Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe

Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 6; no. 1; pp. 170 - 13
Main Authors Xun, Weibing, Yan, Ruirui, Ren, Yi, Jin, Dongyan, Xiong, Wu, Zhang, Guishan, Cui, Zhongli, Xin, Xiaoping, Zhang, Ruifu
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.09.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity. Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems.
AbstractList Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial [alpha]-diversity was observed under light grazing intensity, while the highest [beta]-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with [alpha]-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial [alpha]-diversity rather than SOC turnover rate can predict soil productivity. Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial [alpha]-diversity in steering the functions of meadow steppe ecosystems.
Abstract Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. Results The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity. Conclusions Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems.
Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. Results The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity. Conclusions Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems.
Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity.BACKGROUNDGrazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity.The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity.RESULTSThe results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity.Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems.CONCLUSIONSOur findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems.
Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. Results The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial [alpha]-diversity was observed under light grazing intensity, while the highest [beta]-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with [alpha]-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial [alpha]-diversity rather than SOC turnover rate can predict soil productivity. Conclusions Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial [alpha]-diversity in steering the functions of meadow steppe ecosystems. Keywords: Temperate meadow steppe, Cattle grazing, Microbial composition, Soil incubation, SOC-decomposition enzymatic activity, Soil productivity
Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity. Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems.
ArticleNumber 170
Audience Academic
Author Jin, Dongyan
Zhang, Guishan
Yan, Ruirui
Xiong, Wu
Ren, Yi
Xin, Xiaoping
Cui, Zhongli
Xun, Weibing
Zhang, Ruifu
Author_xml – sequence: 1
  givenname: Weibing
  surname: Xun
  fullname: Xun, Weibing
– sequence: 2
  givenname: Ruirui
  surname: Yan
  fullname: Yan, Ruirui
– sequence: 3
  givenname: Yi
  surname: Ren
  fullname: Ren, Yi
– sequence: 4
  givenname: Dongyan
  surname: Jin
  fullname: Jin, Dongyan
– sequence: 5
  givenname: Wu
  surname: Xiong
  fullname: Xiong, Wu
– sequence: 6
  givenname: Guishan
  surname: Zhang
  fullname: Zhang, Guishan
– sequence: 7
  givenname: Zhongli
  surname: Cui
  fullname: Cui, Zhongli
– sequence: 8
  givenname: Xiaoping
  surname: Xin
  fullname: Xin, Xiaoping
– sequence: 9
  givenname: Ruifu
  surname: Zhang
  fullname: Zhang, Ruifu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30236158$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1v0zAYhSM0xMbYD-AGWeJmXGTYie3YN0jTNEalSUh8XFuu7RSXxC62U-h-PW_XMdYJYSuK5TznxDk5z6uDEIOrqpcEnxEi-NtMMeGixgQuRmm9eVIdNZjKuuFEHDxYH1YnOS8xDEloR8Wz6rDFTcsJE0fV96ukb3xY1D7YyTiLRm9SnPs4OqSH4pIuPoaMbPJrh3L0A4ppoYM3yOg0jwGVKYW4dgnpYNEqRbApfu3LBvmARqdt_IlycauVe1E97fWQ3cnd_bj6-v7yy8WH-vrj1ezi_Lo2nONSW2YY5sJw3M2FdswI0RkitemxYB3TFGtspG113_cC04ZL3FGKLWEd71or2uNqtvO1US_VKvlRp42K2qvbDTi_0ql4MzhlXQNO2DqGe2osl5LzVgrKWU-pbBx4vdt5rab56KxxoSQ97JnuPwn-m1rEteKESkgcDE7vDFL8Mblc1OizccOgg4tTVg2BQQWXDNDXj9BlhHAhKqCapqGiI-1faqHhA3zoI7zXbE3VOWOMYCm6bQZn_6BgWgd_GJrUe9jfE7zZEwBT3K-y0FPOavb50z776mEo92n8qRUAZAdAl3JOrr9HCFbb9qpdexW0V23bqzag6R5pjC-37YOT--E_yt8jAfJo
CitedBy_id crossref_primary_10_1016_j_agee_2023_108541
crossref_primary_10_3389_fpls_2022_847680
crossref_primary_10_1016_j_geoderma_2023_116598
crossref_primary_10_1016_j_watres_2022_118520
crossref_primary_10_1128_AEM_00180_20
crossref_primary_10_3390_d14080674
crossref_primary_10_1111_1365_2435_13926
crossref_primary_10_1038_s41467_022_31936_7
crossref_primary_10_1016_j_geoderma_2022_116111
crossref_primary_10_1016_j_scitotenv_2023_163416
crossref_primary_10_1016_j_soilbio_2024_109508
crossref_primary_10_1007_s42729_022_00819_7
crossref_primary_10_3389_ffunb_2022_886685
crossref_primary_10_1016_j_soilbio_2025_109743
crossref_primary_10_1016_j_agee_2024_109190
crossref_primary_10_1139_cjfr_2023_0191
crossref_primary_10_1016_j_jhazmat_2023_132646
crossref_primary_10_1016_j_apsoil_2024_105650
crossref_primary_10_1093_femsec_fiab148
crossref_primary_10_1016_j_scitotenv_2023_169353
crossref_primary_10_1016_j_scitotenv_2024_172787
crossref_primary_10_1016_j_jenvman_2024_120430
crossref_primary_10_1007_s11104_021_04901_4
crossref_primary_10_1016_j_ecolind_2022_108686
crossref_primary_10_1016_j_still_2024_106414
crossref_primary_10_1002_ldr_4939
crossref_primary_10_3390_rs14061521
crossref_primary_10_1002_ldr_4652
crossref_primary_10_1021_envhealth_4c00138
crossref_primary_10_1002_ldr_4534
crossref_primary_10_1016_j_gecco_2021_e01872
crossref_primary_10_1016_j_apsoil_2021_104032
crossref_primary_10_1016_j_catena_2023_107306
crossref_primary_10_1134_S1064229322601652
crossref_primary_10_3390_land12081517
crossref_primary_10_1016_j_jclepro_2023_138068
crossref_primary_10_1094_PDIS_03_20_0683_RE
crossref_primary_10_3390_plants11162121
crossref_primary_10_1360_TB_2024_0330
crossref_primary_10_1002_ldr_4526
crossref_primary_10_1016_j_apsoil_2023_104932
crossref_primary_10_1079_cabireviews202217032
crossref_primary_10_1016_j_jenvman_2023_119078
crossref_primary_10_1186_s13213_021_01633_9
crossref_primary_10_1016_j_scitotenv_2023_165814
crossref_primary_10_1007_s11104_021_05096_4
crossref_primary_10_1016_j_soilbio_2021_108273
crossref_primary_10_1002_ldr_5059
crossref_primary_10_1186_s13717_024_00510_y
crossref_primary_10_1016_j_ejsobi_2022_103404
crossref_primary_10_1016_j_scitotenv_2022_156238
crossref_primary_10_3389_fpls_2022_864085
crossref_primary_10_1016_j_apsoil_2021_104160
crossref_primary_10_1007_s00248_024_02414_y
crossref_primary_10_1038_s41467_023_40184_2
crossref_primary_10_1111_1462_2920_15683
crossref_primary_10_1016_j_envres_2024_118126
crossref_primary_10_1016_j_micres_2022_127161
crossref_primary_10_3390_su14137910
crossref_primary_10_1016_j_apsoil_2022_104502
crossref_primary_10_1016_j_micres_2025_128078
crossref_primary_10_1016_j_soilbio_2022_108629
crossref_primary_10_3390_su11195226
crossref_primary_10_1099_mic_0_001517
crossref_primary_10_7717_peerj_12176
crossref_primary_10_1016_j_scib_2021_04_019
crossref_primary_10_7717_peerj_18433
crossref_primary_10_1002_ldr_4110
crossref_primary_10_1016_j_micres_2024_127763
crossref_primary_10_31857_S0032180X22600755
crossref_primary_10_1016_j_jenvman_2022_115919
crossref_primary_10_1007_s42729_022_00844_6
crossref_primary_10_1029_2020GB006559
crossref_primary_10_3389_fpls_2022_1040377
crossref_primary_10_1016_j_apsoil_2022_104590
crossref_primary_10_1016_j_scitotenv_2021_145594
crossref_primary_10_1007_s11104_023_06015_5
crossref_primary_10_1016_j_marenvres_2023_106122
crossref_primary_10_1016_j_apsoil_2024_105722
crossref_primary_10_1016_j_geoderma_2021_115460
crossref_primary_10_1016_j_jaridenv_2024_105197
crossref_primary_10_1016_j_still_2021_105112
crossref_primary_10_1016_j_jes_2021_09_023
crossref_primary_10_1016_j_scitotenv_2022_158397
crossref_primary_10_3389_fenvs_2023_1170507
crossref_primary_10_1002_ldr_3893
crossref_primary_10_1038_s41598_021_81120_y
crossref_primary_10_3390_plants13040520
crossref_primary_10_3390_d13020084
crossref_primary_10_1007_s11368_022_03313_w
crossref_primary_10_1186_s40168_023_01513_1
crossref_primary_10_1186_s12866_024_03611_y
crossref_primary_10_3389_fmicb_2024_1505916
crossref_primary_10_7717_peerj_11184
crossref_primary_10_1016_j_agee_2021_107387
crossref_primary_10_1016_j_apsoil_2024_105458
crossref_primary_10_3389_fmicb_2022_1027097
crossref_primary_10_3390_applbiosci3040031
crossref_primary_10_1016_j_soilbio_2024_109659
crossref_primary_10_1016_j_jenvman_2022_115859
crossref_primary_10_1007_s11104_022_05313_8
crossref_primary_10_1371_journal_pone_0231840
crossref_primary_10_3390_rs13040656
crossref_primary_10_1016_j_catena_2025_108714
crossref_primary_10_1016_j_gecco_2025_e03456
crossref_primary_10_3390_agriculture13010218
crossref_primary_10_1016_j_gecco_2023_e02641
crossref_primary_10_1016_j_cosust_2020_09_005
crossref_primary_10_1016_j_apsoil_2023_105161
crossref_primary_10_1016_j_funeco_2024_101332
crossref_primary_10_3390_f14122292
crossref_primary_10_1016_j_rcar_2024_09_001
crossref_primary_10_1016_j_catena_2021_105961
crossref_primary_10_3390_agriculture12070961
crossref_primary_10_1111_ejss_13195
crossref_primary_10_1016_j_catena_2024_107907
crossref_primary_10_1186_s40168_020_00985_9
crossref_primary_10_3389_fenvs_2023_1128187
crossref_primary_10_3389_fmicb_2024_1461821
crossref_primary_10_1007_s10980_021_01273_z
crossref_primary_10_1016_j_apsoil_2024_105827
crossref_primary_10_1016_j_scitotenv_2023_163835
crossref_primary_10_3390_microorganisms13010138
crossref_primary_10_1002_ldr_4289
crossref_primary_10_1016_j_gloplacha_2023_104323
crossref_primary_10_3390_agronomy13030708
crossref_primary_10_1016_j_foreco_2020_118603
crossref_primary_10_1016_j_jenvman_2022_114576
crossref_primary_10_1016_j_apsoil_2021_104362
crossref_primary_10_1016_j_envres_2024_120373
crossref_primary_10_3389_fmicb_2024_1290849
crossref_primary_10_3390_jof9101016
crossref_primary_10_3389_fpls_2021_640789
crossref_primary_10_1016_j_agee_2024_109367
crossref_primary_10_1016_j_apsoil_2022_104385
crossref_primary_10_1016_j_envres_2024_120402
crossref_primary_10_1016_j_horiz_2024_100115
crossref_primary_10_3389_fmicb_2023_1327056
crossref_primary_10_1016_j_apsoil_2024_105316
crossref_primary_10_1128_aem_00425_24
crossref_primary_10_1016_j_apsoil_2023_104845
crossref_primary_10_3390_agronomy13112817
crossref_primary_10_1007_s11104_023_06290_2
crossref_primary_10_1016_j_scitotenv_2024_177293
crossref_primary_10_1021_acs_est_4c01692
crossref_primary_10_1016_j_jhazmat_2022_128280
crossref_primary_10_1016_j_catena_2025_108737
crossref_primary_10_1016_j_scitotenv_2022_158222
crossref_primary_10_1128_AEM_01201_21
crossref_primary_10_1016_j_ecolind_2023_110801
crossref_primary_10_1002_ldr_4030
crossref_primary_10_1007_s11104_022_05409_1
crossref_primary_10_1007_s11104_024_06571_4
crossref_primary_10_1002_ldr_4032
crossref_primary_10_3390_agronomy15010124
Cites_doi 10.1111/j.1462-2920.2012.02738.x
10.1890/14-0743.1
10.1126/science.1060391
10.1016/j.soilbio.2009.12.008
10.1007/s11284-007-0390-z
10.1111/j.1365-2745.2009.01549.x
10.1002/ecy.1879
10.1016/j.soilbio.2010.11.018
10.1016/j.soilbio.2015.07.018
10.1016/j.soilbio.2016.12.024
10.1016/0038-0717(94)00241-R
10.1016/j.soilbio.2015.01.009
10.1007/s11104-010-0460-9
10.1111/gcb.12144
10.1038/nmeth.2604
10.2307/1943563
10.1007/s00442-016-3587-4
10.1038/nature13604
10.1038/nature12670
10.1016/j.soilbio.2010.05.007
10.1038/ismej.2009.97
10.1038/ismej.2010.58
10.1016/j.soilbio.2015.08.010
10.1073/pnas.1508382112
10.1111/1462-2920.13614
10.1111/j.1461-0248.2007.01058.x
10.1073/pnas.1502956112
10.1111/gcb.12065
10.2136/sssaj2007.0038
10.1016/0038-0717(91)90165-G
10.1038/ismej.2013.91
10.1111/nph.13111
10.1111/1462-2920.13098
10.1016/0038-0717(88)90141-1
10.4141/cjps2011-147
10.1111/1365-2745.12014
10.1073/pnas.1308149110
10.1111/ele.12722
10.1111/j.1461-0248.2009.01317.x
10.1038/nature09492
10.1007/s003740050446
10.1111/j.1574-6976.2012.00343.x
10.1007/s10705-009-9314-3
10.1111/j.1461-0248.2007.01139.x
10.1007/s11069-016-2592-6
10.1002/ecy.1456
10.1111/j.1461-0248.2010.01486.x
10.1111/j.1462-2920.2011.02480.x
10.1038/nature08931
10.1038/ismej.2009.16
10.1038/ismej.2007.109
10.1111/ele.12056
10.1073/pnas.1220608110
10.1002/ldr.2668
10.1111/nph.14499
10.1111/1462-2920.12539
10.1073/pnas.0507535103
10.1126/science.1204498
10.1007/s10533-017-0342-9
10.1006/jare.1999.0577
10.1038/nature13855
10.1034/j.1600-0587.2001.240103.x
10.1016/j.geoderma.2016.01.039
10.1038/ncomms13630
10.1016/j.soilbio.2017.06.022
10.1038/ismej.2013.146
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
NPM
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40168-018-0544-y
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 13
ExternalDocumentID oai_doaj_org_article_de29d30de50f4cd69966398465f4492e
PMC6149009
A555109878
30236158
10_1186_s40168_018_0544_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
Inner Mongolia China
GeographicLocations_xml – name: Inner Mongolia China
– name: China
GrantInformation_xml – fundername: ;
  grantid: 41601252
– fundername: ;
  grantid: 2016YFC0500601
– fundername: ;
  grantid: 41471093
– fundername: ;
  grantid: 2016M601833 & 2017T100379
– fundername: ;
  grantid: CARS-34
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
-A0
3V.
ACRMQ
ADINQ
C24
NPM
PMFND
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c660t-d5c5068c607b8ae5c887c19acf08575a40a0c9d3afff80426907440d157673d83
IEDL.DBID M48
ISSN 2049-2618
IngestDate Wed Aug 27 01:26:52 EDT 2025
Thu Aug 21 13:46:28 EDT 2025
Fri Jul 11 12:08:26 EDT 2025
Fri Jul 25 12:08:28 EDT 2025
Tue Jun 17 21:43:36 EDT 2025
Tue Jun 10 20:49:52 EDT 2025
Fri Jun 27 04:34:52 EDT 2025
Wed Feb 19 02:36:24 EST 2025
Tue Jul 01 04:16:35 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cattle grazing
SOC-decomposition enzymatic activity
Temperate meadow steppe
Soil productivity
Soil incubation
Microbial composition
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c660t-d5c5068c607b8ae5c887c19acf08575a40a0c9d3afff80426907440d157673d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-018-0544-y
PMID 30236158
PQID 2122248713
PQPubID 2040205
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_de29d30de50f4cd69966398465f4492e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6149009
proquest_miscellaneous_2111148695
proquest_journals_2122248713
gale_infotracmisc_A555109878
gale_infotracacademiconefile_A555109878
gale_incontextgauss_ISR_A555109878
pubmed_primary_30236158
crossref_primary_10_1186_s40168_018_0544_y
crossref_citationtrail_10_1186_s40168_018_0544_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-20
PublicationDateYYYYMMDD 2018-09-20
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References JB Grace (544_CR6) 2007; 10
Y Li (544_CR64) 2017; 107
RD Bardgett (544_CR10) 2014; 515
MGA Van Der Heijden (544_CR68) 2008; 11
MG Manzano (544_CR40) 2000; 44
MS Strickland (544_CR59) 2010; 42
F Eivazi (544_CR34) 1988; 20
P Millard (544_CR56) 2010; 88
BJ Cardinale (544_CR9) 2009; 12
M Tolkkinen (544_CR41) 2015; 96
RC Edgar (544_CR35) 2013; 10
LJ Ingram (544_CR30) 2008; 72
N Fierer (544_CR52) 2006; 103
Y Miao (544_CR60) 2017; 19
Y Yang (544_CR18) 2014; 8
B Wolf (544_CR23) 2010; 464
CE Nelson (544_CR46) 2012; 14
544_CR53
W Xun (544_CR33) 2015; 90
F Rineau (544_CR12) 2013; 7
O Dilly (544_CR62) 1998; 27
P Andrés (544_CR20) 2017; 113
LK Kirkman (544_CR7) 2016; 97
KM Keiblinger (544_CR65) 2010; 73
J Olofsson (544_CR29) 2001; 24
ME McSherry (544_CR57) 2013; 19
MS McElroy (544_CR67) 2012; 92
SG Schwabedissen (544_CR21) 2017; 134
W Xun (544_CR61) 2016; 18
X Le Roux (544_CR24) 2008; 2
DJ Eldridge (544_CR16) 2017; 98
Y Yang (544_CR22) 2013; 19
BS Griffiths (544_CR66) 2013; 37
C Roscher (544_CR8) 2016; 181
V Tardy (544_CR26) 2015; 90
T Osono (544_CR42) 2007; 22
LA Turnbull (544_CR4) 2013; 16
DJ Eldridge (544_CR2) 2017; 28
M Herrero (544_CR1) 2013; 110
TW Crowther (544_CR38) 2015; 112
RI Griffiths (544_CR50) 2011; 13
K Karhu (544_CR51) 2014; 513
PB Adler (544_CR5) 2011; 333
YS Olsen (544_CR28) 2011; 43
RH Whittaker (544_CR48) 1960; 30
RZ Abramoff (544_CR14) 2015; 205
K Grahammer (544_CR55) 1991; 23
JW Leff (544_CR45) 2015; 112
R Yan (544_CR31) 2010; 3
544_CR37
C Scherber (544_CR15) 2010; 468
CA Macdonald (544_CR44) 2015; 17
LC Cline (544_CR49) 2017; 20
DG Wright (544_CR27) 2010; 42
M Hamady (544_CR36) 2010; 4
M Delgado-Baquerizo (544_CR11) 2013; 502
D Tilman (544_CR3) 2001; 294
K Cruz-Martínez (544_CR17) 2009; 3
Y Zhao (544_CR54) 2011; 340
K Klumpp (544_CR47) 2009; 97
K Grigulis (544_CR69) 2013; 101
JL Rodrigues (544_CR32) 2013; 110
S Bagchi (544_CR39) 2010; 13
J Rousk (544_CR19) 2010; 4
YM Lozano (544_CR13) 2017; 216
RD Lovell (544_CR25) 1995; 27
CM Kallenbach (544_CR58) 2016; 7
Y Guo (544_CR43) 2016; 269
J Liu (544_CR63) 2015; 83
References_xml – volume: 14
  start-page: 1500
  year: 2012
  ident: 544_CR46
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2012.02738.x
– volume: 96
  start-page: 672
  year: 2015
  ident: 544_CR41
  publication-title: Ecology
  doi: 10.1890/14-0743.1
– volume: 294
  start-page: 843
  year: 2001
  ident: 544_CR3
  publication-title: Science
  doi: 10.1126/science.1060391
– volume: 42
  start-page: 592
  year: 2010
  ident: 544_CR27
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.12.008
– volume: 3
  start-page: 61
  year: 2010
  ident: 544_CR31
  publication-title: Chin J Grassl
– volume: 22
  start-page: 955
  year: 2007
  ident: 544_CR42
  publication-title: Ecol Res
  doi: 10.1007/s11284-007-0390-z
– volume: 97
  start-page: 876
  year: 2009
  ident: 544_CR47
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2009.01549.x
– volume: 98
  start-page: 1922
  year: 2017
  ident: 544_CR16
  publication-title: Ecology
  doi: 10.1002/ecy.1879
– volume: 43
  start-page: 531
  year: 2011
  ident: 544_CR28
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.11.018
– volume: 90
  start-page: 10
  year: 2015
  ident: 544_CR33
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.07.018
– volume: 107
  start-page: 19
  year: 2017
  ident: 544_CR64
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.12.024
– volume: 73
  start-page: 430
  year: 2010
  ident: 544_CR65
  publication-title: FEMS Microbiol Ecol
– volume: 27
  start-page: 969
  year: 1995
  ident: 544_CR25
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(94)00241-R
– volume: 83
  start-page: 29
  year: 2015
  ident: 544_CR63
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.01.009
– volume: 340
  start-page: 89
  year: 2011
  ident: 544_CR54
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0460-9
– volume: 19
  start-page: 1347
  year: 2013
  ident: 544_CR57
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.12144
– volume: 10
  start-page: 996
  year: 2013
  ident: 544_CR35
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2604
– volume: 30
  start-page: 279
  year: 1960
  ident: 544_CR48
  publication-title: Ecol Monogr
  doi: 10.2307/1943563
– volume: 181
  start-page: 571
  year: 2016
  ident: 544_CR8
  publication-title: Oecologia
  doi: 10.1007/s00442-016-3587-4
– volume: 513
  start-page: 81
  year: 2014
  ident: 544_CR51
  publication-title: Nature
  doi: 10.1038/nature13604
– volume: 502
  start-page: 672
  year: 2013
  ident: 544_CR11
  publication-title: Nature
  doi: 10.1038/nature12670
– volume: 42
  start-page: 1385
  year: 2010
  ident: 544_CR59
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.05.007
– volume: 4
  start-page: 17
  year: 2010
  ident: 544_CR36
  publication-title: ISME J
  doi: 10.1038/ismej.2009.97
– volume: 4
  start-page: 1340
  year: 2010
  ident: 544_CR19
  publication-title: ISME J
  doi: 10.1038/ismej.2010.58
– volume: 90
  start-page: 204
  year: 2015
  ident: 544_CR26
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.08.010
– volume: 112
  start-page: 10967
  year: 2015
  ident: 544_CR45
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1508382112
– volume: 19
  start-page: 1054
  year: 2017
  ident: 544_CR60
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13614
– volume: 10
  start-page: 680
  year: 2007
  ident: 544_CR6
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2007.01058.x
– volume: 112
  start-page: 7033
  year: 2015
  ident: 544_CR38
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1502956112
– volume: 19
  start-page: 637
  year: 2013
  ident: 544_CR22
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.12065
– volume: 72
  start-page: 939
  year: 2008
  ident: 544_CR30
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2007.0038
– volume: 23
  start-page: 77
  year: 1991
  ident: 544_CR55
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(91)90165-G
– volume: 7
  start-page: 2010
  year: 2013
  ident: 544_CR12
  publication-title: ISME J
  doi: 10.1038/ismej.2013.91
– volume: 205
  start-page: 1054
  year: 2015
  ident: 544_CR14
  publication-title: New Phytol
  doi: 10.1111/nph.13111
– volume: 18
  start-page: 1907
  year: 2016
  ident: 544_CR61
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13098
– volume: 20
  start-page: 601
  year: 1988
  ident: 544_CR34
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(88)90141-1
– volume: 92
  start-page: 687
  year: 2012
  ident: 544_CR67
  publication-title: Can J Plant Sci
  doi: 10.4141/cjps2011-147
– volume: 101
  start-page: 47
  year: 2013
  ident: 544_CR69
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12014
– volume: 110
  start-page: 20888
  year: 2013
  ident: 544_CR1
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1308149110
– volume: 20
  start-page: 202
  year: 2017
  ident: 544_CR49
  publication-title: Ecol Lett
  doi: 10.1111/ele.12722
– volume: 12
  start-page: 475
  year: 2009
  ident: 544_CR9
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2009.01317.x
– volume: 468
  start-page: 553
  year: 2010
  ident: 544_CR15
  publication-title: Nature
  doi: 10.1038/nature09492
– volume: 27
  start-page: 374
  year: 1998
  ident: 544_CR62
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740050446
– volume: 37
  start-page: 112
  year: 2013
  ident: 544_CR66
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2012.00343.x
– volume: 88
  start-page: 147
  year: 2010
  ident: 544_CR56
  publication-title: Nutr Cycl Agroecosystems
  doi: 10.1007/s10705-009-9314-3
– volume: 11
  start-page: 296
  year: 2008
  ident: 544_CR68
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: 544_CR53
  doi: 10.1007/s11069-016-2592-6
– volume: 97
  start-page: 2259
  year: 2016
  ident: 544_CR7
  publication-title: Ecology
  doi: 10.1002/ecy.1456
– volume: 13
  start-page: 959
  year: 2010
  ident: 544_CR39
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2010.01486.x
– volume: 13
  start-page: 1642
  year: 2011
  ident: 544_CR50
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2011.02480.x
– volume: 464
  start-page: 881
  year: 2010
  ident: 544_CR23
  publication-title: Nature
  doi: 10.1038/nature08931
– volume: 3
  start-page: 738
  year: 2009
  ident: 544_CR17
  publication-title: ISME J
  doi: 10.1038/ismej.2009.16
– volume: 2
  start-page: 221
  year: 2008
  ident: 544_CR24
  publication-title: ISME J
  doi: 10.1038/ismej.2007.109
– volume: 16
  start-page: 116
  year: 2013
  ident: 544_CR4
  publication-title: Ecol Lett
  doi: 10.1111/ele.12056
– volume: 110
  start-page: 988
  year: 2013
  ident: 544_CR32
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1220608110
– volume: 28
  start-page: 1473
  year: 2017
  ident: 544_CR2
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.2668
– volume: 216
  start-page: 1236
  year: 2017
  ident: 544_CR13
  publication-title: New Phytol
  doi: 10.1111/nph.14499
– volume: 17
  start-page: 841
  year: 2015
  ident: 544_CR44
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12539
– volume: 103
  start-page: 626
  year: 2006
  ident: 544_CR52
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0507535103
– ident: 544_CR37
– volume: 333
  start-page: 1750
  year: 2011
  ident: 544_CR5
  publication-title: Science
  doi: 10.1126/science.1204498
– volume: 134
  start-page: 57
  year: 2017
  ident: 544_CR21
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0342-9
– volume: 44
  start-page: 1
  year: 2000
  ident: 544_CR40
  publication-title: J Arid Environ
  doi: 10.1006/jare.1999.0577
– volume: 515
  start-page: 505
  year: 2014
  ident: 544_CR10
  publication-title: Nature
  doi: 10.1038/nature13855
– volume: 24
  start-page: 13
  year: 2001
  ident: 544_CR29
  publication-title: Ecography
  doi: 10.1034/j.1600-0587.2001.240103.x
– volume: 269
  start-page: 79
  year: 2016
  ident: 544_CR43
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.01.039
– volume: 7
  start-page: 13630
  year: 2016
  ident: 544_CR58
  publication-title: Nat Commun
  doi: 10.1038/ncomms13630
– volume: 113
  start-page: 263
  year: 2017
  ident: 544_CR20
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.06.022
– volume: 8
  start-page: 430
  year: 2014
  ident: 544_CR18
  publication-title: ISME J
  doi: 10.1038/ismej.2013.146
SSID ssj0000914748
Score 2.5359082
Snippet Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities,...
Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground...
Abstract Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 170
SubjectTerms Bacteria
Biodiversity
Biogeography
Carbon
Cattle grazing
Community composition
Decomposition
Ecosystems
Environmental aspects
Food webs
Fungi
Genetic aspects
Grasslands
Grazing
Microbial composition
Microbiomes
Microbiota (Symbiotic organisms)
Organic carbon
Organic soils
Productivity
Respiration
RNA sequencing
Seasonal variations
SOC-decomposition enzymatic activity
Soil fertility
Soil incubation
Soil microbiology
Soil microorganisms
Soil productivity
Steppes
Studies
Temperate meadow steppe
Vegetation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fixMxEA5yIPgi_nb1TqIIgrBctptkk8dTPE8ffFAP7i1kk-xZ7pot3Rbpf38zyV7pIuiLD-1DMyndmcnMfLvTbwh5Cym7ssorADmiLbmCt1bh3Sbra-Y5MnCmBtlv8uycf70QF3ujvrAnLNMDZ8Ud-zDTuC0I1nHnJdbntYasKTrO9Sxg9IWctwemUgzWFW-4Gh9jVkoeDwAkJPZtwUtwXm4niSjx9f8ZlffS0rRlci8HnT4g98fikZ7kH_2Q3AnxEbmbx0luH5Orzyski74sAWeDxTxdzDPN0iLQ9FQ8352jfgUhjg79_JrmoU6OOrtq-0gh_0Ts6aQ2errMZLBpugSdR7oAd-h_U3CL5TI8Ieenn35-PCvHYQqlk5KtSy-cYFI5yZpW2SAcRBdXaeu6NKTTcmaZA03brusUAitEzZz5CgBJU3tVPyUHsY_hOaGztlIt6L7S3kE662ynZdBOQinJZMvagrBbzRo3Mo3jwItrkxCHkiYbw4AxDBrDbAvyfrdlmWk2_ib8Ac21E0SG7PQB6MyMfmP-5TcFeYPGNsiBEbHJ5tJuhsF8-fHdnAgoI5lWjSrIu1Go6-EKnB3_swB6QNqsieThRBIOqZsu3_qUGYPEYKBqgAIKEGtdkNe7ZdyJjW8x9BuUqRCxSi0K8iy74O66cd4TFKTw5c3EOSeKma7E-a9EIQ5FmYZD8uJ_aPIluTdLx0pDyD0kB-vVJhxBpbZuX6VDeQNUnjmI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgCIkL4pvAQAYhISFFcxrbsU9oIMbgwAGY1Jvl2M5WsSalaYX63_Oe44ZFSDu0h_qlSvy-n19-j5A34LILq7yCJEfUOVfwVSusNllfMs8RgTM2yH6Tp2f861zMU8GtT22Ve5sYDbXvHNbIj8DEgreB8L58v_qd49QoPF1NIzRuklsIXYZSXc2rscYCvpBXXKXDzELJox7SCYndW_ARnOe7iTuKqP3_2-YrzmnaOHnFE53cI3dTCEmPB57fJzdC-4DcHoZK7h6SX5_XCBl9nkO2DXzzdLkYwJaWgcaz8aFGR_0aDB3tu8UlHUY7Oersuu5aCl6oxc5OaltPVwMkbJwxQRctXYJQdH8oCMdqFR6Rs5NPPz-e5mmkQu6kZJvcCyeYVE6yqlY2CAc2xhXauiaO6rScWea0L23TNArTK8ydOfMFpCVV6VX5mBy0XRueEjqrC1VzDRbPO3BqjW20DNpJCCiZrFmdEbbfWeMS3jiOvbg0Me9Q0gzMMMAMg8wwu4y8Gy9ZDWAb1xF_QHaNhIiTHX-APTNJ7YwPM41CFwRruPMSs7tSQ8wlGg73HjLyGpltEAmjxVabc7vte_Plx3dzLCCYZFpVKiNvE1HTwRM4m95cgH1A8KwJ5eGEElTVTZf3MmWSqejNP8HOyKtxGa_E9rc2dFukKTBvlVpk5MkgguNz49QnCEvhz6uJcE42ZrrSLi4ikDiEZhqU5Nn1t_Wc3JlFhdFgUg_JwWa9DS8gEtvUL6O6_QVNXjFm
  priority: 102
  providerName: ProQuest
Title Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe
URI https://www.ncbi.nlm.nih.gov/pubmed/30236158
https://www.proquest.com/docview/2122248713
https://www.proquest.com/docview/2111148695
https://pubmed.ncbi.nlm.nih.gov/PMC6149009
https://doaj.org/article/de29d30de50f4cd69966398465f4492e
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_3geCL-H3Vc4kiCEI13aZp8iByJ_eh4CGnC_sW0iQ9F3fbdbuL7n_vTNpdrniID9uHzbRsMjOZ-aWz8yPkJYTsxEgnAeRkRcwlXAqJp03Gpcxx7MAZCmQvxPmIfxpn4x2yobfqFrC5Edohn9RoMX3z--f6PTj8u-DwUrxtACMILMmCT8Z5vN4l-xCYciQ0-Nxl-2FjVgnPA5_WEPLiGLCD7N5z3viUXqQKDf3_3ravxa1-TeW1IHV6l9zpskt61JrDPbLjq_vkVss3uX5AfpwtsJv0VQxAHFTq6GzS9mGaeRpem7fHd9QtYA-kTT2Z0pb1yVJrFkVdUQhQFRZ9UlM5Om-7xQb6CTqp6Azspf5FwW7mc_-QjE5Pvn04jzu2hdgKwZaxy2zGhLSC5YU0PrOw_dhEGVsGFk_DmWFWudSUZSkReSGs5swlgFjy1Mn0Edmr6sofEDosEllwBZuhsxDvSlMq4ZUVkGsyUbAiImyzstp2rciREWOqAySRQrfK0KAMjcrQ64i83t4yb_tw_Ev4GNW1FcQW2uELWDPdeaR2fqjQHn3GSm6dQOCXKkjHspLDb_cReYHK1tgko8IqnCuzahr98eulPsogz2RK5jIirzqhsoYZWNP9qQHWAftq9SQPe5LgxbY_vLEpvXECDWkFZFgAadOIPN8O451YGVf5eoUyCUJaobKIPG5NcDtvJISCjBUenveMs7cw_ZFq8j30GIesTYHDPPnv-T0lt4fBd8Cx2CHZWy5W_hnka8tiQHbzcT4g-8cnF18uB-HUA65n42QQ_PMPcCM_IQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgJKSozsZx7ANC5VG2tPQArbQ349hOWdFNls2uqv1T_EZmnOzSCKm3HpJDPIkSz-ObsSczhLwEyE6MdBKCnKyIuYRTIXG1ybiUOY4VOEOC7KEYHvMvo2y0Qf6s_oXBtMqVTQyG2tUW18i3wcQC2oB7n76b_o6xaxTurq5aaLRise-XZxCyNW_3PgJ_Xw0Gu5-OPgzjrqtAbIVg89hlNmNCWsHyQhqfWVAzmyhjy9Ct0nBmmFUuNWVZSowwMHzkzCXgmeepkyk89wq5CsDLMNjLR_l6TQewl-dcdpuniRTbDYQvArPF4Mg4j5c9-AtdAv7HgnNg2E_UPId8u7fIzc5lpTutjN0mG766Q661TSyXd8mvzzMsUX0SQ3QPcuLoZNwWd5p4Gvbi2zVB6mZgWGlTj09p20rKUmtmRV1RQL0KM0mpqRydtiVoQ08LOq7oBISwPqMgjNOpv0eOL2Wy75PNqq78Q0IHRSILrsDCOgsgWppSCa-sAAeWiYIVEWGrmdW2q2-ObTZOdYhzpNAtMzQwQyMz9DIib9a3TNviHhcRv0d2rQmxLne4AHOmOzXXzg8UCrnPWMmtExhNpgp8vKzk8O4-Ii-Q2Rorb1SY2nNiFk2j975_0zsZOK9MyVxG5HVHVNbwBdZ0f0rAPGCxrh7lVo8STIPtD69kSnemqdH_FCkiz9fDeCem21W-XiBNgnGyUFlEHrQiuP5u7DIFbjA8PO8JZ29i-iPV-GcoXA6uoAIleXTxaz0j14dHXw_0wd7h_mNyYxCUR4E53yKb89nCPwEvcF48DapHyY_L1vW_lHdtAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grazing-induced+microbiome+alterations+drive+soil+organic+carbon+turnover+and+productivity+in+meadow+steppe&rft.jtitle=Microbiome&rft.au=Xun%2C+Weibing&rft.au=Yan%2C+Ruirui&rft.au=Ren%2C+Yi&rft.au=Jin%2C+Dongyan&rft.date=2018-09-20&rft.pub=BioMed+Central+Ltd&rft.issn=2049-2618&rft.eissn=2049-2618&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs40168-018-0544-y&rft.externalDocID=A555109878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon