GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm
Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of d...
Saved in:
Published in | PLoS computational biology Vol. 16; no. 5; p. e1007568 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
20.05.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments. |
---|---|
AbstractList | Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments. Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments.Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments. Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments. The recognition of circRNA-disease association is the key of disease diagnosis and treatment, and it is of great significance for exploring the pathogenesis of complex diseases. Computational methods can predict the potential disease-related circRNAs quickly and accurately. Based on the hypothesis that circRNA with similar function tends to associate with similar disease, GCNCDA model is proposed to effectively predict the potential association between circRNAs and diseases by combining FastGCN algorithm. The performance of the model was verified by cross-validation experiments, different feature extraction algorithm and classifier models comparison experiments. Furthermore, 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores in disease including breast cancer, glioma and colorectal cancer were respectively confirmed by relevant literature and databases. It is anticipated that GCNCDA model can give priority to the most promising circRNA-disease associations on a large scale to provide reliable candidates for further biological experiments. |
Audience | Academic |
Author | Wang, Lei Li, Yang-Ming You, Zhu-Hong Zheng, Kai Huang, Yu-An |
AuthorAffiliation | 1 College of Information Science and Engineering, Zaozhuang University, Zaozhuang, China 5 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China 4 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China 3 Department of Electrical Computer and Telecommunications Engineering Technology, Rochester Institute of Technology, Rochester, United States of America 2 Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China University of Calgary, CANADA |
AuthorAffiliation_xml | – name: 3 Department of Electrical Computer and Telecommunications Engineering Technology, Rochester Institute of Technology, Rochester, United States of America – name: University of Calgary, CANADA – name: 4 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China – name: 5 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China – name: 2 Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – name: 1 College of Information Science and Engineering, Zaozhuang University, Zaozhuang, China |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0003-0184-307X surname: Wang fullname: Wang, Lei – sequence: 2 givenname: Zhu-Hong orcidid: 0000-0003-1266-2696 surname: You fullname: You, Zhu-Hong – sequence: 3 givenname: Yang-Ming surname: Li fullname: Li, Yang-Ming – sequence: 4 givenname: Kai surname: Zheng fullname: Zheng, Kai – sequence: 5 givenname: Yu-An surname: Huang fullname: Huang, Yu-An |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32433655$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk01v1DAQhiNURD_gHyCwxAUOu_g7SQ9I0QLLStUiFThbjmNnvSTx1k5a-Pc4bRZ1qwoJ5RBr_LzvjEczp8lR5zqdJC8RnCOSovdbN_hONvOdKu0cQZgynj1JThBjZJYSlh3dOx8npyFsIYzHnD9LjgmmhHDGThK3XKwXH4tzUIBO34BW9xtXAeM82HldWdXbrgbKenW5LmaVDVoGDWQITlnZW9cFUMZIBVwHll7uNmDhumvXDOOdbMBa9zfO_wRFUztv-037PHlqZBP0i-l_lvz4_On74svs4utytSguZopz1M8QyamstGJYcSIlK1Ooy5IYjIymackYJozSzGBITF6SHEJDKWRYK45QDJOz5PWd765xQUy9CgJTHhuVZ4xEYnVHVE5uxc7bVvrfwkkrbgPO10L63qpGC0SgwVkWc5KS0lGvmalSxXgOjZEyen2Ysg1lqyulu97L5sD08KazG1G7a5FizgmD0eDtZODd1aBDL1oblG4a2Wk3jHVDRjBHcKz7zQP08ddNVC3jA2xnXMyrRlNRcIJzCjkeqfkjVPwq3VoV583YGD8QvDsQRKbXv_paDiGI1bfL_2DXh-yr-w3827n9oEbg_A5Q3oXgtRHK9rcTGCu2jUBQjFux74UYt0JMWxHF9IF47_9P2R-kOQ_P |
CitedBy_id | crossref_primary_10_1007_s12204_024_2575_9 crossref_primary_10_1109_JBHI_2023_3346821 crossref_primary_10_1016_j_asoc_2021_107629 crossref_primary_10_3934_mbe_2023909 crossref_primary_10_1109_TNSE_2022_3177307 crossref_primary_10_1186_s12859_021_04467_z crossref_primary_10_1093_bib_bbac388 crossref_primary_10_1186_s12859_022_04883_9 crossref_primary_10_1093_bib_bbab177 crossref_primary_10_1093_bib_bbab174 crossref_primary_10_1093_bib_bbab494 crossref_primary_10_3389_fcell_2021_647736 crossref_primary_10_1109_JBHI_2022_3217433 crossref_primary_10_1021_acs_jcim_2c00367 crossref_primary_10_1093_bib_bbac613 crossref_primary_10_1371_journal_pcbi_1011344 crossref_primary_10_59717_j_xinn_med_2024_100081 crossref_primary_10_23919_cje_2023_00_344 crossref_primary_10_1093_bib_bbac379 crossref_primary_10_1007_s11704_024_40060_2 crossref_primary_10_1016_j_gene_2025_149228 crossref_primary_10_1109_JBHI_2023_3344714 crossref_primary_10_3389_fgene_2022_832244 crossref_primary_10_53941_ijndi0201004 crossref_primary_10_1109_ACCESS_2023_3275967 crossref_primary_10_3389_fgene_2022_1001608 crossref_primary_10_3390_biomedicines10071543 crossref_primary_10_1111_jcmm_18180 crossref_primary_10_3390_s24185861 crossref_primary_10_1093_bib_bbab286 crossref_primary_10_1093_bib_bbad069 crossref_primary_10_1109_TCBB_2024_3355093 crossref_primary_10_1093_bib_bbaa350 crossref_primary_10_1142_S2737416523410053 crossref_primary_10_1093_bioinformatics_btab334 crossref_primary_10_14778_3665844_3665853 crossref_primary_10_1021_acs_jcim_3c00957 crossref_primary_10_1109_TCYB_2021_3090756 crossref_primary_10_1109_JBHI_2024_3456478 crossref_primary_10_3934_era_2023213 crossref_primary_10_1109_TCBB_2024_3366175 crossref_primary_10_1109_JBHI_2022_3199462 crossref_primary_10_1093_bib_bbac083 crossref_primary_10_1007_s40291_020_00499_y crossref_primary_10_3390_ijms22168505 crossref_primary_10_1109_RBME_2021_3122522 crossref_primary_10_1016_j_tig_2023_10_001 crossref_primary_10_1109_TCBB_2023_3302468 crossref_primary_10_3389_fgene_2021_690049 crossref_primary_10_1093_bib_bbac289 crossref_primary_10_1109_TBDATA_2023_3334673 crossref_primary_10_3390_ijms231911498 crossref_primary_10_1186_s12859_021_04231_3 crossref_primary_10_2174_1574893617666220513114917 crossref_primary_10_1080_09537287_2024_2320790 crossref_primary_10_1093_bib_bbac364 crossref_primary_10_1093_bioinformatics_btac079 crossref_primary_10_1016_j_knosys_2020_106694 crossref_primary_10_3389_fgene_2021_657182 crossref_primary_10_3389_fphar_2023_1173040 crossref_primary_10_1093_bib_bbab028 crossref_primary_10_1093_bioinformatics_btaa1077 crossref_primary_10_1142_S0219720024500185 crossref_primary_10_1016_j_compbiomed_2022_105322 crossref_primary_10_1093_bib_bbac479 crossref_primary_10_1371_journal_pcbi_1011242 crossref_primary_10_1177_1176934320984171 crossref_primary_10_3390_cancers13112595 crossref_primary_10_1016_j_ymeth_2021_10_008 crossref_primary_10_1093_bioinformatics_btae306 crossref_primary_10_1016_j_csbj_2024_01_011 crossref_primary_10_1093_bib_bbae179 crossref_primary_10_1093_bib_bbae575 crossref_primary_10_1016_j_compbiolchem_2022_107722 crossref_primary_10_1109_TCBBIO_2024_3506615 crossref_primary_10_1111_jre_12989 crossref_primary_10_1109_JBHI_2023_3299423 crossref_primary_10_3390_biom12070932 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_1093_bioinformatics_btac520 crossref_primary_10_1093_bioinformatics_btad499 crossref_primary_10_1186_s12859_023_05441_7 crossref_primary_10_1186_s13007_024_01158_7 crossref_primary_10_1007_s12539_023_00590_y crossref_primary_10_1016_j_ins_2021_04_073 crossref_primary_10_1109_TCBB_2021_3111607 crossref_primary_10_1093_bib_bbac549 crossref_primary_10_3389_fgene_2022_829937 crossref_primary_10_1016_j_compbiomed_2022_106289 crossref_primary_10_1016_j_knosys_2024_111622 crossref_primary_10_1186_s12915_024_01826_z crossref_primary_10_1186_s12859_022_04976_5 |
Cites_doi | 10.1016/j.eswa.2017.08.002 10.1038/s41598-018-29360-3 10.1371/journal.pgen.1001233 10.1038/nature11928 10.1016/0042-6822(71)90342-4 10.1261/rna.043687.113 10.1093/nar/gkp943 10.1038/nature11993 10.1016/j.bbrc.2016.01.183 10.1038/s41598-018-30694-1 10.2147/CMAR.S155923 10.1371/journal.pone.0158347 10.1038/nbt.2890 10.1109/TIT.2016.2608892 10.1186/s12943-017-0663-2 10.1186/1752-0509-7-S3-S9 10.18632/oncotarget.6621 10.1007/s12035-016-0055-4 10.3390/ijms19113410 10.7150/ijbs.28260 10.1038/cr.2015.82 10.1038/srep34985 10.1016/j.diabres.2017.05.017 10.1093/nar/gkn159 10.1038/s41419-018-0503-3 10.3389/fgene.2013.00283 10.1093/clinchem/39.4.561 10.1371/journal.pcbi.1006865 10.7717/peerj.639 10.1093/nar/gkv940 10.1126/science.3287615 10.1038/nsmb.2959 10.1093/bioinformatics/btq241 10.1038/280339a0 10.1186/s12859-018-2522-6 10.1016/S0031-3203(96)00142-2 10.1371/journal.pone.0030733 10.2147/OTT.S131597 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Wang et al 2020 Wang et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Wang et al 2020 Wang et al |
DBID | AAYXX CITATION NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1007568 |
DatabaseName | CrossRef PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Prediction of circRNA-disease associations |
EISSN | 1553-7358 |
ExternalDocumentID | 2460759853 oai_doaj_org_article_130f2882353b447598e5fd7c5690ffaa PMC7266350 A632940623 32433655 10_1371_journal_pcbi_1007568 |
Genre | Journal Article |
GeographicLocations | China Hong Kong China |
GeographicLocations_xml | – name: China – name: Hong Kong China |
GrantInformation_xml | – fundername: ; grantid: 61702444 – fundername: ; grantid: 61722212 – fundername: ; grantid: 2019M653804 – fundername: ; grantid: 2018-XBQNXZ-B-008 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M NPM PJZUB PPXIY PQGLB PMFND 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI Q9U RC3 7X8 5PM PUEGO AAPBV ABPTK M~E N95 UMP |
ID | FETCH-LOGICAL-c661t-1394adec52c63aa5b70ebb3f21fe47b55235448f203f9b3900f44052ec6118f23 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun May 07 16:29:17 EDT 2023 Wed Aug 27 01:31:49 EDT 2025 Thu Aug 21 14:05:32 EDT 2025 Fri Jul 11 01:26:28 EDT 2025 Fri Jul 25 12:19:40 EDT 2025 Tue Jun 17 20:58:19 EDT 2025 Tue Jun 10 20:43:00 EDT 2025 Fri Jun 27 04:15:57 EDT 2025 Fri Jun 27 04:01:24 EDT 2025 Mon Jul 21 06:06:38 EDT 2025 Thu Apr 24 23:13:55 EDT 2025 Tue Jul 01 04:05:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c661t-1394adec52c63aa5b70ebb3f21fe47b55235448f203f9b3900f44052ec6118f23 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare that they have no competing interests. These authors are joint first authors on this work. |
ORCID | 0000-0003-1266-2696 0000-0003-0184-307X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1007568 |
PMID | 32433655 |
PQID | 2460759853 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2460759853 doaj_primary_oai_doaj_org_article_130f2882353b447598e5fd7c5690ffaa pubmedcentral_primary_oai_pubmedcentral_nih_gov_7266350 proquest_miscellaneous_2405326103 proquest_journals_2460759853 gale_infotracmisc_A632940623 gale_infotracacademiconefile_A632940623 gale_incontextgauss_ISR_A632940623 gale_incontextgauss_ISN_A632940623 pubmed_primary_32433655 crossref_citationtrail_10_1371_journal_pcbi_1007568 crossref_primary_10_1371_journal_pcbi_1007568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200520 |
PublicationDateYYYYMMDD | 2020-05-20 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200520 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | S Julia (pcbi.1007568.ref007) 2012; 7 S Meng (pcbi.1007568.ref002) 2017; 16 X Lei (pcbi.1007568.ref037) 2018; 19 L Wang (pcbi.1007568.ref042) 2019; 15 J Zhou (pcbi.1007568.ref038) 2018; 10 MH Zweig (pcbi.1007568.ref032) 1993; 39 WW Du (pcbi.1007568.ref017) 2016; 38 G Macintyre (pcbi.1007568.ref041) 2014; 2 Z Li (pcbi.1007568.ref009) 2015; 22 P Glažar (pcbi.1007568.ref021) 2014; 20 X Chen (pcbi.1007568.ref025) 2016; 6 L Wang (pcbi.1007568.ref031) 2018; 8 MN Adnan (pcbi.1007568.ref045) 2017; 89 D Barbagallo (pcbi.1007568.ref039) 2016; 7 JA Swets (pcbi.1007568.ref033) 1988; 240 Y Li (pcbi.1007568.ref040) 2015; 25 JT Granados-Riveron (pcbi.1007568.ref010) 2016; 1859 G Floris (pcbi.1007568.ref014) 2017; 54 CE Burd (pcbi.1007568.ref016) 2010; 6 C Fan (pcbi.1007568.ref024) 2018; 1 WJ Lukiw (pcbi.1007568.ref019) 2013; 4 WR Jeck (pcbi.1007568.ref003) 2014; 32 Y-C Liu (pcbi.1007568.ref023) 2015; 44 S Memczak (pcbi.1007568.ref001) 2013; 495 S Ghosal (pcbi.1007568.ref020) 2013; 4 MT Hsu (pcbi.1007568.ref005) 1979; 280 JH Yang (pcbi.1007568.ref022) 2010; 38 CE Burd (pcbi.1007568.ref015) 2010; 6 Z Xiang (pcbi.1007568.ref043) 2013; 7 Z Zhao (pcbi.1007568.ref026) 2018; 9 AP Bradley (pcbi.1007568.ref034) 1997; 30 MK Kim (pcbi.1007568.ref013) 2017; 131 C Yan (pcbi.1007568.ref029) 2018; 19 Q Xiao (pcbi.1007568.ref028) 2019 S-J Lin (pcbi.1007568.ref036) 2016; 62 L Yu (pcbi.1007568.ref011) 2016; 11 TB Hansen (pcbi.1007568.ref008) 2013; 495 T Diener (pcbi.1007568.ref004) 1971; 45 SP Lin (pcbi.1007568.ref018) 2016; 471 W Tang (pcbi.1007568.ref012) 2017; 10 Y Guo (pcbi.1007568.ref035) 2008; 36 D Wang (pcbi.1007568.ref044) 2010; 26 D Yao (pcbi.1007568.ref027) 2018; 8 C Fan (pcbi.1007568.ref030) 2018; 14 PC Qiu (pcbi.1007568.ref006) 1995; 40 |
References_xml | – volume: 89 start-page: 389 year: 2017 ident: pcbi.1007568.ref045 article-title: Forest PA: Constructing a decision forest by penalizing attributes used in previous trees publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.08.002 – volume: 40 start-page: 196 issue: 2 year: 1995 ident: pcbi.1007568.ref006 article-title: Expression of the mouse testis-determining gene Sry in male preimplantation embryos. Molecular Reproduction & publication-title: Development – volume: 8 start-page: 11018 issue: 1 year: 2018 ident: pcbi.1007568.ref027 article-title: Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease publication-title: Scientific Reports doi: 10.1038/s41598-018-29360-3 – volume: 1 start-page: 6 year: 2018 ident: pcbi.1007568.ref024 article-title: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases publication-title: Database – volume: 6 start-page: e1001233 issue: 12 year: 2010 ident: pcbi.1007568.ref015 article-title: Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk publication-title: Plos Genetics doi: 10.1371/journal.pgen.1001233 – volume: 495 start-page: 333 issue: 7441 year: 2013 ident: pcbi.1007568.ref001 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – volume: 45 start-page: 411 issue: 2 year: 1971 ident: pcbi.1007568.ref004 article-title: Potato spindle tuber “virus”: IV. A replicating, low molecular weight RNA publication-title: Virology doi: 10.1016/0042-6822(71)90342-4 – volume: 20 start-page: 1666 issue: 11 year: 2014 ident: pcbi.1007568.ref021 article-title: circBase: a database for circular RNAs publication-title: Rna doi: 10.1261/rna.043687.113 – volume: 38 start-page: D123 issue: Database issue year: 2010 ident: pcbi.1007568.ref022 article-title: deepBase: a database for deeply annotating and mining deep sequencing data publication-title: Nucleic Acids Research doi: 10.1093/nar/gkp943 – volume: 495 start-page: 384 issue: 7441 year: 2013 ident: pcbi.1007568.ref008 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 471 start-page: 52 issue: 1 year: 2016 ident: pcbi.1007568.ref018 article-title: Circular RNA expression alterations are involved in OGD/R-induced neuron injury publication-title: Biochemical & Biophysical Research Communications doi: 10.1016/j.bbrc.2016.01.183 – volume: 8 start-page: 12874 issue: 1 year: 2018 ident: pcbi.1007568.ref031 article-title: Using Two-dimensional Principal Component Analysis and Rotation Forest for Prediction of Protein-Protein Interactions publication-title: Scientific reports doi: 10.1038/s41598-018-30694-1 – volume: 10 start-page: 535 year: 2018 ident: pcbi.1007568.ref038 article-title: Downregulation of hsa_circ_0011946 suppresses the migration and invasion of the breast cancer cell line MCF-7 by targeting RFC3 publication-title: Cancer management and research doi: 10.2147/CMAR.S155923 – volume: 11 start-page: e0158347 issue: 7 year: 2016 ident: pcbi.1007568.ref011 article-title: The Circular RNA Cdr1as Act as an Oncogene in Hepatocellular Carcinoma through Targeting miR-7 Expression publication-title: Plos One doi: 10.1371/journal.pone.0158347 – volume: 32 start-page: 453 issue: 5 year: 2014 ident: pcbi.1007568.ref003 article-title: Detecting and characterizing circular RNAs publication-title: Nature Biotechnology doi: 10.1038/nbt.2890 – volume: 62 start-page: 6284 issue: 11 year: 2016 ident: pcbi.1007568.ref036 article-title: Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2016.2608892 – volume: 16 start-page: 94 issue: 1 year: 2017 ident: pcbi.1007568.ref002 article-title: CircRNA: functions and properties of a novel potential biomarker for cancer publication-title: Molecular Cancer doi: 10.1186/s12943-017-0663-2 – volume: 7 start-page: S9 issue: 3 year: 2013 ident: pcbi.1007568.ref043 article-title: A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks publication-title: BMC systems biology doi: 10.1186/1752-0509-7-S3-S9 – volume: 7 start-page: 4746 issue: 4 year: 2016 ident: pcbi.1007568.ref039 article-title: Dysregulated miR-671-5p/CDR1-AS/CDR1/VSNL1 axis is involved in glioblastoma multiforme publication-title: Oncotarget doi: 10.18632/oncotarget.6621 – volume: 54 start-page: 5156 issue: 7 year: 2017 ident: pcbi.1007568.ref014 article-title: Regulatory Role of Circular RNAs and Neurological Disorders publication-title: Molecular Neurobiology doi: 10.1007/s12035-016-0055-4 – volume: 19 start-page: 3410 issue: 11 year: 2018 ident: pcbi.1007568.ref037 article-title: PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations publication-title: International journal of molecular sciences doi: 10.3390/ijms19113410 – volume: 14 start-page: 1950 issue: 14 year: 2018 ident: pcbi.1007568.ref030 article-title: Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks publication-title: International journal of biological sciences doi: 10.7150/ijbs.28260 – volume: 1859 start-page: 1245 issue: 10 year: 2016 ident: pcbi.1007568.ref010 article-title: The complexity of the translation ability of circRNAs publication-title: BBA—Gene Regulatory Mechanisms – volume: 25 start-page: 981 issue: 8 year: 2015 ident: pcbi.1007568.ref040 article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis publication-title: Cell research doi: 10.1038/cr.2015.82 – volume: 38 start-page: 1402 issue: 18 year: 2016 ident: pcbi.1007568.ref017 article-title: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses publication-title: European heart journal – volume: 4 start-page: 307 issue: 4 year: 2013 ident: pcbi.1007568.ref019 article-title: Circular RNA (circRNA) in Alzheimer’s disease (AD) publication-title: Frontiers in Genetics – volume: 6 start-page: 34985 year: 2016 ident: pcbi.1007568.ref025 article-title: circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations publication-title: Sci Rep doi: 10.1038/srep34985 – volume: 131 start-page: 1 year: 2017 ident: pcbi.1007568.ref013 article-title: Comparison of pancreatic beta cells and alpha cells under hyperglycemia: Inverse coupling in pAkt-FoxO1 publication-title: Diabetes Research & Clinical Practice doi: 10.1016/j.diabres.2017.05.017 – volume: 36 start-page: 3025 issue: 9 year: 2008 ident: pcbi.1007568.ref035 article-title: Using support vector machine combined with auto covariance to predict proteinprotein interactions from protein sequences publication-title: Nucleic Acids Research doi: 10.1093/nar/gkn159 – volume: 9 start-page: 475 issue: 5 year: 2018 ident: pcbi.1007568.ref026 article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations publication-title: Cell death & disease doi: 10.1038/s41419-018-0503-3 – start-page: 1 issue: 99 year: 2019 ident: pcbi.1007568.ref028 article-title: Computational Prediction of Human Disease-associated circRNAs based on Manifold Regularization Learning Framework publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 4 start-page: 283 year: 2013 ident: pcbi.1007568.ref020 article-title: Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits publication-title: Frontiers in genetics doi: 10.3389/fgene.2013.00283 – volume: 39 start-page: 561 issue: 4 year: 1993 ident: pcbi.1007568.ref032 article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine publication-title: Clinical chemistry doi: 10.1093/clinchem/39.4.561 – volume: 15 start-page: e1006865 issue: 3 year: 2019 ident: pcbi.1007568.ref042 article-title: LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1006865 – volume: 2 start-page: e639 issue: 5 year: 2014 ident: pcbi.1007568.ref041 article-title: Associating disease-related genetic variants in intergenic regions to the genes they impact publication-title: Peerj doi: 10.7717/peerj.639 – volume: 44 start-page: D209 issue: D1 year: 2015 ident: pcbi.1007568.ref023 article-title: CircNet: a database of circular RNAs derived from transcriptome sequencing data publication-title: Nucleic acids research doi: 10.1093/nar/gkv940 – volume: 240 start-page: 1285 issue: 4857 year: 1988 ident: pcbi.1007568.ref033 article-title: Measuring the accuracy of diagnostic systems publication-title: Science doi: 10.1126/science.3287615 – volume: 22 start-page: 256 issue: 3 year: 2015 ident: pcbi.1007568.ref009 article-title: Exon-intron circular RNAs regulate transcription in the nucleus publication-title: Nature structural & molecular biology doi: 10.1038/nsmb.2959 – volume: 26 start-page: 1644 issue: 13 year: 2010 ident: pcbi.1007568.ref044 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 6 start-page: e1001233 issue: 12 year: 2010 ident: pcbi.1007568.ref016 article-title: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk publication-title: Plos Genetics doi: 10.1371/journal.pgen.1001233 – volume: 280 start-page: 339 issue: 5720 year: 1979 ident: pcbi.1007568.ref005 article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells publication-title: Nature doi: 10.1038/280339a0 – volume: 19 start-page: 520 issue: 19 year: 2018 ident: pcbi.1007568.ref029 article-title: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations publication-title: BMC bioinformatics doi: 10.1186/s12859-018-2522-6 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: pcbi.1007568.ref034 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern recognition doi: 10.1016/S0031-3203(96)00142-2 – volume: 7 start-page: e30733 issue: 2 year: 2012 ident: pcbi.1007568.ref007 article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types publication-title: Plos One doi: 10.1371/journal.pone.0030733 – volume: 10 start-page: 2045 year: 2017 ident: pcbi.1007568.ref012 article-title: Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7 publication-title: Oncotargets & Therapy doi: 10.2147/OTT.S131597 |
SSID | ssj0035896 |
Score | 2.58729 |
Snippet | Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1007568 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Atherosclerosis Biology and Life Sciences Breast cancer Cancer Case studies Classifiers Colorectal cancer Colorectal carcinoma Competitiveness Computational biology Computer applications Datasets Disease Diseases Ecology and Environmental Sciences Engineering and Technology Experiments Feature extraction Genetic aspects Glioma Health aspects Machine learning Medical treatment Medicine and Health Sciences Methods MicroRNAs Nervous system Pathogenesis Physical Sciences Research and Analysis Methods Risk factors RNA Similarity Social Sciences |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQJSReEONrHQMZhMRTWOqPpOEtFLaBRB4Gk_oW2Y69VSpJ1bST-O-5i93QoKG98Fpfkvru4vtdfP4dIW-RlIhVxkSQ8cSRmCYy0lU2ibKp1EZLJ4TF887fiuT8Unydy_leqy-sCfP0wF5xJ7DGOgYwkEuuO3K6qZWuSo2EtM451UEjiHm7ZMqvwVxOu85c2BQnSrmYh0NzPJ2cBBu9Xxm96GoEJNKs7gWljru_X6FHq2XT3gY__66i3AtLp4_Iw4Anae7ncUDu2foxue87TP56QpqzWTH7lH-gOQX8TH2_aApAla7WuEWDRc_ULNbmosijsFlD1R-TtRTDXEWbmp4htTWdNfVN8FZ4bOGLyGm-vGrWi831z6fk8vTzj9l5FHosRAYiM3aiz4SqrJHMJFwpqdPYas0dmzgrUi0hT5WQwTkWc5dpnsUxmC-WzJoEUhPH-DMyqpvaHhIKUEtkzFqmTCUyYZREejOrAUNpllVqTPhOyaUJBOTYB2NZdrtqKSQiXmclmqYMphmTqL9q5Qk47pD_iPbrZZE-u_sBnKoMTlXe5VRj8gatXyJBRo0VOFdq27bll-9FmSecZYCCGP-n0MVA6F0Qcg1M1qhw6gFUhsRbA8njgSS85mYwfIieuJtzWzKRxPjPJV65887bh1_3w3hTrKqrbbNFGewLAgAaZJ57Z-71BkCb80TKMUkHbj5Q7HCkXlx3_OQpQxgbH_0PS7wgDxh-4YglrOfHZLRZb-1LgIEb_ap7438DDZRXrQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxPe6DWQQEk9hqT_ywQsKhXYgkYfBpL5FsWN3lbokNC0S_z13iZstaMBrfUmTu7Pvd_bld4S8RlIiVmjtQcbjeyIKpKeKeOLFkVRaSSuEwe-dv6bB6bn4spALt-HWuLLK_ZrYLtRFpXGP_ISJAKIb3IK_r3942DUKT1ddC43b5M4EIg2WdEWz-X4l5jJq-3Nhaxwv5GLhPp3j4eTEWeptrdWqrRSQSLZ6LTS1DP79Oj2q11VzEwj9s5byWnCaPSD3HaqkSecGD8ktUz4id7s-k78ek2o-Tacfk3c0oYCiadc1mgJcpfUGD2qw9Jnq1UafpYnnjmxofmW4hmKwK2hV0jkSXNNpVf50Pgt_m3al5DRZL0Fj24vLJ-R89un79NRznRY8DfEZ-9HHIi-MlkwHPM-lCn2jFLdsYo0IlYRsVUIeZ5nPbax47PtgRF8yowNIUCzjT8morEpzQCgALhEzY1iuCxELnUskOTMKkJRicZGPCd8rOdOOhhy7Yayz9mwthHSk01mGpsmcacbE66-qOxqO_8h_QPv1skii3f5QbZaZm5N4kmcZZBhcctXyHkZG2iLUMoh9a3N41Fdo_QxpMkqsw1nmu6bJPn9LsyTgLAYsxPhfhc4GQm-ckK3gZXXuvn0AlSH91kDyeCAJk10Phg_QE_fv3GRX0wKu3HvnzcMv-2G8KdbWlabaoQx2BwEYDTLPOmfu9QZwm_NAyjEJB24-UOxwpFxdtCzlIUMw6x_--7GOyD2GOxi-hPX6mIy2m515DjBvq160c_k34oxPxw priority: 102 providerName: ProQuest |
Title | GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32433655 https://www.proquest.com/docview/2460759853 https://www.proquest.com/docview/2405326103 https://pubmed.ncbi.nlm.nih.gov/PMC7266350 https://doaj.org/article/130f2882353b447598e5fd7c5690ffaa http://dx.doi.org/10.1371/journal.pcbi.1007568 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvZd_N1gVtDPbk4urDH4MxnLRJN6gZ2QJ5M5Ysp4HMzuxkrP_97mzHm0fK9pJAdHKsu5N155N-P0LeICgRS7S2IOOxLeE50lKJf275nlRayVQIg-edr0PnaiY-zeX8gOw4WxsFlntTO-STmhWrs5_fbz_AhH9fsTa457tOZ2utllXVXzreITmCtclFToNr0dYVuPQqxi4ky7FcLubNYbq7rtJZrCpM__bJ3Vuv8nJfWPr37so_lqvxA3LcxJk0qB3jITkw2SNyr2aevH1M8skoHF0E72hAIa6mNY80hQCWrgss3eBmaKqXhZ6GgdUUcWj825QlxeUvoXlGJwh5TUd59qPxYvjbsN5cToPVIi-Wm5tvT8hsfPl1dGU13AuWhhUbGep9ESdGS6YdHsdSubZRiqfsPDXCVRLyVwmZXcpsnvqK-7YNZrUlM9qBlCVl_CnpZXlmTgiFEEz4zBgW60T4QscSYc-MgthKMT-J-4TvlBzpBpgc-TFWUVVtcyFBqXUWoWmixjR9YrW91jUwxz_kh2i_VhZhtasf8mIRNbMUa3spg5yDS64qJETPyDRxtXR8O01juNXXaP0IgTMy3JmziLdlGX38EkaBw5kP0RHjdwpNO0JvG6E0h8HquDkNASpDQK6O5GlHEqa_7jSfoCfuxlxGTDg23rnEnjvv3N_8qm3Gi-Juu8zkW5RBvhAIrEHmWe3Mrd4gAOfckbJP3I6bdxTbbcmWNxVuucswvLWf__fQX5D7DF9v2BIe5qektym25iXEgBs1IIfu3IVPbzwZkKNgeDEcw_fwMvw8HVTvVQbVxP8FYa9fZQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQQguiHcDBRYE4mTq7MOOkRAyKXnQ1ofSSrm53vU6jRRsEyeg_il-IzN-pDUqcOo1O3bsndmZb7yz3xDyGkmJWKy1BRmPbYm-Iy0Vez3L60ullUyEMHje-TBwxifiy1ROt8iv5iwMllU2PrF01HGm8Rv5LhMORDe4Bf-Yf7ewaxTurjYtNCqz2DfnPyFlKz5M9kC_bxgbfj4ejK26q4ClIRZh73VPRLHRkmmHR5FUrm2U4gnrJUa4SkJmJiFnSZjNE09xz7bhgW3JjHYAjCdIdAAu_4bgEMnxZPpw1Hh-LvtlPzBsxWO5XEzro3rc7e3WlvEu12peViZIJHe9FArLjgGbuNDJF1lxFej9s3bzUjAc3iV3ahRL_crs7pEtk94nN6u-lucPSDYaBIM9_z31KaB2WnWppgCPab7EjSEstaZ6vtRHgW_VW0Q0ujCUgmJwjWmW0hESatNBlv6o1wj8bVCVrlN_MQMNrc6-PSQn16KDR6STZqnZJhQAnvCYMSzSsfCEjiSSqhkFyE0xL466hDeTHOqa9hy7byzCci_PhfSnmrMQVRPWqukSa3NVXtF-_Ef-E-pvI4uk3eUP2XIW1j4Adw4TBhkNl1yVPIt9I5PY1dLx7CSJ4FFfofZDpOVIse5nFq2LIpx8DULf4cwD7MX4X4WOWkJva6Ekg5fVUX3WAqYM6b5akjstSXAuujW8jZbYvHMRXixDuLKxzquHX26G8aZYy5eabI0y2I0EYDvIPK6MeTNvAO85d6TsErdl5q2JbY-k87OSFd1lCJ7tJ_9-rBfk1vj48CA8mAT7T8lthl9PbAmxYod0Vsu1eQYQc6Wel-uaktPrdiS_AYHOi4k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTiBeEL9XGGAQiKfQ1I6TBgmhrF23MoimwqS-ZbHjdJVKUpoWtH-Nv467xOkWNOBpr_UlTXznu-_i83eEvEJSIpYoZUHGY1tOzxWWTPyu5feEVFKkjqPxvPPn0D08cT5OxGSL_KrPwmBZZe0TS0ed5Aq_kXeY40J0g1vwTmrKIo4Hww-L7xZ2kMKd1rqdRmUiR_r8J6RvxfvRAHT9mrHh_tf-oWU6DFgK4hL2YfedONFKMOXyOBbSs7WUPGXdVDueFJClCchfUmbz1Jfct214eFswrVwA5imSHoD73_YwK2qR7b398HhcxwEuemV3MGzMY3ncmZiDe9zrdoydvF0oOSvrFARSvV4KjGX_gE2UaC3meXEVBP6zkvNSaBzeIbcNpqVBZYR3yZbO7pEbVZfL8_skP-iH_UHwjgYUMDytelZTAMt0scRtIiy8pmq2VOMwsMyGEY0vzKagGGoTmmf0AOm1aT_PfpgVA38bVoXsNJhPQUers28PyMm1aOEhaWV5pncIBbjn-ExrFqvE8R0VC6RY0xJwnGR-ErcJryc5UoYEHXtxzKNyZ8-DZKiaswhVExnVtIm1uWpRkYD8R34P9beRRQrv8od8OY2MR8B9xJRBfsMFlyXrYk-LNPGUcH07TWN41Jeo_QhJOjI092m8Lopo9CWMApczH5AY438VGjeE3hihNIeXVbE5eQFThuRfDcndhiS4GtUY3kFLrN-5iC4WJVxZW-fVwy82w3hTrOzLdL5GGexNAiAeZB5VxryZNwD7nLtCtInXMPPGxDZHstlZyZHuMYTS9uN_P9ZzchOcSPRpFB49IbcYfkqxBQSOXdJaLdf6KeDNlXxmFjYlp9ftS34DxuCRGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCNCDA%3A+A+new+method+for+predicting+circRNA-disease+associations+based+on+Graph+Convolutional+Network+Algorithm&rft.jtitle=PLoS+computational+biology&rft.au=Wang%2C+Lei&rft.au=You%2C+Zhu-Hong&rft.au=Li%2C+Yang-Ming&rft.au=Zheng%2C+Kai&rft.date=2020-05-20&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=16&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007568&rft.externalDocID=A632940623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |