Influenza Infection Rates, Measurement Errors and the Interpretation of Paired Serology

Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in haemagglutination-inhibition (HI) antibody titers during...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 8; no. 12; p. e1003061
Main Authors Cauchemez, Simon, Horby, Peter, Fox, Annette, Mai, Le Quynh, Thanh, Le Thi, Thai, Pham Quang, Hoa, Le Nguyen Minh, Hien, Nguyen Tran, Ferguson, Neil M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.12.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone. Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of influenza ARs.
AbstractList Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone. Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of influenza ARs.
Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone. Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of influenza ARs.Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone. Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of influenza ARs.
Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone. Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of influenza ARs. Each year, seasonal influenza is responsible for about three to five million severe illnesses and about 250,000 to 500,000 deaths worldwide. In order to assess the burden of disease and guide control policies, it is important to quantify the proportion of people infected by an influenza virus each year. Since infection usually leaves a “signature” in the blood of infected individuals (namely a rise in antibodies), a standard protocol consists in collecting blood samples in a cohort of subjects and determining the proportion of those who experienced such rise. However, because of inherent measurement errors, only large rises are accounted for in the standard 4-fold rise case definition. Here, we revisit this 70 year old and widely accepted and applied criterion. We present innovative statistical techniques to better capture the impact of measurement errors and improve our interpretation of the data. Our analysis suggests that the number of people infected by an influenza virus each year might be substantially larger than previously thought, with important implications for our understanding of the transmission and evolution of influenza – and the nature of infection.
  Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone. Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of influenza ARs.
Audience Academic
Author Hien, Nguyen Tran
Fox, Annette
Mai, Le Quynh
Cauchemez, Simon
Ferguson, Neil M.
Thai, Pham Quang
Thanh, Le Thi
Hoa, Le Nguyen Minh
Horby, Peter
AuthorAffiliation 2 Oxford University Clinical Research Unit - Wellcome Trust Major Overseas Programme, Hanoi, Vietnam
1 MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
3 National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
Erasmus Medical Center, Netherlands
AuthorAffiliation_xml – name: 2 Oxford University Clinical Research Unit - Wellcome Trust Major Overseas Programme, Hanoi, Vietnam
– name: Erasmus Medical Center, Netherlands
– name: 3 National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
– name: 1 MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
Author_xml – sequence: 1
  givenname: Simon
  surname: Cauchemez
  fullname: Cauchemez, Simon
– sequence: 2
  givenname: Peter
  surname: Horby
  fullname: Horby, Peter
– sequence: 3
  givenname: Annette
  surname: Fox
  fullname: Fox, Annette
– sequence: 4
  givenname: Le Quynh
  surname: Mai
  fullname: Mai, Le Quynh
– sequence: 5
  givenname: Le Thi
  surname: Thanh
  fullname: Thanh, Le Thi
– sequence: 6
  givenname: Pham Quang
  surname: Thai
  fullname: Thai, Pham Quang
– sequence: 7
  givenname: Le Nguyen Minh
  surname: Hoa
  fullname: Hoa, Le Nguyen Minh
– sequence: 8
  givenname: Nguyen Tran
  surname: Hien
  fullname: Hien, Nguyen Tran
– sequence: 9
  givenname: Neil M.
  surname: Ferguson
  fullname: Ferguson, Neil M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23271967$$D View this record in MEDLINE/PubMed
BookMark eNqVkl9rFDEUxYNUbLv6DUQHfFFw19zJTDLTB6GUqgv1D63iY8hkbrYps5M1yYj105vtzkq3FEHmYULyOzf3npxDste7Hgl5CnQGTMCbKzf4XnWz1UrFGVDKKIcH5ADKkk0FE8XerfU-OQzhitICGPBHZD9nuYCaiwPyfd6bbsD-t8rSCnW0rs_OVcTwOvuIKgwel9jH7NR750Om-jaLl5jYiH7lMaobgTPZF2U9ttkFete5xfVj8tCoLuCT8T8h396dfj35MD37_H5-cnw21ZxDnALnRdnqvGkVtA2tuGmYqKCutdEl5xUtQQnWlo1peJqRF6yAXFMjEHjNioJNyPNN3VXnghw9CRLyqgao85olYr4hWqeu5MrbpfLX0ikrbzacX0jlo9UdSsXqCooKFUJesEooznRtmkYLAw1NZk7I2_G2oVliq5MzXnU7RXdPenspF-6nZGUOIl-3-3Is4N2PAUOUSxs0dp3q0Q3rvtNzAc_Tc07Iizvo_dON1EKlAWxvXLpXr4vKYwYFLykv80TN7qHS1-LS6pQrY9P-juDVjiAxEX_FhRpCkPOL8_9gP-2yz24b-Ne5bSATcLQBtHcheDRS203IUse2k0DlOv1bL-Q6_XJMfxIXd8Tb-v-U_QFmFAfS
CitedBy_id crossref_primary_10_1016_j_epidem_2024_100806
crossref_primary_10_1093_aje_kwx201
crossref_primary_10_1371_journal_ppat_1008583
crossref_primary_10_1093_cid_ciz639
crossref_primary_10_1016_j_epidem_2017_03_003
crossref_primary_10_1016_S2213_2600_14_70053_0
crossref_primary_10_1016_j_vaccine_2024_126579
crossref_primary_10_1371_journal_pbio_3002864
crossref_primary_10_1007_s10654_021_00727_7
crossref_primary_10_1371_journal_pntd_0011354
crossref_primary_10_1016_j_epidem_2015_02_005
crossref_primary_10_1016_j_jim_2021_113210
crossref_primary_10_1016_j_vaccine_2022_03_047
crossref_primary_10_1093_cid_cix694
crossref_primary_10_1111_irv_12315
crossref_primary_10_1038_s41467_019_09652_6
crossref_primary_10_1016_j_vaccine_2025_126802
crossref_primary_10_1097_EDE_0000000000000408
crossref_primary_10_1016_j_jviromet_2017_03_006
crossref_primary_10_3310_phr03060
crossref_primary_10_1038_s41598_017_06177_0
crossref_primary_10_3201_eid2609_201840
crossref_primary_10_1016_j_jinf_2023_08_003
crossref_primary_10_1090_mosc_331
crossref_primary_10_1371_journal_ppat_1011420
crossref_primary_10_1016_j_ebiom_2021_103398
crossref_primary_10_1093_aje_kwu061
crossref_primary_10_1016_j_jtbi_2020_110566
crossref_primary_10_1016_j_ijid_2022_02_038
crossref_primary_10_1093_infdis_jiy443
crossref_primary_10_1080_02664763_2014_881787
crossref_primary_10_1093_infdis_jiy446
crossref_primary_10_1016_j_vaccine_2015_09_016
crossref_primary_10_1017_S0950268814000855
crossref_primary_10_1093_cid_ciu356
crossref_primary_10_3201_eid1911_130295
crossref_primary_10_1128_CVI_00098_17
crossref_primary_10_1038_s41591_022_01690_w
crossref_primary_10_1016_j_jinf_2014_09_003
crossref_primary_10_1371_journal_pcbi_1007840
crossref_primary_10_1016_j_ajt_2024_07_005
crossref_primary_10_1016_j_annepidem_2018_02_011
crossref_primary_10_1038_s41467_022_35652_0
crossref_primary_10_1038_s41467_022_29310_8
crossref_primary_10_1371_journal_ppat_1004054
crossref_primary_10_1093_aje_kwaa253
crossref_primary_10_1111_irv_12805
crossref_primary_10_1371_journal_pbio_2004974
crossref_primary_10_1038_s41591_019_0463_x
crossref_primary_10_1093_infdis_jiad029
crossref_primary_10_1111_irv_12807
crossref_primary_10_1111_irv_12411
crossref_primary_10_1016_j_vaccine_2015_08_065
crossref_primary_10_1371_journal_pone_0197504
crossref_primary_10_1016_j_vaccine_2020_04_069
crossref_primary_10_1186_1471_2334_14_505
crossref_primary_10_1371_journal_pcbi_1012893
crossref_primary_10_1111_irv_12294
crossref_primary_10_1016_j_jtumed_2020_09_002
crossref_primary_10_1111_irv_12452
crossref_primary_10_1016_j_jviromet_2017_06_007
crossref_primary_10_1371_journal_pone_0072196
crossref_primary_10_1126_science_1256427
crossref_primary_10_3390_v14112446
crossref_primary_10_1371_journal_pntd_0011209
crossref_primary_10_1017_S0950268816000583
crossref_primary_10_1038_s41467_018_08036_6
crossref_primary_10_1371_journal_ppat_1008635
crossref_primary_10_1186_s12916_022_02429_7
crossref_primary_10_1186_s12913_018_3465_3
crossref_primary_10_1073_pnas_2411768121
crossref_primary_10_1093_infdis_jit372
crossref_primary_10_1099_jgv_0_000877
crossref_primary_10_1093_infdis_jiab374
crossref_primary_10_1038_s41467_021_26948_8
crossref_primary_10_1016_j_ijid_2016_08_012
crossref_primary_10_1038_s41579_024_01065_7
crossref_primary_10_17269_s41997_024_00918_1
crossref_primary_10_1371_journal_pone_0075339
crossref_primary_10_1371_journal_ppat_1004310
crossref_primary_10_3390_v14102097
crossref_primary_10_1186_s12879_017_2432_7
Cites_doi 10.1128/JCM.00229-11
10.1128/JCM.24.1.157-160.1986
10.1016/j.vaccine.2007.02.039
10.1093/aje/kwm375
10.1371/journal.pmed.1000275
10.1093/oxfordjournals.aje.a121282
10.2471/BLT.11.097949
10.1056/NEJMoa0911530
10.1017/S0022172400022610
10.1093/clinids/5.4.737
10.1002/sim.4487
10.1146/annurev.mi.37.100183.002525
10.1016/0264-410X(94)90056-6
10.1016/S0140-6736(02)09837-9
10.1093/aje/kws121
10.1001/jama.1971.03190080029006
10.1093/infdis/jir015
10.1093/oxfordjournals.bmb.a071545
10.1586/eri.11.51
10.1201/b14835
10.1371/journal.pone.0012474
ContentType Journal Article
Copyright COPYRIGHT 2012 Public Library of Science
2012 Cauchemez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cauchemez S, Horby P, Fox A, Mai LQ, Thanh LT, et al. (2012) Influenza Infection Rates, Measurement Errors and the Interpretation of Paired Serology. PLoS Pathog 8(12): e1003061. doi:10.1371/journal.ppat.1003061
2012 Cauchemez et al 2012 Cauchemez et al
Copyright_xml – notice: COPYRIGHT 2012 Public Library of Science
– notice: 2012 Cauchemez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Cauchemez S, Horby P, Fox A, Mai LQ, Thanh LT, et al. (2012) Influenza Infection Rates, Measurement Errors and the Interpretation of Paired Serology. PLoS Pathog 8(12): e1003061. doi:10.1371/journal.ppat.1003061
– notice: 2012 Cauchemez et al 2012 Cauchemez et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QL
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1003061
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
DocumentTitleAlternate The Interpretation of Influenza Paired Serology
EISSN 1553-7374
ExternalDocumentID 1289119293
oai_doaj_org_article_a398148eae124387a63c9fbbc7f1b055
PMC3521724
2896708031
A314650652
23271967
10_1371_journal_ppat_1003061
Genre Multicenter Study
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Vietnam
United Kingdom
GeographicLocations_xml – name: Vietnam
– name: United Kingdom
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 089276
– fundername: Wellcome Trust
  grantid: 077078/Z/05/Z
– fundername: Wellcome Trust
  grantid: 093724
– fundername: Wellcome Trust
  grantid: 081613/Z/06/Z
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
3V.
7QL
7U9
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c661t-16645dc2bda1db086fb378199cfc5668051a73d5bfb6100643412c0f7e1693443
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:14 EDT 2023
Wed Aug 27 01:09:34 EDT 2025
Thu Aug 21 14:08:05 EDT 2025
Fri Jul 11 16:43:55 EDT 2025
Fri Jul 25 12:06:50 EDT 2025
Tue Jun 17 21:35:17 EDT 2025
Tue Jun 10 20:35:12 EDT 2025
Fri Jun 27 05:11:55 EDT 2025
Fri Jun 27 04:02:30 EDT 2025
Mon Jul 21 05:29:43 EDT 2025
Tue Jul 01 01:31:04 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-16645dc2bda1db086fb378199cfc5668051a73d5bfb6100643412c0f7e1693443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
SC received consulting fees from Sanofi Pasteur MSD for a project on the modelling of the transmission of varicella zoster virus (i.e. different subject than submission). This does not alter our adherence to all PLOS Pathogens policies on sharing data and materials.
Conceived and designed the experiments: SC PH AF NMF. Performed the experiments: SC PH AF LQM LTT PQT LNMH NTH. Analyzed the data: SC PH AF. Wrote the paper: SC PH AF LQM LTT PQT LNMH NTH NMF.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1003061
PMID 23271967
PQID 1289119293
PQPubID 1436335
ParticipantIDs plos_journals_1289119293
doaj_primary_oai_doaj_org_article_a398148eae124387a63c9fbbc7f1b055
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3521724
proquest_miscellaneous_1273716200
proquest_journals_1289119293
gale_infotracmisc_A314650652
gale_infotracacademiconefile_A314650652
gale_incontextgauss_ISR_A314650652
gale_incontextgauss_ISN_A314650652
pubmed_primary_23271967
crossref_citationtrail_10_1371_journal_ppat_1003061
crossref_primary_10_1371_journal_ppat_1003061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2012
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References ref13
WP Edmondson Jr (ref6) 1971; 93
HM Foy (ref8) 1971; 217
ref14
V Veguilla (ref19) 2011; 49
ref1
I Stephenson (ref24) 2007; 25
TR Cate (ref18) 1983; 5
P Horby (ref5) 2012; 175
JM Wood (ref16) 1994; 12
D Hobson (ref12) 1972; 70
ML Clements (ref10) 1986; 24
RB Couch (ref21) 1983; 37
JP Fox (ref9) 1982; 116
JM Katz (ref15) 2011; 9
ref26
ref25
MI Chen (ref20) 2010; 5
MD Van Kerkhove (ref2) 2010; 7
F Carrat (ref4) 2008; 167
ref28
ref27
SL Thomas (ref22) 2002; 360
CW Potter (ref11) 1979; 35
P Erasto (ref29) 2012; 31
JG Petrie (ref17) 2011; 203
MD Van Kerkhove (ref3) 2012; 90
AS Evans (ref7) 1975; 48
BJ Cowling (ref23) 2010; 362
References_xml – volume: 116
  start-page: 228
  year: 1982
  ident: ref9
  article-title: Influenzavirus infections in Seattle families, 1975–1979. II. Pattern of infection in invaded households and relation of age and prior antibody to occurrence of infection and related illness
  publication-title: American Journal of Epidemiology
– volume: 49
  start-page: 2210
  year: 2011
  ident: ref19
  article-title: Sensitivity and specificity of serologic assays for detection of human infection with 2009 pandemic H1N1 virus in U.S. populations
  publication-title: Journal of Clinical Microbiology
  doi: 10.1128/JCM.00229-11
– ident: ref1
– volume: 24
  start-page: 157
  year: 1986
  ident: ref10
  article-title: Serum and nasal wash antibodies associated with resistance to experimental challenge with influenza A wild-type virus
  publication-title: Journal of Clinical Microbiology
  doi: 10.1128/JCM.24.1.157-160.1986
– volume: 25
  start-page: 4056
  year: 2007
  ident: ref24
  article-title: Comparison of neutralising antibody assays for detection of antibody to influenza A/H3N2 viruses: an international collaborative study
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.02.039
– volume: 167
  start-page: 775
  year: 2008
  ident: ref4
  article-title: Time lines of infection and disease in human influenza: A review of volunteer challenge studies
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwm375
– volume: 7
  start-page: e1000275
  year: 2010
  ident: ref2
  article-title: Studies needed to address public health challenges of the 2009 H1N1 influenza pandemic: insights from modeling
  publication-title: PLoS Medicine
  doi: 10.1371/journal.pmed.1000275
– volume: 93
  start-page: 480
  year: 1971
  ident: ref6
  article-title: A comparison of subcutaneous, nasal, and combined influenza vaccination. II. Protection against natural challenge
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a121282
– volume: 90
  start-page: 306
  year: 2012
  ident: ref3
  article-title: Epidemic and intervention modelling–a scientific rationale for policy decisions? Lessons from the 2009 influenza pandemic
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.11.097949
– volume: 362
  start-page: 2175
  year: 2010
  ident: ref23
  article-title: Comparative epidemiology of pandemic and seasonal influenza A in households
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa0911530
– ident: ref25
– ident: ref27
– volume: 48
  start-page: 201
  year: 1975
  ident: ref7
  article-title: Serologic studies of acute respiratory infections in military personnel
  publication-title: Yale J Biol Med
– volume: 70
  start-page: 767
  year: 1972
  ident: ref12
  article-title: The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses
  publication-title: J Hyg (Lond)
  doi: 10.1017/S0022172400022610
– volume: 5
  start-page: 737
  year: 1983
  ident: ref18
  article-title: Reactogenicity, immunogenicity, and antibody persistence in adults given inactivated influenza virus vaccines - 1978
  publication-title: Rev Infect Dis
  doi: 10.1093/clinids/5.4.737
– volume: 31
  start-page: 1450
  year: 2012
  ident: ref29
  article-title: Modeling transmission of multitype infectious agents: application to carriage of Streptococcus pneumoniae
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4487
– volume: 37
  start-page: 529
  year: 1983
  ident: ref21
  article-title: Immunity to influenza in man
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.mi.37.100183.002525
– ident: ref13
– volume: 12
  start-page: 167
  year: 1994
  ident: ref16
  article-title: Comparison of influenza serological techniques by international collaborative study
  publication-title: Vaccine
  doi: 10.1016/0264-410X(94)90056-6
– volume: 360
  start-page: 678
  year: 2002
  ident: ref22
  article-title: Contacts with varicella or with children and protection against herpes zoster in adults: a case-control study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)09837-9
– volume: 175
  start-page: 1062
  year: 2012
  ident: ref5
  article-title: The epidemiology of interpandemic and pandemic influenza in Vietnam, 2007–2010: the ha nam household cohort study I
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kws121
– volume: 217
  start-page: 1067
  year: 1971
  ident: ref8
  article-title: Single-dose monovalent A 2 -Hong Kong influenza vaccine. Efficacy 14 months after immunization
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.1971.03190080029006
– ident: ref28
– volume: 203
  start-page: 1309
  year: 2011
  ident: ref17
  article-title: Efficacy studies of influenza vaccines: effect of end points used and characteristics of vaccine failures
  publication-title: Journal of Infectious Diseases
  doi: 10.1093/infdis/jir015
– volume: 35
  start-page: 69
  year: 1979
  ident: ref11
  article-title: Determinants of immunity to influenza infection in man
  publication-title: Br Med Bull
  doi: 10.1093/oxfordjournals.bmb.a071545
– volume: 9
  start-page: 669
  year: 2011
  ident: ref15
  article-title: Serologic assays for influenza surveillance, diagnosis and vaccine evaluation
  publication-title: Expert Rev Anti Infect Ther
  doi: 10.1586/eri.11.51
– ident: ref26
  doi: 10.1201/b14835
– volume: 5
  start-page: e12474
  year: 2010
  ident: ref20
  article-title: Serological response in RT-PCR confirmed H1N1-2009 influenza a by hemagglutination inhibition and virus neutralization assays: an observational study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0012474
– ident: ref14
SSID ssj0041316
Score 2.3695793
Snippet Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples...
  Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In a common protocol, blood samples...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003061
SubjectTerms Adolescent
Adult
Aged
Antibodies, Viral - blood
Antibodies, Viral - immunology
Cohort Studies
Development and progression
Epidemics
Epidemiology
Estimates
Fatalities
Female
Hemagglutinin Glycoproteins, Influenza Virus - blood
Hemagglutinin Glycoproteins, Influenza Virus - immunology
Human populations
Humans
Influenza
Influenza, Human - blood
Influenza, Human - epidemiology
Influenza, Human - immunology
Male
Markov chains
Markov processes
Medicine
Middle Aged
Monte Carlo method
Observer Variation
Pandemics
Physiological aspects
Prevalence studies (Epidemiology)
Probability
Seroepidemiologic Studies
Serologic Tests
Serology
Studies
Swine flu
Vietnam - epidemiology
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEO8GCjIIiQuhcWzHu8eCqFokegAqerP8iKFSSaLN7oH--s7ETmhQUS_cVutJJM-MZ77ZHX9DyGsZiiBK43KjrM8FjjYxpee5F4EZ5gBBC7zv_Pm4OjwRn07l6ZVRX9gTFumBo-L2DF8tAbLXpoZMxJfKVNytgrVOBWYLObCXQs4bi6kYgyEyD0NPcShOrnhVpUtzXLG9ZKN3XWeQPhoxM5slpYG7f4rQi-687a-Dn393UV5JSwf3yN2EJ-l-3Md9cqtuHpDbccLk74fk-1EcQnJh6Nh21VBkh-jf0l9_fh6k9XrdrntqGk8BEdKzWSsibQPtDMRGT8Fhhzc_IicHH799OMzTLIXcQQbe5KyqhPSutN4wb6GOCZYrQAMrFxwguiWcTaO4lzZYAFSIUwQrXRFUjWwtQvDHZNG0Tb1DqFEyQO0pfVF6OP7VUkgW4CMU2rJSPmSEj8rULhGN47yLcz38e6ag4Ii60WgCnUyQkXx6qotEGzfIv0c7TbJIkz18Ac6jk_Pom5wnI6_QyhqJMBrstPlhtn2vj74e630OOUQCQCv_KfRlJvQmCYUWNutMut0AKkOCrZnk7kwSjrObLe-gx4177jUACEhIgGI5PDl64fXLL6dlfCl2zzV1u0UZxZEprCgy8iQ67aQ3QNQKorDKiJq580yx85Xm7OfAQw7YHeCvePo_LPGM3AEoWsZGoV2y2Ky39XOAexv7YjjZl-43UNw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXxLuBggxC4kJoHNvx7gkV1KqL1AoVKvZm-REXpCoJye4Bfj0ziTclqMBtFU-ijT2Pb5zxN4S8lCELIjcuNcr6VGBrE5N7nnoRmGEOELTA887HJ8XRmfiwkqu44dbFssqtT-wdta8d7pHvgR8Fu4Rgzt8231PsGoVfV2MLjevkBlKXoVar1ZhwgX_uW59ia5xU8aKIR-e4Yntxpd40jUESaUTObBKaegb_0U_Pmou6uwqE_llL-VtwOrxDbkdUSfcHNbhLrpXVPXJz6DP54z75shxakfw0dBmLryp6iijzNT2-3CSkB21btx01laeAC-m0IJHWgX404CE9BQfTP_kBOTs8-Pz-KI0dFVIHcXidsqIQ0rvcesO8hWwmWK4AEyxccIDr5mChRnEvbbAAqxCtCJa7LKgSOVuE4A_JrKqrcodQo2SADFT6LPfgBIq5kCzAT0i3ZaF8SAjfTqZ2kW4cu15c6P4bmoK0Y5gbjUug4xIkJB3vaga6jf_Iv8N1GmWRLLu_ULfnOtqeNnwxh6yvNCWAGT5XpuBuEax1KjCbSZmQF7jKGukwKqy3OTebrtPLTyd6n0MkkQDT8r8KnU6EXkWhUMPLOhPPOMCUIc3WRHJ3IglG7SbDO6hx23fu9KX6w51bLbx6-Pk4jA_FGrqqrDcoozjyhWVZQh4NSjvOG-BqBb5YJURN1HkysdOR6tvXno0cEDyAYPH433_rCbkFUDMfCoF2yWzdbsqnAOfW9llvs78AfBRHbA
  priority: 102
  providerName: ProQuest
Title Influenza Infection Rates, Measurement Errors and the Interpretation of Paired Serology
URI https://www.ncbi.nlm.nih.gov/pubmed/23271967
https://www.proquest.com/docview/1289119293
https://www.proquest.com/docview/1273716200
https://pubmed.ncbi.nlm.nih.gov/PMC3521724
https://doaj.org/article/a398148eae124387a63c9fbbc7f1b055
http://dx.doi.org/10.1371/journal.ppat.1003061
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFcEX8bvReqwi-GLKJbubvXsQaaWlFXpI9fDelv3I1sKZxOQOrH-9M_nSyBV9C9nZDZmdj98kszOEvBJ-4nmsbailcSHH1iY6dix03Ec6soCgOZ53Pp8npwv-YSmWO6Tr2doysNoa2mE_qUW5Ovjx_fodKPzbumuDjLpJB0WhsSA0omCIh3bBN0nsaXDO-_8KYLHrZqjYLCeUTPL2MN1NqwycVV3Tv7fco2KVV9tg6d_ZlX-4q5N75G6LM-lhIxj3yU6aPSC3m86T1w_Jl7OmOclPTbt0rIxi1YjqDf32-7MhTcsyLyuqM0cBKdKrQYoizT0tNNhMR0GQ65UfkcXJ8ef3p2HbYyG04JnXYZQkXDgbG6cjZyC-8YZJQAkz6y0gvSnorJbMCeMNAC3ELzyK7cTLFKu4cM4ek1GWZ-keoVoKDzGpcJPYgVlIplxEHi4hABeJdD4grGOmsm0BcuyDsVL1XzUJgUjDG4VboNotCEjYzyqaAhz_oD_CfeppsXx2fSMvL1WrjUqz2RTiwFSnAG_YVOqE2Zk3xkofmYkQAXmJu6ywQEaGGTiXelNV6uzTXB0y8C0CgFt8I9HFgOh1S-RzeFmr21MPwDIsvDWg3B9QgprbwfAeSlz3zpUCYAGOCtAtg5mdFG4fftEP46KYVZel-QZpQAeiBAxlQJ40QtvzDZC2BOssAyIH4jxg7HAku_pa1ycHTA-ax5_-x3OfkTuAQOMmP2ifjNblJn0OKG9txuSWXMox2T06nn-8GNffSsa1Mv8C11dTfg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYIXxPcKAwwC8UJYEttx-4DQgE0NWys0Nq1vxrHjgTQlJWmFxh_F38hdvkbQgKe9VfHFas7nu98l5_sR8kw43_FQG0_LxHocqU10aJlnuQt0YABBczzvPJ1Fk0P-YS7ma-RnexYGyypbn1g5apsbfEe-CX4U9iUEc_Zm8c1D1ij8utpSaNRmsZuefoeUrXwdv4f1fR6GO9sH7yZewyrgGYhFSy-IIi6sCROrA5sAoncJkxAXx8YZwDYjsFItmRWJSwBaYMTmQWh8J1PsW8I5g3kvkcsQeH1M9uS8S_AgHlRUq0jF40kWRc1RPSaDzcYyXi0WGptWI1IPeqGwYgzo4sJgcZKX54HeP2s3fwuGOzfI9QbF0q3a7G6StTS7Ra7UvJant8lRXFOf_NA0boq9MrqPqPYlnZ69lKTbRZEXJdWZpYBDab8AkuaOftTgkS0Fh1bNfIccXoiu75JBlmfpOqFaCgcZr7B-aMHpRCMuAgc_Ib0XkbRuSFirTGWa9ubIsnGiqm92EtKcWjcKl0A1SzAkXnfXom7v8R_5t7hOnSw2564u5MWxava60mw8giwz1SmAJzaSOmJm7JLESBckvhBD8hRXWWH7jQzre471qixV_GmmthhELgGwMPyr0H5P6EUj5HJ4WKObMxWgMmzr1ZPc6EmCEzG94XW0uPaZS3W23eDO1grPH37SDeOkWLOXpfkKZSTD_mS-PyT3aqPt9AY4XoLvl0Mie-bcU2x_JPv6pep-DhkDgG5-_99_6zG5OjmY7qm9eLb7gFwDmBvWRUgbZLAsVulDgJLL5FG1fyn5fNEO4xcJRYJ7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJxAviN8rDDAIxAuhSWzH7QNCG2u1MlZVg2l7M44dD6QpKU0rNP40_jruEqcjaMDT3qr4YjXn833fJec7Qp4LFzoeaxNomdqAY2sTHVsWWO4iHRlg0BzPO-9Pkt1D_v5YHK-Rn81ZGEyrbHxi5ahtYfAdeQ_8KOxLAHPWcz4tYrozejv7FmAHKfzS2rTTqE1kLzv7DuFb-Wa8A2v9Io5Hw0_vdgPfYSAwgEuLIEoSLqyJU6sjmwK7dymTgJED4wzwnD5YrJbMitSlQDMQvXkUm9DJDGuYcM5g3itkXWJU1CHr28PJ9KDBAUCHqvEqNuYJJEsSf3CPyajn7eT1bKaxhDXy9qgFjFX_gBVKdGanRXkRBf4zk_M3aBzdJDc8p6VbtRHeImtZfptcrbtcnt0hR-O6EcoPTcc-9SunB8hxX9H981eUdDifF_OS6txSYKW0nQ5JC0enGvyzpeDeqpnvksNL0fY90smLPNsgVEvhIP4VNowtuKCkz0Xk4CcE-yKR1nUJa5SpjC92jj03TlX1BU9C0FPrRuESKL8EXRKs7prVxT7-I7-N67SSxVLd1YVifqL8zleaDfoQc2Y6AyrF-lInzAxcmhrpojQUokue4SorLMaRo1mf6GVZqvHHidpigGMCSGL8V6GDltBLL-QKeFij_QkLUBkW-WpJbrYkwaWY1vAGWlzzzKU633xwZ2OFFw8_XQ3jpJjBl2fFEmUkw2plYdgl92ujXekNWL0EJJBdIlvm3FJseyT_-qWqhQ7xA1Bw_uDff-sJuQbOQn0YT_YekuvAeeM6I2mTdBbzZfYIeOUifew3MCWfL9tn_AL2RYgW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influenza+infection+rates%2C+measurement+errors+and+the+interpretation+of+paired+serology&rft.jtitle=PLoS+pathogens&rft.au=Cauchemez%2C+Simon&rft.au=Horby%2C+Peter&rft.au=Fox%2C+Annette&rft.au=Mai%2C+Le+Quynh&rft.date=2012-12-01&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=8&rft.issue=12&rft.spage=e1003061&rft_id=info:doi/10.1371%2Fjournal.ppat.1003061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon