IgG subclasses determine pathways of anaphylaxis in mice
Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and IgG2b bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII and FcγRIIB. Although these interacti...
Saved in:
Published in | Journal of allergy and clinical immunology Vol. 139; no. 1; pp. 269 - 280.e7 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2017
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and IgG2b bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis.
We sought to determine which pathways control the induction of IgG1-, IgG2a-, and IgG2b-dependent passive systemic anaphylaxis.
Mice were sensitized with IgG1, IgG2a, or IgG2b anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis.
Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1- and IgG2b-induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis.
We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass–dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo. |
---|---|
AbstractList | Background Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2aand IgG2bbind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis. Objective We sought to determine which pathways control the induction of IgG1-, IgG2a-, and IgG2b-dependent passive systemic anaphylaxis. Methods Mice were sensitized with IgG1, IgG2a, or IgG2banti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis. Results Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1- and IgG2b-induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis. Conclusion We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactionsin vivo. Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and IgG2b bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis.BACKGROUNDAnimal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and IgG2b bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis.We sought to determine which pathways control the induction of IgG1-, IgG2a-, and IgG2b-dependent passive systemic anaphylaxis.OBJECTIVEWe sought to determine which pathways control the induction of IgG1-, IgG2a-, and IgG2b-dependent passive systemic anaphylaxis.Mice were sensitized with IgG1, IgG2a, or IgG2b anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis.METHODSMice were sensitized with IgG1, IgG2a, or IgG2b anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis.Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1- and IgG2b-induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis.RESULTSActivating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1- and IgG2b-induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis.We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo.CONCLUSIONWe propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo. Background Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and IgG2b bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis. Objective We sought to determine which pathways control the induction of IgG1 -, IgG2a -, and IgG2b -dependent passive systemic anaphylaxis. Methods Mice were sensitized with IgG1 , IgG2a , or IgG2b anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis. Results Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1 - and IgG2b -induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis. Conclusion We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass–dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo. Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and IgG2b bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis. We sought to determine which pathways control the induction of IgG1-, IgG2a-, and IgG2b-dependent passive systemic anaphylaxis. Mice were sensitized with IgG1, IgG2a, or IgG2b anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis. Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1- and IgG2b-induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis. We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass–dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo. Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG and IgG bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis. We sought to determine which pathways control the induction of IgG -, IgG -, and IgG -dependent passive systemic anaphylaxis. Mice were sensitized with IgG , IgG , or IgG anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis. Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG - and IgG -induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis. We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo. BACKGROUND:Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and IgG2b bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis.OBJECTIVE:We sought to determine which pathways control the induction of IgG1-, IgG2a-, and IgG2b-dependent passive systemic anaphylaxis.METHODS:Mice were sensitized with IgG1, IgG2a, or IgG2b anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis.RESULTS:Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1- and IgG2b-induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis.CONCLUSION:We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo. Background Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (Fc gamma Rs). Mouse IgG2a and IgG2b bind activating Fc gamma RI, Fc gamma RIII, and Fc gamma RIV and inhibitory Fc gamma RIIB; mouse IgG1 binds only Fc gamma RIII and Fc gamma RIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis. Objective We sought to determine which pathways control the induction of IgG1-, IgG2a-, and IgG2b-dependent passive systemic anaphylaxis. Methods Mice were sensitized with IgG1, IgG2a, or IgG2b anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for Fc gamma Rs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. Fc gamma R expression was evaluated on these cells before and after anaphylaxis. Results Activating Fc gamma RIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1- and IgG2b-induced anaphylaxis correlated with the ability of inhibitory Fc gamma RIIB to negatively regulate these models of anaphylaxis. Conclusion We propose that the differential expression of inhibitory Fc gamma RIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo. |
Author | Cragg, Mark S. Mancardi, David A. Beutier, Héloïse Reber, Laurent L. Jönsson, Friederike Van Rooijen, Nico Gillis, Caitlin M. Sibilano, Riccardo Bruhns, Pierre Iannascoli, Bruno England, Patrick Galli, Stephen J. Godon, Ophélie |
AuthorAffiliation | 3 Université Pierre et Marie Curie, Paris, France 8 Department of Molecular Cell Biology, VU Medical Center, Amsterdam, The Netherlands 1 Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France 5 Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA 7 Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK 2 INSERM, U1222, Paris, France 6 Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA 4 Institut Pasteur, Plate-Forme de Biophysique Moléculaire, Centre d'Innovation et Recherche Technologique (CiTech), CNRS-UMR3528, Paris, France |
AuthorAffiliation_xml | – name: 3 Université Pierre et Marie Curie, Paris, France – name: 4 Institut Pasteur, Plate-Forme de Biophysique Moléculaire, Centre d'Innovation et Recherche Technologique (CiTech), CNRS-UMR3528, Paris, France – name: 6 Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA – name: 2 INSERM, U1222, Paris, France – name: 8 Department of Molecular Cell Biology, VU Medical Center, Amsterdam, The Netherlands – name: 5 Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA – name: 1 Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France – name: 7 Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK |
Author_xml | – sequence: 1 givenname: Héloïse surname: Beutier fullname: Beutier, Héloïse organization: Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France – sequence: 2 givenname: Caitlin M. surname: Gillis fullname: Gillis, Caitlin M. organization: Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France – sequence: 3 givenname: Bruno surname: Iannascoli fullname: Iannascoli, Bruno organization: Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France – sequence: 4 givenname: Ophélie surname: Godon fullname: Godon, Ophélie organization: Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France – sequence: 5 givenname: Patrick surname: England fullname: England, Patrick organization: Institut Pasteur, Plate-Forme de Biophysique Moléculaire, Centre d'Innovation et Recherche Technologique (CiTech), CNRS-UMR3528, Paris, France – sequence: 6 givenname: Riccardo surname: Sibilano fullname: Sibilano, Riccardo organization: Department of Pathology, Stanford University School of Medicine, Stanford, Calif – sequence: 7 givenname: Laurent L. surname: Reber fullname: Reber, Laurent L. organization: Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France – sequence: 8 givenname: Stephen J. surname: Galli fullname: Galli, Stephen J. organization: Department of Pathology, Stanford University School of Medicine, Stanford, Calif – sequence: 9 givenname: Mark S. surname: Cragg fullname: Cragg, Mark S. organization: Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom – sequence: 10 givenname: Nico surname: Van Rooijen fullname: Van Rooijen, Nico organization: Department of Molecular Cell Biology, VU Medical Center, Amsterdam, The Netherlands – sequence: 11 givenname: David A. surname: Mancardi fullname: Mancardi, David A. organization: Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France – sequence: 12 givenname: Pierre surname: Bruhns fullname: Bruhns, Pierre email: bruhns@pasteur.fr organization: Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France – sequence: 13 givenname: Friederike surname: Jönsson fullname: Jönsson, Friederike email: joensson@pasteur.fr organization: Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27246523$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-01388338$$DView record in HAL |
BookMark | eNqNUk1v1DAQtVAR_YA_wAFF4sIly3iSODZClaoK2korcQDOluPMdr1kncVOFvbf42hLgZUonGxr3nszfvNO2ZHvPTH2nMOMAxevV7OVsW6G6T6DYgYoH7ETDqrOhcTqiJ0AKJ6LulTH7DTGFaR3IdUTdow1lqLC4oTJm9urLI6N7UyMFLOWBgpr5ynbmGH5zexi1i8y481muevMdxcz57O1s_SUPV6YLtKzu_OMfX7_7tPldT7_cHVzeTHPrRAw5NQA1Y1FaqWpSsVRWQWNREWlRDCykEY1AGRbFLLkthG1wkXNCXlNEk1xxs73upuxWVNryQ_BdHoT3NqEne6N039WvFvq236rK5AcJSaBfC-wPKBdX8z1xsSBxqCBF1IWhdzyhH911zD0X0eKg167aKnrjKd-jJrLSpWqqqX4DygKoQAREvTlAXTVj8En5yZByUUader94vfP3o_7c18JgHuADX2MgRb3EA56CoVe6SkUegqFhkKnUCSSPCBZN5jB9ZNhrnuY-nZPpbTiraOgo3XkLbUukB1027uH6ecHdNs576zpvtCO4i8LdEQN-uMU2CmvXBTAKznZ9ubvAv_q_gOOg_hn |
CitedBy_id | crossref_primary_10_3389_fimmu_2019_00190 crossref_primary_10_1007_s11882_021_00988_y crossref_primary_10_4168_aard_2022_10_4_195 crossref_primary_10_1016_j_gpb_2019_05_002 crossref_primary_10_1136_jitc_2022_005657 crossref_primary_10_1111_all_15738 crossref_primary_10_1111_obr_13621 crossref_primary_10_1016_j_jaci_2018_09_027 crossref_primary_10_4049_jimmunol_2200234 crossref_primary_10_1007_s12602_024_10386_1 crossref_primary_10_3389_fimmu_2018_01027 crossref_primary_10_3390_vaccines10010133 crossref_primary_10_1016_j_bbrc_2017_12_099 crossref_primary_10_1016_j_jaci_2021_01_009 crossref_primary_10_1208_s12248_020_00461_0 crossref_primary_10_1016_j_jaci_2017_06_003 crossref_primary_10_3389_fimmu_2020_00118 crossref_primary_10_1007_s11095_018_2448_8 crossref_primary_10_3389_fimmu_2020_575936 crossref_primary_10_1111_imm_13081 crossref_primary_10_3389_fimmu_2019_03130 crossref_primary_10_3390_biology12121501 crossref_primary_10_1016_j_jaci_2024_05_012 crossref_primary_10_1016_j_jaip_2019_10_048 crossref_primary_10_3389_falgy_2022_1092262 crossref_primary_10_4168_aair_2025_17_1_60 crossref_primary_10_1038_s41598_021_01395_z crossref_primary_10_4049_jimmunol_2000149 crossref_primary_10_1016_j_jprot_2022_104809 crossref_primary_10_1172_JCI126275 crossref_primary_10_1016_j_jaci_2021_02_013 crossref_primary_10_1016_j_jaci_2020_05_056 crossref_primary_10_1016_j_reval_2018_03_003 crossref_primary_10_1186_s12865_020_00376_7 crossref_primary_10_1016_j_jaci_2024_11_009 crossref_primary_10_3390_ijms22094935 crossref_primary_10_1016_j_jaci_2017_06_012 crossref_primary_10_1016_j_jaci_2022_10_014 crossref_primary_10_1126_scitranslmed_aat1479 crossref_primary_10_1007_s11882_018_0819_1 crossref_primary_10_1080_08820139_2022_2130799 crossref_primary_10_1146_annurev_immunol_071719_094903 crossref_primary_10_3390_vaccines10060969 crossref_primary_10_3389_fimmu_2018_00958 crossref_primary_10_3390_cells12111506 crossref_primary_10_3390_ijms23158234 crossref_primary_10_1016_j_nutres_2017_09_009 crossref_primary_10_3389_fimmu_2018_01244 crossref_primary_10_1016_j_jaci_2017_10_042 crossref_primary_10_3389_fimmu_2017_01193 crossref_primary_10_3390_ijms20194964 crossref_primary_10_1016_j_alit_2017_04_007 crossref_primary_10_1016_j_isci_2021_103131 crossref_primary_10_1097_ACI_0000000000000363 crossref_primary_10_1016_j_jaci_2017_06_021 crossref_primary_10_1016_j_jaci_2022_01_014 crossref_primary_10_1002_eji_202350454 crossref_primary_10_1007_s11882_016_0658_x crossref_primary_10_1002_eji_202249978 crossref_primary_10_2174_1389203723666220620164024 crossref_primary_10_3389_fimmu_2017_00515 crossref_primary_10_3390_cells8060546 crossref_primary_10_1016_j_jaci_2017_03_045 crossref_primary_10_1093_cei_uxae126 crossref_primary_10_1002_iid3_288 crossref_primary_10_1177_1753425920981133 crossref_primary_10_1051_medsci_20183404015 crossref_primary_10_1016_j_jaci_2016_06_058 crossref_primary_10_1128_spectrum_01674_22 crossref_primary_10_3389_fphar_2023_1211332 |
Cites_doi | 10.1172/JCI45232 10.1016/j.jaci.2013.06.008 10.4049/jimmunol.170.5.2549 10.1126/science.1118948 10.1038/nri2762 10.1073/pnas.1105695108 10.1189/jlb.1212623 10.1111/j.1365-2567.2007.02588.x 10.1038/nri3582 10.1172/JCI36452 10.1182/blood-2011-03-343962 10.1038/nri2155 10.1067/mai.2002.125977 10.1016/j.jaci.2013.09.008 10.1016/j.immuni.2005.05.010 10.1084/jem.142.6.1520 10.1016/j.immuni.2008.02.008 10.1016/0022-1759(94)90012-4 10.1159/000229815 10.1182/blood-2008-09-179754 10.1016/j.immuni.2011.11.009 10.1016/j.jaci.2009.11.017 10.3389/fimmu.2012.00016 10.1016/S0014-2999(97)01142-4 10.4049/jimmunol.160.1.20 10.1172/JCI119255 10.4049/jimmunol.1200968 10.1002/eji.201142302 10.1182/blood-2015-09-671339 10.1016/j.jaci.2013.06.015 10.1016/S0952-7915(00)00154-0 10.1016/j.imlet.2012.01.002 10.1002/eji.200939884 10.4049/jimmunol.0902752 10.1016/j.coi.2005.09.012 10.1067/mai.2002.123302 10.1016/j.jaci.2004.12.1125 10.1084/jem.189.10.1573 10.1073/pnas.1014515107 10.1182/blood-2012-07-442541 10.1182/blood-2011-07-367334 10.1182/blood-2012-01-380121 10.1074/jbc.M400808200 10.4049/jimmunol.1003642 10.1016/j.cellimm.2014.03.018 10.1016/j.immuni.2010.08.011 |
ContentType | Journal Article |
Copyright | 2016 American Academy of Allergy, Asthma & Immunology American Academy of Allergy, Asthma & Immunology Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 01, 2017 Copyright |
Copyright_xml | – notice: 2016 American Academy of Allergy, Asthma & Immunology – notice: American Academy of Allergy, Asthma & Immunology – notice: Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 01, 2017 – notice: Copyright |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7T5 H94 K9. NAPCQ 7X8 1XC VOOES 5PM |
DOI | 10.1016/j.jaci.2016.03.028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Immunology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-6825 |
EndPage | 280.e7 |
ExternalDocumentID | PMC5081282 oai_HAL_pasteur_01388338v1 4300731221 27246523 10_1016_j_jaci_2016_03_028 S0091674916301580 1_s2_0_S0091674916301580 |
Genre | Journal Article |
GeographicLocations | California |
GeographicLocations_xml | – name: California |
GrantInformation_xml | – fundername: NIAMS grantid: R01 AR067145 funderid: http://dx.doi.org/10.13039/100000069 – fundername: NIH funderid: http://dx.doi.org/10.13039/100000002 – fundername: Institut Carnot Pasteur Maladies Infectieuses – fundername: Institut Pasteur funderid: http://dx.doi.org/10.13039/501100003762 – fundername: Department of Pathology at Stanford University – fundername: Société Française d'Allergologie – fundername: Balsan company – fundername: Institut National de la Santé et de la Recherche Médicale funderid: http://dx.doi.org/10.13039/501100001677 – fundername: NIAMS NIH HHS grantid: R01 AR067145 |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .XZ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 354 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8F7 8FE 8FH 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV BPHCQ BVXVI C45 CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDU HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B LK8 LUGTX M27 M41 MO0 N4W N9A O-L O9- O9~ OAUVE OBH ODZKP OHH OHT OK0 OK1 OVD OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPCBC SSH SSI SSZ T5K TEORI TWZ UGJ UNMZH UV1 WH7 WOW WUQ X7M XFW YOC YQI YQJ Z5R ZGI ZXP ZY1 ~02 ~G- ~KM AACTN RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7SS 7T5 H94 K9. NAPCQ 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c660t-eb0e7bc2ed8a549129c90b829e4820a838a9b00ecd26841cb6792f71e217e82a3 |
IEDL.DBID | .~1 |
ISSN | 0091-6749 1097-6825 |
IngestDate | Thu Aug 21 14:14:30 EDT 2025 Fri Aug 15 06:21:25 EDT 2025 Fri Jul 11 08:23:37 EDT 2025 Fri Jul 11 05:24:56 EDT 2025 Wed Aug 13 11:28:32 EDT 2025 Mon Jul 21 06:02:50 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Tue Jul 01 00:47:22 EDT 2025 Sun Apr 06 06:53:21 EDT 2025 Wed Apr 02 07:27:50 EDT 2025 Tue Aug 26 16:31:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | histamine RU Gfi1 IgG platelet-activating factor basophil neutrophil mMCP-1 FITC Anaphylaxis KA TNP FcRn KD TRIM21 WT PSA mouse model Koff macrophage Kon IgG Fc receptor PAF monocyte FcγR Fluorescein isothiocyanate Mast cell protease 1 Association rate Neonatal IgG receptor Growth factor independence 1 C57Bl/6 wild-type Dissociation equilibrium constant Trinitrophenyl Tripartite motif-containing protein 21 Affinity constant Resonance units K off K A K D K on Passive systemic anaphylaxis Dissociation rate |
Language | English |
License | Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c660t-eb0e7bc2ed8a549129c90b829e4820a838a9b00ecd26841cb6792f71e217e82a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 co-senior authorship. |
ORCID | 0000-0002-4709-8936 0000-0003-3384-6769 0000-0002-1667-8065 0000-0001-6410-5918 0000-0003-1511-3764 |
OpenAccessLink | https://pasteur.hal.science/pasteur-01388338 |
PMID | 27246523 |
PQID | 1858162821 |
PQPubID | 105664 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5081282 hal_primary_oai_HAL_pasteur_01388338v1 proquest_miscellaneous_1859495786 proquest_miscellaneous_1826690220 proquest_journals_1858162821 pubmed_primary_27246523 crossref_primary_10_1016_j_jaci_2016_03_028 crossref_citationtrail_10_1016_j_jaci_2016_03_028 elsevier_sciencedirect_doi_10_1016_j_jaci_2016_03_028 elsevier_clinicalkeyesjournals_1_s2_0_S0091674916301580 elsevier_clinicalkey_doi_10_1016_j_jaci_2016_03_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: St. Louis |
PublicationTitle | Journal of allergy and clinical immunology |
PublicationTitleAlternate | J Allergy Clin Immunol |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Nimmerjahn, Ravetch (bib13) 2005; 310 Mancardi, Iannascoli, Hoos, England, Daeron, Bruhns (bib16) 2008; 118 Jonsson, Mancardi, Albanesi, Bruhns (bib3) 2013; 94 Makabe-Kobayashi, Hori, Adachi, Ishigaki-Suzuki, Kikuchi, Kagaya (bib35) 2002; 110 Ujike, Ishikawa, Ono, Yuasa, Yoshino, Fukumoto (bib19) 1999; 189 Smith, Clatworthy (bib46) 2010; 10 Jönsson, Mancardi, Kita, Karasuyama, Iannascoli, Van Rooijen (bib18) 2011; 121 Yucel, Kosan, Heyd, Moroy (bib30) 2004; 279 Tsujimura, Obata, Mukai, Shindou, Yoshida, Nishikado (bib20) 2008; 28 Saylor, Dadachova, Casadevall (bib12) 2010; 184 Jiao, Liu, Lu, Liu, Pan, Liu (bib28) 2014; 289 Veri, Gorlatov, Li, Burke, Johnson, Stavenhagen (bib47) 2007; 121 Williams, Tutt, French, Chan, Lau, Penfold (bib27) 2012; 42 Khodoun, Strait, Armstrong, Yanase, Finkelman (bib31) 2011; 108 Bruhns, Fremont, Daëron (bib10) 2005; 17 Unkeless, Eisen (bib15) 1975; 142 Reber, Marichal, Mukai, Kita, Tokuoka, Roers (bib36) 2013; 132 Van Rooijen, Sanders (bib26) 1994; 174 Stone, Prussin, Metcalfe (bib43) 2010; 125 Guilliams, Bruhns, Saeys, Hammad, Lambrecht (bib8) 2014; 14 Gavin, Barnes, Dijstelbloem, Hogarth (bib11) 1998; 160 Wedemeyer, Tsai, Galli (bib38) 2000; 12 Nimmerjahn, Bruhns, Horiuchi, Ravetch (bib14) 2005; 23 Khodoun, Kucuk, Strait, Krishnamurthy, Janek, Clay (bib5) 2013; 132 Roopenian, Akilesh (bib9) 2007; 7 Bruhns, Iannascoli, England, Mancardi, Fernandez, Jorieux (bib48) 2009; 113 Miyajima, Dombrowicz, Martin, Ravetch, Kinet, Galli (bib17) 1997; 99 Finkelman, Rothenberg, Brandt, Morris, Strait (bib2) 2005; 115 Ohnmacht, Schwartz, Panzer, Schiedewitz, Naumann, Voehringer (bib45) 2010; 33 Jonsson, Daeron (bib39) 2012; 3 Strait, Morris, Yang, Qu, Finkelman (bib22) 2002; 109 Biburger, Nimmerjahn (bib29) 2012; 143 Syed, Konrad, Wiege, Nieswandt, Nimmerjahn, Schmidt (bib41) 2009; 39 Biburger, Aschermann, Schwab, Lux, Albert, Danzer (bib34) 2011; 35 Nimmerjahn, Lux, Albert, Woigk, Lehmann, Dudziak (bib42) 2010; 107 Bruhns (bib7) 2012; 119 Camussi, Aglietta, Coda, Bussolino, Piacibello, Tetta (bib37) 1981; 42 Iff, Vaz (bib4) 1966; 30 Brown, Stone, Fatovich, Burrows, Holdgate, Celenza (bib1) 2013; 132 Cassard, Jonsson, Arnaud, Daeron (bib21) 2012; 189 Tan, Gavin, Barnes, Sears, Vremec, Shortman (bib32) 2003; 170 Mancardi, Albanesi, Jonsson, Iannascoli, Van Rooijen, Kang (bib24) 2013; 121 Jonsson, Mancardi, Zhao, Kita, Iannascoli, Khun (bib23) 2012; 119 Mancardi, Jonsson, Iannascoli, Khun, Van Rooijen, Huerre (bib33) 2011; 186 Tipton, Mockridge, French, Tutt, Cragg, Beers (bib40) 2015; 126 Lilla, Chen, Mukai, BenBarak, Franco, Kalesnikoff (bib25) 2011; 118 Million, Fioramonti, Zajac, Bueno (bib6) 1997; 334 Capron (bib44) 1989; 19 Yucel (10.1016/j.jaci.2016.03.028_bib30) 2004; 279 Tipton (10.1016/j.jaci.2016.03.028_bib40) 2015; 126 Stone (10.1016/j.jaci.2016.03.028_bib43) 2010; 125 Khodoun (10.1016/j.jaci.2016.03.028_bib5) 2013; 132 Miyajima (10.1016/j.jaci.2016.03.028_bib17) 1997; 99 Ujike (10.1016/j.jaci.2016.03.028_bib19) 1999; 189 Tsujimura (10.1016/j.jaci.2016.03.028_bib20) 2008; 28 Nimmerjahn (10.1016/j.jaci.2016.03.028_bib13) 2005; 310 Ohnmacht (10.1016/j.jaci.2016.03.028_bib45) 2010; 33 Roopenian (10.1016/j.jaci.2016.03.028_bib9) 2007; 7 Nimmerjahn (10.1016/j.jaci.2016.03.028_bib42) 2010; 107 Mancardi (10.1016/j.jaci.2016.03.028_bib16) 2008; 118 Wedemeyer (10.1016/j.jaci.2016.03.028_bib38) 2000; 12 Jonsson (10.1016/j.jaci.2016.03.028_bib3) 2013; 94 Strait (10.1016/j.jaci.2016.03.028_bib22) 2002; 109 Mancardi (10.1016/j.jaci.2016.03.028_bib33) 2011; 186 Bruhns (10.1016/j.jaci.2016.03.028_bib48) 2009; 113 Capron (10.1016/j.jaci.2016.03.028_bib44) 1989; 19 Finkelman (10.1016/j.jaci.2016.03.028_bib2) 2005; 115 Mancardi (10.1016/j.jaci.2016.03.028_bib24) 2013; 121 Smith (10.1016/j.jaci.2016.03.028_bib46) 2010; 10 Veri (10.1016/j.jaci.2016.03.028_bib47) 2007; 121 Unkeless (10.1016/j.jaci.2016.03.028_bib15) 1975; 142 Bruhns (10.1016/j.jaci.2016.03.028_bib10) 2005; 17 Jiao (10.1016/j.jaci.2016.03.028_bib28) 2014; 289 Cassard (10.1016/j.jaci.2016.03.028_bib21) 2012; 189 Jonsson (10.1016/j.jaci.2016.03.028_bib39) 2012; 3 Iff (10.1016/j.jaci.2016.03.028_bib4) 1966; 30 Bruhns (10.1016/j.jaci.2016.03.028_bib7) 2012; 119 Makabe-Kobayashi (10.1016/j.jaci.2016.03.028_bib35) 2002; 110 Guilliams (10.1016/j.jaci.2016.03.028_bib8) 2014; 14 Lilla (10.1016/j.jaci.2016.03.028_bib25) 2011; 118 Gavin (10.1016/j.jaci.2016.03.028_bib11) 1998; 160 Syed (10.1016/j.jaci.2016.03.028_bib41) 2009; 39 Reber (10.1016/j.jaci.2016.03.028_bib36) 2013; 132 Van Rooijen (10.1016/j.jaci.2016.03.028_bib26) 1994; 174 Million (10.1016/j.jaci.2016.03.028_bib6) 1997; 334 Saylor (10.1016/j.jaci.2016.03.028_bib12) 2010; 184 Khodoun (10.1016/j.jaci.2016.03.028_bib31) 2011; 108 Biburger (10.1016/j.jaci.2016.03.028_bib34) 2011; 35 Jönsson (10.1016/j.jaci.2016.03.028_bib18) 2011; 121 Biburger (10.1016/j.jaci.2016.03.028_bib29) 2012; 143 Brown (10.1016/j.jaci.2016.03.028_bib1) 2013; 132 Camussi (10.1016/j.jaci.2016.03.028_bib37) 1981; 42 Nimmerjahn (10.1016/j.jaci.2016.03.028_bib14) 2005; 23 Jonsson (10.1016/j.jaci.2016.03.028_bib23) 2012; 119 Williams (10.1016/j.jaci.2016.03.028_bib27) 2012; 42 Tan (10.1016/j.jaci.2016.03.028_bib32) 2003; 170 18949059 - J Clin Invest. 2008 Nov;118(11):3738-50 15252036 - J Biol Chem. 2004 Sep 24;279(39):40906-17 23915716 - J Allergy Clin Immunol. 2013 Oct;132(4):881-8.e1-11 20414206 - Nat Rev Immunol. 2010 May;10(5):328-43 6161885 - Immunology. 1981 Feb;42(2):191-9 12170272 - J Allergy Clin Immunol. 2002 Aug;110(2):298-303 17386079 - Immunology. 2007 Jul;121(3):392-404 1194857 - J Exp Med. 1975 Dec 1;142(6):1520-33 16322460 - Science. 2005 Dec 2;310(5753):1510-2 8083541 - J Immunol Methods. 1994 Sep 14;174(1-2):83-93 9346330 - Eur J Pharmacol. 1997 Sep 3;334(1):67-73 22169040 - Immunity. 2011 Dec 23;35(6):932-44 22535666 - Blood. 2012 Jun 14;119(24):5640-9 22566901 - Front Immunol. 2012 Feb 20;3:16 9062348 - J Clin Invest. 1997 Mar 1;99(5):901-14 26492935 - Blood. 2015 Dec 10;126(24):2643-5 19949107 - J Immunol. 2010 Jan 1;184(1):336-43 12594281 - J Immunol. 2003 Mar 1;170(5):2549-56 19795417 - Eur J Immunol. 2009 Dec;39(12):3343-56 11941316 - J Allergy Clin Immunol. 2002 Apr;109(4):658-68 19018092 - Blood. 2009 Apr 16;113(16):3716-25 24445665 - Nat Rev Immunol. 2014 Feb;14(2):94-108 2713741 - Clin Exp Allergy. 1989 Jan;19 Suppl 1:3-8 21248252 - J Immunol. 2011 Feb 15;186(4):1899-903 21436586 - J Clin Invest. 2011 Apr;121(4):1484-96 22285694 - Immunol Lett. 2012 Mar 30;143(1):53-9 16039578 - Immunity. 2005 Jul;23(1):41-51 10330436 - J Exp Med. 1999 May 17;189(10):1573-9 17703228 - Nat Rev Immunol. 2007 Sep;7(9):715-25 23532517 - J Leukoc Biol. 2013 Oct;94(4):643-56 21746933 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12413-8 11102764 - Curr Opin Immunol. 2000 Dec;12(6):624-31 20974962 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19396-401 15753886 - J Allergy Clin Immunol. 2005 Mar;115(3):449-57; quiz 458 22908332 - J Immunol. 2012 Sep 15;189(6):2995-3006 24139828 - J Allergy Clin Immunol. 2013 Dec;132(6):1375-87 16214316 - Curr Opin Immunol. 2005 Dec;17(6):662-9 22138510 - Blood. 2012 Mar 15;119(11):2533-44 23915715 - J Allergy Clin Immunol. 2013 Nov;132(5):1141-1149.e5 20817571 - Immunity. 2010 Sep 24;33(3):364-74 23293080 - Blood. 2013 Feb 28;121(9):1563-73 20176269 - J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S73-80 5927729 - Int Arch Allergy Appl Immunol. 1966;30(4):313-22 18342553 - Immunity. 2008 Apr;28(4):581-9 22001390 - Blood. 2011 Dec 22;118(26):6930-8 24751884 - Cell Immunol. 2014 May-Jun;289(1-2):97-105 22760702 - Eur J Immunol. 2012 Aug;42(8):2109-20 9551950 - J Immunol. 1998 Jan 1;160(1):20-3 |
References_xml | – volume: 132 start-page: 1375 year: 2013 end-page: 1387 ident: bib5 article-title: Rapid desensitization of mice with anti-FcgammaRIIb/FcgammaRIII mAb safely prevents IgG-mediated anaphylaxis publication-title: J Allergy Clin Immunol – volume: 99 start-page: 901 year: 1997 end-page: 914 ident: bib17 article-title: Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis publication-title: J Clin Invest – volume: 174 start-page: 83 year: 1994 end-page: 93 ident: bib26 article-title: Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications publication-title: J Immunol Methods – volume: 310 start-page: 1510 year: 2005 end-page: 1512 ident: bib13 article-title: Divergent immunoglobulin g subclass activity through selective Fc receptor binding publication-title: Science – volume: 170 start-page: 2549 year: 2003 end-page: 2556 ident: bib32 article-title: Unique monoclonal antibodies define expression of Fc gamma RI on macrophages and mast cell lines and demonstrate heterogeneity among subcutaneous and other dendritic cells publication-title: J Immunol – volume: 113 start-page: 3716 year: 2009 end-page: 3725 ident: bib48 article-title: Specificity and affinity of human Fc{gamma} receptors and their polymorphic variants for human IgG subclasses publication-title: Blood – volume: 142 start-page: 1520 year: 1975 end-page: 1533 ident: bib15 article-title: Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages publication-title: J Exp Med – volume: 42 start-page: 191 year: 1981 end-page: 199 ident: bib37 article-title: Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: monocytes, polymorphonuclear neutrophils and basophils publication-title: Immunology – volume: 126 start-page: 2643 year: 2015 end-page: 2645 ident: bib40 article-title: Anti-mouse FcgammaRIV antibody 9E9 also blocks FcgammaRIII in vivo publication-title: Blood – volume: 110 start-page: 298 year: 2002 end-page: 303 ident: bib35 article-title: The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis publication-title: J Allergy Clin Immunol – volume: 184 start-page: 336 year: 2010 end-page: 343 ident: bib12 article-title: Murine IgG1 and IgG3 isotype switch variants promote phagocytosis of publication-title: J Immunol – volume: 125 start-page: S73 year: 2010 end-page: S80 ident: bib43 article-title: IgE, mast cells, basophils, and eosinophils publication-title: J Allergy Clin Immunol – volume: 143 start-page: 53 year: 2012 end-page: 59 ident: bib29 article-title: Low level of FcgammaRIII expression on murine natural killer cells publication-title: Immunol Lett – volume: 160 start-page: 20 year: 1998 end-page: 23 ident: bib11 article-title: Identification of the mouse IgG3 receptor: implications for antibody effector function at the interface between innate and adaptive immunity publication-title: J Immunol – volume: 189 start-page: 2995 year: 2012 end-page: 3006 ident: bib21 article-title: Fcgamma receptors inhibit mouse and human basophil activation publication-title: J Immunol – volume: 94 start-page: 643 year: 2013 end-page: 656 ident: bib3 article-title: Neutrophils in local and systemic antibody-dependent inflammatory and anaphylactic reactions publication-title: J Leukoc Biol – volume: 334 start-page: 67 year: 1997 end-page: 73 ident: bib6 article-title: Effects of neuropeptide FF on intestinal motility and temperature changes induced by endotoxin and platelet-activating factor publication-title: Eur J Pharmacol – volume: 119 start-page: 5640 year: 2012 end-page: 5649 ident: bib7 article-title: Properties of mouse and human IgG receptors and their contribution to disease models publication-title: Blood – volume: 33 start-page: 364 year: 2010 end-page: 374 ident: bib45 article-title: Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths publication-title: Immunity – volume: 118 start-page: 6930 year: 2011 end-page: 6938 ident: bib25 article-title: Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice publication-title: Blood – volume: 115 start-page: 449 year: 2005 end-page: 458 ident: bib2 article-title: Molecular mechanisms of anaphylaxis: lessons from studies with murine models publication-title: J Allergy Clin Immunol – volume: 289 start-page: 97 year: 2014 end-page: 105 ident: bib28 article-title: Macrophages are the dominant effector cells responsible for IgG-mediated passive systemic anaphylaxis challenged by natural protein antigen in BALB/c and C57BL/6 mice publication-title: Cell Immunol – volume: 279 start-page: 40906 year: 2004 end-page: 40917 ident: bib30 article-title: Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development publication-title: J Biol Chem – volume: 107 start-page: 19396 year: 2010 end-page: 19401 ident: bib42 article-title: FcgammaRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo publication-title: Proc Natl Acad Sci U S A – volume: 121 start-page: 1484 year: 2011 end-page: 1496 ident: bib18 article-title: Mouse and human neutrophils induce anaphylaxis publication-title: J Clin Invest – volume: 10 start-page: 328 year: 2010 end-page: 343 ident: bib46 article-title: FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications publication-title: Nat Rev Immunol – volume: 23 start-page: 41 year: 2005 end-page: 51 ident: bib14 article-title: Fc gamma RIV: a novel FcR with distinct IgG subclass specificity publication-title: Immunity – volume: 17 start-page: 662 year: 2005 end-page: 669 ident: bib10 article-title: Regulation of allergy by Fc receptors publication-title: Curr Opin Immunol – volume: 118 start-page: 3738 year: 2008 end-page: 3750 ident: bib16 article-title: FcgammaRIV is a mouse IgE receptor that resembles macrophage FcepsilonRI in humans and promotes IgE-induced lung inflammation publication-title: J Clin Invest – volume: 121 start-page: 1563 year: 2013 end-page: 1573 ident: bib24 article-title: The high-affinity human IgG receptor FcgammaRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy publication-title: Blood – volume: 39 start-page: 3343 year: 2009 end-page: 3356 ident: bib41 article-title: Both FcgammaRIV and FcgammaRIII are essential receptors mediating type II and type III autoimmune responses via FcRgamma-LAT-dependent generation of C5a publication-title: Eur J Immunol – volume: 42 start-page: 2109 year: 2012 end-page: 2120 ident: bib27 article-title: Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcgammaRIIB (CD32B) publication-title: Eur J Immunol – volume: 30 start-page: 313 year: 1966 end-page: 322 ident: bib4 article-title: Mechanisms of anaphylaxis in the mouse. Similarity of shock induced by anaphylaxis and by mixtures of histamine and serotonin publication-title: Int Arch Allergy Appl Immunol – volume: 132 start-page: 881 year: 2013 end-page: 888.e11 ident: bib36 article-title: Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice publication-title: J Allergy Clin Immunol – volume: 119 start-page: 2533 year: 2012 end-page: 2544 ident: bib23 article-title: Human FcgammaRIIA induces anaphylactic and allergic reactions publication-title: Blood – volume: 35 start-page: 932 year: 2011 end-page: 944 ident: bib34 article-title: Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo publication-title: Immunity – volume: 109 start-page: 658 year: 2002 end-page: 668 ident: bib22 article-title: Pathways of anaphylaxis in the mouse publication-title: J Allergy Clin Immunol – volume: 12 start-page: 624 year: 2000 end-page: 631 ident: bib38 article-title: Roles of mast cells and basophils in innate and acquired immunity publication-title: Curr Opin Immunol – volume: 121 start-page: 392 year: 2007 end-page: 404 ident: bib47 article-title: Monoclonal antibodies capable of discriminating the human inhibitory Fcgamma-receptor IIB (CD32B) from the activating Fcgamma-receptor IIA (CD32A): biochemical, biological and functional characterization publication-title: Immunology – volume: 14 start-page: 94 year: 2014 end-page: 108 ident: bib8 article-title: The function of Fcgamma receptors in dendritic cells and macrophages publication-title: Nat Rev Immunol – volume: 19 start-page: 3 year: 1989 end-page: 8 ident: bib44 article-title: Eosinophils: receptors and mediators in hypersensitivity publication-title: Clin Exp Allergy – volume: 108 start-page: 12413 year: 2011 end-page: 12418 ident: bib31 article-title: Identification of markers that distinguish IgE- from IgG-mediated anaphylaxis publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 715 year: 2007 end-page: 725 ident: bib9 article-title: FcRn: the neonatal Fc receptor comes of age publication-title: Nat Rev Immunol – volume: 28 start-page: 581 year: 2008 end-page: 589 ident: bib20 article-title: Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis publication-title: Immunity – volume: 3 start-page: 16 year: 2012 ident: bib39 article-title: Mast cells and company publication-title: Front Immunol – volume: 132 start-page: 1141 year: 2013 end-page: 1149.e5 ident: bib1 article-title: Anaphylaxis: clinical patterns, mediator release, and severity publication-title: J Allergy Clin Immunol – volume: 186 start-page: 1899 year: 2011 end-page: 1903 ident: bib33 article-title: The murine high-affinity IgG receptor Fc(gamma)RIV is sufficient for autoantibody-induced arthritis publication-title: J Immunol – volume: 189 start-page: 1573 year: 1999 end-page: 1579 ident: bib19 article-title: Modulation of immunoglobulin (Ig)E-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG publication-title: J Exp Med – volume: 121 start-page: 1484 year: 2011 ident: 10.1016/j.jaci.2016.03.028_bib18 article-title: Mouse and human neutrophils induce anaphylaxis publication-title: J Clin Invest doi: 10.1172/JCI45232 – volume: 132 start-page: 881 year: 2013 ident: 10.1016/j.jaci.2016.03.028_bib36 article-title: Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2013.06.008 – volume: 170 start-page: 2549 year: 2003 ident: 10.1016/j.jaci.2016.03.028_bib32 article-title: Unique monoclonal antibodies define expression of Fc gamma RI on macrophages and mast cell lines and demonstrate heterogeneity among subcutaneous and other dendritic cells publication-title: J Immunol doi: 10.4049/jimmunol.170.5.2549 – volume: 310 start-page: 1510 year: 2005 ident: 10.1016/j.jaci.2016.03.028_bib13 article-title: Divergent immunoglobulin g subclass activity through selective Fc receptor binding publication-title: Science doi: 10.1126/science.1118948 – volume: 10 start-page: 328 year: 2010 ident: 10.1016/j.jaci.2016.03.028_bib46 article-title: FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications publication-title: Nat Rev Immunol doi: 10.1038/nri2762 – volume: 19 start-page: 3 issue: suppl 1 year: 1989 ident: 10.1016/j.jaci.2016.03.028_bib44 article-title: Eosinophils: receptors and mediators in hypersensitivity publication-title: Clin Exp Allergy – volume: 108 start-page: 12413 year: 2011 ident: 10.1016/j.jaci.2016.03.028_bib31 article-title: Identification of markers that distinguish IgE- from IgG-mediated anaphylaxis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1105695108 – volume: 94 start-page: 643 year: 2013 ident: 10.1016/j.jaci.2016.03.028_bib3 article-title: Neutrophils in local and systemic antibody-dependent inflammatory and anaphylactic reactions publication-title: J Leukoc Biol doi: 10.1189/jlb.1212623 – volume: 121 start-page: 392 year: 2007 ident: 10.1016/j.jaci.2016.03.028_bib47 article-title: Monoclonal antibodies capable of discriminating the human inhibitory Fcgamma-receptor IIB (CD32B) from the activating Fcgamma-receptor IIA (CD32A): biochemical, biological and functional characterization publication-title: Immunology doi: 10.1111/j.1365-2567.2007.02588.x – volume: 14 start-page: 94 year: 2014 ident: 10.1016/j.jaci.2016.03.028_bib8 article-title: The function of Fcgamma receptors in dendritic cells and macrophages publication-title: Nat Rev Immunol doi: 10.1038/nri3582 – volume: 118 start-page: 3738 year: 2008 ident: 10.1016/j.jaci.2016.03.028_bib16 article-title: FcgammaRIV is a mouse IgE receptor that resembles macrophage FcepsilonRI in humans and promotes IgE-induced lung inflammation publication-title: J Clin Invest doi: 10.1172/JCI36452 – volume: 118 start-page: 6930 year: 2011 ident: 10.1016/j.jaci.2016.03.028_bib25 article-title: Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice publication-title: Blood doi: 10.1182/blood-2011-03-343962 – volume: 7 start-page: 715 year: 2007 ident: 10.1016/j.jaci.2016.03.028_bib9 article-title: FcRn: the neonatal Fc receptor comes of age publication-title: Nat Rev Immunol doi: 10.1038/nri2155 – volume: 110 start-page: 298 year: 2002 ident: 10.1016/j.jaci.2016.03.028_bib35 article-title: The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis publication-title: J Allergy Clin Immunol doi: 10.1067/mai.2002.125977 – volume: 132 start-page: 1375 year: 2013 ident: 10.1016/j.jaci.2016.03.028_bib5 article-title: Rapid desensitization of mice with anti-FcgammaRIIb/FcgammaRIII mAb safely prevents IgG-mediated anaphylaxis publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2013.09.008 – volume: 23 start-page: 41 year: 2005 ident: 10.1016/j.jaci.2016.03.028_bib14 article-title: Fc gamma RIV: a novel FcR with distinct IgG subclass specificity publication-title: Immunity doi: 10.1016/j.immuni.2005.05.010 – volume: 142 start-page: 1520 year: 1975 ident: 10.1016/j.jaci.2016.03.028_bib15 article-title: Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages publication-title: J Exp Med doi: 10.1084/jem.142.6.1520 – volume: 28 start-page: 581 year: 2008 ident: 10.1016/j.jaci.2016.03.028_bib20 article-title: Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis publication-title: Immunity doi: 10.1016/j.immuni.2008.02.008 – volume: 174 start-page: 83 year: 1994 ident: 10.1016/j.jaci.2016.03.028_bib26 article-title: Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications publication-title: J Immunol Methods doi: 10.1016/0022-1759(94)90012-4 – volume: 30 start-page: 313 year: 1966 ident: 10.1016/j.jaci.2016.03.028_bib4 article-title: Mechanisms of anaphylaxis in the mouse. Similarity of shock induced by anaphylaxis and by mixtures of histamine and serotonin publication-title: Int Arch Allergy Appl Immunol doi: 10.1159/000229815 – volume: 113 start-page: 3716 year: 2009 ident: 10.1016/j.jaci.2016.03.028_bib48 article-title: Specificity and affinity of human Fc{gamma} receptors and their polymorphic variants for human IgG subclasses publication-title: Blood doi: 10.1182/blood-2008-09-179754 – volume: 35 start-page: 932 year: 2011 ident: 10.1016/j.jaci.2016.03.028_bib34 article-title: Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo publication-title: Immunity doi: 10.1016/j.immuni.2011.11.009 – volume: 125 start-page: S73 year: 2010 ident: 10.1016/j.jaci.2016.03.028_bib43 article-title: IgE, mast cells, basophils, and eosinophils publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2009.11.017 – volume: 42 start-page: 191 year: 1981 ident: 10.1016/j.jaci.2016.03.028_bib37 article-title: Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: monocytes, polymorphonuclear neutrophils and basophils publication-title: Immunology – volume: 3 start-page: 16 year: 2012 ident: 10.1016/j.jaci.2016.03.028_bib39 article-title: Mast cells and company publication-title: Front Immunol doi: 10.3389/fimmu.2012.00016 – volume: 334 start-page: 67 year: 1997 ident: 10.1016/j.jaci.2016.03.028_bib6 article-title: Effects of neuropeptide FF on intestinal motility and temperature changes induced by endotoxin and platelet-activating factor publication-title: Eur J Pharmacol doi: 10.1016/S0014-2999(97)01142-4 – volume: 160 start-page: 20 year: 1998 ident: 10.1016/j.jaci.2016.03.028_bib11 article-title: Identification of the mouse IgG3 receptor: implications for antibody effector function at the interface between innate and adaptive immunity publication-title: J Immunol doi: 10.4049/jimmunol.160.1.20 – volume: 99 start-page: 901 year: 1997 ident: 10.1016/j.jaci.2016.03.028_bib17 article-title: Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis publication-title: J Clin Invest doi: 10.1172/JCI119255 – volume: 189 start-page: 2995 year: 2012 ident: 10.1016/j.jaci.2016.03.028_bib21 article-title: Fcgamma receptors inhibit mouse and human basophil activation publication-title: J Immunol doi: 10.4049/jimmunol.1200968 – volume: 42 start-page: 2109 year: 2012 ident: 10.1016/j.jaci.2016.03.028_bib27 article-title: Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcgammaRIIB (CD32B) publication-title: Eur J Immunol doi: 10.1002/eji.201142302 – volume: 126 start-page: 2643 year: 2015 ident: 10.1016/j.jaci.2016.03.028_bib40 article-title: Anti-mouse FcgammaRIV antibody 9E9 also blocks FcgammaRIII in vivo publication-title: Blood doi: 10.1182/blood-2015-09-671339 – volume: 132 start-page: 1141 year: 2013 ident: 10.1016/j.jaci.2016.03.028_bib1 article-title: Anaphylaxis: clinical patterns, mediator release, and severity publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2013.06.015 – volume: 12 start-page: 624 year: 2000 ident: 10.1016/j.jaci.2016.03.028_bib38 article-title: Roles of mast cells and basophils in innate and acquired immunity publication-title: Curr Opin Immunol doi: 10.1016/S0952-7915(00)00154-0 – volume: 143 start-page: 53 year: 2012 ident: 10.1016/j.jaci.2016.03.028_bib29 article-title: Low level of FcgammaRIII expression on murine natural killer cells publication-title: Immunol Lett doi: 10.1016/j.imlet.2012.01.002 – volume: 39 start-page: 3343 year: 2009 ident: 10.1016/j.jaci.2016.03.028_bib41 article-title: Both FcgammaRIV and FcgammaRIII are essential receptors mediating type II and type III autoimmune responses via FcRgamma-LAT-dependent generation of C5a publication-title: Eur J Immunol doi: 10.1002/eji.200939884 – volume: 184 start-page: 336 year: 2010 ident: 10.1016/j.jaci.2016.03.028_bib12 article-title: Murine IgG1 and IgG3 isotype switch variants promote phagocytosis of Cryptococcus neoformans through different receptors publication-title: J Immunol doi: 10.4049/jimmunol.0902752 – volume: 17 start-page: 662 year: 2005 ident: 10.1016/j.jaci.2016.03.028_bib10 article-title: Regulation of allergy by Fc receptors publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2005.09.012 – volume: 109 start-page: 658 year: 2002 ident: 10.1016/j.jaci.2016.03.028_bib22 article-title: Pathways of anaphylaxis in the mouse publication-title: J Allergy Clin Immunol doi: 10.1067/mai.2002.123302 – volume: 115 start-page: 449 year: 2005 ident: 10.1016/j.jaci.2016.03.028_bib2 article-title: Molecular mechanisms of anaphylaxis: lessons from studies with murine models publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2004.12.1125 – volume: 189 start-page: 1573 year: 1999 ident: 10.1016/j.jaci.2016.03.028_bib19 article-title: Modulation of immunoglobulin (Ig)E-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG publication-title: J Exp Med doi: 10.1084/jem.189.10.1573 – volume: 107 start-page: 19396 year: 2010 ident: 10.1016/j.jaci.2016.03.028_bib42 article-title: FcgammaRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1014515107 – volume: 121 start-page: 1563 year: 2013 ident: 10.1016/j.jaci.2016.03.028_bib24 article-title: The high-affinity human IgG receptor FcgammaRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy publication-title: Blood doi: 10.1182/blood-2012-07-442541 – volume: 119 start-page: 2533 year: 2012 ident: 10.1016/j.jaci.2016.03.028_bib23 article-title: Human FcgammaRIIA induces anaphylactic and allergic reactions publication-title: Blood doi: 10.1182/blood-2011-07-367334 – volume: 119 start-page: 5640 year: 2012 ident: 10.1016/j.jaci.2016.03.028_bib7 article-title: Properties of mouse and human IgG receptors and their contribution to disease models publication-title: Blood doi: 10.1182/blood-2012-01-380121 – volume: 279 start-page: 40906 year: 2004 ident: 10.1016/j.jaci.2016.03.028_bib30 article-title: Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development publication-title: J Biol Chem doi: 10.1074/jbc.M400808200 – volume: 186 start-page: 1899 year: 2011 ident: 10.1016/j.jaci.2016.03.028_bib33 article-title: The murine high-affinity IgG receptor Fc(gamma)RIV is sufficient for autoantibody-induced arthritis publication-title: J Immunol doi: 10.4049/jimmunol.1003642 – volume: 289 start-page: 97 year: 2014 ident: 10.1016/j.jaci.2016.03.028_bib28 article-title: Macrophages are the dominant effector cells responsible for IgG-mediated passive systemic anaphylaxis challenged by natural protein antigen in BALB/c and C57BL/6 mice publication-title: Cell Immunol doi: 10.1016/j.cellimm.2014.03.018 – volume: 33 start-page: 364 year: 2010 ident: 10.1016/j.jaci.2016.03.028_bib45 article-title: Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths publication-title: Immunity doi: 10.1016/j.immuni.2010.08.011 – reference: 23532517 - J Leukoc Biol. 2013 Oct;94(4):643-56 – reference: 17386079 - Immunology. 2007 Jul;121(3):392-404 – reference: 24139828 - J Allergy Clin Immunol. 2013 Dec;132(6):1375-87 – reference: 12170272 - J Allergy Clin Immunol. 2002 Aug;110(2):298-303 – reference: 21436586 - J Clin Invest. 2011 Apr;121(4):1484-96 – reference: 17703228 - Nat Rev Immunol. 2007 Sep;7(9):715-25 – reference: 20176269 - J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S73-80 – reference: 19949107 - J Immunol. 2010 Jan 1;184(1):336-43 – reference: 20974962 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19396-401 – reference: 10330436 - J Exp Med. 1999 May 17;189(10):1573-9 – reference: 16039578 - Immunity. 2005 Jul;23(1):41-51 – reference: 11102764 - Curr Opin Immunol. 2000 Dec;12(6):624-31 – reference: 18342553 - Immunity. 2008 Apr;28(4):581-9 – reference: 11941316 - J Allergy Clin Immunol. 2002 Apr;109(4):658-68 – reference: 19018092 - Blood. 2009 Apr 16;113(16):3716-25 – reference: 20414206 - Nat Rev Immunol. 2010 May;10(5):328-43 – reference: 22001390 - Blood. 2011 Dec 22;118(26):6930-8 – reference: 9551950 - J Immunol. 1998 Jan 1;160(1):20-3 – reference: 1194857 - J Exp Med. 1975 Dec 1;142(6):1520-33 – reference: 22908332 - J Immunol. 2012 Sep 15;189(6):2995-3006 – reference: 22760702 - Eur J Immunol. 2012 Aug;42(8):2109-20 – reference: 15753886 - J Allergy Clin Immunol. 2005 Mar;115(3):449-57; quiz 458 – reference: 18949059 - J Clin Invest. 2008 Nov;118(11):3738-50 – reference: 22535666 - Blood. 2012 Jun 14;119(24):5640-9 – reference: 16322460 - Science. 2005 Dec 2;310(5753):1510-2 – reference: 24751884 - Cell Immunol. 2014 May-Jun;289(1-2):97-105 – reference: 19795417 - Eur J Immunol. 2009 Dec;39(12):3343-56 – reference: 15252036 - J Biol Chem. 2004 Sep 24;279(39):40906-17 – reference: 2713741 - Clin Exp Allergy. 1989 Jan;19 Suppl 1:3-8 – reference: 5927729 - Int Arch Allergy Appl Immunol. 1966;30(4):313-22 – reference: 26492935 - Blood. 2015 Dec 10;126(24):2643-5 – reference: 24445665 - Nat Rev Immunol. 2014 Feb;14(2):94-108 – reference: 21248252 - J Immunol. 2011 Feb 15;186(4):1899-903 – reference: 23915716 - J Allergy Clin Immunol. 2013 Oct;132(4):881-8.e1-11 – reference: 9062348 - J Clin Invest. 1997 Mar 1;99(5):901-14 – reference: 21746933 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12413-8 – reference: 22566901 - Front Immunol. 2012 Feb 20;3:16 – reference: 22169040 - Immunity. 2011 Dec 23;35(6):932-44 – reference: 8083541 - J Immunol Methods. 1994 Sep 14;174(1-2):83-93 – reference: 23293080 - Blood. 2013 Feb 28;121(9):1563-73 – reference: 9346330 - Eur J Pharmacol. 1997 Sep 3;334(1):67-73 – reference: 16214316 - Curr Opin Immunol. 2005 Dec;17(6):662-9 – reference: 20817571 - Immunity. 2010 Sep 24;33(3):364-74 – reference: 23915715 - J Allergy Clin Immunol. 2013 Nov;132(5):1141-1149.e5 – reference: 12594281 - J Immunol. 2003 Mar 1;170(5):2549-56 – reference: 6161885 - Immunology. 1981 Feb;42(2):191-9 – reference: 22138510 - Blood. 2012 Mar 15;119(11):2533-44 – reference: 22285694 - Immunol Lett. 2012 Mar 30;143(1):53-9 |
SSID | ssj0009389 |
Score | 2.4824233 |
Snippet | Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and... Background Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs).... Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG and... Background Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (Fc gamma... BACKGROUND:Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs).... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 269 |
SubjectTerms | Allergies Allergy and Immunology Anaphylaxis Anaphylaxis - immunology Animals Antibodies, Monoclonal - immunology basophil Colleges & universities Female Haptens - immunology histamine Histamine - immunology Human subjects IgG IgG Fc receptor Immunoglobulin E - immunology Immunoglobulin G - immunology Immunoglobulins Immunology Life Sciences macrophage Mice, Inbred C57BL Mice, Transgenic monocyte mouse model Myeloid Cells - immunology neutrophil Neutrophils platelet-activating factor Protein Subunits - immunology Receptors, IgG - genetics Receptors, IgG - immunology Rodents Serum Albumin, Bovine - immunology |
Title | IgG subclasses determine pathways of anaphylaxis in mice |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0091674916301580 https://www.clinicalkey.es/playcontent/1-s2.0-S0091674916301580 https://dx.doi.org/10.1016/j.jaci.2016.03.028 https://www.ncbi.nlm.nih.gov/pubmed/27246523 https://www.proquest.com/docview/1858162821 https://www.proquest.com/docview/1826690220 https://www.proquest.com/docview/1859495786 https://pasteur.hal.science/pasteur-01388338 https://pubmed.ncbi.nlm.nih.gov/PMC5081282 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIiEuiG9SSmUkxAWFJnYS28dVRdkC7YlKvVlO4tBUVXbV7Ba48NuZSZy021aLxGUPsa31TmbGb9ZvZgDe5U45XZU6RLQqwgRDndCKrAqpP2VZcqXyLkns8CibHidfTtKTDdgbcmGIVul9f-_TO2_tn-x6ae7O65pyfDVR6PEDlTRVFLcniSQt__jniuahheohsI5Dmu0TZ3qO15ktaqJ3ZV2hU-rIfvfhdO-UWJK3IehNJuW1o2n_MTzymJJN-m0_gQ3XPIUHh_7W_Bmogx-fWbvMC0LKrmWlp8A4Rv2If9rfLZtVzDZUuvrc_qpbVjeM2tQ_h-P9T9_3pqHvmBAWWRYtQpdHTuYFd6WyGPjhWV7oKFdcuwRPequEslQD0RUlFXmJizyTmlcydhiYOMWteAGbzaxxr4BhZMMtxjaVRamVCCO51JI7WVrJqzS2AcSDqEzhy4lTV4tzM_DGzgyJ15B4TSQMijeAD-OaeV9MY-1sMbwBM6SJomMz6OvXrpJ3rXKtt83WxKblJjK39CeAdFy5ooL__Mb3qB7jD6J63dPJNzO3aKbLC0NXwUoIdRkHsD1okLnajUpVnGHgi8Nvx2G0cbq4sY2bLWkOwihNOdHr5qQag12psgBe9ko5bolLnmRohiibFXVd2fPqSFOfdrXGEb8jguFb_ymb1_CQEw7q_rPahs3FxdK9QRS3yHc6M92B-5ODr9Ojv34gQ54 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoldpeUN8NhdaVql6qlMRO_DgiVLq0u5xA4mY5iQNBKLsiu4Ve-ts7kzihC2gr9bKH2NZ6JzPjb9bfzBDyMXPK6bLQIaBVHiYQ6oSWizLE_pRFwZTK2iSxyaEYHSffT9KTNbLX58IgrdL7_s6nt97aP9nx0tyZVRXm-Gqk0MMHKGmqIG5_mID5YhuDL79veB6aqw4D6zjE6T5zpiN5ndu8Qn6XaCudYkv2-0-nB2dIk7yLQW9TKf86m_afkg0PKulut-9nZM3Vz8mjib82f0HUwek32iyyHKGya2jhOTCOYkPiK_urodOS2hprV1_Y66qhVU2xT_1Lcrz_9WhvFPqWCWEuRDQPXRY5meXMFcpC5AeHea6jTDHtEjjqreLKYhFElxdY5SXOMyE1K2XsIDJxiln-iqzX09q9IRRCG2YhuCktSK0AHMmklszJwkpWprENSNyLyuS-nji2tbgwPXHs3KB4DYrXRNyAeAPyeVgz66pprJzN-zdg-jxR8GwGnP3KVfK-Va7xxtmY2DTMROaOAgUkHVYu6eA_v_ETqMfwg7Bg92h3bGYW7HRxafAuWHGufsYB2eo1yNzsRqUqFhD5wvCHYRiMHG9ubO2mC5wDOEpjUvSqOamGaFcqEZDXnVIOW2KSJQLsEGSzpK5Le14eqauzttg4AHiAMGzzP2XznjweHU3GZnxw-OMtecIQFLV_YG2R9fnlwm0DpJtn71qT_QOAR0Us |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IgG+subclasses+determine+pathways+of+anaphylaxis+in+mice&rft.jtitle=Journal+of+allergy+and+clinical+immunology&rft.au=Beutier%2C+H%C3%A9lo%C3%AFse&rft.au=Gillis%2C+Caitlin+M&rft.au=Iannascoli%2C+Bruno&rft.au=Godon%2C+Oph%C3%A9lie&rft.date=2017-01-01&rft.pub=Elsevier+Limited&rft.issn=0091-6749&rft.eissn=1097-6825&rft.volume=139&rft.issue=1&rft.spage=269&rft_id=info:doi/10.1016%2Fj.jaci.2016.03.028&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4300731221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-6749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-6749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-6749&client=summon |