Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction

Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far t...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 415 - 9
Main Authors Weng, Zhe, Wu, Yueshen, Wang, Maoyu, Jiang, Jianbing, Yang, Ke, Huo, Shengjuan, Wang, Xiao-Feng, Ma, Qing, Brudvig, Gary W., Batista, Victor S., Liang, Yongye, Feng, Zhenxing, Wang, Hailiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.01.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm −2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions. The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here, the authors discover copper-containing complexes to reversibly transform during electrocatalysis into methane-producing copper nanoclusters.
AbstractList Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm-2 at the potential of - 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion-ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm-2 at the potential of - 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion-ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.
Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm −2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions. The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here, the authors discover copper-containing complexes to reversibly transform during electrocatalysis into methane-producing copper nanoclusters.
Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm −2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.
Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm−2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here, the authors discover copper-containing complexes to reversibly transform during electrocatalysis into methane-producing copper nanoclusters.
Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm at the potential of - 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion-ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.
Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three coppercomplex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm-2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.
The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here, the authors discover copper-containing complexes to reversibly transform during electrocatalysis into methane-producing copper nanoclusters.
Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm−2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.
ArticleNumber 415
Author Feng, Zhenxing
Wang, Maoyu
Liang, Yongye
Wang, Hailiang
Jiang, Jianbing
Ma, Qing
Wang, Xiao-Feng
Brudvig, Gary W.
Huo, Shengjuan
Yang, Ke
Batista, Victor S.
Weng, Zhe
Wu, Yueshen
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0002-6005-9552
  surname: Weng
  fullname: Weng, Zhe
  organization: Department of Materials Science and Engineering, South University of Science and Technology of China, Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 2
  givenname: Yueshen
  surname: Wu
  fullname: Wu, Yueshen
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 3
  givenname: Maoyu
  surname: Wang
  fullname: Wang, Maoyu
  organization: School of Chemical, Biological, and Environmental Engineering, Oregon State University
– sequence: 4
  givenname: Jianbing
  surname: Jiang
  fullname: Jiang, Jianbing
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 5
  givenname: Ke
  surname: Yang
  fullname: Yang, Ke
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 6
  givenname: Shengjuan
  surname: Huo
  fullname: Huo, Shengjuan
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University, Department of Chemistry, Science Colleges, Shanghai University
– sequence: 7
  givenname: Xiao-Feng
  surname: Wang
  fullname: Wang, Xiao-Feng
  organization: School of Chemistry and Chemical Engineering, University of South China
– sequence: 8
  givenname: Qing
  surname: Ma
  fullname: Ma, Qing
  organization: DND-CAT, Synchrotron Research Center, Northwestern University
– sequence: 9
  givenname: Gary W.
  surname: Brudvig
  fullname: Brudvig, Gary W.
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 10
  givenname: Victor S.
  surname: Batista
  fullname: Batista, Victor S.
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
– sequence: 11
  givenname: Yongye
  surname: Liang
  fullname: Liang, Yongye
  email: liangyy@sustc.edu.cn
  organization: Department of Materials Science and Engineering, South University of Science and Technology of China
– sequence: 12
  givenname: Zhenxing
  surname: Feng
  fullname: Feng, Zhenxing
  email: zhenxing.feng@oregonstate.edu
  organization: School of Chemical, Biological, and Environmental Engineering, Oregon State University
– sequence: 13
  givenname: Hailiang
  orcidid: 0000-0003-4409-2034
  surname: Wang
  fullname: Wang, Hailiang
  email: hailiang.wang@yale.edu
  organization: Department of Chemistry, Yale University, Energy Sciences Institute, Yale University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29379087$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1419868$$D View this record in Osti.gov
BookMark eNp9kktr3DAUhU1JadI0f6CLYtpNN271snW1KYTQRyDQTfZCc309o8G2ppIdkn9fTZyUSaDRRkI655Pu1XlbHI1hpKJ4z9kXziR8TYqrRleMQ8UEcFPpV8WJYIpXXAt5dLA-Ls5S2rI8pOGg1JviWBipDQN9UthznPwNlclPlMrQlRh2O4oVhmHX022JbnL93eSxHNxE0bs-lV2IJfWEUwy4ocGj67MursJYtj7c-pbKSO2cwWF8V7zusofOHubT4vrH9-uLX9XV75-XF-dXFTYNnyqpGDHoEFqHrQZZy4a4qnnTERjqmloBgnRGK81BMuII0GkDyJQUrpanxeWCbYPb2l30g4t3Njhv7zdCXFsXcxU92Y50i4YzbhqmVgIdQzCK2lY6J2plMuvbwtrNq4FapHGKrn8CfXoy-o1dhxtbawADOgM-LoCQJm8T5tbiBsM45pZZrriBBrLo88MtMfyZKU128Amp791IYU6WGyMZV1qJLP30TLoNcxxzO61oDDfMCMFeUmWWEEbkpmbVh8Pi_lX1mIgsgEWAMaQUqbP5_W7_lblW31vO7D5_dsmfzfmz9_mze6t4Zn2kv2iSiyll8bimePDs_7v-AhY669o
CitedBy_id crossref_primary_10_1002_anie_202416467
crossref_primary_10_1016_j_electacta_2023_143360
crossref_primary_10_1002_asia_202200624
crossref_primary_10_1002_aenm_201801280
crossref_primary_10_1016_j_cej_2023_144618
crossref_primary_10_1002_ange_202102193
crossref_primary_10_1021_acs_chemrev_0c00396
crossref_primary_10_1021_jacs_4c05669
crossref_primary_10_1038_s41467_022_31661_1
crossref_primary_10_1016_j_jcat_2020_12_004
crossref_primary_10_1038_s41929_018_0164_8
crossref_primary_10_1021_acs_jpcc_1c09344
crossref_primary_10_3390_magnetochemistry9050112
crossref_primary_10_1002_adfm_202206887
crossref_primary_10_1002_advs_201801471
crossref_primary_10_1002_ange_201916520
crossref_primary_10_1002_advs_202303677
crossref_primary_10_1039_D2CP05589A
crossref_primary_10_1021_acsnano_0c10697
crossref_primary_10_1126_sciadv_abf3989
crossref_primary_10_1039_D2CP02911A
crossref_primary_10_1002_ange_202200723
crossref_primary_10_1002_anie_202111700
crossref_primary_10_1002_cssc_202001037
crossref_primary_10_1016_j_mattod_2021_02_005
crossref_primary_10_1002_ange_202102053
crossref_primary_10_1002_anie_202106004
crossref_primary_10_1016_j_ccr_2022_214716
crossref_primary_10_1016_j_trechm_2021_02_003
crossref_primary_10_1021_jacs_1c01466
crossref_primary_10_1002_admi_201800919
crossref_primary_10_1002_sstr_202200087
crossref_primary_10_1002_ange_202415445
crossref_primary_10_1016_j_apcatb_2021_120897
crossref_primary_10_1021_acs_jpcc_2c05522
crossref_primary_10_1007_s11426_021_1463_6
crossref_primary_10_1021_acs_jpcc_2c01287
crossref_primary_10_1002_smll_202304084
crossref_primary_10_1002_adma_202403187
crossref_primary_10_1021_acsmaterialslett_2c00751
crossref_primary_10_1007_s12274_024_6628_z
crossref_primary_10_1021_jacs_3c04826
crossref_primary_10_1016_j_ccst_2022_100081
crossref_primary_10_1039_C8RA08260J
crossref_primary_10_1002_admi_202202050
crossref_primary_10_1016_j_chempr_2020_12_016
crossref_primary_10_1002_anie_201804881
crossref_primary_10_1021_acs_nanolett_2c01933
crossref_primary_10_1002_aenm_202400827
crossref_primary_10_1039_D0TA06656G
crossref_primary_10_1002_ange_202412144
crossref_primary_10_1063_5_0146267
crossref_primary_10_1007_s10562_022_03919_2
crossref_primary_10_1016_j_mtsust_2025_101089
crossref_primary_10_1021_acs_energyfuels_3c01657
crossref_primary_10_3390_catal10050481
crossref_primary_10_1016_j_ccr_2025_216543
crossref_primary_10_1002_adma_202207088
crossref_primary_10_1002_jcc_27355
crossref_primary_10_1016_j_jcis_2023_01_097
crossref_primary_10_1002_ange_202001216
crossref_primary_10_1016_j_mtsust_2024_100817
crossref_primary_10_1021_jacs_8b00814
crossref_primary_10_1002_advs_202304735
crossref_primary_10_1021_acsaem_2c02873
crossref_primary_10_1021_acsnano_2c07138
crossref_primary_10_1038_s41467_023_40174_4
crossref_primary_10_1039_C9TA07967J
crossref_primary_10_1038_s41467_024_50379_w
crossref_primary_10_1016_j_enchem_2020_100034
crossref_primary_10_1016_j_cocis_2022_101635
crossref_primary_10_1021_jacs_9b11126
crossref_primary_10_1073_pnas_1918602117
crossref_primary_10_1016_j_electacta_2021_137793
crossref_primary_10_1002_cssc_202402184
crossref_primary_10_1002_smtd_202000033
crossref_primary_10_1021_acsmaterialslett_0c00229
crossref_primary_10_1002_cctc_201901414
crossref_primary_10_1016_S1872_2067_21_63940_2
crossref_primary_10_1021_acscatal_3c03961
crossref_primary_10_1038_s41467_022_33779_8
crossref_primary_10_1039_D2CP00887D
crossref_primary_10_1002_aoc_7204
crossref_primary_10_1002_smll_202101443
crossref_primary_10_1002_cctc_202101653
crossref_primary_10_1002_adma_202203791
crossref_primary_10_1007_s11426_024_2579_1
crossref_primary_10_1016_j_apcatb_2020_119173
crossref_primary_10_3389_fchem_2018_00543
crossref_primary_10_1016_j_xinn_2020_100016
crossref_primary_10_1016_j_jcis_2019_05_073
crossref_primary_10_1126_sciadv_add5598
crossref_primary_10_1002_ange_202218208
crossref_primary_10_1002_ange_201910155
crossref_primary_10_1002_ange_202211804
crossref_primary_10_1021_acs_nanolett_9b02782
crossref_primary_10_1002_smll_202411184
crossref_primary_10_1002_anie_202203837
crossref_primary_10_1016_j_matre_2022_100145
crossref_primary_10_1002_smtd_202100700
crossref_primary_10_1021_acscatal_1c02980
crossref_primary_10_1002_nano_202000041
crossref_primary_10_1038_s41570_021_00255_8
crossref_primary_10_1002_anie_201904246
crossref_primary_10_1002_anie_201907994
crossref_primary_10_1039_D3CC05453E
crossref_primary_10_1039_D1GC01464A
crossref_primary_10_1039_D1SE01726H
crossref_primary_10_1002_ange_202106004
crossref_primary_10_1002_adfm_202214062
crossref_primary_10_1039_D0QM01127D
crossref_primary_10_1002_xrs_3132
crossref_primary_10_1021_acs_jpcc_9b08666
crossref_primary_10_1021_acscatal_4c07952
crossref_primary_10_1039_D4CC02025A
crossref_primary_10_3390_molecules26185524
crossref_primary_10_1021_acsnano_1c02209
crossref_primary_10_1002_anie_202415445
crossref_primary_10_1002_ange_202315922
crossref_primary_10_1039_D2RA06302F
crossref_primary_10_1002_chem_202000280
crossref_primary_10_1038_s41467_022_30819_1
crossref_primary_10_1007_s12274_019_2403_y
crossref_primary_10_1016_j_mtphys_2021_100354
crossref_primary_10_1021_acscatal_9b02594
crossref_primary_10_1021_jacs_1c03788
crossref_primary_10_1002_smtd_201800369
crossref_primary_10_1002_ange_202111700
crossref_primary_10_1002_eem2_12709
crossref_primary_10_1016_j_apcatb_2022_122272
crossref_primary_10_1021_acscatal_0c05596
crossref_primary_10_1021_jacsau_1c00346
crossref_primary_10_1002_adma_202415135
crossref_primary_10_1002_celc_202001263
crossref_primary_10_1039_D1CC05910F
crossref_primary_10_1002_adfm_202000842
crossref_primary_10_1021_acsaem_2c01346
crossref_primary_10_1038_s41467_021_23065_4
crossref_primary_10_1146_annurev_anchem_091020_100631
crossref_primary_10_26599_NRE_2022_9120021
crossref_primary_10_1002_anie_202412144
crossref_primary_10_1002_aic_18161
crossref_primary_10_1002_celc_202100942
crossref_primary_10_1021_jacs_3c10524
crossref_primary_10_1002_ange_201804881
crossref_primary_10_1002_anie_202108388
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1021_jacs_4c03089
crossref_primary_10_1016_j_fuel_2024_132539
crossref_primary_10_1007_s12274_018_2221_7
crossref_primary_10_1002_cctc_202000909
crossref_primary_10_1021_jacs_3c00847
crossref_primary_10_1016_j_jechem_2023_06_010
crossref_primary_10_1002_ente_202401978
crossref_primary_10_1016_j_jcat_2024_115597
crossref_primary_10_1021_acscatal_1c01702
crossref_primary_10_1039_C9SC02605C
crossref_primary_10_1039_C8SC03986K
crossref_primary_10_1126_sciadv_ade3557
crossref_primary_10_1021_jacs_7b11267
crossref_primary_10_1002_adma_202415101
crossref_primary_10_1039_D1TA06915B
crossref_primary_10_1039_D4CS00333K
crossref_primary_10_1021_acscatal_0c05092
crossref_primary_10_1021_jacs_2c06188
crossref_primary_10_1002_anie_202003093
crossref_primary_10_1002_chem_202300583
crossref_primary_10_1016_j_mcat_2023_113511
crossref_primary_10_1002_ange_202203837
crossref_primary_10_1007_s40843_021_1749_5
crossref_primary_10_1038_s41467_023_39048_6
crossref_primary_10_1007_s11426_021_1120_3
crossref_primary_10_1021_jacs_0c05913
crossref_primary_10_1021_acsaem_1c01978
crossref_primary_10_1149_2_0291905jes
crossref_primary_10_1016_j_cej_2025_160154
crossref_primary_10_1021_acs_energyfuels_2c00400
crossref_primary_10_1002_ange_201912412
crossref_primary_10_1039_C8NR06664G
crossref_primary_10_26599_NRE_2022_9120009
crossref_primary_10_1021_acscatal_9b01617
crossref_primary_10_1039_D3NR04956F
crossref_primary_10_1016_j_jechem_2023_09_005
crossref_primary_10_1021_acsenergylett_0c02665
crossref_primary_10_1021_jacs_8b02173
crossref_primary_10_1038_s41467_020_16848_8
crossref_primary_10_1021_acsmaterialslett_3c00567
crossref_primary_10_1002_ntls_20210628
crossref_primary_10_1039_D0CE01201G
crossref_primary_10_1021_acs_jpcc_4c07971
crossref_primary_10_1007_s12274_019_2455_z
crossref_primary_10_1016_j_nanoen_2021_106239
crossref_primary_10_1002_smtd_202000494
crossref_primary_10_1038_s41467_021_26724_8
crossref_primary_10_1016_j_apcata_2023_119388
crossref_primary_10_1016_j_cej_2021_133225
crossref_primary_10_1038_s41467_018_06938_z
crossref_primary_10_1002_ange_202012329
crossref_primary_10_1002_smtd_202000016
crossref_primary_10_1002_cssc_202101972
crossref_primary_10_1002_ange_202416467
crossref_primary_10_1039_C8TA10650A
crossref_primary_10_1039_D1CC01703A
crossref_primary_10_1021_jacs_8b06407
crossref_primary_10_1016_j_cej_2023_142366
crossref_primary_10_1016_j_jechem_2021_04_059
crossref_primary_10_1021_acsenergylett_2c02893
crossref_primary_10_1002_adma_202309526
crossref_primary_10_1039_D1CP00908G
crossref_primary_10_1002_adma_202300713
crossref_primary_10_1039_D3EY00063J
crossref_primary_10_1039_D0EE01706J
crossref_primary_10_1021_acsnano_2c11227
crossref_primary_10_1002_smll_202000955
crossref_primary_10_1002_adma_202007344
crossref_primary_10_1021_acs_chemrev_2c00514
crossref_primary_10_1021_acs_inorgchem_4c04204
crossref_primary_10_2139_ssrn_4054186
crossref_primary_10_1016_j_nanoen_2024_109699
crossref_primary_10_1021_acscentsci_8b00130
crossref_primary_10_1021_jacs_3c08571
crossref_primary_10_1038_s41467_019_09666_0
crossref_primary_10_1016_j_fmre_2024_04_017
crossref_primary_10_1002_adfm_202204993
crossref_primary_10_1021_acs_chemmater_4c01137
crossref_primary_10_1002_ange_202114253
crossref_primary_10_1039_D0TA07068H
crossref_primary_10_1021_jacs_0c07041
crossref_primary_10_1039_D2CS00441K
crossref_primary_10_1016_j_jechem_2021_04_049
crossref_primary_10_1021_acsenergylett_0c02002
crossref_primary_10_1002_anie_202110303
crossref_primary_10_1002_smll_202001847
crossref_primary_10_1002_adma_202206783
crossref_primary_10_1016_j_apcatb_2019_118502
crossref_primary_10_1021_acs_chemrev_0c00594
crossref_primary_10_1007_s11270_021_04985_9
crossref_primary_10_59717_j_xinn_mater_2023_100014
crossref_primary_10_1016_S1872_2067_21_63967_0
crossref_primary_10_1039_C8CS00527C
crossref_primary_10_1038_s41560_020_0666_x
crossref_primary_10_1021_jacs_3c08359
crossref_primary_10_1039_D4TA03531C
crossref_primary_10_1002_adma_202107293
crossref_primary_10_1016_j_cclet_2022_107757
crossref_primary_10_1016_j_ccr_2024_216021
crossref_primary_10_1038_s41467_022_30027_x
crossref_primary_10_1039_C9TA11966C
crossref_primary_10_1039_D0CS01605E
crossref_primary_10_1002_cssc_202300657
crossref_primary_10_1002_ange_202411967
crossref_primary_10_1002_cssc_202301634
crossref_primary_10_1039_D3TA01607B
crossref_primary_10_1016_j_dyepig_2023_111326
crossref_primary_10_1021_acscatal_4c05286
crossref_primary_10_1002_celc_202000235
crossref_primary_10_1039_C9GC02705J
crossref_primary_10_1038_s41467_019_10819_4
crossref_primary_10_1039_D1TA08337F
crossref_primary_10_1016_j_nanoms_2024_01_007
crossref_primary_10_1039_D2TA09831H
crossref_primary_10_1002_adma_202403217
crossref_primary_10_1016_j_nantod_2020_101053
crossref_primary_10_1002_anie_201916520
crossref_primary_10_1016_j_esci_2023_100097
crossref_primary_10_1016_j_nanoen_2018_09_033
crossref_primary_10_1021_jacs_3c00660
crossref_primary_10_1002_smll_202311132
crossref_primary_10_1002_anie_202006899
crossref_primary_10_1002_adma_201808173
crossref_primary_10_1039_C9EE03660A
crossref_primary_10_1002_aenm_202201500
crossref_primary_10_1039_D2CS00233G
crossref_primary_10_1038_s44160_024_00588_4
crossref_primary_10_1016_j_spc_2018_11_004
crossref_primary_10_1021_acsaem_1c01624
crossref_primary_10_1021_accountsmr_2c00041
crossref_primary_10_1039_D0CS00835D
crossref_primary_10_1021_jacs_2c07178
crossref_primary_10_1021_jacs_0c11450
crossref_primary_10_1002_slct_202003415
crossref_primary_10_1016_j_electacta_2022_141030
crossref_primary_10_1007_s10854_022_08378_4
crossref_primary_10_1016_j_cej_2024_158198
crossref_primary_10_1002_ange_201909312
crossref_primary_10_1016_j_jcou_2025_103067
crossref_primary_10_1002_aenm_201803151
crossref_primary_10_1039_C8QI01315B
crossref_primary_10_1021_acs_jpcc_3c07671
crossref_primary_10_1002_adma_202005484
crossref_primary_10_1002_smm2_1106
crossref_primary_10_1002_adma_202004393
crossref_primary_10_1002_sstr_202100007
crossref_primary_10_1039_D0EE00900H
crossref_primary_10_1002_anie_202216633
crossref_primary_10_1021_acsami_8b20780
crossref_primary_10_1039_D4NA00594E
crossref_primary_10_1007_s11426_022_1407_0
crossref_primary_10_1021_acs_est_2c00377
crossref_primary_10_1002_advs_202101597
crossref_primary_10_1002_anie_202110186
crossref_primary_10_1016_j_cej_2022_139663
crossref_primary_10_1021_acsenergylett_1c01965
crossref_primary_10_1039_C8NH00259B
crossref_primary_10_1016_j_coelec_2019_04_002
crossref_primary_10_1002_idm2_12011
crossref_primary_10_1016_j_apcata_2023_119406
crossref_primary_10_1021_acscatal_4c02918
crossref_primary_10_1039_D0CS00639D
crossref_primary_10_1002_ange_202216633
crossref_primary_10_1016_j_mtphys_2023_101250
crossref_primary_10_1039_C9TA13173F
crossref_primary_10_1016_j_jechem_2022_03_041
crossref_primary_10_1002_chem_201903822
crossref_primary_10_1039_D4SC00569D
crossref_primary_10_1002_anie_202309893
crossref_primary_10_1002_anie_201912412
crossref_primary_10_1038_s41467_023_43182_6
crossref_primary_10_1021_acsaem_9b00368
crossref_primary_10_1002_celc_202200023
crossref_primary_10_1002_smtd_202400432
crossref_primary_10_1002_cssc_202102528
crossref_primary_10_1002_smtd_202300702
crossref_primary_10_1016_j_jclepro_2023_139286
crossref_primary_10_1002_anie_202112116
crossref_primary_10_1002_cctc_202200981
crossref_primary_10_1021_acscatal_0c00243
crossref_primary_10_1021_jacs_4c09230
crossref_primary_10_1002_advs_202001881
crossref_primary_10_1002_asia_201901714
crossref_primary_10_1002_ange_202411766
crossref_primary_10_1039_C8TA08058E
crossref_primary_10_1007_s12209_022_00330_1
crossref_primary_10_1038_s41467_022_32740_z
crossref_primary_10_3390_molecules28135179
crossref_primary_10_1007_s40820_023_01188_1
crossref_primary_10_1002_ange_202003093
crossref_primary_10_1002_anie_202409270
crossref_primary_10_1002_smtd_202100102
crossref_primary_10_1016_S1872_2067_21_64000_7
crossref_primary_10_1002_anie_202211098
crossref_primary_10_1002_ange_202017181
crossref_primary_10_1016_j_cclet_2018_11_002
crossref_primary_10_1039_D3EE02196C
crossref_primary_10_1016_j_carbon_2020_06_066
crossref_primary_10_1002_smll_202311163
crossref_primary_10_1002_anie_202205301
crossref_primary_10_1016_j_electacta_2024_145357
crossref_primary_10_1021_acs_nanolett_0c03565
crossref_primary_10_1002_adma_202205346
crossref_primary_10_1002_cnma_202400070
crossref_primary_10_1002_anie_202017181
crossref_primary_10_1038_s41467_021_27768_6
crossref_primary_10_1039_D2NR01226J
crossref_primary_10_1016_j_jece_2024_114083
crossref_primary_10_1002_adfm_202111504
crossref_primary_10_1016_j_jpowsour_2022_232128
crossref_primary_10_1002_cctc_202300576
crossref_primary_10_1021_acscatal_0c01593
crossref_primary_10_1021_jacs_4c15803
crossref_primary_10_1039_D0SC03328F
crossref_primary_10_7566_JPSJ_89_103001
crossref_primary_10_1016_j_coelec_2019_05_006
crossref_primary_10_1039_C8CE00064F
crossref_primary_10_1016_j_ccr_2020_213564
crossref_primary_10_1002_aenm_201902338
crossref_primary_10_1002_smll_202405399
crossref_primary_10_1039_C9CS00163H
crossref_primary_10_1016_j_nanoen_2020_104833
crossref_primary_10_1002_chem_202002813
crossref_primary_10_1016_j_jcou_2021_101470
crossref_primary_10_1039_D2TA05565A
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1002_anie_201910155
crossref_primary_10_1016_j_jcat_2021_09_013
crossref_primary_10_1016_j_mtener_2021_100911
crossref_primary_10_1039_D3SE00350G
crossref_primary_10_1039_D4CC05165C
crossref_primary_10_1016_j_jmst_2024_08_029
crossref_primary_10_1002_smll_202207037
crossref_primary_10_1021_acssuschemeng_9b03892
crossref_primary_10_3389_fchem_2023_1141453
crossref_primary_10_1002_adma_202109074
crossref_primary_10_1016_j_jechem_2019_04_013
crossref_primary_10_1002_aenm_201902106
crossref_primary_10_3389_fchem_2020_00137
crossref_primary_10_1002_advs_202413555
crossref_primary_10_1039_D2GC04368H
crossref_primary_10_1016_j_jechem_2020_06_038
crossref_primary_10_1016_j_cclet_2024_109937
crossref_primary_10_1021_acs_energyfuels_1c00534
crossref_primary_10_1002_anie_202211804
crossref_primary_10_1002_agt2_273
crossref_primary_10_1002_smll_202005148
crossref_primary_10_1016_j_coelec_2018_09_002
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_1016_j_eehl_2024_02_003
crossref_primary_10_1016_j_jcou_2020_101169
crossref_primary_10_1039_D4TA03502J
crossref_primary_10_1021_acscatal_2c03842
crossref_primary_10_1016_j_ccr_2023_215602
crossref_primary_10_1016_j_joule_2018_10_015
crossref_primary_10_1002_anie_202114648
crossref_primary_10_1039_D3RA07639C
crossref_primary_10_1039_D3CP05694E
crossref_primary_10_1021_acs_cgd_8b00820
crossref_primary_10_1039_D3QM00844D
crossref_primary_10_1002_smll_202405051
crossref_primary_10_1002_ange_202110186
crossref_primary_10_1016_j_apcatb_2024_124145
crossref_primary_10_1016_S1872_2067_21_63947_5
crossref_primary_10_1002_ange_202011836
crossref_primary_10_1021_jacs_4c14409
crossref_primary_10_1016_j_carbon_2019_02_010
crossref_primary_10_1002_anie_202411766
crossref_primary_10_1002_adma_202001848
crossref_primary_10_1038_s41929_024_01147_y
crossref_primary_10_1002_ange_202114648
crossref_primary_10_1039_C9TA11778D
crossref_primary_10_1002_adsu_202400387
crossref_primary_10_1016_j_jcis_2021_05_118
crossref_primary_10_1002_ange_202112116
crossref_primary_10_1039_D4CC03964E
crossref_primary_10_1021_acsaem_1c00269
crossref_primary_10_1007_s10311_023_01565_7
crossref_primary_10_1039_D0EE03903A
crossref_primary_10_1002_anie_202011836
crossref_primary_10_1038_s41467_024_52832_2
crossref_primary_10_1002_adma_202003577
crossref_primary_10_1016_j_fmre_2023_09_009
crossref_primary_10_1021_acsaem_8b00797
crossref_primary_10_1016_j_susmat_2020_e00200
crossref_primary_10_1021_acssuschemeng_0c08634
crossref_primary_10_1007_s10562_022_04229_3
crossref_primary_10_1002_anie_202315922
crossref_primary_10_1016_j_scib_2023_02_008
crossref_primary_10_1002_smsc_202100043
crossref_primary_10_1016_j_fuel_2023_129760
crossref_primary_10_1039_C8SC04344B
crossref_primary_10_1038_s41467_020_20769_x
crossref_primary_10_1002_anie_202001216
crossref_primary_10_1039_D0CY01267J
crossref_primary_10_1021_acsami_4c06365
crossref_primary_10_1002_ange_202006899
crossref_primary_10_1007_s11426_024_2083_4
crossref_primary_10_1021_acscatal_0c05421
crossref_primary_10_1038_s41467_021_25295_y
crossref_primary_10_1016_j_aca_2024_343307
crossref_primary_10_1002_anie_202114253
crossref_primary_10_31635_ccschem_019_20180017
crossref_primary_10_1021_acscatal_3c00494
crossref_primary_10_1016_S1872_2067_23_64578_4
crossref_primary_10_1002_smll_202205730
crossref_primary_10_1021_jacs_2c02262
crossref_primary_10_1149_1945_7111_abfcda
crossref_primary_10_1002_ange_201907994
crossref_primary_10_1007_s41918_022_00171_5
crossref_primary_10_1016_j_ccr_2023_215273
crossref_primary_10_1002_adma_202209567
crossref_primary_10_1002_ange_201904246
crossref_primary_10_1016_j_jcou_2019_12_025
crossref_primary_10_1038_s41467_021_24059_y
crossref_primary_10_1360_TB_2022_0765
crossref_primary_10_1039_D0CS00218F
crossref_primary_10_1002_aesr_202100033
crossref_primary_10_1016_j_coelec_2020_100681
crossref_primary_10_1002_adma_201804257
crossref_primary_10_1038_s41467_022_29428_9
crossref_primary_10_1002_cssc_202102010
crossref_primary_10_1007_s42823_024_00744_y
crossref_primary_10_1039_D3NJ01363D
crossref_primary_10_1007_s40820_019_0277_x
crossref_primary_10_1021_acs_chemmater_2c00444
crossref_primary_10_1002_smll_202005713
crossref_primary_10_1002_ange_202110303
crossref_primary_10_1002_anie_202102053
crossref_primary_10_1016_j_cjche_2022_03_006
crossref_primary_10_1002_cey2_410
crossref_primary_10_1016_j_checat_2024_101196
crossref_primary_10_1039_D2SC04961A
crossref_primary_10_1002_aenm_201801587
crossref_primary_10_1063_5_0030034
crossref_primary_10_1002_anie_202218208
crossref_primary_10_1002_ece2_57
crossref_primary_10_1002_adfm_202204086
crossref_primary_10_1002_anie_202012329
crossref_primary_10_1039_C9NR07272A
crossref_primary_10_1002_ange_202409270
crossref_primary_10_1016_j_nxener_2023_100045
crossref_primary_10_1021_acs_iecr_4c03421
crossref_primary_10_1002_anie_202102193
crossref_primary_10_1002_smtd_202100736
crossref_primary_10_1002_anie_202411967
crossref_primary_10_1038_s41929_018_0203_5
crossref_primary_10_1016_j_coelec_2021_100803
crossref_primary_10_1038_s41467_022_33689_9
crossref_primary_10_1039_D2CC06943A
crossref_primary_10_26599_POM_2024_9140057
crossref_primary_10_1002_adma_202400640
crossref_primary_10_1016_j_mtphys_2019_100176
crossref_primary_10_1021_acscatal_3c01439
crossref_primary_10_1039_C9CY01131E
crossref_primary_10_1002_ange_202205301
crossref_primary_10_1021_acs_inorgchem_3c00118
crossref_primary_10_1038_s41699_021_00243_y
crossref_primary_10_1016_S1872_2067_21_63970_0
crossref_primary_10_1021_acs_nanolett_9b01197
crossref_primary_10_1002_aenm_202400057
crossref_primary_10_1021_acs_jpclett_4c00398
crossref_primary_10_1149_1945_7111_ab6c54
crossref_primary_10_1039_C9EE01899A
crossref_primary_10_1021_acs_accounts_3c00589
crossref_primary_10_1002_anie_201909312
crossref_primary_10_1016_j_fuel_2022_127026
crossref_primary_10_1021_acscatal_0c02237
crossref_primary_10_1016_j_ensm_2022_12_007
crossref_primary_10_1002_adfm_202111193
crossref_primary_10_1016_j_cogsc_2018_03_004
crossref_primary_10_1021_acscatal_0c04656
crossref_primary_10_1016_j_molstruc_2018_08_034
crossref_primary_10_1021_acsenergylett_7b01343
crossref_primary_10_1016_S1872_2067_18_63161_4
crossref_primary_10_1007_s11581_024_05420_9
crossref_primary_10_1021_jacs_2c01098
crossref_primary_10_1021_acsaem_2c01174
crossref_primary_10_1016_j_cclet_2023_109240
crossref_primary_10_1039_D2RE00249C
crossref_primary_10_1002_advs_202003579
crossref_primary_10_1021_jacs_4c05630
crossref_primary_10_1021_jacs_1c05580
crossref_primary_10_3390_ma17030600
crossref_primary_10_1002_adma_202307809
crossref_primary_10_1002_cssc_201901884
crossref_primary_10_1039_D3TA07389K
crossref_primary_10_1021_acscatal_0c04403
crossref_primary_10_1039_D2QM01119K
crossref_primary_10_1002_aenm_202405726
crossref_primary_10_1002_ange_202211098
crossref_primary_10_1038_s41467_023_38935_2
crossref_primary_10_1038_s41467_023_44078_1
crossref_primary_10_1002_cssc_201902859
crossref_primary_10_1007_s12274_023_5949_7
crossref_primary_10_1021_acsami_0c02946
crossref_primary_10_1002_smll_202100629
crossref_primary_10_1021_jacs_3c02370
crossref_primary_10_1007_s41918_022_00139_5
crossref_primary_10_1002_ange_202309893
crossref_primary_10_1002_anie_202200723
crossref_primary_10_1021_acsami_0c09240
crossref_primary_10_1021_acsenergylett_1c00612
crossref_primary_10_1039_D0DT02683B
crossref_primary_10_1016_j_colsurfa_2021_127637
crossref_primary_10_1016_j_cej_2023_141803
crossref_primary_10_1021_acsomega_3c06440
crossref_primary_10_1007_s12274_023_5829_1
crossref_primary_10_1016_j_matt_2020_11_011
crossref_primary_10_1080_00958972_2024_2419954
crossref_primary_10_1002_ange_202108388
crossref_primary_10_1021_jacs_0c06779
crossref_primary_10_1038_s41467_022_31662_0
crossref_primary_10_1002_sstr_202200233
crossref_primary_10_3390_catal13071038
crossref_primary_10_1016_j_apcatb_2024_123694
crossref_primary_10_1002_aenm_201900090
crossref_primary_10_1039_C9QI01220F
crossref_primary_10_1038_s41929_018_0182_6
crossref_primary_10_1016_j_apsusc_2024_160207
crossref_primary_10_1002_adfm_202102151
crossref_primary_10_1039_C8GC02389A
crossref_primary_10_1016_j_coelec_2024_101598
crossref_primary_10_1021_acsenergylett_8b01681
crossref_primary_10_1002_ejic_202400318
crossref_primary_10_1016_j_apcatb_2020_119591
crossref_primary_10_1039_D4SC01735H
crossref_primary_10_1021_acsami_1c19380
crossref_primary_10_1039_D3CE01109G
crossref_primary_10_1039_D4TA05059B
Cites_doi 10.1002/celc.201402373
10.1016/S1872-2067(16)62455-5
10.1021/jp963266u
10.1021/jz301859k
10.1021/acs.nanolett.5b03709
10.1103/PhysRevB.52.6332
10.1021/jacs.5b08212
10.1107/S0909049598017786
10.1016/j.nanoen.2016.04.009
10.1039/b508541a
10.1021/acscatal.6b02181
10.1038/srep05156
10.1021/ja5065284
10.1039/C1CP22700A
10.1126/science.aad8868
10.1038/ncomms14675
10.1002/adfm.201606635
10.1021/ja204191t
10.1039/C5RA18404E
10.1021/acscentsci.7b00160
10.1038/ncomms10771
10.1021/ja304783j
10.1021/acs.jpcc.7b03910
10.1002/ente.201600583
10.1002/anie.201601582
10.1016/S0009-2614(02)01641-X
10.1126/science.1224581
10.1021/jacs.6b11023
10.1021/cr950214c
10.1039/a904654b
10.1021/acs.chemmater.6b00713
10.1002/cssc.201600693
10.1021/jacs.5b07071
10.1038/ncomms12324
10.1039/B609757J
10.1038/ncomms9177
10.1103/PhysRevB.37.785
10.1016/j.cplett.2017.02.018
10.1016/0079-6816(96)00002-0
10.1016/j.nanoen.2017.06.006
10.1021/acs.nanolett.6b05287
10.1016/0039-6028(96)00253-1
10.1002/anie.201707478
10.1021/acs.chemrev.5b00122
10.1002/anie.201412214
10.1038/nenergy.2015.14
10.1126/science.aac8343
10.1063/1.4948792
10.1021/acs.accounts.5b00555
10.1021/acs.nanolett.5b03298
10.1039/c2ee22528j
10.1021/ja500328k
10.1126/science.1177981
10.1063/1.464913
10.1021/acsami.7b07707
10.1021/acs.accounts.5b00275
10.1146/annurev-anchem-061010-113906
10.1021/jp810292n
10.1021/jacs.6b04746
10.1063/1.2799995
10.1063/1.438955
10.1002/adma.201304676
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Yale Univ., New Haven, CT (United States)
Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
– name: Yale Univ., New Haven, CT (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-018-02819-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database
PubMed



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_fe7dc91019604b2ca0c894edd3aa2549
PMC5788987
1419868
29379087
10_1038_s41467_018_02819_7
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c661t-340e08fc8dacd783536e14516fe89ef6548c83a97471830e1c88f798c0432a53
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:32 EDT 2025
Thu Aug 21 18:28:29 EDT 2025
Mon Jul 03 03:57:01 EDT 2023
Thu Jul 10 22:45:10 EDT 2025
Wed Aug 13 04:34:49 EDT 2025
Wed Aug 13 04:44:48 EDT 2025
Wed Feb 19 02:31:59 EST 2025
Thu Apr 24 22:52:19 EDT 2025
Tue Jul 01 02:21:09 EDT 2025
Fri Feb 21 02:39:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-340e08fc8dacd783536e14516fe89ef6548c83a97471830e1c88f798c0432a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
FG02-07ER15909; AC02-06CH11357
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
ORCID 0000-0003-4409-2034
0000-0002-6005-9552
0000000260059552
0000000344092034
OpenAccessLink https://doaj.org/article/fe7dc91019604b2ca0c894edd3aa2549
PMID 29379087
PQID 1992292536
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_fe7dc91019604b2ca0c894edd3aa2549
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5788987
osti_scitechconnect_1419868
proquest_miscellaneous_1993014742
proquest_journals_2691909220
proquest_journals_1992292536
pubmed_primary_29379087
crossref_citationtrail_10_1038_s41467_018_02819_7
crossref_primary_10_1038_s41467_018_02819_7
springer_journals_10_1038_s41467_018_02819_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-29
PublicationDateYYYYMMDD 2018-01-29
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Roberts, Kuhl, Nilsson (CR48) 2015; 54
Weng (CR20) 2015; 15
Angamuthu, Byers, Lutz, Spek, Bouwman (CR10) 2010; 327
Krishnan, Binkley, Seeger, Pople (CR61) 1980; 72
Li (CR41) 2011; 133
Rockenberger (CR55) 1997; 101
Weigend, Ahlrichs (CR60) 2005; 7
Tang (CR43) 2012; 14
Feng (CR29) 2016; 49
Gunathunge (CR23) 2017; 121
Carta (CR42) 2007; 127
Kas, Kortlever, Yilmaz, Koper, Mul (CR45) 2015; 2
Irvine (CR24) 2016; 1
Alfonso, Kauffman, Matranga (CR51) 2016; 144
Wu (CR5) 2017; 3
Titmuss, Wander, King (CR17) 1996; 96
Marenich, Cramer, Truhlar (CR62) 2009; 113
Zhang (CR27) 2017; 27
Xu, Song, Hu (CR28) 2016; 7
Loiudice (CR47) 2016; 55
Kolb (CR18) 1996; 51
Jentys (CR56) 1999; 1
Becke (CR57) 1993; 98
Tanaka (CR16) 1996; 357
Kornienko (CR8) 2015; 137
Huo (CR3) 2015; 9
Liu (CR37) 2016; 7
Jiang, Li, Chi (CR64) 2002; 366
Li (CR46) 2017; 17
Lu, Jiao (CR1) 2016; 29
Fan, Liu, Weng, Sun, Wang (CR38) 2015; 137
Weng (CR15) 2016; 138
Zhang (CR36) 2017; 38
Liu, Yang, Liu (CR30) 2014; 26
Raciti, Livi, Wang (CR50) 2015; 15
Frenkel (CR39) 1999; 6
Nilsson (CR33) 2017; 675
Costentin, Drouet, Robert, Saveant (CR7) 2012; 338
Weng (CR25) 2017; 56
Manthiram, Beberwyck, Aivisatos (CR44) 2014; 136
Wu, Zhou (CR2) 2016; 37
Feng (CR32) 2013; 4
Li, Bridges, Booth (CR54) 1995; 52
CR59
Fang, Flake (CR52) 2017; 139
Wei (CR35) 2016; 28
Lin (CR11) 2015; 349
Karaiskakis, Biddinger (CR22) 2017; 5
Blakemore, Crabtree, Brudvig (CR26) 2015; 115
Schneider (CR9) 2012; 5
Shen (CR12) 2015; 6
Feng (CR34) 2015; 5
Wei (CR19) 2014; 4
Frenkel, Yevick, Cooper, Vasic (CR40) 2011; 4
Stoerzinger, Hong, Crumlin, Bluhm, Shao-Horn (CR31) 2015; 48
Lee, Yang, Parr (CR58) 1988; 37
CR66
Zhang (CR6) 2017; 8
Keller, Koningsberger, Weckhuysen (CR53) 2006; 8
CR65
CR63
Yao (CR13) 2012; 134
Eren (CR21) 2016; 351
Takeda, Cometto, Ishitani, Robert (CR4) 2017; 7
Reske, Mistry, Behafarid, Cuenya, Strasser (CR49) 2014; 136
Albo (CR14) 2017; 10
AN Karaiskakis (2819_CR22) 2017; 5
W Tang (2819_CR43) 2012; 14
H Takeda (2819_CR4) 2017; 7
JJ Wu (2819_CR2) 2016; 37
DR Alfonso (2819_CR51) 2016; 144
N Kornienko (2819_CR8) 2015; 137
S-J Huo (2819_CR3) 2015; 9
FS Roberts (2819_CR48) 2015; 54
DE Keller (2819_CR53) 2006; 8
D Raciti (2819_CR50) 2015; 15
S Titmuss (2819_CR17) 1996; 96
J Albo (2819_CR14) 2017; 10
J Rockenberger (2819_CR55) 1997; 101
A Jentys (2819_CR56) 1999; 1
J Schneider (2819_CR9) 2012; 5
JD Blakemore (2819_CR26) 2015; 115
C Costentin (2819_CR7) 2012; 338
JTS Irvine (2819_CR24) 2016; 1
C Wei (2819_CR35) 2016; 28
AI Frenkel (2819_CR39) 1999; 6
R Krishnan (2819_CR61) 1980; 72
Q Jiang (2819_CR64) 2002; 366
B Eren (2819_CR21) 2016; 351
D Carta (2819_CR42) 2007; 127
Z Weng (2819_CR20) 2015; 15
X Zhang (2819_CR6) 2017; 8
YM Li (2819_CR41) 2011; 133
Q Fan (2819_CR38) 2015; 137
DM Kolb (2819_CR18) 1996; 51
Q Lu (2819_CR1) 2016; 29
W Liu (2819_CR37) 2016; 7
S Lin (2819_CR11) 2015; 349
J Shen (2819_CR12) 2015; 6
R Angamuthu (2819_CR10) 2010; 327
X Xu (2819_CR28) 2016; 7
YQ Zhang (2819_CR36) 2017; 38
HS Wei (2819_CR19) 2014; 4
CM Gunathunge (2819_CR23) 2017; 121
K Manthiram (2819_CR44) 2014; 136
KA Stoerzinger (2819_CR31) 2015; 48
Z Feng (2819_CR34) 2015; 5
2819_CR59
2819_CR65
A Loiudice (2819_CR47) 2016; 55
YX Fang (2819_CR52) 2017; 139
AV Marenich (2819_CR62) 2009; 113
2819_CR63
X Zhang (2819_CR27) 2017; 27
A Nilsson (2819_CR33) 2017; 675
CT Lee (2819_CR58) 1988; 37
R Reske (2819_CR49) 2014; 136
GG Li (2819_CR54) 1995; 52
R Kas (2819_CR45) 2015; 2
XS Liu (2819_CR30) 2014; 26
Y Wu (2819_CR5) 2017; 3
K Tanaka (2819_CR16) 1996; 357
F Weigend (2819_CR60) 2005; 7
YF Li (2819_CR46) 2017; 17
ZX Feng (2819_CR32) 2013; 4
ZX Feng (2819_CR29) 2016; 49
Z Weng (2819_CR15) 2016; 138
2819_CR66
AD Becke (2819_CR57) 1993; 98
Z Weng (2819_CR25) 2017; 56
SA Yao (2819_CR13) 2012; 134
AI Frenkel (2819_CR40) 2011; 4
References_xml – volume: 2
  start-page: 354
  year: 2015
  end-page: 358
  ident: CR45
  article-title: Manipulating the hydrocarbon selectivity of copper nanoparticles in CO electroreduction by process conditions
  publication-title: Chemelectrochem
  doi: 10.1002/celc.201402373
– volume: 37
  start-page: 999
  year: 2016
  end-page: 1015
  ident: CR2
  article-title: Catalytic conversion of CO to value added fuels: Current status, challenges, and future directions
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(16)62455-5
– volume: 101
  start-page: 2691
  year: 1997
  end-page: 2701
  ident: CR55
  article-title: EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp963266u
– volume: 4
  start-page: 285
  year: 2013
  end-page: 291
  ident: CR32
  article-title: Catalysts transform while molecules react: An atomic-scale view
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz301859k
– volume: 15
  start-page: 7704
  year: 2015
  end-page: 7710
  ident: CR20
  article-title: Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03709
– volume: 52
  start-page: 6332
  year: 1995
  end-page: 6348
  ident: CR54
  article-title: X-ray-absorption fine-structure standards: A comparison of experiment and theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.52.6332
– volume: 137
  start-page: 14129
  year: 2015
  end-page: 14135
  ident: CR8
  article-title: Metal-organic frameworks for electrocatalytic reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08212
– volume: 6
  start-page: 293
  year: 1999
  end-page: 295
  ident: CR39
  article-title: Solving the structure of nanoparticles by multiple-scattering EXAFS analysis
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049598017786
– volume: 29
  start-page: 439
  year: 2016
  end-page: 456
  ident: CR1
  article-title: Electrochemical CO reduction: electrocatalyst, reaction mechanism, and process engineering
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.009
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  ident: CR60
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 7
  start-page: 70
  year: 2017
  end-page: 88
  ident: CR4
  article-title: Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02181
– volume: 4
  year: 2014
  ident: CR19
  article-title: In situ growth of Ni Cu alloy nanocatalysts on redox-reversible rutile (Nb, Ti)O towards high-temperature carbon dioxide electrolysis
  publication-title: Sci. Rep.
  doi: 10.1038/srep05156
– volume: 136
  start-page: 13319
  year: 2014
  end-page: 13325
  ident: CR44
  article-title: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5065284
– volume: 14
  start-page: 76
  year: 2012
  end-page: 81
  ident: CR43
  article-title: The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO electroreduction
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22700A
– volume: 351
  start-page: 475
  year: 2016
  end-page: 478
  ident: CR21
  article-title: Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption
  publication-title: Science
  doi: 10.1126/science.aad8868
– volume: 8
  year: 2017
  ident: CR6
  article-title: Highly selective and active CO reduction electro-catalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14675
– volume: 27
  start-page: 1606635
  year: 2017
  ident: CR27
  article-title: Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606635
– volume: 133
  start-page: 13527
  year: 2011
  end-page: 13533
  ident: CR41
  article-title: A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204191t
– volume: 5
  start-page: 103834
  year: 2015
  end-page: 103840
  ident: CR34
  article-title: Atomic-scale cation dynamics in a monolayer VO /α-Fe O catalyst
  publication-title: RSC Adv.
  doi: 10.1039/C5RA18404E
– volume: 3
  start-page: 847
  year: 2017
  end-page: 852
  ident: CR5
  article-title: Electroreduction of CO catalyzed by a heterogenized Zn–porphyrin complex with a redox-innocent metal center
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00160
– volume: 7
  year: 2016
  ident: CR37
  article-title: A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10771
– volume: 134
  start-page: 15632
  year: 2012
  end-page: 15635
  ident: CR13
  article-title: Covalent attachment of catalyst molecules to conductive diamond: CO reduction using “smart” electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304783j
– volume: 121
  start-page: 12337
  year: 2017
  end-page: 12344
  ident: CR23
  article-title: Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO reduction
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b03910
– volume: 5
  start-page: 901
  year: 2017
  end-page: 910
  ident: CR22
  article-title: Evaluation of the impact of surface reconstruction on rough electrodeposited copper-based catalysts for carbon dioxide electroreduction
  publication-title: Energy Technol.
  doi: 10.1002/ente.201600583
– volume: 55
  start-page: 5789
  year: 2016
  end-page: 5792
  ident: CR47
  article-title: Tailoring copper nanocrystals towards C products in electrochemical CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601582
– volume: 366
  start-page: 551
  year: 2002
  end-page: 554
  ident: CR64
  article-title: Size-dependent cohesive energy of nanocrystals
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01641-X
– volume: 338
  start-page: 90
  year: 2012
  end-page: 94
  ident: CR7
  article-title: A local proton source enhances CO electroreduction to CO by a molecular Fe catalyst
  publication-title: Science
  doi: 10.1126/science.1224581
– volume: 139
  start-page: 3399
  year: 2017
  end-page: 3405
  ident: CR52
  article-title: Electrochemical reduction of CO at functionalized Au electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11023
– volume: 96
  start-page: 1291
  year: 1996
  end-page: 1305
  ident: CR17
  article-title: Reconstruction of clean and adsorbate-covered metal surfaces
  publication-title: Chem. Rev.
  doi: 10.1021/cr950214c
– volume: 1
  start-page: 4059
  year: 1999
  end-page: 4063
  ident: CR56
  article-title: Estimation of mean size and shape of small metal particles by EXAFS
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a904654b
– volume: 28
  start-page: 4129
  year: 2016
  end-page: 4133
  ident: CR35
  article-title: Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe O (X=Mn, Co, Ni, Fe)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00713
– volume: 10
  start-page: 1100
  year: 2017
  end-page: 1109
  ident: CR14
  article-title: Copper-based metal-organic porous materials for CO electrocatalytic reduction to alcohols
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600693
– volume: 137
  start-page: 12946
  year: 2015
  end-page: 12953
  ident: CR38
  article-title: Ternary hybrid material for high-performance lithium-sulfur battery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07071
– ident: CR66
– volume: 7
  year: 2016
  ident: CR28
  article-title: A nickel iron diselenide-derived efficient oxygen-evolution catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12324
– volume: 8
  start-page: 4814
  year: 2006
  end-page: 4824
  ident: CR53
  article-title: Elucidation of the molecular structure of hydrated vanadium oxide species by X-ray absorption spectroscopy: Correlation between the V…V coordination number and distance and the point of zero charge of the support oxide
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B609757J
– volume: 6
  year: 2015
  ident: CR12
  article-title: Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9177
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  ident: CR58
  article-title: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 675
  start-page: 145
  year: 2017
  end-page: 173
  ident: CR33
  article-title: Catalysis in real time using X-ray lasers
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.02.018
– volume: 51
  start-page: 109
  year: 1996
  end-page: 173
  ident: CR18
  article-title: Reconstruction phenomena at metal-electrolyte interfaces
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/0079-6816(96)00002-0
– volume: 38
  start-page: 392
  year: 2017
  end-page: 400
  ident: CR36
  article-title: A rational design for enhanced oxygen reduction: Strongly coupled silver nanoparticles and engineered perovskite nanofibers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.006
– volume: 17
  start-page: 1312
  year: 2017
  end-page: 1317
  ident: CR46
  article-title: Structure-sensitive CO electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05287
– ident: CR63
– volume: 357
  start-page: 721
  year: 1996
  end-page: 728
  ident: CR16
  article-title: Chemical reconstruction and catalysis of metal and bimetallic surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)00253-1
– volume: 56
  start-page: 13135
  year: 2017
  end-page: 13139
  ident: CR25
  article-title: Self-Cleaning Catalyst Electrodes for Stabilized CO2 Reduction to Hydrocarbons
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707478
– volume: 115
  start-page: 12974
  year: 2015
  end-page: 13005
  ident: CR26
  article-title: Molecular catalysts for water oxidation
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00122
– volume: 54
  start-page: 5179
  year: 2015
  end-page: 5182
  ident: CR48
  article-title: High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201412214
– volume: 1
  start-page: 15014
  year: 2016
  ident: CR24
  article-title: Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.14
– volume: 349
  start-page: 1208
  year: 2015
  end-page: 1213
  ident: CR11
  article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO reduction in water
  publication-title: Science
  doi: 10.1126/science.aac8343
– volume: 144
  start-page: 184705
  year: 2016
  ident: CR51
  article-title: Active sites of ligand-protected Au-25 nanoparticle catalysts for CO electroreduction to CO
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4948792
– volume: 49
  start-page: 966
  year: 2016
  end-page: 973
  ident: CR29
  article-title: Catalytic activity and stability of oxides: the role of near-surface atomic structures and compositions
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00555
– volume: 15
  start-page: 6829
  year: 2015
  end-page: 6835
  ident: CR50
  article-title: Highly dense Cu nanowires for low-overpotential CO reduction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03298
– volume: 5
  start-page: 9502
  year: 2012
  end-page: 9510
  ident: CR9
  article-title: Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO to CO
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22528j
– ident: CR65
– volume: 136
  start-page: 6978
  year: 2014
  end-page: 6986
  ident: CR49
  article-title: Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500328k
– volume: 327
  start-page: 313
  year: 2010
  end-page: 315
  ident: CR10
  article-title: Electrocatalytic CO conversion to oxalate by a copper complex
  publication-title: Science
  doi: 10.1126/science.1177981
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  ident: CR57
  article-title: Density-functional thermochemistry. III. The role of exact exchange
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 9
  start-page: 28519
  year: 2015
  end-page: 28526
  ident: CR3
  article-title: Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO reduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07707
– volume: 48
  start-page: 2976
  year: 2015
  end-page: 2983
  ident: CR31
  article-title: Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00275
– ident: CR59
– volume: 4
  start-page: 23
  year: 2011
  end-page: 39
  ident: CR40
  article-title: Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-061010-113906
– volume: 113
  start-page: 6378
  year: 2009
  end-page: 6396
  ident: CR62
  article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp810292n
– volume: 138
  start-page: 8076
  year: 2016
  end-page: 8079
  ident: CR15
  article-title: Electrochemical CO reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04746
– volume: 127
  start-page: 204705
  year: 2007
  ident: CR42
  article-title: Structural characterization study of FeCo alloy nanoparticles in a highly porous aerogel silica matrix
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2799995
– volume: 72
  start-page: 650
  year: 1980
  end-page: 654
  ident: CR61
  article-title: Self-consistent molecular-orbital methods. XX. A basis set for correlated wave-functions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438955
– volume: 26
  start-page: 7710
  year: 2014
  end-page: 7729
  ident: CR30
  article-title: Recent progress on synchrotron-based soft X-ray spectroscopy for energy materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304676
– volume: 7
  start-page: 70
  year: 2017
  ident: 2819_CR4
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02181
– volume: 7
  start-page: 3297
  year: 2005
  ident: 2819_CR60
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 49
  start-page: 966
  year: 2016
  ident: 2819_CR29
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00555
– volume: 138
  start-page: 8076
  year: 2016
  ident: 2819_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04746
– volume: 15
  start-page: 7704
  year: 2015
  ident: 2819_CR20
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03709
– ident: 2819_CR66
– volume: 351
  start-page: 475
  year: 2016
  ident: 2819_CR21
  publication-title: Science
  doi: 10.1126/science.aad8868
– volume: 115
  start-page: 12974
  year: 2015
  ident: 2819_CR26
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00122
– volume: 121
  start-page: 12337
  year: 2017
  ident: 2819_CR23
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b03910
– volume: 349
  start-page: 1208
  year: 2015
  ident: 2819_CR11
  publication-title: Science
  doi: 10.1126/science.aac8343
– volume: 28
  start-page: 4129
  year: 2016
  ident: 2819_CR35
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00713
– volume: 96
  start-page: 1291
  year: 1996
  ident: 2819_CR17
  publication-title: Chem. Rev.
  doi: 10.1021/cr950214c
– volume: 4
  start-page: 285
  year: 2013
  ident: 2819_CR32
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz301859k
– volume: 51
  start-page: 109
  year: 1996
  ident: 2819_CR18
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/0079-6816(96)00002-0
– volume: 48
  start-page: 2976
  year: 2015
  ident: 2819_CR31
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00275
– volume: 52
  start-page: 6332
  year: 1995
  ident: 2819_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.52.6332
– volume: 7
  year: 2016
  ident: 2819_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12324
– volume: 10
  start-page: 1100
  year: 2017
  ident: 2819_CR14
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600693
– ident: 2819_CR65
– volume: 3
  start-page: 847
  year: 2017
  ident: 2819_CR5
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00160
– volume: 5
  start-page: 103834
  year: 2015
  ident: 2819_CR34
  publication-title: RSC Adv.
  doi: 10.1039/C5RA18404E
– volume: 4
  start-page: 23
  year: 2011
  ident: 2819_CR40
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-061010-113906
– volume: 113
  start-page: 6378
  year: 2009
  ident: 2819_CR62
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp810292n
– volume: 55
  start-page: 5789
  year: 2016
  ident: 2819_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601582
– volume: 37
  start-page: 999
  year: 2016
  ident: 2819_CR2
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(16)62455-5
– volume: 8
  year: 2017
  ident: 2819_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14675
– volume: 38
  start-page: 392
  year: 2017
  ident: 2819_CR36
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.006
– ident: 2819_CR59
– volume: 9
  start-page: 28519
  year: 2015
  ident: 2819_CR3
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07707
– volume: 1
  start-page: 15014
  year: 2016
  ident: 2819_CR24
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.14
– volume: 14
  start-page: 76
  year: 2012
  ident: 2819_CR43
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22700A
– volume: 338
  start-page: 90
  year: 2012
  ident: 2819_CR7
  publication-title: Science
  doi: 10.1126/science.1224581
– volume: 2
  start-page: 354
  year: 2015
  ident: 2819_CR45
  publication-title: Chemelectrochem
  doi: 10.1002/celc.201402373
– volume: 26
  start-page: 7710
  year: 2014
  ident: 2819_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304676
– volume: 5
  start-page: 901
  year: 2017
  ident: 2819_CR22
  publication-title: Energy Technol.
  doi: 10.1002/ente.201600583
– volume: 675
  start-page: 145
  year: 2017
  ident: 2819_CR33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.02.018
– volume: 101
  start-page: 2691
  year: 1997
  ident: 2819_CR55
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp963266u
– volume: 27
  start-page: 1606635
  year: 2017
  ident: 2819_CR27
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606635
– volume: 72
  start-page: 650
  year: 1980
  ident: 2819_CR61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438955
– volume: 15
  start-page: 6829
  year: 2015
  ident: 2819_CR50
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03298
– volume: 139
  start-page: 3399
  year: 2017
  ident: 2819_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11023
– volume: 37
  start-page: 785
  year: 1988
  ident: 2819_CR58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 98
  start-page: 5648
  year: 1993
  ident: 2819_CR57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 4
  year: 2014
  ident: 2819_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/srep05156
– volume: 6
  start-page: 293
  year: 1999
  ident: 2819_CR39
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049598017786
– volume: 136
  start-page: 6978
  year: 2014
  ident: 2819_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500328k
– volume: 366
  start-page: 551
  year: 2002
  ident: 2819_CR64
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01641-X
– ident: 2819_CR63
– volume: 6
  year: 2015
  ident: 2819_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9177
– volume: 137
  start-page: 12946
  year: 2015
  ident: 2819_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07071
– volume: 54
  start-page: 5179
  year: 2015
  ident: 2819_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201412214
– volume: 127
  start-page: 204705
  year: 2007
  ident: 2819_CR42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2799995
– volume: 136
  start-page: 13319
  year: 2014
  ident: 2819_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5065284
– volume: 144
  start-page: 184705
  year: 2016
  ident: 2819_CR51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4948792
– volume: 5
  start-page: 9502
  year: 2012
  ident: 2819_CR9
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22528j
– volume: 137
  start-page: 14129
  year: 2015
  ident: 2819_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08212
– volume: 7
  year: 2016
  ident: 2819_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10771
– volume: 133
  start-page: 13527
  year: 2011
  ident: 2819_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204191t
– volume: 8
  start-page: 4814
  year: 2006
  ident: 2819_CR53
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B609757J
– volume: 29
  start-page: 439
  year: 2016
  ident: 2819_CR1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.009
– volume: 1
  start-page: 4059
  year: 1999
  ident: 2819_CR56
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a904654b
– volume: 357
  start-page: 721
  year: 1996
  ident: 2819_CR16
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)00253-1
– volume: 56
  start-page: 13135
  year: 2017
  ident: 2819_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707478
– volume: 17
  start-page: 1312
  year: 2017
  ident: 2819_CR46
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05287
– volume: 327
  start-page: 313
  year: 2010
  ident: 2819_CR10
  publication-title: Science
  doi: 10.1126/science.1177981
– volume: 134
  start-page: 15632
  year: 2012
  ident: 2819_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304783j
SSID ssj0000391844
Score 2.6786203
Snippet Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We...
The catalytic conversion of carbon dioxide into value-added products requires an understanding of the active species present under working conditions. Here,...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 415
SubjectTerms 119/118
147/135
639/301/299/886
639/638/298
639/638/77/886
Absorption spectroscopy
Carbon dioxide
Catalysis
Catalysts
Catalytic activity
Catalytic converters
Clusters
Conversion
Coordination compounds
Copper
Copper compounds
Copper converters
Electrochemistry
Humanities and Social Sciences
Hydrogen storage
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
Metal ions
Metal phthalocyanines
Methane
Molecular structure
multidisciplinary
Nanoclusters
Oxidation
Science
Science (multidisciplinary)
Valence
Working conditions
X ray absorption
X-ray absorption spectroscopy
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKu_QgozEDaw6sRM7p6ogqgoJTkXam-X4ASuhZJvdSu2_Z8bxBhZKTyvF42jteXg8M_mGkLe1d1WndMMUArdKLSPTTtassw5bh1WdLfHb4S9fm7Nv8vOiXuSA2zqXVW5tYjLUfnAYIz_CMsmqrWrRHK8uGHaNwuxqbqFxl9xD6DIs6VILNcdYEP1cS5m_leFCH61lsgy81IxjCompnfMowfbDzwDqdZPL-W_l5F_p03Qqne6Th9mdpCcT_x-RO6F_TO5PDSavnxBzkswZxUWs6RCpG1arMLJUSB6uaAreXMNcCo7rJIsUvFiam-O4jCYAdGM39NQvh6ulD3REvFfk6FNyfvrp_OMZyy0VmIODeMOE5IHr6LS3zmPQRzQh9eqNQbchYhN5p4XFSwboOg-l0zqqVjtE7rO1eEb2-qEPLwjlsRON9bEKwsOm6q6DmXVjW6uAOsaClNt9NS7DjWPXi58mpb2FNhMvDPDCJF4YVZB385zVBLZxK_UHZNdMiUDZ6cEwfjdZ70wMyjtwiUoEoekqZ7nTrQzeC2vxblyQA2S2AX8DQXMdVhe5DVyIylY3uiCHWxkwWbfX5rck3jhcNS04WUDCC_JmHgalxUyM7cNwmV6BV1klq4I8nyRqXgb4X6rlGpandmRtZ527I_3yRwIGB-urW5z5fiuVf_zr_-7jy9sXeUAeVElfSla1h2RvM16GV-CIbbrXSdt-AYScL-E
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXxLtpCzISNzAkdhLbB4QKoqqQyqmVerMcP2ClKlmyW2n333fGSVYsLJw4rRTPROt52DMZ-xtCXlfe8UaqmkkEbi1VGZlyZcUa67B1GG9sgXeHz7_VZ5fl16vqao9M7Y5GAS52pnbYT-qyv363-rn-CA7_Ybgyrt4vyuTueaFYjnUhJu-Qu7AzSXTU8zHcTyuz0JDQlOPdmd2sW_tTgvGHnw7cbVcI-udJyt_KqWmXOn1IHozhJT0Z7OER2QvtY3JvaDi5fkLMSVreKJaMF7SL1HXzeehZOlgeVjR9zFkDL4VAdrBNClEtHZvluBFdAOj6pmupn3WrmQ-0R_xX1PBTcnH65eLzGRtbLDAHG_OSiTIPuYpOees8fgQSdUi9e2NQOkRsKu-UsJh0gO_noXBKRamVQyQ_W4lnZL_t2nBAaB4bUVsfeRAehKqaBjir2morgTrGjBSTXI0b4cexC8a1SWVwocygCwO6MEkXRmbkzYZnPoBv_JP6E6prQ4nA2elB1383ox-aGKR3ECIVCErTcGdzp3QZvBfWYq6ckSNUtoH4A0F0HZ42cktIkAqtapWR48kGzGSqBg_wcs1BdDuHea0h6AKSPCOvNsPgxFiZsW3obtIrMLWVJc_I88GiNtOAeEzqXMH05Jatbc1ze6Sd_UhA4bAaK42cbyer_OVf_1WOh_9DjkfkPk9eVTCuj8n-sr8JLyB8WzYvk0_eArgUQD4
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCLnJ_Xu1Mi-KbBNE2b5PFcPA5Bn064t5DmQxekXbp7cPffO5N2i6ur4FOhmSlNZiaZZCa_IeRNHbxolW6YQuBWqWVi2suatc5j6TDRuhLvDn_-0lx-lZ-u6-sDIrZ3YXLSfoa0zNP0Njvs_Vpmk-alZhxjP0zdI_cRuh21etEs5nMVRDzXUk73Y3il97DurEEZqh8ePZjUPjfzz2zJ30KmeSW6OCKPJheSno8__ZgcxO4JeTAWlbx7Sux5nsIohoXXtE_U96tVHFhOHo-3NB_Y3AEvBWd11D8KniudCuL4CUEA6Ia272hY9rfLEOmAGK8oxWfk6uLj1eKSTWUUmIfFd8MqySPXyevgfMCDnqqJuT5vitrEhIXjva4cbizAvnksvdZJGe0Rrc_V1XNy2PVdPCaUp7ZqXEgiVgEGVbctcNaNM04BdUoFKbfjav0EMY6VLn7YHOqutB1lYUEWNsvCqoK8nXlWI8DGP6k_oLhmSgTHzi_64ZudlMWmqIIHN6hE4JlWeMe9NjKGUDmH--GCnKKwLfgYCJTrMaPIb2ATVBrd6IKcbXXATva8tpikK4yAodvbLBoDjhWQ8IK8npvBUDH64rrY3-RP4PZVSVGQF6NGzd0An0sZrqF7akfXdvq529Itv2cwcJhxtUHOd1ut_OWv_zqOJ_9Hfkoeimw_JRPmjBxuhpv4EpyxTfsqW99PexwtqQ
  priority: 102
  providerName: Springer Nature
Title Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction
URI https://link.springer.com/article/10.1038/s41467-018-02819-7
https://www.ncbi.nlm.nih.gov/pubmed/29379087
https://www.proquest.com/docview/1992292536
https://www.proquest.com/docview/2691909220
https://www.proquest.com/docview/1993014742
https://www.osti.gov/servlets/purl/1419868
https://pubmed.ncbi.nlm.nih.gov/PMC5788987
https://doaj.org/article/fe7dc91019604b2ca0c894edd3aa2549
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2Avo_t22wUN9raJyh-xTo9paFYCLWPrIG9CliUWGHZIUmj_-93JTki2bnvZiw2WFKL70N35zr9j7P2wdlmloBSKgFsLKIIAVwxFZR21Dssqm9K3w5dX5cW3YjobznZafVFNWAcP3BHuNHhVO7RpKaGIVJmz0oEufF3n1lJwQ6cv2rydYCqewbnG0KXov5KROZyuingmyBSEpOSRUHuWKAL2461FxbrP2fy9ZvKXxGm0R5ND9rR3JPmo28Az9sA3z9njrrXk3QtmRvEg45QcXvE2cNcuFn4pYgm5v-Xxtc0druXosnZSyNF_5X1bHNfjCOC8ZdU2vJ63t_Pa8yUhvRIvX7Lryfn1-EL0zRSEQxO8FnkhvYTgoLauptc9eeljl97gQftA7eMd5JbCC9Ry6VMHEJQGR5h9dpi_YgdN2_g3jMtQ5aWtQ-bzGokKVYUrh6XVVuHsEBKWbuhqXA80Tv0ufpiY8M7BdLwwyAsTeWFUwj5s1yw6mI2_zj4jdm1nEkR2fICCY3rBMf8SnIQdE7MNehoEl-uorsitMRRKNZSQsJONDJheq1eGSnUznSHp7h3OSo3uFU6RCXu3HUZ1pRyMbXx7E3-CglhVZAl73UnUdhvoeSktAben9mRtb5_7I838e4QEx3MXNK38uJHKnX_9Rzoe_Q86HrMnWdSqVGT6hB2slzf-LTpq62rAHqqZwitMPg3Yo9Fo-nWK97Pzq89f8Om4HA-i1uL1soCfG1Y_ag
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIgQXxJulBYwEJ7Dq9W7W3gNC5VGl9HEKUm6W1w-IhHbDJhXNj-I_MuPdDQRKbz1Fiu0o9jw89oy_j5AXI2dFJVXBJAK35ioPTNl8xCpjkTpMVCbFt8Mnp8X4c_5pOppukZ_DWxgsqxx8YnTUrrF4R76HZZKiFKOseDv_zpA1CrOrA4VGpxZHfvUDjmyLN4cfQL4vhTj4OHk_Zj2rALOwFy1ZlnPPVbDKGevw3iMrfKSrDV6VPiCPulWZwTgb1J371CoVZKksgtcZJIkAj38N9l2OBiWncn2lg2DrKs_7pzk8U3uLPDoinirGMWPF5Mb2F1kC4KMBa74owv23UPOvbG3cBA9uk1t99Er3O3W7Q7Z8fZdc7_gsV_eI3o_ek-KaLWgTqG3mc9-yWLfuz2m8K1rBWApxcqf6FIJm2nPx2B68APq1VVNTN2vOZ87TFuFlUYHuk8lVrPUDsl03tX9EKA9VVhgXhM8cLKqqKhg5KkxpJPQOISHpsK7a9ujmSLLxTccse6Z0JwsNstBRFlom5NV6zLzD9ri09zsU17on4nLHL5r2i-7NXAcvnYUILEXMm0pYw60qc-9cZgwexROyg8LWEN4gRq_FYia7hPNXWqpCJWR30AHdu5KF_q34FzaLooSYDrrwhDxfN4OPwMSPqX1zFn8CT84yFwl52GnUehoQ7smSK5ie3NC1jXluttSzrxGHHJy9KnHk60Er__jX_13Hx5dP8hm5MZ6cHOvjw9OjHXJTRNtJmSh3yfayPfNPIAZcVk-j5VGir9jSfwGOo2p-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIhAXxJulBYwEJ7Cy633Ye0CoUKKWQsWhSLlZXj8gEtoNm1Q0P41_x4z3AYHSW0-RYjuKPQ-PPePvI-RZbg2vhCyYQODWTGaeSZPlrNIGqcN4pRN8O_zxuDj4nL2f5bMt8nN4C4NllYNPDI7aNgbvyCdYJslLnqfFxPdlEZ_2p68X3xkySGGmdaDT6FTkyK1_wPFt-epwH2T9nPPpu5O3B6xnGGAG9qUVS7PYxdIbabWxeAeSFi5Q13onS-eRU93IVGPMDaofu8RI6UUpDQLZaSSMAO9_RaR5giYmZmK83kHgdZll_TOdOJWTZRacUpxIFmP2iomNrTAwBsBHA5Z9XrT7b9HmX5nbsCFOb5IbfSRL9zrVu0W2XH2bXO24Ldd3iNoLnpTimi1p46lpFgvXslDD7s5ouDdaw1gKMXNnBhQCaNrz8pgeyAD6tVVTUztvzubW0RahZlGZ7pKTy1jre2S7bmr3gNDYV2mhrecutbCosqpgZF7oUgvo7X1EkmFdlemRzpFw45sKGfdUqk4WCmShgiyUiMiLccyiw_m4sPcbFNfYEzG6wxdN-0X1Jq-8E9ZANJYg_k3FjY6NLDNnbao1HssjsoPCVhDqIF6vwcIms4KzWFLKQkZkd9AB1buVpfptBOc286KE-A66xBF5OjaDv8AkkK5dcxp-Ak_RIuMRud9p1DgNCP1EGUuYntjQtY15brbU868Bkxwcvyxx5MtBK__41_9dx4cXT_IJuQY2rj4cHh_tkOs8mE7CeLlLtlftqXsE4eCqehwMjxJ1yYb-C6-ObrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+sites+of+copper-complex+catalytic+materials+for+electrochemical+carbon+dioxide+reduction&rft.jtitle=Nature+communications&rft.au=Zhe+Weng&rft.au=Yueshen+Wu&rft.au=Maoyu+Wang&rft.au=Jianbing+Jiang&rft.date=2018-01-29&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-018-02819-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fe7dc91019604b2ca0c894edd3aa2549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon