLxgpSNFNayen0U6RfXd9hdu35t3eNo71myga7Xz7tMu8wgCzuC5NmBRlFkkh8RNpMUmD67OMC-OSJIzLUNosNaXJueU54u4yxi9CE6WOY1SmVhmBv3sPllPaFQ1g-ePO-PDrnPKXx20jnhRMcZ75OqK2umzGVnlyhjnD04hGb0OSnf__4vgv-P27hvOPRXG0Cg88mg0-tNPvISy56hGsHPj7-sewNarttHFFMD1F84YknIKzuiDJMNcEJApRV4yaPalgKchJriKgTgsStHgCR3fizKcwqOrKrUFgEHQUUckLp9BU5Vmei1LwAtFOoUqbDiHt_KSt5zInSY1T3RWt_dRzD2vysA4jjR4eAu8tz1s-jwVssm4odNevihlW46KzgO1Wb-sxTYtVFrTe6EZe-9zS6HkkDCHoH2NWoKseU7l62mhF_cUqitUtrxBvEaHTITxrp1LvkIgLokiQ6OYbk6x_gTjJbz6pTn7MuMmFiIk_6Pntf_wVrGDw6i974_11uN8e09PB1gYMJpdT9wJx3iR_6QMqgO93HcO_ASriZtU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focused+ultrasound+modulates+region-specific+brain+activity&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yoo%2C+Seung-Schik&rft.au=Bystritsky%2C+Alexander&rft.au=Lee%2C+Jong-Hwan&rft.au=Zhang%2C+Yongzhi&rft.date=2011-06-01&rft.issn=1053-8119&rft.volume=56&rft.issue=3&rft.spage=1267&rft.epage=1275&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.02.058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2011_02_058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |