GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm

Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of d...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 16; no. 5; p. e1007568
Main Authors Wang, Lei, You, Zhu-Hong, Li, Yang-Ming, Zheng, Kai, Huang, Yu-An
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 20.05.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments.
AbstractList Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments.
Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments.Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments.
Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments. The recognition of circRNA-disease association is the key of disease diagnosis and treatment, and it is of great significance for exploring the pathogenesis of complex diseases. Computational methods can predict the potential disease-related circRNAs quickly and accurately. Based on the hypothesis that circRNA with similar function tends to associate with similar disease, GCNCDA model is proposed to effectively predict the potential association between circRNAs and diseases by combining FastGCN algorithm. The performance of the model was verified by cross-validation experiments, different feature extraction algorithm and classifier models comparison experiments. Furthermore, 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores in disease including breast cancer, glioma and colorectal cancer were respectively confirmed by relevant literature and databases. It is anticipated that GCNCDA model can give priority to the most promising circRNA-disease associations on a large scale to provide reliable candidates for further biological experiments.
Audience Academic
Author Wang, Lei
Li, Yang-Ming
You, Zhu-Hong
Zheng, Kai
Huang, Yu-An
AuthorAffiliation 1 College of Information Science and Engineering, Zaozhuang University, Zaozhuang, China
5 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
4 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
3 Department of Electrical Computer and Telecommunications Engineering Technology, Rochester Institute of Technology, Rochester, United States of America
2 Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
University of Calgary, CANADA
AuthorAffiliation_xml – name: 3 Department of Electrical Computer and Telecommunications Engineering Technology, Rochester Institute of Technology, Rochester, United States of America
– name: University of Calgary, CANADA
– name: 4 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
– name: 5 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
– name: 2 Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– name: 1 College of Information Science and Engineering, Zaozhuang University, Zaozhuang, China
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0003-0184-307X
  surname: Wang
  fullname: Wang, Lei
– sequence: 2
  givenname: Zhu-Hong
  orcidid: 0000-0003-1266-2696
  surname: You
  fullname: You, Zhu-Hong
– sequence: 3
  givenname: Yang-Ming
  surname: Li
  fullname: Li, Yang-Ming
– sequence: 4
  givenname: Kai
  surname: Zheng
  fullname: Zheng, Kai
– sequence: 5
  givenname: Yu-An
  surname: Huang
  fullname: Huang, Yu-An
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32433655$$D View this record in MEDLINE/PubMed
BookMark eNqVk01v1DAQhiNURD_gHyCwxAUOu_g7SQ9I0QLLStUiFThbjmNnvSTx1k5a-Pc4bRZ1qwoJ5RBr_LzvjEczp8lR5zqdJC8RnCOSovdbN_hONvOdKu0cQZgynj1JThBjZJYSlh3dOx8npyFsIYzHnD9LjgmmhHDGThK3XKwXH4tzUIBO34BW9xtXAeM82HldWdXbrgbKenW5LmaVDVoGDWQITlnZW9cFUMZIBVwHll7uNmDhumvXDOOdbMBa9zfO_wRFUztv-037PHlqZBP0i-l_lvz4_On74svs4utytSguZopz1M8QyamstGJYcSIlK1Ooy5IYjIymackYJozSzGBITF6SHEJDKWRYK45QDJOz5PWd765xQUy9CgJTHhuVZ4xEYnVHVE5uxc7bVvrfwkkrbgPO10L63qpGC0SgwVkWc5KS0lGvmalSxXgOjZEyen2Ysg1lqyulu97L5sD08KazG1G7a5FizgmD0eDtZODd1aBDL1oblG4a2Wk3jHVDRjBHcKz7zQP08ddNVC3jA2xnXMyrRlNRcIJzCjkeqfkjVPwq3VoV583YGD8QvDsQRKbXv_paDiGI1bfL_2DXh-yr-w3827n9oEbg_A5Q3oXgtRHK9rcTGCu2jUBQjFux74UYt0JMWxHF9IF47_9P2R-kOQ_P
CitedBy_id crossref_primary_10_1007_s12204_024_2575_9
crossref_primary_10_1109_JBHI_2023_3346821
crossref_primary_10_1016_j_asoc_2021_107629
crossref_primary_10_3934_mbe_2023909
crossref_primary_10_1109_TNSE_2022_3177307
crossref_primary_10_1186_s12859_021_04467_z
crossref_primary_10_1093_bib_bbac388
crossref_primary_10_1186_s12859_022_04883_9
crossref_primary_10_1093_bib_bbab177
crossref_primary_10_1093_bib_bbab174
crossref_primary_10_1093_bib_bbab494
crossref_primary_10_3389_fcell_2021_647736
crossref_primary_10_1109_JBHI_2022_3217433
crossref_primary_10_1021_acs_jcim_2c00367
crossref_primary_10_1093_bib_bbac613
crossref_primary_10_1371_journal_pcbi_1011344
crossref_primary_10_59717_j_xinn_med_2024_100081
crossref_primary_10_23919_cje_2023_00_344
crossref_primary_10_1093_bib_bbac379
crossref_primary_10_1007_s11704_024_40060_2
crossref_primary_10_1016_j_gene_2025_149228
crossref_primary_10_1109_JBHI_2023_3344714
crossref_primary_10_3389_fgene_2022_832244
crossref_primary_10_53941_ijndi0201004
crossref_primary_10_1109_ACCESS_2023_3275967
crossref_primary_10_3389_fgene_2022_1001608
crossref_primary_10_3390_biomedicines10071543
crossref_primary_10_1111_jcmm_18180
crossref_primary_10_3390_s24185861
crossref_primary_10_1093_bib_bbab286
crossref_primary_10_1093_bib_bbad069
crossref_primary_10_1109_TCBB_2024_3355093
crossref_primary_10_1093_bib_bbaa350
crossref_primary_10_1142_S2737416523410053
crossref_primary_10_1093_bioinformatics_btab334
crossref_primary_10_14778_3665844_3665853
crossref_primary_10_1021_acs_jcim_3c00957
crossref_primary_10_1109_TCYB_2021_3090756
crossref_primary_10_1109_JBHI_2024_3456478
crossref_primary_10_3934_era_2023213
crossref_primary_10_1109_TCBB_2024_3366175
crossref_primary_10_1109_JBHI_2022_3199462
crossref_primary_10_1093_bib_bbac083
crossref_primary_10_1007_s40291_020_00499_y
crossref_primary_10_3390_ijms22168505
crossref_primary_10_1109_RBME_2021_3122522
crossref_primary_10_1016_j_tig_2023_10_001
crossref_primary_10_1109_TCBB_2023_3302468
crossref_primary_10_3389_fgene_2021_690049
crossref_primary_10_1093_bib_bbac289
crossref_primary_10_1109_TBDATA_2023_3334673
crossref_primary_10_3390_ijms231911498
crossref_primary_10_1186_s12859_021_04231_3
crossref_primary_10_2174_1574893617666220513114917
crossref_primary_10_1080_09537287_2024_2320790
crossref_primary_10_1093_bib_bbac364
crossref_primary_10_1093_bioinformatics_btac079
crossref_primary_10_1016_j_knosys_2020_106694
crossref_primary_10_3389_fgene_2021_657182
crossref_primary_10_3389_fphar_2023_1173040
crossref_primary_10_1093_bib_bbab028
crossref_primary_10_1093_bioinformatics_btaa1077
crossref_primary_10_1142_S0219720024500185
crossref_primary_10_1016_j_compbiomed_2022_105322
crossref_primary_10_1093_bib_bbac479
crossref_primary_10_1371_journal_pcbi_1011242
crossref_primary_10_1177_1176934320984171
crossref_primary_10_3390_cancers13112595
crossref_primary_10_1016_j_ymeth_2021_10_008
crossref_primary_10_1093_bioinformatics_btae306
crossref_primary_10_1016_j_csbj_2024_01_011
crossref_primary_10_1093_bib_bbae179
crossref_primary_10_1093_bib_bbae575
crossref_primary_10_1016_j_compbiolchem_2022_107722
crossref_primary_10_1109_TCBBIO_2024_3506615
crossref_primary_10_1111_jre_12989
crossref_primary_10_1109_JBHI_2023_3299423
crossref_primary_10_3390_biom12070932
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_1093_bioinformatics_btac520
crossref_primary_10_1093_bioinformatics_btad499
crossref_primary_10_1186_s12859_023_05441_7
crossref_primary_10_1186_s13007_024_01158_7
crossref_primary_10_1007_s12539_023_00590_y
crossref_primary_10_1016_j_ins_2021_04_073
crossref_primary_10_1109_TCBB_2021_3111607
crossref_primary_10_1093_bib_bbac549
crossref_primary_10_3389_fgene_2022_829937
crossref_primary_10_1016_j_compbiomed_2022_106289
crossref_primary_10_1016_j_knosys_2024_111622
crossref_primary_10_1186_s12915_024_01826_z
crossref_primary_10_1186_s12859_022_04976_5
Cites_doi 10.1016/j.eswa.2017.08.002
10.1038/s41598-018-29360-3
10.1371/journal.pgen.1001233
10.1038/nature11928
10.1016/0042-6822(71)90342-4
10.1261/rna.043687.113
10.1093/nar/gkp943
10.1038/nature11993
10.1016/j.bbrc.2016.01.183
10.1038/s41598-018-30694-1
10.2147/CMAR.S155923
10.1371/journal.pone.0158347
10.1038/nbt.2890
10.1109/TIT.2016.2608892
10.1186/s12943-017-0663-2
10.1186/1752-0509-7-S3-S9
10.18632/oncotarget.6621
10.1007/s12035-016-0055-4
10.3390/ijms19113410
10.7150/ijbs.28260
10.1038/cr.2015.82
10.1038/srep34985
10.1016/j.diabres.2017.05.017
10.1093/nar/gkn159
10.1038/s41419-018-0503-3
10.3389/fgene.2013.00283
10.1093/clinchem/39.4.561
10.1371/journal.pcbi.1006865
10.7717/peerj.639
10.1093/nar/gkv940
10.1126/science.3287615
10.1038/nsmb.2959
10.1093/bioinformatics/btq241
10.1038/280339a0
10.1186/s12859-018-2522-6
10.1016/S0031-3203(96)00142-2
10.1371/journal.pone.0030733
10.2147/OTT.S131597
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Wang et al 2020 Wang et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Wang et al 2020 Wang et al
DBID AAYXX
CITATION
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1007568
DatabaseName CrossRef
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Prediction of circRNA-disease associations
EISSN 1553-7358
ExternalDocumentID 2460759853
oai_doaj_org_article_130f2882353b447598e5fd7c5690ffaa
PMC7266350
A632940623
32433655
10_1371_journal_pcbi_1007568
Genre Journal Article
GeographicLocations China
Hong Kong China
GeographicLocations_xml – name: China
– name: Hong Kong China
GrantInformation_xml – fundername: ;
  grantid: 61702444
– fundername: ;
  grantid: 61722212
– fundername: ;
  grantid: 2019M653804
– fundername: ;
  grantid: 2018-XBQNXZ-B-008
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
M~E
N95
UMP
ID FETCH-LOGICAL-c661t-1394adec52c63aa5b70ebb3f21fe47b55235448f203f9b3900f44052ec6118f23
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun May 07 16:29:17 EDT 2023
Wed Aug 27 01:31:49 EDT 2025
Thu Aug 21 14:05:32 EDT 2025
Fri Jul 11 01:26:28 EDT 2025
Fri Jul 25 12:19:40 EDT 2025
Tue Jun 17 20:58:19 EDT 2025
Tue Jun 10 20:43:00 EDT 2025
Fri Jun 27 04:15:57 EDT 2025
Fri Jun 27 04:01:24 EDT 2025
Mon Jul 21 06:06:38 EDT 2025
Thu Apr 24 23:13:55 EDT 2025
Tue Jul 01 04:05:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-1394adec52c63aa5b70ebb3f21fe47b55235448f203f9b3900f44052ec6118f23
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare that they have no competing interests.
These authors are joint first authors on this work.
ORCID 0000-0003-1266-2696
0000-0003-0184-307X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1007568
PMID 32433655
PQID 2460759853
PQPubID 1436340
ParticipantIDs plos_journals_2460759853
doaj_primary_oai_doaj_org_article_130f2882353b447598e5fd7c5690ffaa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7266350
proquest_miscellaneous_2405326103
proquest_journals_2460759853
gale_infotracmisc_A632940623
gale_infotracacademiconefile_A632940623
gale_incontextgauss_ISR_A632940623
gale_incontextgauss_ISN_A632940623
pubmed_primary_32433655
crossref_citationtrail_10_1371_journal_pcbi_1007568
crossref_primary_10_1371_journal_pcbi_1007568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200520
PublicationDateYYYYMMDD 2020-05-20
PublicationDate_xml – month: 5
  year: 2020
  text: 20200520
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Julia (pcbi.1007568.ref007) 2012; 7
S Meng (pcbi.1007568.ref002) 2017; 16
X Lei (pcbi.1007568.ref037) 2018; 19
L Wang (pcbi.1007568.ref042) 2019; 15
J Zhou (pcbi.1007568.ref038) 2018; 10
MH Zweig (pcbi.1007568.ref032) 1993; 39
WW Du (pcbi.1007568.ref017) 2016; 38
G Macintyre (pcbi.1007568.ref041) 2014; 2
Z Li (pcbi.1007568.ref009) 2015; 22
P Glažar (pcbi.1007568.ref021) 2014; 20
X Chen (pcbi.1007568.ref025) 2016; 6
L Wang (pcbi.1007568.ref031) 2018; 8
MN Adnan (pcbi.1007568.ref045) 2017; 89
D Barbagallo (pcbi.1007568.ref039) 2016; 7
JA Swets (pcbi.1007568.ref033) 1988; 240
Y Li (pcbi.1007568.ref040) 2015; 25
JT Granados-Riveron (pcbi.1007568.ref010) 2016; 1859
G Floris (pcbi.1007568.ref014) 2017; 54
CE Burd (pcbi.1007568.ref016) 2010; 6
C Fan (pcbi.1007568.ref024) 2018; 1
WJ Lukiw (pcbi.1007568.ref019) 2013; 4
WR Jeck (pcbi.1007568.ref003) 2014; 32
Y-C Liu (pcbi.1007568.ref023) 2015; 44
S Memczak (pcbi.1007568.ref001) 2013; 495
S Ghosal (pcbi.1007568.ref020) 2013; 4
MT Hsu (pcbi.1007568.ref005) 1979; 280
JH Yang (pcbi.1007568.ref022) 2010; 38
CE Burd (pcbi.1007568.ref015) 2010; 6
Z Xiang (pcbi.1007568.ref043) 2013; 7
Z Zhao (pcbi.1007568.ref026) 2018; 9
AP Bradley (pcbi.1007568.ref034) 1997; 30
MK Kim (pcbi.1007568.ref013) 2017; 131
C Yan (pcbi.1007568.ref029) 2018; 19
Q Xiao (pcbi.1007568.ref028) 2019
S-J Lin (pcbi.1007568.ref036) 2016; 62
L Yu (pcbi.1007568.ref011) 2016; 11
TB Hansen (pcbi.1007568.ref008) 2013; 495
T Diener (pcbi.1007568.ref004) 1971; 45
SP Lin (pcbi.1007568.ref018) 2016; 471
W Tang (pcbi.1007568.ref012) 2017; 10
Y Guo (pcbi.1007568.ref035) 2008; 36
D Wang (pcbi.1007568.ref044) 2010; 26
D Yao (pcbi.1007568.ref027) 2018; 8
C Fan (pcbi.1007568.ref030) 2018; 14
PC Qiu (pcbi.1007568.ref006) 1995; 40
References_xml – volume: 89
  start-page: 389
  year: 2017
  ident: pcbi.1007568.ref045
  article-title: Forest PA: Constructing a decision forest by penalizing attributes used in previous trees
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.002
– volume: 40
  start-page: 196
  issue: 2
  year: 1995
  ident: pcbi.1007568.ref006
  article-title: Expression of the mouse testis-determining gene Sry in male preimplantation embryos. Molecular Reproduction &
  publication-title: Development
– volume: 8
  start-page: 11018
  issue: 1
  year: 2018
  ident: pcbi.1007568.ref027
  article-title: Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-29360-3
– volume: 1
  start-page: 6
  year: 2018
  ident: pcbi.1007568.ref024
  article-title: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases
  publication-title: Database
– volume: 6
  start-page: e1001233
  issue: 12
  year: 2010
  ident: pcbi.1007568.ref015
  article-title: Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk
  publication-title: Plos Genetics
  doi: 10.1371/journal.pgen.1001233
– volume: 495
  start-page: 333
  issue: 7441
  year: 2013
  ident: pcbi.1007568.ref001
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
  doi: 10.1038/nature11928
– volume: 45
  start-page: 411
  issue: 2
  year: 1971
  ident: pcbi.1007568.ref004
  article-title: Potato spindle tuber “virus”: IV. A replicating, low molecular weight RNA
  publication-title: Virology
  doi: 10.1016/0042-6822(71)90342-4
– volume: 20
  start-page: 1666
  issue: 11
  year: 2014
  ident: pcbi.1007568.ref021
  article-title: circBase: a database for circular RNAs
  publication-title: Rna
  doi: 10.1261/rna.043687.113
– volume: 38
  start-page: D123
  issue: Database issue
  year: 2010
  ident: pcbi.1007568.ref022
  article-title: deepBase: a database for deeply annotating and mining deep sequencing data
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkp943
– volume: 495
  start-page: 384
  issue: 7441
  year: 2013
  ident: pcbi.1007568.ref008
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
  doi: 10.1038/nature11993
– volume: 471
  start-page: 52
  issue: 1
  year: 2016
  ident: pcbi.1007568.ref018
  article-title: Circular RNA expression alterations are involved in OGD/R-induced neuron injury
  publication-title: Biochemical & Biophysical Research Communications
  doi: 10.1016/j.bbrc.2016.01.183
– volume: 8
  start-page: 12874
  issue: 1
  year: 2018
  ident: pcbi.1007568.ref031
  article-title: Using Two-dimensional Principal Component Analysis and Rotation Forest for Prediction of Protein-Protein Interactions
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-30694-1
– volume: 10
  start-page: 535
  year: 2018
  ident: pcbi.1007568.ref038
  article-title: Downregulation of hsa_circ_0011946 suppresses the migration and invasion of the breast cancer cell line MCF-7 by targeting RFC3
  publication-title: Cancer management and research
  doi: 10.2147/CMAR.S155923
– volume: 11
  start-page: e0158347
  issue: 7
  year: 2016
  ident: pcbi.1007568.ref011
  article-title: The Circular RNA Cdr1as Act as an Oncogene in Hepatocellular Carcinoma through Targeting miR-7 Expression
  publication-title: Plos One
  doi: 10.1371/journal.pone.0158347
– volume: 32
  start-page: 453
  issue: 5
  year: 2014
  ident: pcbi.1007568.ref003
  article-title: Detecting and characterizing circular RNAs
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2890
– volume: 62
  start-page: 6284
  issue: 11
  year: 2016
  ident: pcbi.1007568.ref036
  article-title: Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2016.2608892
– volume: 16
  start-page: 94
  issue: 1
  year: 2017
  ident: pcbi.1007568.ref002
  article-title: CircRNA: functions and properties of a novel potential biomarker for cancer
  publication-title: Molecular Cancer
  doi: 10.1186/s12943-017-0663-2
– volume: 7
  start-page: S9
  issue: 3
  year: 2013
  ident: pcbi.1007568.ref043
  article-title: A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks
  publication-title: BMC systems biology
  doi: 10.1186/1752-0509-7-S3-S9
– volume: 7
  start-page: 4746
  issue: 4
  year: 2016
  ident: pcbi.1007568.ref039
  article-title: Dysregulated miR-671-5p/CDR1-AS/CDR1/VSNL1 axis is involved in glioblastoma multiforme
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6621
– volume: 54
  start-page: 5156
  issue: 7
  year: 2017
  ident: pcbi.1007568.ref014
  article-title: Regulatory Role of Circular RNAs and Neurological Disorders
  publication-title: Molecular Neurobiology
  doi: 10.1007/s12035-016-0055-4
– volume: 19
  start-page: 3410
  issue: 11
  year: 2018
  ident: pcbi.1007568.ref037
  article-title: PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations
  publication-title: International journal of molecular sciences
  doi: 10.3390/ijms19113410
– volume: 14
  start-page: 1950
  issue: 14
  year: 2018
  ident: pcbi.1007568.ref030
  article-title: Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks
  publication-title: International journal of biological sciences
  doi: 10.7150/ijbs.28260
– volume: 1859
  start-page: 1245
  issue: 10
  year: 2016
  ident: pcbi.1007568.ref010
  article-title: The complexity of the translation ability of circRNAs
  publication-title: BBA—Gene Regulatory Mechanisms
– volume: 25
  start-page: 981
  issue: 8
  year: 2015
  ident: pcbi.1007568.ref040
  article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis
  publication-title: Cell research
  doi: 10.1038/cr.2015.82
– volume: 38
  start-page: 1402
  issue: 18
  year: 2016
  ident: pcbi.1007568.ref017
  article-title: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses
  publication-title: European heart journal
– volume: 4
  start-page: 307
  issue: 4
  year: 2013
  ident: pcbi.1007568.ref019
  article-title: Circular RNA (circRNA) in Alzheimer’s disease (AD)
  publication-title: Frontiers in Genetics
– volume: 6
  start-page: 34985
  year: 2016
  ident: pcbi.1007568.ref025
  article-title: circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations
  publication-title: Sci Rep
  doi: 10.1038/srep34985
– volume: 131
  start-page: 1
  year: 2017
  ident: pcbi.1007568.ref013
  article-title: Comparison of pancreatic beta cells and alpha cells under hyperglycemia: Inverse coupling in pAkt-FoxO1
  publication-title: Diabetes Research & Clinical Practice
  doi: 10.1016/j.diabres.2017.05.017
– volume: 36
  start-page: 3025
  issue: 9
  year: 2008
  ident: pcbi.1007568.ref035
  article-title: Using support vector machine combined with auto covariance to predict proteinprotein interactions from protein sequences
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkn159
– volume: 9
  start-page: 475
  issue: 5
  year: 2018
  ident: pcbi.1007568.ref026
  article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations
  publication-title: Cell death & disease
  doi: 10.1038/s41419-018-0503-3
– start-page: 1
  issue: 99
  year: 2019
  ident: pcbi.1007568.ref028
  article-title: Computational Prediction of Human Disease-associated circRNAs based on Manifold Regularization Learning Framework
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 4
  start-page: 283
  year: 2013
  ident: pcbi.1007568.ref020
  article-title: Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits
  publication-title: Frontiers in genetics
  doi: 10.3389/fgene.2013.00283
– volume: 39
  start-page: 561
  issue: 4
  year: 1993
  ident: pcbi.1007568.ref032
  article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
  publication-title: Clinical chemistry
  doi: 10.1093/clinchem/39.4.561
– volume: 15
  start-page: e1006865
  issue: 3
  year: 2019
  ident: pcbi.1007568.ref042
  article-title: LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1006865
– volume: 2
  start-page: e639
  issue: 5
  year: 2014
  ident: pcbi.1007568.ref041
  article-title: Associating disease-related genetic variants in intergenic regions to the genes they impact
  publication-title: Peerj
  doi: 10.7717/peerj.639
– volume: 44
  start-page: D209
  issue: D1
  year: 2015
  ident: pcbi.1007568.ref023
  article-title: CircNet: a database of circular RNAs derived from transcriptome sequencing data
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkv940
– volume: 240
  start-page: 1285
  issue: 4857
  year: 1988
  ident: pcbi.1007568.ref033
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 22
  start-page: 256
  issue: 3
  year: 2015
  ident: pcbi.1007568.ref009
  article-title: Exon-intron circular RNAs regulate transcription in the nucleus
  publication-title: Nature structural & molecular biology
  doi: 10.1038/nsmb.2959
– volume: 26
  start-page: 1644
  issue: 13
  year: 2010
  ident: pcbi.1007568.ref044
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 6
  start-page: e1001233
  issue: 12
  year: 2010
  ident: pcbi.1007568.ref016
  article-title: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk
  publication-title: Plos Genetics
  doi: 10.1371/journal.pgen.1001233
– volume: 280
  start-page: 339
  issue: 5720
  year: 1979
  ident: pcbi.1007568.ref005
  article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells
  publication-title: Nature
  doi: 10.1038/280339a0
– volume: 19
  start-page: 520
  issue: 19
  year: 2018
  ident: pcbi.1007568.ref029
  article-title: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-018-2522-6
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: pcbi.1007568.ref034
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern recognition
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 7
  start-page: e30733
  issue: 2
  year: 2012
  ident: pcbi.1007568.ref007
  article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
  publication-title: Plos One
  doi: 10.1371/journal.pone.0030733
– volume: 10
  start-page: 2045
  year: 2017
  ident: pcbi.1007568.ref012
  article-title: Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7
  publication-title: Oncotargets & Therapy
  doi: 10.2147/OTT.S131597
SSID ssj0035896
Score 2.58729
Snippet Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1007568
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Atherosclerosis
Biology and Life Sciences
Breast cancer
Cancer
Case studies
Classifiers
Colorectal cancer
Colorectal carcinoma
Competitiveness
Computational biology
Computer applications
Datasets
Disease
Diseases
Ecology and Environmental Sciences
Engineering and Technology
Experiments
Feature extraction
Genetic aspects
Glioma
Health aspects
Machine learning
Medical treatment
Medicine and Health Sciences
Methods
MicroRNAs
Nervous system
Pathogenesis
Physical Sciences
Research and Analysis Methods
Risk factors
RNA
Similarity
Social Sciences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQJSReEONrHQMZhMRTWOqPpOEtFLaBRB4Gk_oW2Y69VSpJ1bST-O-5i93QoKG98Fpfkvru4vtdfP4dIW-RlIhVxkSQ8cSRmCYy0lU2ibKp1EZLJ4TF887fiuT8Unydy_leqy-sCfP0wF5xJ7DGOgYwkEuuO3K6qZWuSo2EtM451UEjiHm7ZMqvwVxOu85c2BQnSrmYh0NzPJ2cBBu9Xxm96GoEJNKs7gWljru_X6FHq2XT3gY__66i3AtLp4_Iw4Anae7ncUDu2foxue87TP56QpqzWTH7lH-gOQX8TH2_aApAla7WuEWDRc_ULNbmosijsFlD1R-TtRTDXEWbmp4htTWdNfVN8FZ4bOGLyGm-vGrWi831z6fk8vTzj9l5FHosRAYiM3aiz4SqrJHMJFwpqdPYas0dmzgrUi0hT5WQwTkWc5dpnsUxmC-WzJoEUhPH-DMyqpvaHhIKUEtkzFqmTCUyYZREejOrAUNpllVqTPhOyaUJBOTYB2NZdrtqKSQiXmclmqYMphmTqL9q5Qk47pD_iPbrZZE-u_sBnKoMTlXe5VRj8gatXyJBRo0VOFdq27bll-9FmSecZYCCGP-n0MVA6F0Qcg1M1qhw6gFUhsRbA8njgSS85mYwfIieuJtzWzKRxPjPJV65887bh1_3w3hTrKqrbbNFGewLAgAaZJ57Z-71BkCb80TKMUkHbj5Q7HCkXlx3_OQpQxgbH_0PS7wgDxh-4YglrOfHZLRZb-1LgIEb_ap7438DDZRXrQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxPe6DWQQEk9hqT_ywQsKhXYgkYfBpL5FsWN3lbokNC0S_z13iZstaMBrfUmTu7Pvd_bld4S8RlIiVmjtQcbjeyIKpKeKeOLFkVRaSSuEwe-dv6bB6bn4spALt-HWuLLK_ZrYLtRFpXGP_ISJAKIb3IK_r3942DUKT1ddC43b5M4EIg2WdEWz-X4l5jJq-3Nhaxwv5GLhPp3j4eTEWeptrdWqrRSQSLZ6LTS1DP79Oj2q11VzEwj9s5byWnCaPSD3HaqkSecGD8ktUz4id7s-k78ek2o-Tacfk3c0oYCiadc1mgJcpfUGD2qw9Jnq1UafpYnnjmxofmW4hmKwK2hV0jkSXNNpVf50Pgt_m3al5DRZL0Fj24vLJ-R89un79NRznRY8DfEZ-9HHIi-MlkwHPM-lCn2jFLdsYo0IlYRsVUIeZ5nPbax47PtgRF8yowNIUCzjT8morEpzQCgALhEzY1iuCxELnUskOTMKkJRicZGPCd8rOdOOhhy7Yayz9mwthHSk01mGpsmcacbE66-qOxqO_8h_QPv1skii3f5QbZaZm5N4kmcZZBhcctXyHkZG2iLUMoh9a3N41Fdo_QxpMkqsw1nmu6bJPn9LsyTgLAYsxPhfhc4GQm-ckK3gZXXuvn0AlSH91kDyeCAJk10Phg_QE_fv3GRX0wKu3HvnzcMv-2G8KdbWlabaoQx2BwEYDTLPOmfu9QZwm_NAyjEJB24-UOxwpFxdtCzlIUMw6x_--7GOyD2GOxi-hPX6mIy2m515DjBvq160c_k34oxPxw
  priority: 102
  providerName: ProQuest
Title GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/32433655
https://www.proquest.com/docview/2460759853
https://www.proquest.com/docview/2405326103
https://pubmed.ncbi.nlm.nih.gov/PMC7266350
https://doaj.org/article/130f2882353b447598e5fd7c5690ffaa
http://dx.doi.org/10.1371/journal.pcbi.1007568
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvZd_N1gVtDPbk4urDH4MxnLRJN6gZ2QJ5M5Ysp4HMzuxkrP_97mzHm0fK9pJAdHKsu5N155N-P0LeICgRS7S2IOOxLeE50lKJf275nlRayVQIg-edr0PnaiY-zeX8gOw4WxsFlntTO-STmhWrs5_fbz_AhH9fsTa457tOZ2utllXVXzreITmCtclFToNr0dYVuPQqxi4ky7FcLubNYbq7rtJZrCpM__bJ3Vuv8nJfWPr37so_lqvxA3LcxJk0qB3jITkw2SNyr2aevH1M8skoHF0E72hAIa6mNY80hQCWrgss3eBmaKqXhZ6GgdUUcWj825QlxeUvoXlGJwh5TUd59qPxYvjbsN5cToPVIi-Wm5tvT8hsfPl1dGU13AuWhhUbGep9ESdGS6YdHsdSubZRiqfsPDXCVRLyVwmZXcpsnvqK-7YNZrUlM9qBlCVl_CnpZXlmTgiFEEz4zBgW60T4QscSYc-MgthKMT-J-4TvlBzpBpgc-TFWUVVtcyFBqXUWoWmixjR9YrW91jUwxz_kh2i_VhZhtasf8mIRNbMUa3spg5yDS64qJETPyDRxtXR8O01juNXXaP0IgTMy3JmziLdlGX38EkaBw5kP0RHjdwpNO0JvG6E0h8HquDkNASpDQK6O5GlHEqa_7jSfoCfuxlxGTDg23rnEnjvv3N_8qm3Gi-Juu8zkW5RBvhAIrEHmWe3Mrd4gAOfckbJP3I6bdxTbbcmWNxVuucswvLWf__fQX5D7DF9v2BIe5qektym25iXEgBs1IIfu3IVPbzwZkKNgeDEcw_fwMvw8HVTvVQbVxP8FYa9fZQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQQguiHcDBRYE4mTq7MOOkRAyKXnQ1ofSSrm53vU6jRRsEyeg_il-IzN-pDUqcOo1O3bsndmZb7yz3xDyGkmJWKy1BRmPbYm-Iy0Vez3L60ullUyEMHje-TBwxifiy1ROt8iv5iwMllU2PrF01HGm8Rv5LhMORDe4Bf-Yf7ewaxTurjYtNCqz2DfnPyFlKz5M9kC_bxgbfj4ejK26q4ClIRZh73VPRLHRkmmHR5FUrm2U4gnrJUa4SkJmJiFnSZjNE09xz7bhgW3JjHYAjCdIdAAu_4bgEMnxZPpw1Hh-LvtlPzBsxWO5XEzro3rc7e3WlvEu12peViZIJHe9FArLjgGbuNDJF1lxFej9s3bzUjAc3iV3ahRL_crs7pEtk94nN6u-lucPSDYaBIM9_z31KaB2WnWppgCPab7EjSEstaZ6vtRHgW_VW0Q0ujCUgmJwjWmW0hESatNBlv6o1wj8bVCVrlN_MQMNrc6-PSQn16KDR6STZqnZJhQAnvCYMSzSsfCEjiSSqhkFyE0xL466hDeTHOqa9hy7byzCci_PhfSnmrMQVRPWqukSa3NVXtF-_Ef-E-pvI4uk3eUP2XIW1j4Adw4TBhkNl1yVPIt9I5PY1dLx7CSJ4FFfofZDpOVIse5nFq2LIpx8DULf4cwD7MX4X4WOWkJva6Ekg5fVUX3WAqYM6b5akjstSXAuujW8jZbYvHMRXixDuLKxzquHX26G8aZYy5eabI0y2I0EYDvIPK6MeTNvAO85d6TsErdl5q2JbY-k87OSFd1lCJ7tJ_9-rBfk1vj48CA8mAT7T8lthl9PbAmxYod0Vsu1eQYQc6Wel-uaktPrdiS_AYHOi4k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTiBeEL9XGGAQiKfQ1I6TBgmhrF23MoimwqS-ZbHjdJVKUpoWtH-Nv467xOkWNOBpr_UlTXznu-_i83eEvEJSIpYoZUHGY1tOzxWWTPyu5feEVFKkjqPxvPPn0D08cT5OxGSL_KrPwmBZZe0TS0ed5Aq_kXeY40J0g1vwTmrKIo4Hww-L7xZ2kMKd1rqdRmUiR_r8J6RvxfvRAHT9mrHh_tf-oWU6DFgK4hL2YfedONFKMOXyOBbSs7WUPGXdVDueFJClCchfUmbz1Jfct214eFswrVwA5imSHoD73_YwK2qR7b398HhcxwEuemV3MGzMY3ncmZiDe9zrdoydvF0oOSvrFARSvV4KjGX_gE2UaC3meXEVBP6zkvNSaBzeIbcNpqVBZYR3yZbO7pEbVZfL8_skP-iH_UHwjgYUMDytelZTAMt0scRtIiy8pmq2VOMwsMyGEY0vzKagGGoTmmf0AOm1aT_PfpgVA38bVoXsNJhPQUers28PyMm1aOEhaWV5pncIBbjn-ExrFqvE8R0VC6RY0xJwnGR-ErcJryc5UoYEHXtxzKNyZ8-DZKiaswhVExnVtIm1uWpRkYD8R34P9beRRQrv8od8OY2MR8B9xJRBfsMFlyXrYk-LNPGUcH07TWN41Jeo_QhJOjI092m8Lopo9CWMApczH5AY438VGjeE3hihNIeXVbE5eQFThuRfDcndhiS4GtUY3kFLrN-5iC4WJVxZW-fVwy82w3hTrOzLdL5GGexNAiAeZB5VxryZNwD7nLtCtInXMPPGxDZHstlZyZHuMYTS9uN_P9ZzchOcSPRpFB49IbcYfkqxBQSOXdJaLdf6KeDNlXxmFjYlp9ftS34DxuCRGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCNCDA%3A+A+new+method+for+predicting+circRNA-disease+associations+based+on+Graph+Convolutional+Network+Algorithm&rft.jtitle=PLoS+computational+biology&rft.au=Wang%2C+Lei&rft.au=You%2C+Zhu-Hong&rft.au=Li%2C+Yang-Ming&rft.au=Zheng%2C+Kai&rft.date=2020-05-20&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=16&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007568&rft.externalDocID=A632940623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon