Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction
Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far t...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 415 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.01.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm
−2
at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.
The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here, the authors discover copper-containing complexes to reversibly transform during electrocatalysis into methane-producing copper nanoclusters. |
---|---|
AbstractList | Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm-2 at the potential of - 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion-ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm-2 at the potential of - 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion-ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions. Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm −2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions. The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here, the authors discover copper-containing complexes to reversibly transform during electrocatalysis into methane-producing copper nanoclusters. Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm −2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions. Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm−2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here, the authors discover copper-containing complexes to reversibly transform during electrocatalysis into methane-producing copper nanoclusters. Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm at the potential of - 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion-ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions. Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three coppercomplex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm-2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions. The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here, the authors discover copper-containing complexes to reversibly transform during electrocatalysis into methane-producing copper nanoclusters. Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm−2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions. |
ArticleNumber | 415 |
Author | Feng, Zhenxing Wang, Maoyu Liang, Yongye Wang, Hailiang Jiang, Jianbing Ma, Qing Wang, Xiao-Feng Brudvig, Gary W. Huo, Shengjuan Yang, Ke Batista, Victor S. Weng, Zhe Wu, Yueshen |
Author_xml | – sequence: 1 givenname: Zhe orcidid: 0000-0002-6005-9552 surname: Weng fullname: Weng, Zhe organization: Department of Materials Science and Engineering, South University of Science and Technology of China, Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 2 givenname: Yueshen surname: Wu fullname: Wu, Yueshen organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 3 givenname: Maoyu surname: Wang fullname: Wang, Maoyu organization: School of Chemical, Biological, and Environmental Engineering, Oregon State University – sequence: 4 givenname: Jianbing surname: Jiang fullname: Jiang, Jianbing organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 5 givenname: Ke surname: Yang fullname: Yang, Ke organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 6 givenname: Shengjuan surname: Huo fullname: Huo, Shengjuan organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University, Department of Chemistry, Science Colleges, Shanghai University – sequence: 7 givenname: Xiao-Feng surname: Wang fullname: Wang, Xiao-Feng organization: School of Chemistry and Chemical Engineering, University of South China – sequence: 8 givenname: Qing surname: Ma fullname: Ma, Qing organization: DND-CAT, Synchrotron Research Center, Northwestern University – sequence: 9 givenname: Gary W. surname: Brudvig fullname: Brudvig, Gary W. organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 10 givenname: Victor S. surname: Batista fullname: Batista, Victor S. organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University – sequence: 11 givenname: Yongye surname: Liang fullname: Liang, Yongye email: liangyy@sustc.edu.cn organization: Department of Materials Science and Engineering, South University of Science and Technology of China – sequence: 12 givenname: Zhenxing surname: Feng fullname: Feng, Zhenxing email: zhenxing.feng@oregonstate.edu organization: School of Chemical, Biological, and Environmental Engineering, Oregon State University – sequence: 13 givenname: Hailiang orcidid: 0000-0003-4409-2034 surname: Wang fullname: Wang, Hailiang email: hailiang.wang@yale.edu organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29379087$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1419868$$D View this record in Osti.gov |
BookMark | eNp9kktr3DAUhU1JadI0f6CLYtpNN271snW1KYTQRyDQTfZCc309o8G2ppIdkn9fTZyUSaDRRkI655Pu1XlbHI1hpKJ4z9kXziR8TYqrRleMQ8UEcFPpV8WJYIpXXAt5dLA-Ls5S2rI8pOGg1JviWBipDQN9UthznPwNlclPlMrQlRh2O4oVhmHX022JbnL93eSxHNxE0bs-lV2IJfWEUwy4ocGj67MursJYtj7c-pbKSO2cwWF8V7zusofOHubT4vrH9-uLX9XV75-XF-dXFTYNnyqpGDHoEFqHrQZZy4a4qnnTERjqmloBgnRGK81BMuII0GkDyJQUrpanxeWCbYPb2l30g4t3Njhv7zdCXFsXcxU92Y50i4YzbhqmVgIdQzCK2lY6J2plMuvbwtrNq4FapHGKrn8CfXoy-o1dhxtbawADOgM-LoCQJm8T5tbiBsM45pZZrriBBrLo88MtMfyZKU128Amp791IYU6WGyMZV1qJLP30TLoNcxxzO61oDDfMCMFeUmWWEEbkpmbVh8Pi_lX1mIgsgEWAMaQUqbP5_W7_lblW31vO7D5_dsmfzfmz9_mze6t4Zn2kv2iSiyll8bimePDs_7v-AhY669o |
CitedBy_id | crossref_primary_10_1002_anie_202416467 crossref_primary_10_1016_j_electacta_2023_143360 crossref_primary_10_1002_asia_202200624 crossref_primary_10_1002_aenm_201801280 crossref_primary_10_1016_j_cej_2023_144618 crossref_primary_10_1002_ange_202102193 crossref_primary_10_1021_acs_chemrev_0c00396 crossref_primary_10_1021_jacs_4c05669 crossref_primary_10_1038_s41467_022_31661_1 crossref_primary_10_1016_j_jcat_2020_12_004 crossref_primary_10_1038_s41929_018_0164_8 crossref_primary_10_1021_acs_jpcc_1c09344 crossref_primary_10_3390_magnetochemistry9050112 crossref_primary_10_1002_adfm_202206887 crossref_primary_10_1002_advs_201801471 crossref_primary_10_1002_ange_201916520 crossref_primary_10_1002_advs_202303677 crossref_primary_10_1039_D2CP05589A crossref_primary_10_1021_acsnano_0c10697 crossref_primary_10_1126_sciadv_abf3989 crossref_primary_10_1039_D2CP02911A crossref_primary_10_1002_ange_202200723 crossref_primary_10_1002_anie_202111700 crossref_primary_10_1002_cssc_202001037 crossref_primary_10_1016_j_mattod_2021_02_005 crossref_primary_10_1002_ange_202102053 crossref_primary_10_1002_anie_202106004 crossref_primary_10_1016_j_ccr_2022_214716 crossref_primary_10_1016_j_trechm_2021_02_003 crossref_primary_10_1021_jacs_1c01466 crossref_primary_10_1002_admi_201800919 crossref_primary_10_1002_sstr_202200087 crossref_primary_10_1002_ange_202415445 crossref_primary_10_1016_j_apcatb_2021_120897 crossref_primary_10_1021_acs_jpcc_2c05522 crossref_primary_10_1007_s11426_021_1463_6 crossref_primary_10_1021_acs_jpcc_2c01287 crossref_primary_10_1002_smll_202304084 crossref_primary_10_1002_adma_202403187 crossref_primary_10_1021_acsmaterialslett_2c00751 crossref_primary_10_1007_s12274_024_6628_z crossref_primary_10_1021_jacs_3c04826 crossref_primary_10_1016_j_ccst_2022_100081 crossref_primary_10_1039_C8RA08260J crossref_primary_10_1002_admi_202202050 crossref_primary_10_1016_j_chempr_2020_12_016 crossref_primary_10_1002_anie_201804881 crossref_primary_10_1021_acs_nanolett_2c01933 crossref_primary_10_1002_aenm_202400827 crossref_primary_10_1039_D0TA06656G crossref_primary_10_1002_ange_202412144 crossref_primary_10_1063_5_0146267 crossref_primary_10_1007_s10562_022_03919_2 crossref_primary_10_1016_j_mtsust_2025_101089 crossref_primary_10_1021_acs_energyfuels_3c01657 crossref_primary_10_3390_catal10050481 crossref_primary_10_1016_j_ccr_2025_216543 crossref_primary_10_1002_adma_202207088 crossref_primary_10_1002_jcc_27355 crossref_primary_10_1016_j_jcis_2023_01_097 crossref_primary_10_1002_ange_202001216 crossref_primary_10_1016_j_mtsust_2024_100817 crossref_primary_10_1021_jacs_8b00814 crossref_primary_10_1002_advs_202304735 crossref_primary_10_1021_acsaem_2c02873 crossref_primary_10_1021_acsnano_2c07138 crossref_primary_10_1038_s41467_023_40174_4 crossref_primary_10_1039_C9TA07967J crossref_primary_10_1038_s41467_024_50379_w crossref_primary_10_1016_j_enchem_2020_100034 crossref_primary_10_1016_j_cocis_2022_101635 crossref_primary_10_1021_jacs_9b11126 crossref_primary_10_1073_pnas_1918602117 crossref_primary_10_1016_j_electacta_2021_137793 crossref_primary_10_1002_cssc_202402184 crossref_primary_10_1002_smtd_202000033 crossref_primary_10_1021_acsmaterialslett_0c00229 crossref_primary_10_1002_cctc_201901414 crossref_primary_10_1016_S1872_2067_21_63940_2 crossref_primary_10_1021_acscatal_3c03961 crossref_primary_10_1038_s41467_022_33779_8 crossref_primary_10_1039_D2CP00887D crossref_primary_10_1002_aoc_7204 crossref_primary_10_1002_smll_202101443 crossref_primary_10_1002_cctc_202101653 crossref_primary_10_1002_adma_202203791 crossref_primary_10_1007_s11426_024_2579_1 crossref_primary_10_1016_j_apcatb_2020_119173 crossref_primary_10_3389_fchem_2018_00543 crossref_primary_10_1016_j_xinn_2020_100016 crossref_primary_10_1016_j_jcis_2019_05_073 crossref_primary_10_1126_sciadv_add5598 crossref_primary_10_1002_ange_202218208 crossref_primary_10_1002_ange_201910155 crossref_primary_10_1002_ange_202211804 crossref_primary_10_1021_acs_nanolett_9b02782 crossref_primary_10_1002_smll_202411184 crossref_primary_10_1002_anie_202203837 crossref_primary_10_1016_j_matre_2022_100145 crossref_primary_10_1002_smtd_202100700 crossref_primary_10_1021_acscatal_1c02980 crossref_primary_10_1002_nano_202000041 crossref_primary_10_1038_s41570_021_00255_8 crossref_primary_10_1002_anie_201904246 crossref_primary_10_1002_anie_201907994 crossref_primary_10_1039_D3CC05453E crossref_primary_10_1039_D1GC01464A crossref_primary_10_1039_D1SE01726H crossref_primary_10_1002_ange_202106004 crossref_primary_10_1002_adfm_202214062 crossref_primary_10_1039_D0QM01127D crossref_primary_10_1002_xrs_3132 crossref_primary_10_1021_acs_jpcc_9b08666 crossref_primary_10_1021_acscatal_4c07952 crossref_primary_10_1039_D4CC02025A crossref_primary_10_3390_molecules26185524 crossref_primary_10_1021_acsnano_1c02209 crossref_primary_10_1002_anie_202415445 crossref_primary_10_1002_ange_202315922 crossref_primary_10_1039_D2RA06302F crossref_primary_10_1002_chem_202000280 crossref_primary_10_1038_s41467_022_30819_1 crossref_primary_10_1007_s12274_019_2403_y crossref_primary_10_1016_j_mtphys_2021_100354 crossref_primary_10_1021_acscatal_9b02594 crossref_primary_10_1021_jacs_1c03788 crossref_primary_10_1002_smtd_201800369 crossref_primary_10_1002_ange_202111700 crossref_primary_10_1002_eem2_12709 crossref_primary_10_1016_j_apcatb_2022_122272 crossref_primary_10_1021_acscatal_0c05596 crossref_primary_10_1021_jacsau_1c00346 crossref_primary_10_1002_adma_202415135 crossref_primary_10_1002_celc_202001263 crossref_primary_10_1039_D1CC05910F crossref_primary_10_1002_adfm_202000842 crossref_primary_10_1021_acsaem_2c01346 crossref_primary_10_1038_s41467_021_23065_4 crossref_primary_10_1146_annurev_anchem_091020_100631 crossref_primary_10_26599_NRE_2022_9120021 crossref_primary_10_1002_anie_202412144 crossref_primary_10_1002_aic_18161 crossref_primary_10_1002_celc_202100942 crossref_primary_10_1021_jacs_3c10524 crossref_primary_10_1002_ange_201804881 crossref_primary_10_1002_anie_202108388 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1021_jacs_4c03089 crossref_primary_10_1016_j_fuel_2024_132539 crossref_primary_10_1007_s12274_018_2221_7 crossref_primary_10_1002_cctc_202000909 crossref_primary_10_1021_jacs_3c00847 crossref_primary_10_1016_j_jechem_2023_06_010 crossref_primary_10_1002_ente_202401978 crossref_primary_10_1016_j_jcat_2024_115597 crossref_primary_10_1021_acscatal_1c01702 crossref_primary_10_1039_C9SC02605C crossref_primary_10_1039_C8SC03986K crossref_primary_10_1126_sciadv_ade3557 crossref_primary_10_1021_jacs_7b11267 crossref_primary_10_1002_adma_202415101 crossref_primary_10_1039_D1TA06915B crossref_primary_10_1039_D4CS00333K crossref_primary_10_1021_acscatal_0c05092 crossref_primary_10_1021_jacs_2c06188 crossref_primary_10_1002_anie_202003093 crossref_primary_10_1002_chem_202300583 crossref_primary_10_1016_j_mcat_2023_113511 crossref_primary_10_1002_ange_202203837 crossref_primary_10_1007_s40843_021_1749_5 crossref_primary_10_1038_s41467_023_39048_6 crossref_primary_10_1007_s11426_021_1120_3 crossref_primary_10_1021_jacs_0c05913 crossref_primary_10_1021_acsaem_1c01978 crossref_primary_10_1149_2_0291905jes crossref_primary_10_1016_j_cej_2025_160154 crossref_primary_10_1021_acs_energyfuels_2c00400 crossref_primary_10_1002_ange_201912412 crossref_primary_10_1039_C8NR06664G crossref_primary_10_26599_NRE_2022_9120009 crossref_primary_10_1021_acscatal_9b01617 crossref_primary_10_1039_D3NR04956F crossref_primary_10_1016_j_jechem_2023_09_005 crossref_primary_10_1021_acsenergylett_0c02665 crossref_primary_10_1021_jacs_8b02173 crossref_primary_10_1038_s41467_020_16848_8 crossref_primary_10_1021_acsmaterialslett_3c00567 crossref_primary_10_1002_ntls_20210628 crossref_primary_10_1039_D0CE01201G crossref_primary_10_1021_acs_jpcc_4c07971 crossref_primary_10_1007_s12274_019_2455_z crossref_primary_10_1016_j_nanoen_2021_106239 crossref_primary_10_1002_smtd_202000494 crossref_primary_10_1038_s41467_021_26724_8 crossref_primary_10_1016_j_apcata_2023_119388 crossref_primary_10_1016_j_cej_2021_133225 crossref_primary_10_1038_s41467_018_06938_z crossref_primary_10_1002_ange_202012329 crossref_primary_10_1002_smtd_202000016 crossref_primary_10_1002_cssc_202101972 crossref_primary_10_1002_ange_202416467 crossref_primary_10_1039_C8TA10650A crossref_primary_10_1039_D1CC01703A crossref_primary_10_1021_jacs_8b06407 crossref_primary_10_1016_j_cej_2023_142366 crossref_primary_10_1016_j_jechem_2021_04_059 crossref_primary_10_1021_acsenergylett_2c02893 crossref_primary_10_1002_adma_202309526 crossref_primary_10_1039_D1CP00908G crossref_primary_10_1002_adma_202300713 crossref_primary_10_1039_D3EY00063J crossref_primary_10_1039_D0EE01706J crossref_primary_10_1021_acsnano_2c11227 crossref_primary_10_1002_smll_202000955 crossref_primary_10_1002_adma_202007344 crossref_primary_10_1021_acs_chemrev_2c00514 crossref_primary_10_1021_acs_inorgchem_4c04204 crossref_primary_10_2139_ssrn_4054186 crossref_primary_10_1016_j_nanoen_2024_109699 crossref_primary_10_1021_acscentsci_8b00130 crossref_primary_10_1021_jacs_3c08571 crossref_primary_10_1038_s41467_019_09666_0 crossref_primary_10_1016_j_fmre_2024_04_017 crossref_primary_10_1002_adfm_202204993 crossref_primary_10_1021_acs_chemmater_4c01137 crossref_primary_10_1002_ange_202114253 crossref_primary_10_1039_D0TA07068H crossref_primary_10_1021_jacs_0c07041 crossref_primary_10_1039_D2CS00441K crossref_primary_10_1016_j_jechem_2021_04_049 crossref_primary_10_1021_acsenergylett_0c02002 crossref_primary_10_1002_anie_202110303 crossref_primary_10_1002_smll_202001847 crossref_primary_10_1002_adma_202206783 crossref_primary_10_1016_j_apcatb_2019_118502 crossref_primary_10_1021_acs_chemrev_0c00594 crossref_primary_10_1007_s11270_021_04985_9 crossref_primary_10_59717_j_xinn_mater_2023_100014 crossref_primary_10_1016_S1872_2067_21_63967_0 crossref_primary_10_1039_C8CS00527C crossref_primary_10_1038_s41560_020_0666_x crossref_primary_10_1021_jacs_3c08359 crossref_primary_10_1039_D4TA03531C crossref_primary_10_1002_adma_202107293 crossref_primary_10_1016_j_cclet_2022_107757 crossref_primary_10_1016_j_ccr_2024_216021 crossref_primary_10_1038_s41467_022_30027_x crossref_primary_10_1039_C9TA11966C crossref_primary_10_1039_D0CS01605E crossref_primary_10_1002_cssc_202300657 crossref_primary_10_1002_ange_202411967 crossref_primary_10_1002_cssc_202301634 crossref_primary_10_1039_D3TA01607B crossref_primary_10_1016_j_dyepig_2023_111326 crossref_primary_10_1021_acscatal_4c05286 crossref_primary_10_1002_celc_202000235 crossref_primary_10_1039_C9GC02705J crossref_primary_10_1038_s41467_019_10819_4 crossref_primary_10_1039_D1TA08337F crossref_primary_10_1016_j_nanoms_2024_01_007 crossref_primary_10_1039_D2TA09831H crossref_primary_10_1002_adma_202403217 crossref_primary_10_1016_j_nantod_2020_101053 crossref_primary_10_1002_anie_201916520 crossref_primary_10_1016_j_esci_2023_100097 crossref_primary_10_1016_j_nanoen_2018_09_033 crossref_primary_10_1021_jacs_3c00660 crossref_primary_10_1002_smll_202311132 crossref_primary_10_1002_anie_202006899 crossref_primary_10_1002_adma_201808173 crossref_primary_10_1039_C9EE03660A crossref_primary_10_1002_aenm_202201500 crossref_primary_10_1039_D2CS00233G crossref_primary_10_1038_s44160_024_00588_4 crossref_primary_10_1016_j_spc_2018_11_004 crossref_primary_10_1021_acsaem_1c01624 crossref_primary_10_1021_accountsmr_2c00041 crossref_primary_10_1039_D0CS00835D crossref_primary_10_1021_jacs_2c07178 crossref_primary_10_1021_jacs_0c11450 crossref_primary_10_1002_slct_202003415 crossref_primary_10_1016_j_electacta_2022_141030 crossref_primary_10_1007_s10854_022_08378_4 crossref_primary_10_1016_j_cej_2024_158198 crossref_primary_10_1002_ange_201909312 crossref_primary_10_1016_j_jcou_2025_103067 crossref_primary_10_1002_aenm_201803151 crossref_primary_10_1039_C8QI01315B crossref_primary_10_1021_acs_jpcc_3c07671 crossref_primary_10_1002_adma_202005484 crossref_primary_10_1002_smm2_1106 crossref_primary_10_1002_adma_202004393 crossref_primary_10_1002_sstr_202100007 crossref_primary_10_1039_D0EE00900H crossref_primary_10_1002_anie_202216633 crossref_primary_10_1021_acsami_8b20780 crossref_primary_10_1039_D4NA00594E crossref_primary_10_1007_s11426_022_1407_0 crossref_primary_10_1021_acs_est_2c00377 crossref_primary_10_1002_advs_202101597 crossref_primary_10_1002_anie_202110186 crossref_primary_10_1016_j_cej_2022_139663 crossref_primary_10_1021_acsenergylett_1c01965 crossref_primary_10_1039_C8NH00259B crossref_primary_10_1016_j_coelec_2019_04_002 crossref_primary_10_1002_idm2_12011 crossref_primary_10_1016_j_apcata_2023_119406 crossref_primary_10_1021_acscatal_4c02918 crossref_primary_10_1039_D0CS00639D crossref_primary_10_1002_ange_202216633 crossref_primary_10_1016_j_mtphys_2023_101250 crossref_primary_10_1039_C9TA13173F crossref_primary_10_1016_j_jechem_2022_03_041 crossref_primary_10_1002_chem_201903822 crossref_primary_10_1039_D4SC00569D crossref_primary_10_1002_anie_202309893 crossref_primary_10_1002_anie_201912412 crossref_primary_10_1038_s41467_023_43182_6 crossref_primary_10_1021_acsaem_9b00368 crossref_primary_10_1002_celc_202200023 crossref_primary_10_1002_smtd_202400432 crossref_primary_10_1002_cssc_202102528 crossref_primary_10_1002_smtd_202300702 crossref_primary_10_1016_j_jclepro_2023_139286 crossref_primary_10_1002_anie_202112116 crossref_primary_10_1002_cctc_202200981 crossref_primary_10_1021_acscatal_0c00243 crossref_primary_10_1021_jacs_4c09230 crossref_primary_10_1002_advs_202001881 crossref_primary_10_1002_asia_201901714 crossref_primary_10_1002_ange_202411766 crossref_primary_10_1039_C8TA08058E crossref_primary_10_1007_s12209_022_00330_1 crossref_primary_10_1038_s41467_022_32740_z crossref_primary_10_3390_molecules28135179 crossref_primary_10_1007_s40820_023_01188_1 crossref_primary_10_1002_ange_202003093 crossref_primary_10_1002_anie_202409270 crossref_primary_10_1002_smtd_202100102 crossref_primary_10_1016_S1872_2067_21_64000_7 crossref_primary_10_1002_anie_202211098 crossref_primary_10_1002_ange_202017181 crossref_primary_10_1016_j_cclet_2018_11_002 crossref_primary_10_1039_D3EE02196C crossref_primary_10_1016_j_carbon_2020_06_066 crossref_primary_10_1002_smll_202311163 crossref_primary_10_1002_anie_202205301 crossref_primary_10_1016_j_electacta_2024_145357 crossref_primary_10_1021_acs_nanolett_0c03565 crossref_primary_10_1002_adma_202205346 crossref_primary_10_1002_cnma_202400070 crossref_primary_10_1002_anie_202017181 crossref_primary_10_1038_s41467_021_27768_6 crossref_primary_10_1039_D2NR01226J crossref_primary_10_1016_j_jece_2024_114083 crossref_primary_10_1002_adfm_202111504 crossref_primary_10_1016_j_jpowsour_2022_232128 crossref_primary_10_1002_cctc_202300576 crossref_primary_10_1021_acscatal_0c01593 crossref_primary_10_1021_jacs_4c15803 crossref_primary_10_1039_D0SC03328F crossref_primary_10_7566_JPSJ_89_103001 crossref_primary_10_1016_j_coelec_2019_05_006 crossref_primary_10_1039_C8CE00064F crossref_primary_10_1016_j_ccr_2020_213564 crossref_primary_10_1002_aenm_201902338 crossref_primary_10_1002_smll_202405399 crossref_primary_10_1039_C9CS00163H crossref_primary_10_1016_j_nanoen_2020_104833 crossref_primary_10_1002_chem_202002813 crossref_primary_10_1016_j_jcou_2021_101470 crossref_primary_10_1039_D2TA05565A crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1002_anie_201910155 crossref_primary_10_1016_j_jcat_2021_09_013 crossref_primary_10_1016_j_mtener_2021_100911 crossref_primary_10_1039_D3SE00350G crossref_primary_10_1039_D4CC05165C crossref_primary_10_1016_j_jmst_2024_08_029 crossref_primary_10_1002_smll_202207037 crossref_primary_10_1021_acssuschemeng_9b03892 crossref_primary_10_3389_fchem_2023_1141453 crossref_primary_10_1002_adma_202109074 crossref_primary_10_1016_j_jechem_2019_04_013 crossref_primary_10_1002_aenm_201902106 crossref_primary_10_3389_fchem_2020_00137 crossref_primary_10_1002_advs_202413555 crossref_primary_10_1039_D2GC04368H crossref_primary_10_1016_j_jechem_2020_06_038 crossref_primary_10_1016_j_cclet_2024_109937 crossref_primary_10_1021_acs_energyfuels_1c00534 crossref_primary_10_1002_anie_202211804 crossref_primary_10_1002_agt2_273 crossref_primary_10_1002_smll_202005148 crossref_primary_10_1016_j_coelec_2018_09_002 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_1016_j_eehl_2024_02_003 crossref_primary_10_1016_j_jcou_2020_101169 crossref_primary_10_1039_D4TA03502J crossref_primary_10_1021_acscatal_2c03842 crossref_primary_10_1016_j_ccr_2023_215602 crossref_primary_10_1016_j_joule_2018_10_015 crossref_primary_10_1002_anie_202114648 crossref_primary_10_1039_D3RA07639C crossref_primary_10_1039_D3CP05694E crossref_primary_10_1021_acs_cgd_8b00820 crossref_primary_10_1039_D3QM00844D crossref_primary_10_1002_smll_202405051 crossref_primary_10_1002_ange_202110186 crossref_primary_10_1016_j_apcatb_2024_124145 crossref_primary_10_1016_S1872_2067_21_63947_5 crossref_primary_10_1002_ange_202011836 crossref_primary_10_1021_jacs_4c14409 crossref_primary_10_1016_j_carbon_2019_02_010 crossref_primary_10_1002_anie_202411766 crossref_primary_10_1002_adma_202001848 crossref_primary_10_1038_s41929_024_01147_y crossref_primary_10_1002_ange_202114648 crossref_primary_10_1039_C9TA11778D crossref_primary_10_1002_adsu_202400387 crossref_primary_10_1016_j_jcis_2021_05_118 crossref_primary_10_1002_ange_202112116 crossref_primary_10_1039_D4CC03964E crossref_primary_10_1021_acsaem_1c00269 crossref_primary_10_1007_s10311_023_01565_7 crossref_primary_10_1039_D0EE03903A crossref_primary_10_1002_anie_202011836 crossref_primary_10_1038_s41467_024_52832_2 crossref_primary_10_1002_adma_202003577 crossref_primary_10_1016_j_fmre_2023_09_009 crossref_primary_10_1021_acsaem_8b00797 crossref_primary_10_1016_j_susmat_2020_e00200 crossref_primary_10_1021_acssuschemeng_0c08634 crossref_primary_10_1007_s10562_022_04229_3 crossref_primary_10_1002_anie_202315922 crossref_primary_10_1016_j_scib_2023_02_008 crossref_primary_10_1002_smsc_202100043 crossref_primary_10_1016_j_fuel_2023_129760 crossref_primary_10_1039_C8SC04344B crossref_primary_10_1038_s41467_020_20769_x crossref_primary_10_1002_anie_202001216 crossref_primary_10_1039_D0CY01267J crossref_primary_10_1021_acsami_4c06365 crossref_primary_10_1002_ange_202006899 crossref_primary_10_1007_s11426_024_2083_4 crossref_primary_10_1021_acscatal_0c05421 crossref_primary_10_1038_s41467_021_25295_y crossref_primary_10_1016_j_aca_2024_343307 crossref_primary_10_1002_anie_202114253 crossref_primary_10_31635_ccschem_019_20180017 crossref_primary_10_1021_acscatal_3c00494 crossref_primary_10_1016_S1872_2067_23_64578_4 crossref_primary_10_1002_smll_202205730 crossref_primary_10_1021_jacs_2c02262 crossref_primary_10_1149_1945_7111_abfcda crossref_primary_10_1002_ange_201907994 crossref_primary_10_1007_s41918_022_00171_5 crossref_primary_10_1016_j_ccr_2023_215273 crossref_primary_10_1002_adma_202209567 crossref_primary_10_1002_ange_201904246 crossref_primary_10_1016_j_jcou_2019_12_025 crossref_primary_10_1038_s41467_021_24059_y crossref_primary_10_1360_TB_2022_0765 crossref_primary_10_1039_D0CS00218F crossref_primary_10_1002_aesr_202100033 crossref_primary_10_1016_j_coelec_2020_100681 crossref_primary_10_1002_adma_201804257 crossref_primary_10_1038_s41467_022_29428_9 crossref_primary_10_1002_cssc_202102010 crossref_primary_10_1007_s42823_024_00744_y crossref_primary_10_1039_D3NJ01363D crossref_primary_10_1007_s40820_019_0277_x crossref_primary_10_1021_acs_chemmater_2c00444 crossref_primary_10_1002_smll_202005713 crossref_primary_10_1002_ange_202110303 crossref_primary_10_1002_anie_202102053 crossref_primary_10_1016_j_cjche_2022_03_006 crossref_primary_10_1002_cey2_410 crossref_primary_10_1016_j_checat_2024_101196 crossref_primary_10_1039_D2SC04961A crossref_primary_10_1002_aenm_201801587 crossref_primary_10_1063_5_0030034 crossref_primary_10_1002_anie_202218208 crossref_primary_10_1002_ece2_57 crossref_primary_10_1002_adfm_202204086 crossref_primary_10_1002_anie_202012329 crossref_primary_10_1039_C9NR07272A crossref_primary_10_1002_ange_202409270 crossref_primary_10_1016_j_nxener_2023_100045 crossref_primary_10_1021_acs_iecr_4c03421 crossref_primary_10_1002_anie_202102193 crossref_primary_10_1002_smtd_202100736 crossref_primary_10_1002_anie_202411967 crossref_primary_10_1038_s41929_018_0203_5 crossref_primary_10_1016_j_coelec_2021_100803 crossref_primary_10_1038_s41467_022_33689_9 crossref_primary_10_1039_D2CC06943A crossref_primary_10_26599_POM_2024_9140057 crossref_primary_10_1002_adma_202400640 crossref_primary_10_1016_j_mtphys_2019_100176 crossref_primary_10_1021_acscatal_3c01439 crossref_primary_10_1039_C9CY01131E crossref_primary_10_1002_ange_202205301 crossref_primary_10_1021_acs_inorgchem_3c00118 crossref_primary_10_1038_s41699_021_00243_y crossref_primary_10_1016_S1872_2067_21_63970_0 crossref_primary_10_1021_acs_nanolett_9b01197 crossref_primary_10_1002_aenm_202400057 crossref_primary_10_1021_acs_jpclett_4c00398 crossref_primary_10_1149_1945_7111_ab6c54 crossref_primary_10_1039_C9EE01899A crossref_primary_10_1021_acs_accounts_3c00589 crossref_primary_10_1002_anie_201909312 crossref_primary_10_1016_j_fuel_2022_127026 crossref_primary_10_1021_acscatal_0c02237 crossref_primary_10_1016_j_ensm_2022_12_007 crossref_primary_10_1002_adfm_202111193 crossref_primary_10_1016_j_cogsc_2018_03_004 crossref_primary_10_1021_acscatal_0c04656 crossref_primary_10_1016_j_molstruc_2018_08_034 crossref_primary_10_1021_acsenergylett_7b01343 crossref_primary_10_1016_S1872_2067_18_63161_4 crossref_primary_10_1007_s11581_024_05420_9 crossref_primary_10_1021_jacs_2c01098 crossref_primary_10_1021_acsaem_2c01174 crossref_primary_10_1016_j_cclet_2023_109240 crossref_primary_10_1039_D2RE00249C crossref_primary_10_1002_advs_202003579 crossref_primary_10_1021_jacs_4c05630 crossref_primary_10_1021_jacs_1c05580 crossref_primary_10_3390_ma17030600 crossref_primary_10_1002_adma_202307809 crossref_primary_10_1002_cssc_201901884 crossref_primary_10_1039_D3TA07389K crossref_primary_10_1021_acscatal_0c04403 crossref_primary_10_1039_D2QM01119K crossref_primary_10_1002_aenm_202405726 crossref_primary_10_1002_ange_202211098 crossref_primary_10_1038_s41467_023_38935_2 crossref_primary_10_1038_s41467_023_44078_1 crossref_primary_10_1002_cssc_201902859 crossref_primary_10_1007_s12274_023_5949_7 crossref_primary_10_1021_acsami_0c02946 crossref_primary_10_1002_smll_202100629 crossref_primary_10_1021_jacs_3c02370 crossref_primary_10_1007_s41918_022_00139_5 crossref_primary_10_1002_ange_202309893 crossref_primary_10_1002_anie_202200723 crossref_primary_10_1021_acsami_0c09240 crossref_primary_10_1021_acsenergylett_1c00612 crossref_primary_10_1039_D0DT02683B crossref_primary_10_1016_j_colsurfa_2021_127637 crossref_primary_10_1016_j_cej_2023_141803 crossref_primary_10_1021_acsomega_3c06440 crossref_primary_10_1007_s12274_023_5829_1 crossref_primary_10_1016_j_matt_2020_11_011 crossref_primary_10_1080_00958972_2024_2419954 crossref_primary_10_1002_ange_202108388 crossref_primary_10_1021_jacs_0c06779 crossref_primary_10_1038_s41467_022_31662_0 crossref_primary_10_1002_sstr_202200233 crossref_primary_10_3390_catal13071038 crossref_primary_10_1016_j_apcatb_2024_123694 crossref_primary_10_1002_aenm_201900090 crossref_primary_10_1039_C9QI01220F crossref_primary_10_1038_s41929_018_0182_6 crossref_primary_10_1016_j_apsusc_2024_160207 crossref_primary_10_1002_adfm_202102151 crossref_primary_10_1039_C8GC02389A crossref_primary_10_1016_j_coelec_2024_101598 crossref_primary_10_1021_acsenergylett_8b01681 crossref_primary_10_1002_ejic_202400318 crossref_primary_10_1016_j_apcatb_2020_119591 crossref_primary_10_1039_D4SC01735H crossref_primary_10_1021_acsami_1c19380 crossref_primary_10_1039_D3CE01109G crossref_primary_10_1039_D4TA05059B |
Cites_doi | 10.1002/celc.201402373 10.1016/S1872-2067(16)62455-5 10.1021/jp963266u 10.1021/jz301859k 10.1021/acs.nanolett.5b03709 10.1103/PhysRevB.52.6332 10.1021/jacs.5b08212 10.1107/S0909049598017786 10.1016/j.nanoen.2016.04.009 10.1039/b508541a 10.1021/acscatal.6b02181 10.1038/srep05156 10.1021/ja5065284 10.1039/C1CP22700A 10.1126/science.aad8868 10.1038/ncomms14675 10.1002/adfm.201606635 10.1021/ja204191t 10.1039/C5RA18404E 10.1021/acscentsci.7b00160 10.1038/ncomms10771 10.1021/ja304783j 10.1021/acs.jpcc.7b03910 10.1002/ente.201600583 10.1002/anie.201601582 10.1016/S0009-2614(02)01641-X 10.1126/science.1224581 10.1021/jacs.6b11023 10.1021/cr950214c 10.1039/a904654b 10.1021/acs.chemmater.6b00713 10.1002/cssc.201600693 10.1021/jacs.5b07071 10.1038/ncomms12324 10.1039/B609757J 10.1038/ncomms9177 10.1103/PhysRevB.37.785 10.1016/j.cplett.2017.02.018 10.1016/0079-6816(96)00002-0 10.1016/j.nanoen.2017.06.006 10.1021/acs.nanolett.6b05287 10.1016/0039-6028(96)00253-1 10.1002/anie.201707478 10.1021/acs.chemrev.5b00122 10.1002/anie.201412214 10.1038/nenergy.2015.14 10.1126/science.aac8343 10.1063/1.4948792 10.1021/acs.accounts.5b00555 10.1021/acs.nanolett.5b03298 10.1039/c2ee22528j 10.1021/ja500328k 10.1126/science.1177981 10.1063/1.464913 10.1021/acsami.7b07707 10.1021/acs.accounts.5b00275 10.1146/annurev-anchem-061010-113906 10.1021/jp810292n 10.1021/jacs.6b04746 10.1063/1.2799995 10.1063/1.438955 10.1002/adma.201304676 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Yale Univ., New Haven, CT (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) – name: Yale Univ., New Haven, CT (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-018-02819-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_fe7dc91019604b2ca0c894edd3aa2549 PMC5788987 1419868 29379087 10_1038_s41467_018_02819_7 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAADF AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c661t-340e08fc8dacd783536e14516fe89ef6548c83a97471830e1c88f798c0432a53 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:32 EDT 2025 Thu Aug 21 18:28:29 EDT 2025 Mon Jul 03 03:57:01 EDT 2023 Thu Jul 10 22:45:10 EDT 2025 Wed Aug 13 04:34:49 EDT 2025 Wed Aug 13 04:44:48 EDT 2025 Wed Feb 19 02:31:59 EST 2025 Thu Apr 24 22:52:19 EDT 2025 Tue Jul 01 02:21:09 EDT 2025 Fri Feb 21 02:39:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-340e08fc8dacd783536e14516fe89ef6548c83a97471830e1c88f798c0432a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 FG02-07ER15909; AC02-06CH11357 National Science Foundation (NSF) USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division |
ORCID | 0000-0003-4409-2034 0000-0002-6005-9552 0000000260059552 0000000344092034 |
OpenAccessLink | https://doaj.org/article/fe7dc91019604b2ca0c894edd3aa2549 |
PMID | 29379087 |
PQID | 1992292536 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fe7dc91019604b2ca0c894edd3aa2549 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5788987 osti_scitechconnect_1419868 proquest_miscellaneous_1993014742 proquest_journals_2691909220 proquest_journals_1992292536 pubmed_primary_29379087 crossref_citationtrail_10_1038_s41467_018_02819_7 crossref_primary_10_1038_s41467_018_02819_7 springer_journals_10_1038_s41467_018_02819_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-29 |
PublicationDateYYYYMMDD | 2018-01-29 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Roberts, Kuhl, Nilsson (CR48) 2015; 54 Weng (CR20) 2015; 15 Angamuthu, Byers, Lutz, Spek, Bouwman (CR10) 2010; 327 Krishnan, Binkley, Seeger, Pople (CR61) 1980; 72 Li (CR41) 2011; 133 Rockenberger (CR55) 1997; 101 Weigend, Ahlrichs (CR60) 2005; 7 Tang (CR43) 2012; 14 Feng (CR29) 2016; 49 Gunathunge (CR23) 2017; 121 Carta (CR42) 2007; 127 Kas, Kortlever, Yilmaz, Koper, Mul (CR45) 2015; 2 Irvine (CR24) 2016; 1 Alfonso, Kauffman, Matranga (CR51) 2016; 144 Wu (CR5) 2017; 3 Titmuss, Wander, King (CR17) 1996; 96 Marenich, Cramer, Truhlar (CR62) 2009; 113 Zhang (CR27) 2017; 27 Xu, Song, Hu (CR28) 2016; 7 Loiudice (CR47) 2016; 55 Kolb (CR18) 1996; 51 Jentys (CR56) 1999; 1 Becke (CR57) 1993; 98 Tanaka (CR16) 1996; 357 Kornienko (CR8) 2015; 137 Huo (CR3) 2015; 9 Liu (CR37) 2016; 7 Jiang, Li, Chi (CR64) 2002; 366 Li (CR46) 2017; 17 Lu, Jiao (CR1) 2016; 29 Fan, Liu, Weng, Sun, Wang (CR38) 2015; 137 Weng (CR15) 2016; 138 Zhang (CR36) 2017; 38 Liu, Yang, Liu (CR30) 2014; 26 Raciti, Livi, Wang (CR50) 2015; 15 Frenkel (CR39) 1999; 6 Nilsson (CR33) 2017; 675 Costentin, Drouet, Robert, Saveant (CR7) 2012; 338 Weng (CR25) 2017; 56 Manthiram, Beberwyck, Aivisatos (CR44) 2014; 136 Wu, Zhou (CR2) 2016; 37 Feng (CR32) 2013; 4 Li, Bridges, Booth (CR54) 1995; 52 CR59 Fang, Flake (CR52) 2017; 139 Wei (CR35) 2016; 28 Lin (CR11) 2015; 349 Karaiskakis, Biddinger (CR22) 2017; 5 Blakemore, Crabtree, Brudvig (CR26) 2015; 115 Schneider (CR9) 2012; 5 Shen (CR12) 2015; 6 Feng (CR34) 2015; 5 Wei (CR19) 2014; 4 Frenkel, Yevick, Cooper, Vasic (CR40) 2011; 4 Stoerzinger, Hong, Crumlin, Bluhm, Shao-Horn (CR31) 2015; 48 Lee, Yang, Parr (CR58) 1988; 37 CR66 Zhang (CR6) 2017; 8 Keller, Koningsberger, Weckhuysen (CR53) 2006; 8 CR65 CR63 Yao (CR13) 2012; 134 Eren (CR21) 2016; 351 Takeda, Cometto, Ishitani, Robert (CR4) 2017; 7 Reske, Mistry, Behafarid, Cuenya, Strasser (CR49) 2014; 136 Albo (CR14) 2017; 10 AN Karaiskakis (2819_CR22) 2017; 5 W Tang (2819_CR43) 2012; 14 H Takeda (2819_CR4) 2017; 7 JJ Wu (2819_CR2) 2016; 37 DR Alfonso (2819_CR51) 2016; 144 N Kornienko (2819_CR8) 2015; 137 S-J Huo (2819_CR3) 2015; 9 FS Roberts (2819_CR48) 2015; 54 DE Keller (2819_CR53) 2006; 8 D Raciti (2819_CR50) 2015; 15 S Titmuss (2819_CR17) 1996; 96 J Albo (2819_CR14) 2017; 10 J Rockenberger (2819_CR55) 1997; 101 A Jentys (2819_CR56) 1999; 1 J Schneider (2819_CR9) 2012; 5 JD Blakemore (2819_CR26) 2015; 115 C Costentin (2819_CR7) 2012; 338 JTS Irvine (2819_CR24) 2016; 1 C Wei (2819_CR35) 2016; 28 AI Frenkel (2819_CR39) 1999; 6 R Krishnan (2819_CR61) 1980; 72 Q Jiang (2819_CR64) 2002; 366 B Eren (2819_CR21) 2016; 351 D Carta (2819_CR42) 2007; 127 Z Weng (2819_CR20) 2015; 15 X Zhang (2819_CR6) 2017; 8 YM Li (2819_CR41) 2011; 133 Q Fan (2819_CR38) 2015; 137 DM Kolb (2819_CR18) 1996; 51 Q Lu (2819_CR1) 2016; 29 W Liu (2819_CR37) 2016; 7 S Lin (2819_CR11) 2015; 349 J Shen (2819_CR12) 2015; 6 R Angamuthu (2819_CR10) 2010; 327 X Xu (2819_CR28) 2016; 7 YQ Zhang (2819_CR36) 2017; 38 HS Wei (2819_CR19) 2014; 4 CM Gunathunge (2819_CR23) 2017; 121 K Manthiram (2819_CR44) 2014; 136 KA Stoerzinger (2819_CR31) 2015; 48 Z Feng (2819_CR34) 2015; 5 2819_CR59 2819_CR65 A Loiudice (2819_CR47) 2016; 55 YX Fang (2819_CR52) 2017; 139 AV Marenich (2819_CR62) 2009; 113 2819_CR63 X Zhang (2819_CR27) 2017; 27 A Nilsson (2819_CR33) 2017; 675 CT Lee (2819_CR58) 1988; 37 R Reske (2819_CR49) 2014; 136 GG Li (2819_CR54) 1995; 52 R Kas (2819_CR45) 2015; 2 XS Liu (2819_CR30) 2014; 26 Y Wu (2819_CR5) 2017; 3 K Tanaka (2819_CR16) 1996; 357 F Weigend (2819_CR60) 2005; 7 YF Li (2819_CR46) 2017; 17 ZX Feng (2819_CR32) 2013; 4 ZX Feng (2819_CR29) 2016; 49 Z Weng (2819_CR15) 2016; 138 2819_CR66 AD Becke (2819_CR57) 1993; 98 Z Weng (2819_CR25) 2017; 56 SA Yao (2819_CR13) 2012; 134 AI Frenkel (2819_CR40) 2011; 4 |
References_xml | – volume: 2 start-page: 354 year: 2015 end-page: 358 ident: CR45 article-title: Manipulating the hydrocarbon selectivity of copper nanoparticles in CO electroreduction by process conditions publication-title: Chemelectrochem doi: 10.1002/celc.201402373 – volume: 37 start-page: 999 year: 2016 end-page: 1015 ident: CR2 article-title: Catalytic conversion of CO to value added fuels: Current status, challenges, and future directions publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(16)62455-5 – volume: 101 start-page: 2691 year: 1997 end-page: 2701 ident: CR55 article-title: EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles publication-title: J. Phys. Chem. B. doi: 10.1021/jp963266u – volume: 4 start-page: 285 year: 2013 end-page: 291 ident: CR32 article-title: Catalysts transform while molecules react: An atomic-scale view publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301859k – volume: 15 start-page: 7704 year: 2015 end-page: 7710 ident: CR20 article-title: Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03709 – volume: 52 start-page: 6332 year: 1995 end-page: 6348 ident: CR54 article-title: X-ray-absorption fine-structure standards: A comparison of experiment and theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.6332 – volume: 137 start-page: 14129 year: 2015 end-page: 14135 ident: CR8 article-title: Metal-organic frameworks for electrocatalytic reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08212 – volume: 6 start-page: 293 year: 1999 end-page: 295 ident: CR39 article-title: Solving the structure of nanoparticles by multiple-scattering EXAFS analysis publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049598017786 – volume: 29 start-page: 439 year: 2016 end-page: 456 ident: CR1 article-title: Electrochemical CO reduction: electrocatalyst, reaction mechanism, and process engineering publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.009 – volume: 7 start-page: 3297 year: 2005 end-page: 3305 ident: CR60 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 7 start-page: 70 year: 2017 end-page: 88 ident: CR4 article-title: Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO reduction publication-title: ACS Catal. doi: 10.1021/acscatal.6b02181 – volume: 4 year: 2014 ident: CR19 article-title: In situ growth of Ni Cu alloy nanocatalysts on redox-reversible rutile (Nb, Ti)O towards high-temperature carbon dioxide electrolysis publication-title: Sci. Rep. doi: 10.1038/srep05156 – volume: 136 start-page: 13319 year: 2014 end-page: 13325 ident: CR44 article-title: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5065284 – volume: 14 start-page: 76 year: 2012 end-page: 81 ident: CR43 article-title: The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO electroreduction publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22700A – volume: 351 start-page: 475 year: 2016 end-page: 478 ident: CR21 article-title: Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption publication-title: Science doi: 10.1126/science.aad8868 – volume: 8 year: 2017 ident: CR6 article-title: Highly selective and active CO reduction electro-catalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures publication-title: Nat. Commun. doi: 10.1038/ncomms14675 – volume: 27 start-page: 1606635 year: 2017 ident: CR27 article-title: Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606635 – volume: 133 start-page: 13527 year: 2011 end-page: 13533 ident: CR41 article-title: A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204191t – volume: 5 start-page: 103834 year: 2015 end-page: 103840 ident: CR34 article-title: Atomic-scale cation dynamics in a monolayer VO /α-Fe O catalyst publication-title: RSC Adv. doi: 10.1039/C5RA18404E – volume: 3 start-page: 847 year: 2017 end-page: 852 ident: CR5 article-title: Electroreduction of CO catalyzed by a heterogenized Zn–porphyrin complex with a redox-innocent metal center publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00160 – volume: 7 year: 2016 ident: CR37 article-title: A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide publication-title: Nat. Commun. doi: 10.1038/ncomms10771 – volume: 134 start-page: 15632 year: 2012 end-page: 15635 ident: CR13 article-title: Covalent attachment of catalyst molecules to conductive diamond: CO reduction using “smart” electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304783j – volume: 121 start-page: 12337 year: 2017 end-page: 12344 ident: CR23 article-title: Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO reduction publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b03910 – volume: 5 start-page: 901 year: 2017 end-page: 910 ident: CR22 article-title: Evaluation of the impact of surface reconstruction on rough electrodeposited copper-based catalysts for carbon dioxide electroreduction publication-title: Energy Technol. doi: 10.1002/ente.201600583 – volume: 55 start-page: 5789 year: 2016 end-page: 5792 ident: CR47 article-title: Tailoring copper nanocrystals towards C products in electrochemical CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601582 – volume: 366 start-page: 551 year: 2002 end-page: 554 ident: CR64 article-title: Size-dependent cohesive energy of nanocrystals publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01641-X – volume: 338 start-page: 90 year: 2012 end-page: 94 ident: CR7 article-title: A local proton source enhances CO electroreduction to CO by a molecular Fe catalyst publication-title: Science doi: 10.1126/science.1224581 – volume: 139 start-page: 3399 year: 2017 end-page: 3405 ident: CR52 article-title: Electrochemical reduction of CO at functionalized Au electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11023 – volume: 96 start-page: 1291 year: 1996 end-page: 1305 ident: CR17 article-title: Reconstruction of clean and adsorbate-covered metal surfaces publication-title: Chem. Rev. doi: 10.1021/cr950214c – volume: 1 start-page: 4059 year: 1999 end-page: 4063 ident: CR56 article-title: Estimation of mean size and shape of small metal particles by EXAFS publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a904654b – volume: 28 start-page: 4129 year: 2016 end-page: 4133 ident: CR35 article-title: Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe O (X=Mn, Co, Ni, Fe) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00713 – volume: 10 start-page: 1100 year: 2017 end-page: 1109 ident: CR14 article-title: Copper-based metal-organic porous materials for CO electrocatalytic reduction to alcohols publication-title: ChemSusChem doi: 10.1002/cssc.201600693 – volume: 137 start-page: 12946 year: 2015 end-page: 12953 ident: CR38 article-title: Ternary hybrid material for high-performance lithium-sulfur battery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07071 – ident: CR66 – volume: 7 year: 2016 ident: CR28 article-title: A nickel iron diselenide-derived efficient oxygen-evolution catalyst publication-title: Nat. Commun. doi: 10.1038/ncomms12324 – volume: 8 start-page: 4814 year: 2006 end-page: 4824 ident: CR53 article-title: Elucidation of the molecular structure of hydrated vanadium oxide species by X-ray absorption spectroscopy: Correlation between the V…V coordination number and distance and the point of zero charge of the support oxide publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B609757J – volume: 6 year: 2015 ident: CR12 article-title: Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin publication-title: Nat. Commun. doi: 10.1038/ncomms9177 – volume: 37 start-page: 785 year: 1988 end-page: 789 ident: CR58 article-title: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 675 start-page: 145 year: 2017 end-page: 173 ident: CR33 article-title: Catalysis in real time using X-ray lasers publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.02.018 – volume: 51 start-page: 109 year: 1996 end-page: 173 ident: CR18 article-title: Reconstruction phenomena at metal-electrolyte interfaces publication-title: Prog. Surf. Sci. doi: 10.1016/0079-6816(96)00002-0 – volume: 38 start-page: 392 year: 2017 end-page: 400 ident: CR36 article-title: A rational design for enhanced oxygen reduction: Strongly coupled silver nanoparticles and engineered perovskite nanofibers publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.006 – volume: 17 start-page: 1312 year: 2017 end-page: 1317 ident: CR46 article-title: Structure-sensitive CO electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05287 – ident: CR63 – volume: 357 start-page: 721 year: 1996 end-page: 728 ident: CR16 article-title: Chemical reconstruction and catalysis of metal and bimetallic surfaces publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)00253-1 – volume: 56 start-page: 13135 year: 2017 end-page: 13139 ident: CR25 article-title: Self-Cleaning Catalyst Electrodes for Stabilized CO2 Reduction to Hydrocarbons publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707478 – volume: 115 start-page: 12974 year: 2015 end-page: 13005 ident: CR26 article-title: Molecular catalysts for water oxidation publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00122 – volume: 54 start-page: 5179 year: 2015 end-page: 5182 ident: CR48 article-title: High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201412214 – volume: 1 start-page: 15014 year: 2016 ident: CR24 article-title: Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers publication-title: Nat. Energy doi: 10.1038/nenergy.2015.14 – volume: 349 start-page: 1208 year: 2015 end-page: 1213 ident: CR11 article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO reduction in water publication-title: Science doi: 10.1126/science.aac8343 – volume: 144 start-page: 184705 year: 2016 ident: CR51 article-title: Active sites of ligand-protected Au-25 nanoparticle catalysts for CO electroreduction to CO publication-title: J. Chem. Phys. doi: 10.1063/1.4948792 – volume: 49 start-page: 966 year: 2016 end-page: 973 ident: CR29 article-title: Catalytic activity and stability of oxides: the role of near-surface atomic structures and compositions publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00555 – volume: 15 start-page: 6829 year: 2015 end-page: 6835 ident: CR50 article-title: Highly dense Cu nanowires for low-overpotential CO reduction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03298 – volume: 5 start-page: 9502 year: 2012 end-page: 9510 ident: CR9 article-title: Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO to CO publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22528j – ident: CR65 – volume: 136 start-page: 6978 year: 2014 end-page: 6986 ident: CR49 article-title: Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500328k – volume: 327 start-page: 313 year: 2010 end-page: 315 ident: CR10 article-title: Electrocatalytic CO conversion to oxalate by a copper complex publication-title: Science doi: 10.1126/science.1177981 – volume: 98 start-page: 5648 year: 1993 end-page: 5652 ident: CR57 article-title: Density-functional thermochemistry. III. The role of exact exchange publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 9 start-page: 28519 year: 2015 end-page: 28526 ident: CR3 article-title: Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO reduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07707 – volume: 48 start-page: 2976 year: 2015 end-page: 2983 ident: CR31 article-title: Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00275 – ident: CR59 – volume: 4 start-page: 23 year: 2011 end-page: 39 ident: CR40 article-title: Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-061010-113906 – volume: 113 start-page: 6378 year: 2009 end-page: 6396 ident: CR62 article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions publication-title: J. Phys. Chem. B. doi: 10.1021/jp810292n – volume: 138 start-page: 8076 year: 2016 end-page: 8079 ident: CR15 article-title: Electrochemical CO reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04746 – volume: 127 start-page: 204705 year: 2007 ident: CR42 article-title: Structural characterization study of FeCo alloy nanoparticles in a highly porous aerogel silica matrix publication-title: J. Chem. Phys. doi: 10.1063/1.2799995 – volume: 72 start-page: 650 year: 1980 end-page: 654 ident: CR61 article-title: Self-consistent molecular-orbital methods. XX. A basis set for correlated wave-functions publication-title: J. Chem. Phys. doi: 10.1063/1.438955 – volume: 26 start-page: 7710 year: 2014 end-page: 7729 ident: CR30 article-title: Recent progress on synchrotron-based soft X-ray spectroscopy for energy materials publication-title: Adv. Mater. doi: 10.1002/adma.201304676 – volume: 7 start-page: 70 year: 2017 ident: 2819_CR4 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02181 – volume: 7 start-page: 3297 year: 2005 ident: 2819_CR60 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 49 start-page: 966 year: 2016 ident: 2819_CR29 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00555 – volume: 138 start-page: 8076 year: 2016 ident: 2819_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04746 – volume: 15 start-page: 7704 year: 2015 ident: 2819_CR20 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03709 – ident: 2819_CR66 – volume: 351 start-page: 475 year: 2016 ident: 2819_CR21 publication-title: Science doi: 10.1126/science.aad8868 – volume: 115 start-page: 12974 year: 2015 ident: 2819_CR26 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00122 – volume: 121 start-page: 12337 year: 2017 ident: 2819_CR23 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b03910 – volume: 349 start-page: 1208 year: 2015 ident: 2819_CR11 publication-title: Science doi: 10.1126/science.aac8343 – volume: 28 start-page: 4129 year: 2016 ident: 2819_CR35 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00713 – volume: 96 start-page: 1291 year: 1996 ident: 2819_CR17 publication-title: Chem. Rev. doi: 10.1021/cr950214c – volume: 4 start-page: 285 year: 2013 ident: 2819_CR32 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301859k – volume: 51 start-page: 109 year: 1996 ident: 2819_CR18 publication-title: Prog. Surf. Sci. doi: 10.1016/0079-6816(96)00002-0 – volume: 48 start-page: 2976 year: 2015 ident: 2819_CR31 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00275 – volume: 52 start-page: 6332 year: 1995 ident: 2819_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.6332 – volume: 7 year: 2016 ident: 2819_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms12324 – volume: 10 start-page: 1100 year: 2017 ident: 2819_CR14 publication-title: ChemSusChem doi: 10.1002/cssc.201600693 – ident: 2819_CR65 – volume: 3 start-page: 847 year: 2017 ident: 2819_CR5 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00160 – volume: 5 start-page: 103834 year: 2015 ident: 2819_CR34 publication-title: RSC Adv. doi: 10.1039/C5RA18404E – volume: 4 start-page: 23 year: 2011 ident: 2819_CR40 publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-061010-113906 – volume: 113 start-page: 6378 year: 2009 ident: 2819_CR62 publication-title: J. Phys. Chem. B. doi: 10.1021/jp810292n – volume: 55 start-page: 5789 year: 2016 ident: 2819_CR47 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601582 – volume: 37 start-page: 999 year: 2016 ident: 2819_CR2 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(16)62455-5 – volume: 8 year: 2017 ident: 2819_CR6 publication-title: Nat. Commun. doi: 10.1038/ncomms14675 – volume: 38 start-page: 392 year: 2017 ident: 2819_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.006 – ident: 2819_CR59 – volume: 9 start-page: 28519 year: 2015 ident: 2819_CR3 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07707 – volume: 1 start-page: 15014 year: 2016 ident: 2819_CR24 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.14 – volume: 14 start-page: 76 year: 2012 ident: 2819_CR43 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22700A – volume: 338 start-page: 90 year: 2012 ident: 2819_CR7 publication-title: Science doi: 10.1126/science.1224581 – volume: 2 start-page: 354 year: 2015 ident: 2819_CR45 publication-title: Chemelectrochem doi: 10.1002/celc.201402373 – volume: 26 start-page: 7710 year: 2014 ident: 2819_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201304676 – volume: 5 start-page: 901 year: 2017 ident: 2819_CR22 publication-title: Energy Technol. doi: 10.1002/ente.201600583 – volume: 675 start-page: 145 year: 2017 ident: 2819_CR33 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.02.018 – volume: 101 start-page: 2691 year: 1997 ident: 2819_CR55 publication-title: J. Phys. Chem. B. doi: 10.1021/jp963266u – volume: 27 start-page: 1606635 year: 2017 ident: 2819_CR27 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606635 – volume: 72 start-page: 650 year: 1980 ident: 2819_CR61 publication-title: J. Chem. Phys. doi: 10.1063/1.438955 – volume: 15 start-page: 6829 year: 2015 ident: 2819_CR50 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03298 – volume: 139 start-page: 3399 year: 2017 ident: 2819_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11023 – volume: 37 start-page: 785 year: 1988 ident: 2819_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 98 start-page: 5648 year: 1993 ident: 2819_CR57 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 4 year: 2014 ident: 2819_CR19 publication-title: Sci. Rep. doi: 10.1038/srep05156 – volume: 6 start-page: 293 year: 1999 ident: 2819_CR39 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049598017786 – volume: 136 start-page: 6978 year: 2014 ident: 2819_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500328k – volume: 366 start-page: 551 year: 2002 ident: 2819_CR64 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01641-X – ident: 2819_CR63 – volume: 6 year: 2015 ident: 2819_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms9177 – volume: 137 start-page: 12946 year: 2015 ident: 2819_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07071 – volume: 54 start-page: 5179 year: 2015 ident: 2819_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201412214 – volume: 127 start-page: 204705 year: 2007 ident: 2819_CR42 publication-title: J. Chem. Phys. doi: 10.1063/1.2799995 – volume: 136 start-page: 13319 year: 2014 ident: 2819_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5065284 – volume: 144 start-page: 184705 year: 2016 ident: 2819_CR51 publication-title: J. Chem. Phys. doi: 10.1063/1.4948792 – volume: 5 start-page: 9502 year: 2012 ident: 2819_CR9 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22528j – volume: 137 start-page: 14129 year: 2015 ident: 2819_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08212 – volume: 7 year: 2016 ident: 2819_CR37 publication-title: Nat. Commun. doi: 10.1038/ncomms10771 – volume: 133 start-page: 13527 year: 2011 ident: 2819_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204191t – volume: 8 start-page: 4814 year: 2006 ident: 2819_CR53 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B609757J – volume: 29 start-page: 439 year: 2016 ident: 2819_CR1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.009 – volume: 1 start-page: 4059 year: 1999 ident: 2819_CR56 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a904654b – volume: 357 start-page: 721 year: 1996 ident: 2819_CR16 publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)00253-1 – volume: 56 start-page: 13135 year: 2017 ident: 2819_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707478 – volume: 17 start-page: 1312 year: 2017 ident: 2819_CR46 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05287 – volume: 327 start-page: 313 year: 2010 ident: 2819_CR10 publication-title: Science doi: 10.1126/science.1177981 – volume: 134 start-page: 15632 year: 2012 ident: 2819_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304783j |
SSID | ssj0000391844 |
Score | 2.6786203 |
Snippet | Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We... The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here,... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 415 |
SubjectTerms | 119/118 147/135 639/301/299/886 639/638/298 639/638/77/886 Absorption spectroscopy Carbon dioxide Catalysis Catalysts Catalytic activity Catalytic converters Clusters Conversion Coordination compounds Copper Copper compounds Copper converters Electrochemistry Humanities and Social Sciences Hydrogen storage INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY MATERIALS SCIENCE Metal ions Metal phthalocyanines Methane Molecular structure multidisciplinary Nanoclusters Oxidation Science Science (multidisciplinary) Valence Working conditions X ray absorption X-ray absorption spectroscopy |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKu_QgozEDaw6sRM7p6ogqgoJTkXam-X4ASuhZJvdSu2_Z8bxBhZKTyvF42jteXg8M_mGkLe1d1WndMMUArdKLSPTTtassw5bh1WdLfHb4S9fm7Nv8vOiXuSA2zqXVW5tYjLUfnAYIz_CMsmqrWrRHK8uGHaNwuxqbqFxl9xD6DIs6VILNcdYEP1cS5m_leFCH61lsgy81IxjCompnfMowfbDzwDqdZPL-W_l5F_p03Qqne6Th9mdpCcT_x-RO6F_TO5PDSavnxBzkswZxUWs6RCpG1arMLJUSB6uaAreXMNcCo7rJIsUvFiam-O4jCYAdGM39NQvh6ulD3REvFfk6FNyfvrp_OMZyy0VmIODeMOE5IHr6LS3zmPQRzQh9eqNQbchYhN5p4XFSwboOg-l0zqqVjtE7rO1eEb2-qEPLwjlsRON9bEKwsOm6q6DmXVjW6uAOsaClNt9NS7DjWPXi58mpb2FNhMvDPDCJF4YVZB385zVBLZxK_UHZNdMiUDZ6cEwfjdZ70wMyjtwiUoEoekqZ7nTrQzeC2vxblyQA2S2AX8DQXMdVhe5DVyIylY3uiCHWxkwWbfX5rck3jhcNS04WUDCC_JmHgalxUyM7cNwmV6BV1klq4I8nyRqXgb4X6rlGpandmRtZ527I_3yRwIGB-urW5z5fiuVf_zr_-7jy9sXeUAeVElfSla1h2RvM16GV-CIbbrXSdt-AYScL-E priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXxLtpCzISNzAkdhLbB4QKoqqQyqmVerMcP2ClKlmyW2n333fGSVYsLJw4rRTPROt52DMZ-xtCXlfe8UaqmkkEbi1VGZlyZcUa67B1GG9sgXeHz7_VZ5fl16vqao9M7Y5GAS52pnbYT-qyv363-rn-CA7_Ybgyrt4vyuTueaFYjnUhJu-Qu7AzSXTU8zHcTyuz0JDQlOPdmd2sW_tTgvGHnw7cbVcI-udJyt_KqWmXOn1IHozhJT0Z7OER2QvtY3JvaDi5fkLMSVreKJaMF7SL1HXzeehZOlgeVjR9zFkDL4VAdrBNClEtHZvluBFdAOj6pmupn3WrmQ-0R_xX1PBTcnH65eLzGRtbLDAHG_OSiTIPuYpOees8fgQSdUi9e2NQOkRsKu-UsJh0gO_noXBKRamVQyQ_W4lnZL_t2nBAaB4bUVsfeRAehKqaBjir2morgTrGjBSTXI0b4cexC8a1SWVwocygCwO6MEkXRmbkzYZnPoBv_JP6E6prQ4nA2elB1383ox-aGKR3ECIVCErTcGdzp3QZvBfWYq6ckSNUtoH4A0F0HZ42cktIkAqtapWR48kGzGSqBg_wcs1BdDuHea0h6AKSPCOvNsPgxFiZsW3obtIrMLWVJc_I88GiNtOAeEzqXMH05Jatbc1ze6Sd_UhA4bAaK42cbyer_OVf_1WOh_9DjkfkPk9eVTCuj8n-sr8JLyB8WzYvk0_eArgUQD4 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCLnJ_Xu1Mi-KbBNE2b5PFcPA5Bn064t5DmQxekXbp7cPffO5N2i6ur4FOhmSlNZiaZZCa_IeRNHbxolW6YQuBWqWVi2suatc5j6TDRuhLvDn_-0lx-lZ-u6-sDIrZ3YXLSfoa0zNP0Njvs_Vpmk-alZhxjP0zdI_cRuh21etEs5nMVRDzXUk73Y3il97DurEEZqh8ePZjUPjfzz2zJ30KmeSW6OCKPJheSno8__ZgcxO4JeTAWlbx7Sux5nsIohoXXtE_U96tVHFhOHo-3NB_Y3AEvBWd11D8KniudCuL4CUEA6Ia272hY9rfLEOmAGK8oxWfk6uLj1eKSTWUUmIfFd8MqySPXyevgfMCDnqqJuT5vitrEhIXjva4cbizAvnksvdZJGe0Rrc_V1XNy2PVdPCaUp7ZqXEgiVgEGVbctcNaNM04BdUoFKbfjav0EMY6VLn7YHOqutB1lYUEWNsvCqoK8nXlWI8DGP6k_oLhmSgTHzi_64ZudlMWmqIIHN6hE4JlWeMe9NjKGUDmH--GCnKKwLfgYCJTrMaPIb2ATVBrd6IKcbXXATva8tpikK4yAodvbLBoDjhWQ8IK8npvBUDH64rrY3-RP4PZVSVGQF6NGzd0An0sZrqF7akfXdvq529Itv2cwcJhxtUHOd1ut_OWv_zqOJ_9Hfkoeimw_JRPmjBxuhpv4EpyxTfsqW99PexwtqQ priority: 102 providerName: Springer Nature |
Title | Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction |
URI | https://link.springer.com/article/10.1038/s41467-018-02819-7 https://www.ncbi.nlm.nih.gov/pubmed/29379087 https://www.proquest.com/docview/1992292536 https://www.proquest.com/docview/2691909220 https://www.proquest.com/docview/1993014742 https://www.osti.gov/servlets/purl/1419868 https://pubmed.ncbi.nlm.nih.gov/PMC5788987 https://doaj.org/article/fe7dc91019604b2ca0c894edd3aa2549 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2Avo_t22wUN9raJyh-xTo9paFYCLWPrIG9CliUWGHZIUmj_-93JTki2bnvZiw2WFKL70N35zr9j7P2wdlmloBSKgFsLKIIAVwxFZR21Dssqm9K3w5dX5cW3YjobznZafVFNWAcP3BHuNHhVO7RpKaGIVJmz0oEufF3n1lJwQ6cv2rydYCqewbnG0KXov5KROZyuingmyBSEpOSRUHuWKAL2461FxbrP2fy9ZvKXxGm0R5ND9rR3JPmo28Az9sA3z9njrrXk3QtmRvEg45QcXvE2cNcuFn4pYgm5v-Xxtc0druXosnZSyNF_5X1bHNfjCOC8ZdU2vJ63t_Pa8yUhvRIvX7Lryfn1-EL0zRSEQxO8FnkhvYTgoLauptc9eeljl97gQftA7eMd5JbCC9Ry6VMHEJQGR5h9dpi_YgdN2_g3jMtQ5aWtQ-bzGokKVYUrh6XVVuHsEBKWbuhqXA80Tv0ufpiY8M7BdLwwyAsTeWFUwj5s1yw6mI2_zj4jdm1nEkR2fICCY3rBMf8SnIQdE7MNehoEl-uorsitMRRKNZSQsJONDJheq1eGSnUznSHp7h3OSo3uFU6RCXu3HUZ1pRyMbXx7E3-CglhVZAl73UnUdhvoeSktAben9mRtb5_7I838e4QEx3MXNK38uJHKnX_9Rzoe_Q86HrMnWdSqVGT6hB2slzf-LTpq62rAHqqZwitMPg3Yo9Fo-nWK97Pzq89f8Om4HA-i1uL1soCfG1Y_ag |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIgQXxJulBYwEJ7Dq9W7W3gNC5VGl9HEKUm6W1w-IhHbDJhXNj-I_MuPdDQRKbz1Fiu0o9jw89oy_j5AXI2dFJVXBJAK35ioPTNl8xCpjkTpMVCbFt8Mnp8X4c_5pOppukZ_DWxgsqxx8YnTUrrF4R76HZZKiFKOseDv_zpA1CrOrA4VGpxZHfvUDjmyLN4cfQL4vhTj4OHk_Zj2rALOwFy1ZlnPPVbDKGevw3iMrfKSrDV6VPiCPulWZwTgb1J371CoVZKksgtcZJIkAj38N9l2OBiWncn2lg2DrKs_7pzk8U3uLPDoinirGMWPF5Mb2F1kC4KMBa74owv23UPOvbG3cBA9uk1t99Er3O3W7Q7Z8fZdc7_gsV_eI3o_ek-KaLWgTqG3mc9-yWLfuz2m8K1rBWApxcqf6FIJm2nPx2B68APq1VVNTN2vOZ87TFuFlUYHuk8lVrPUDsl03tX9EKA9VVhgXhM8cLKqqKhg5KkxpJPQOISHpsK7a9ujmSLLxTccse6Z0JwsNstBRFlom5NV6zLzD9ri09zsU17on4nLHL5r2i-7NXAcvnYUILEXMm0pYw60qc-9cZgwexROyg8LWEN4gRq_FYia7hPNXWqpCJWR30AHdu5KF_q34FzaLooSYDrrwhDxfN4OPwMSPqX1zFn8CT84yFwl52GnUehoQ7smSK5ie3NC1jXluttSzrxGHHJy9KnHk60Er__jX_13Hx5dP8hm5MZ6cHOvjw9OjHXJTRNtJmSh3yfayPfNPIAZcVk-j5VGir9jSfwGOo2p- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIhAXxJulBYwEJ7Cy633Ye0CoUKKWQsWhSLlZXj8gEtoNm1Q0P41_x4z3AYHSW0-RYjuKPQ-PPePvI-RZbg2vhCyYQODWTGaeSZPlrNIGqcN4pRN8O_zxuDj4nL2f5bMt8nN4C4NllYNPDI7aNgbvyCdYJslLnqfFxPdlEZ_2p68X3xkySGGmdaDT6FTkyK1_wPFt-epwH2T9nPPpu5O3B6xnGGAG9qUVS7PYxdIbabWxeAeSFi5Q13onS-eRU93IVGPMDaofu8RI6UUpDQLZaSSMAO9_RaR5giYmZmK83kHgdZll_TOdOJWTZRacUpxIFmP2iomNrTAwBsBHA5Z9XrT7b9HmX5nbsCFOb5IbfSRL9zrVu0W2XH2bXO24Ldd3iNoLnpTimi1p46lpFgvXslDD7s5ouDdaw1gKMXNnBhQCaNrz8pgeyAD6tVVTUztvzubW0RahZlGZ7pKTy1jre2S7bmr3gNDYV2mhrecutbCosqpgZF7oUgvo7X1EkmFdlemRzpFw45sKGfdUqk4WCmShgiyUiMiLccyiw_m4sPcbFNfYEzG6wxdN-0X1Jq-8E9ZANJYg_k3FjY6NLDNnbao1HssjsoPCVhDqIF6vwcIms4KzWFLKQkZkd9AB1buVpfptBOc286KE-A66xBF5OjaDv8AkkK5dcxp-Ak_RIuMRud9p1DgNCP1EGUuYntjQtY15brbU868Bkxwcvyxx5MtBK__41_9dx4cXT_IJuQY2rj4cHh_tkOs8mE7CeLlLtlftqXsE4eCqehwMjxJ1yYb-C6-ObrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+sites+of+copper-complex+catalytic+materials+for+electrochemical+carbon+dioxide+reduction&rft.jtitle=Nature+communications&rft.au=Zhe+Weng&rft.au=Yueshen+Wu&rft.au=Maoyu+Wang&rft.au=Jianbing+Jiang&rft.date=2018-01-29&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-018-02819-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fe7dc91019604b2ca0c894edd3aa2549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |