Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe
Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing...
Saved in:
Published in | Microbiome Vol. 6; no. 1; pp. 170 - 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
20.09.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity.
The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity.
Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems. |
---|---|
AbstractList | Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial [alpha]-diversity was observed under light grazing intensity, while the highest [beta]-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with [alpha]-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial [alpha]-diversity rather than SOC turnover rate can predict soil productivity. Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial [alpha]-diversity in steering the functions of meadow steppe ecosystems. Abstract Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. Results The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity. Conclusions Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems. Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. Results The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity. Conclusions Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems. Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity.BACKGROUNDGrazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity.The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity.RESULTSThe results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity.Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems.CONCLUSIONSOur findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems. Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. Results The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial [alpha]-diversity was observed under light grazing intensity, while the highest [beta]-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with [alpha]-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial [alpha]-diversity rather than SOC turnover rate can predict soil productivity. Conclusions Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial [alpha]-diversity in steering the functions of meadow steppe ecosystems. Keywords: Temperate meadow steppe, Cattle grazing, Microbial composition, Soil incubation, SOC-decomposition enzymatic activity, Soil productivity Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities, processes, and soil productivity is limited. Here, using a long-term enclosed grazing meadow steppe, we investigated the impacts of grazing on the soil organic carbon (SOC) turnover, the microbial community composition, resistance and activity under seasonal changes, and the microbial contributions to soil productivity. The results demonstrated that grazing had significant impacts on soil microbial communities and ecosystem functions in meadow steppe. The highest microbial α-diversity was observed under light grazing intensity, while the highest β-diversity was observed under moderate grazing intensity. Grazing shifted the microbial composition from fungi dominated to bacteria dominated and from slow growing to fast growing, thereby resulting in a shift from fungi-dominated food webs primarily utilizing recalcitrant SOC to bacteria-dominated food webs mainly utilizing labile SOC. Moreover, the higher fungal recalcitrant-SOC-decomposing activities and bacterial labile-SOC-decomposing activities were observed in fungi- and bacteria-dominated communities, respectively. Notably, the robustness of bacterial community and the stability of bacterial activity were associated with α-diversity, while this was not the case for the robustness of fungal community and its associated activities. Finally, we observed that microbial α-diversity rather than SOC turnover rate can predict soil productivity. Our findings indicate the strong influence of grazing on soil microbial community, SOC turnover, and soil productivity and the important positive role of soil microbial α-diversity in steering the functions of meadow steppe ecosystems. |
ArticleNumber | 170 |
Audience | Academic |
Author | Jin, Dongyan Zhang, Guishan Yan, Ruirui Xiong, Wu Ren, Yi Xin, Xiaoping Cui, Zhongli Xun, Weibing Zhang, Ruifu |
Author_xml | – sequence: 1 givenname: Weibing surname: Xun fullname: Xun, Weibing – sequence: 2 givenname: Ruirui surname: Yan fullname: Yan, Ruirui – sequence: 3 givenname: Yi surname: Ren fullname: Ren, Yi – sequence: 4 givenname: Dongyan surname: Jin fullname: Jin, Dongyan – sequence: 5 givenname: Wu surname: Xiong fullname: Xiong, Wu – sequence: 6 givenname: Guishan surname: Zhang fullname: Zhang, Guishan – sequence: 7 givenname: Zhongli surname: Cui fullname: Cui, Zhongli – sequence: 8 givenname: Xiaoping surname: Xin fullname: Xin, Xiaoping – sequence: 9 givenname: Ruifu surname: Zhang fullname: Zhang, Ruifu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30236158$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1v0zAYhSM0xMbYD-AGWeJmXGTYie3YN0jTNEalSUh8XFuu7RSXxC62U-h-PW_XMdYJYSuK5TznxDk5z6uDEIOrqpcEnxEi-NtMMeGixgQuRmm9eVIdNZjKuuFEHDxYH1YnOS8xDEloR8Wz6rDFTcsJE0fV96ukb3xY1D7YyTiLRm9SnPs4OqSH4pIuPoaMbPJrh3L0A4ppoYM3yOg0jwGVKYW4dgnpYNEqRbApfu3LBvmARqdt_IlycauVe1E97fWQ3cnd_bj6-v7yy8WH-vrj1ezi_Lo2nONSW2YY5sJw3M2FdswI0RkitemxYB3TFGtspG113_cC04ZL3FGKLWEd71or2uNqtvO1US_VKvlRp42K2qvbDTi_0ql4MzhlXQNO2DqGe2osl5LzVgrKWU-pbBx4vdt5rab56KxxoSQ97JnuPwn-m1rEteKESkgcDE7vDFL8Mblc1OizccOgg4tTVg2BQQWXDNDXj9BlhHAhKqCapqGiI-1faqHhA3zoI7zXbE3VOWOMYCm6bQZn_6BgWgd_GJrUe9jfE7zZEwBT3K-y0FPOavb50z776mEo92n8qRUAZAdAl3JOrr9HCFbb9qpdexW0V23bqzag6R5pjC-37YOT--E_yt8jAfJo |
CitedBy_id | crossref_primary_10_1016_j_agee_2023_108541 crossref_primary_10_3389_fpls_2022_847680 crossref_primary_10_1016_j_geoderma_2023_116598 crossref_primary_10_1016_j_watres_2022_118520 crossref_primary_10_1128_AEM_00180_20 crossref_primary_10_3390_d14080674 crossref_primary_10_1111_1365_2435_13926 crossref_primary_10_1038_s41467_022_31936_7 crossref_primary_10_1016_j_geoderma_2022_116111 crossref_primary_10_1016_j_scitotenv_2023_163416 crossref_primary_10_1016_j_soilbio_2024_109508 crossref_primary_10_1007_s42729_022_00819_7 crossref_primary_10_3389_ffunb_2022_886685 crossref_primary_10_1016_j_soilbio_2025_109743 crossref_primary_10_1016_j_agee_2024_109190 crossref_primary_10_1139_cjfr_2023_0191 crossref_primary_10_1016_j_jhazmat_2023_132646 crossref_primary_10_1016_j_apsoil_2024_105650 crossref_primary_10_1093_femsec_fiab148 crossref_primary_10_1016_j_scitotenv_2023_169353 crossref_primary_10_1016_j_scitotenv_2024_172787 crossref_primary_10_1016_j_jenvman_2024_120430 crossref_primary_10_1007_s11104_021_04901_4 crossref_primary_10_1016_j_ecolind_2022_108686 crossref_primary_10_1016_j_still_2024_106414 crossref_primary_10_1002_ldr_4939 crossref_primary_10_3390_rs14061521 crossref_primary_10_1002_ldr_4652 crossref_primary_10_1021_envhealth_4c00138 crossref_primary_10_1002_ldr_4534 crossref_primary_10_1016_j_gecco_2021_e01872 crossref_primary_10_1016_j_apsoil_2021_104032 crossref_primary_10_1016_j_catena_2023_107306 crossref_primary_10_1134_S1064229322601652 crossref_primary_10_3390_land12081517 crossref_primary_10_1016_j_jclepro_2023_138068 crossref_primary_10_1094_PDIS_03_20_0683_RE crossref_primary_10_3390_plants11162121 crossref_primary_10_1360_TB_2024_0330 crossref_primary_10_1002_ldr_4526 crossref_primary_10_1016_j_apsoil_2023_104932 crossref_primary_10_1079_cabireviews202217032 crossref_primary_10_1016_j_jenvman_2023_119078 crossref_primary_10_1186_s13213_021_01633_9 crossref_primary_10_1016_j_scitotenv_2023_165814 crossref_primary_10_1007_s11104_021_05096_4 crossref_primary_10_1016_j_soilbio_2021_108273 crossref_primary_10_1002_ldr_5059 crossref_primary_10_1186_s13717_024_00510_y crossref_primary_10_1016_j_ejsobi_2022_103404 crossref_primary_10_1016_j_scitotenv_2022_156238 crossref_primary_10_3389_fpls_2022_864085 crossref_primary_10_1016_j_apsoil_2021_104160 crossref_primary_10_1007_s00248_024_02414_y crossref_primary_10_1038_s41467_023_40184_2 crossref_primary_10_1111_1462_2920_15683 crossref_primary_10_1016_j_envres_2024_118126 crossref_primary_10_1016_j_micres_2022_127161 crossref_primary_10_3390_su14137910 crossref_primary_10_1016_j_apsoil_2022_104502 crossref_primary_10_1016_j_micres_2025_128078 crossref_primary_10_1016_j_soilbio_2022_108629 crossref_primary_10_3390_su11195226 crossref_primary_10_1099_mic_0_001517 crossref_primary_10_7717_peerj_12176 crossref_primary_10_1016_j_scib_2021_04_019 crossref_primary_10_7717_peerj_18433 crossref_primary_10_1002_ldr_4110 crossref_primary_10_1016_j_micres_2024_127763 crossref_primary_10_31857_S0032180X22600755 crossref_primary_10_1016_j_jenvman_2022_115919 crossref_primary_10_1007_s42729_022_00844_6 crossref_primary_10_1029_2020GB006559 crossref_primary_10_3389_fpls_2022_1040377 crossref_primary_10_1016_j_apsoil_2022_104590 crossref_primary_10_1016_j_scitotenv_2021_145594 crossref_primary_10_1007_s11104_023_06015_5 crossref_primary_10_1016_j_marenvres_2023_106122 crossref_primary_10_1016_j_apsoil_2024_105722 crossref_primary_10_1016_j_geoderma_2021_115460 crossref_primary_10_1016_j_jaridenv_2024_105197 crossref_primary_10_1016_j_still_2021_105112 crossref_primary_10_1016_j_jes_2021_09_023 crossref_primary_10_1016_j_scitotenv_2022_158397 crossref_primary_10_3389_fenvs_2023_1170507 crossref_primary_10_1002_ldr_3893 crossref_primary_10_1038_s41598_021_81120_y crossref_primary_10_3390_plants13040520 crossref_primary_10_3390_d13020084 crossref_primary_10_1007_s11368_022_03313_w crossref_primary_10_1186_s40168_023_01513_1 crossref_primary_10_1186_s12866_024_03611_y crossref_primary_10_3389_fmicb_2024_1505916 crossref_primary_10_7717_peerj_11184 crossref_primary_10_1016_j_agee_2021_107387 crossref_primary_10_1016_j_apsoil_2024_105458 crossref_primary_10_3389_fmicb_2022_1027097 crossref_primary_10_3390_applbiosci3040031 crossref_primary_10_1016_j_soilbio_2024_109659 crossref_primary_10_1016_j_jenvman_2022_115859 crossref_primary_10_1007_s11104_022_05313_8 crossref_primary_10_1371_journal_pone_0231840 crossref_primary_10_3390_rs13040656 crossref_primary_10_1016_j_catena_2025_108714 crossref_primary_10_1016_j_gecco_2025_e03456 crossref_primary_10_3390_agriculture13010218 crossref_primary_10_1016_j_gecco_2023_e02641 crossref_primary_10_1016_j_cosust_2020_09_005 crossref_primary_10_1016_j_apsoil_2023_105161 crossref_primary_10_1016_j_funeco_2024_101332 crossref_primary_10_3390_f14122292 crossref_primary_10_1016_j_rcar_2024_09_001 crossref_primary_10_1016_j_catena_2021_105961 crossref_primary_10_3390_agriculture12070961 crossref_primary_10_1111_ejss_13195 crossref_primary_10_1016_j_catena_2024_107907 crossref_primary_10_1186_s40168_020_00985_9 crossref_primary_10_3389_fenvs_2023_1128187 crossref_primary_10_3389_fmicb_2024_1461821 crossref_primary_10_1007_s10980_021_01273_z crossref_primary_10_1016_j_apsoil_2024_105827 crossref_primary_10_1016_j_scitotenv_2023_163835 crossref_primary_10_3390_microorganisms13010138 crossref_primary_10_1002_ldr_4289 crossref_primary_10_1016_j_gloplacha_2023_104323 crossref_primary_10_3390_agronomy13030708 crossref_primary_10_1016_j_foreco_2020_118603 crossref_primary_10_1016_j_jenvman_2022_114576 crossref_primary_10_1016_j_apsoil_2021_104362 crossref_primary_10_1016_j_envres_2024_120373 crossref_primary_10_3389_fmicb_2024_1290849 crossref_primary_10_3390_jof9101016 crossref_primary_10_3389_fpls_2021_640789 crossref_primary_10_1016_j_agee_2024_109367 crossref_primary_10_1016_j_apsoil_2022_104385 crossref_primary_10_1016_j_envres_2024_120402 crossref_primary_10_1016_j_horiz_2024_100115 crossref_primary_10_3389_fmicb_2023_1327056 crossref_primary_10_1016_j_apsoil_2024_105316 crossref_primary_10_1128_aem_00425_24 crossref_primary_10_1016_j_apsoil_2023_104845 crossref_primary_10_3390_agronomy13112817 crossref_primary_10_1007_s11104_023_06290_2 crossref_primary_10_1016_j_scitotenv_2024_177293 crossref_primary_10_1021_acs_est_4c01692 crossref_primary_10_1016_j_jhazmat_2022_128280 crossref_primary_10_1016_j_catena_2025_108737 crossref_primary_10_1016_j_scitotenv_2022_158222 crossref_primary_10_1128_AEM_01201_21 crossref_primary_10_1016_j_ecolind_2023_110801 crossref_primary_10_1002_ldr_4030 crossref_primary_10_1007_s11104_022_05409_1 crossref_primary_10_1007_s11104_024_06571_4 crossref_primary_10_1002_ldr_4032 crossref_primary_10_3390_agronomy15010124 |
Cites_doi | 10.1111/j.1462-2920.2012.02738.x 10.1890/14-0743.1 10.1126/science.1060391 10.1016/j.soilbio.2009.12.008 10.1007/s11284-007-0390-z 10.1111/j.1365-2745.2009.01549.x 10.1002/ecy.1879 10.1016/j.soilbio.2010.11.018 10.1016/j.soilbio.2015.07.018 10.1016/j.soilbio.2016.12.024 10.1016/0038-0717(94)00241-R 10.1016/j.soilbio.2015.01.009 10.1007/s11104-010-0460-9 10.1111/gcb.12144 10.1038/nmeth.2604 10.2307/1943563 10.1007/s00442-016-3587-4 10.1038/nature13604 10.1038/nature12670 10.1016/j.soilbio.2010.05.007 10.1038/ismej.2009.97 10.1038/ismej.2010.58 10.1016/j.soilbio.2015.08.010 10.1073/pnas.1508382112 10.1111/1462-2920.13614 10.1111/j.1461-0248.2007.01058.x 10.1073/pnas.1502956112 10.1111/gcb.12065 10.2136/sssaj2007.0038 10.1016/0038-0717(91)90165-G 10.1038/ismej.2013.91 10.1111/nph.13111 10.1111/1462-2920.13098 10.1016/0038-0717(88)90141-1 10.4141/cjps2011-147 10.1111/1365-2745.12014 10.1073/pnas.1308149110 10.1111/ele.12722 10.1111/j.1461-0248.2009.01317.x 10.1038/nature09492 10.1007/s003740050446 10.1111/j.1574-6976.2012.00343.x 10.1007/s10705-009-9314-3 10.1111/j.1461-0248.2007.01139.x 10.1007/s11069-016-2592-6 10.1002/ecy.1456 10.1111/j.1461-0248.2010.01486.x 10.1111/j.1462-2920.2011.02480.x 10.1038/nature08931 10.1038/ismej.2009.16 10.1038/ismej.2007.109 10.1111/ele.12056 10.1073/pnas.1220608110 10.1002/ldr.2668 10.1111/nph.14499 10.1111/1462-2920.12539 10.1073/pnas.0507535103 10.1126/science.1204498 10.1007/s10533-017-0342-9 10.1006/jare.1999.0577 10.1038/nature13855 10.1034/j.1600-0587.2001.240103.x 10.1016/j.geoderma.2016.01.039 10.1038/ncomms13630 10.1016/j.soilbio.2017.06.022 10.1038/ismej.2013.146 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION NPM ISR 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40168-018-0544-y |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_de29d30de50f4cd69966398465f4492e PMC6149009 A555109878 30236158 10_1186_s40168_018_0544_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China Inner Mongolia China |
GeographicLocations_xml | – name: Inner Mongolia China – name: China |
GrantInformation_xml | – fundername: ; grantid: 41601252 – fundername: ; grantid: 2016YFC0500601 – fundername: ; grantid: 41471093 – fundername: ; grantid: 2016M601833 & 2017T100379 – fundername: ; grantid: CARS-34 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS EJD FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP -A0 3V. ACRMQ ADINQ C24 NPM PMFND 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c660t-d5c5068c607b8ae5c887c19acf08575a40a0c9d3afff80426907440d157673d83 |
IEDL.DBID | M48 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:26:52 EDT 2025 Thu Aug 21 13:46:28 EDT 2025 Fri Jul 11 12:08:26 EDT 2025 Fri Jul 25 12:08:28 EDT 2025 Tue Jun 17 21:43:36 EDT 2025 Tue Jun 10 20:49:52 EDT 2025 Fri Jun 27 04:34:52 EDT 2025 Wed Feb 19 02:36:24 EST 2025 Tue Jul 01 04:16:35 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cattle grazing SOC-decomposition enzymatic activity Temperate meadow steppe Soil productivity Soil incubation Microbial composition |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c660t-d5c5068c607b8ae5c887c19acf08575a40a0c9d3afff80426907440d157673d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-018-0544-y |
PMID | 30236158 |
PQID | 2122248713 |
PQPubID | 2040205 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_de29d30de50f4cd69966398465f4492e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6149009 proquest_miscellaneous_2111148695 proquest_journals_2122248713 gale_infotracmisc_A555109878 gale_infotracacademiconefile_A555109878 gale_incontextgauss_ISR_A555109878 pubmed_primary_30236158 crossref_primary_10_1186_s40168_018_0544_y crossref_citationtrail_10_1186_s40168_018_0544_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-20 |
PublicationDateYYYYMMDD | 2018-09-20 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | JB Grace (544_CR6) 2007; 10 Y Li (544_CR64) 2017; 107 RD Bardgett (544_CR10) 2014; 515 MGA Van Der Heijden (544_CR68) 2008; 11 MG Manzano (544_CR40) 2000; 44 MS Strickland (544_CR59) 2010; 42 F Eivazi (544_CR34) 1988; 20 P Millard (544_CR56) 2010; 88 BJ Cardinale (544_CR9) 2009; 12 M Tolkkinen (544_CR41) 2015; 96 RC Edgar (544_CR35) 2013; 10 LJ Ingram (544_CR30) 2008; 72 N Fierer (544_CR52) 2006; 103 Y Miao (544_CR60) 2017; 19 Y Yang (544_CR18) 2014; 8 B Wolf (544_CR23) 2010; 464 CE Nelson (544_CR46) 2012; 14 544_CR53 W Xun (544_CR33) 2015; 90 F Rineau (544_CR12) 2013; 7 O Dilly (544_CR62) 1998; 27 P Andrés (544_CR20) 2017; 113 LK Kirkman (544_CR7) 2016; 97 KM Keiblinger (544_CR65) 2010; 73 J Olofsson (544_CR29) 2001; 24 ME McSherry (544_CR57) 2013; 19 MS McElroy (544_CR67) 2012; 92 SG Schwabedissen (544_CR21) 2017; 134 W Xun (544_CR61) 2016; 18 X Le Roux (544_CR24) 2008; 2 DJ Eldridge (544_CR16) 2017; 98 Y Yang (544_CR22) 2013; 19 BS Griffiths (544_CR66) 2013; 37 C Roscher (544_CR8) 2016; 181 V Tardy (544_CR26) 2015; 90 T Osono (544_CR42) 2007; 22 LA Turnbull (544_CR4) 2013; 16 DJ Eldridge (544_CR2) 2017; 28 M Herrero (544_CR1) 2013; 110 TW Crowther (544_CR38) 2015; 112 RI Griffiths (544_CR50) 2011; 13 K Karhu (544_CR51) 2014; 513 PB Adler (544_CR5) 2011; 333 YS Olsen (544_CR28) 2011; 43 RH Whittaker (544_CR48) 1960; 30 RZ Abramoff (544_CR14) 2015; 205 K Grahammer (544_CR55) 1991; 23 JW Leff (544_CR45) 2015; 112 R Yan (544_CR31) 2010; 3 544_CR37 C Scherber (544_CR15) 2010; 468 CA Macdonald (544_CR44) 2015; 17 LC Cline (544_CR49) 2017; 20 DG Wright (544_CR27) 2010; 42 M Hamady (544_CR36) 2010; 4 M Delgado-Baquerizo (544_CR11) 2013; 502 D Tilman (544_CR3) 2001; 294 K Cruz-Martínez (544_CR17) 2009; 3 Y Zhao (544_CR54) 2011; 340 K Klumpp (544_CR47) 2009; 97 K Grigulis (544_CR69) 2013; 101 JL Rodrigues (544_CR32) 2013; 110 S Bagchi (544_CR39) 2010; 13 J Rousk (544_CR19) 2010; 4 YM Lozano (544_CR13) 2017; 216 RD Lovell (544_CR25) 1995; 27 CM Kallenbach (544_CR58) 2016; 7 Y Guo (544_CR43) 2016; 269 J Liu (544_CR63) 2015; 83 |
References_xml | – volume: 14 start-page: 1500 year: 2012 ident: 544_CR46 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2012.02738.x – volume: 96 start-page: 672 year: 2015 ident: 544_CR41 publication-title: Ecology doi: 10.1890/14-0743.1 – volume: 294 start-page: 843 year: 2001 ident: 544_CR3 publication-title: Science doi: 10.1126/science.1060391 – volume: 42 start-page: 592 year: 2010 ident: 544_CR27 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.12.008 – volume: 3 start-page: 61 year: 2010 ident: 544_CR31 publication-title: Chin J Grassl – volume: 22 start-page: 955 year: 2007 ident: 544_CR42 publication-title: Ecol Res doi: 10.1007/s11284-007-0390-z – volume: 97 start-page: 876 year: 2009 ident: 544_CR47 publication-title: J Ecol doi: 10.1111/j.1365-2745.2009.01549.x – volume: 98 start-page: 1922 year: 2017 ident: 544_CR16 publication-title: Ecology doi: 10.1002/ecy.1879 – volume: 43 start-page: 531 year: 2011 ident: 544_CR28 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.11.018 – volume: 90 start-page: 10 year: 2015 ident: 544_CR33 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.07.018 – volume: 107 start-page: 19 year: 2017 ident: 544_CR64 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.12.024 – volume: 73 start-page: 430 year: 2010 ident: 544_CR65 publication-title: FEMS Microbiol Ecol – volume: 27 start-page: 969 year: 1995 ident: 544_CR25 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(94)00241-R – volume: 83 start-page: 29 year: 2015 ident: 544_CR63 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.01.009 – volume: 340 start-page: 89 year: 2011 ident: 544_CR54 publication-title: Plant Soil doi: 10.1007/s11104-010-0460-9 – volume: 19 start-page: 1347 year: 2013 ident: 544_CR57 publication-title: Glob Change Biol doi: 10.1111/gcb.12144 – volume: 10 start-page: 996 year: 2013 ident: 544_CR35 publication-title: Nat Methods doi: 10.1038/nmeth.2604 – volume: 30 start-page: 279 year: 1960 ident: 544_CR48 publication-title: Ecol Monogr doi: 10.2307/1943563 – volume: 181 start-page: 571 year: 2016 ident: 544_CR8 publication-title: Oecologia doi: 10.1007/s00442-016-3587-4 – volume: 513 start-page: 81 year: 2014 ident: 544_CR51 publication-title: Nature doi: 10.1038/nature13604 – volume: 502 start-page: 672 year: 2013 ident: 544_CR11 publication-title: Nature doi: 10.1038/nature12670 – volume: 42 start-page: 1385 year: 2010 ident: 544_CR59 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.05.007 – volume: 4 start-page: 17 year: 2010 ident: 544_CR36 publication-title: ISME J doi: 10.1038/ismej.2009.97 – volume: 4 start-page: 1340 year: 2010 ident: 544_CR19 publication-title: ISME J doi: 10.1038/ismej.2010.58 – volume: 90 start-page: 204 year: 2015 ident: 544_CR26 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.08.010 – volume: 112 start-page: 10967 year: 2015 ident: 544_CR45 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1508382112 – volume: 19 start-page: 1054 year: 2017 ident: 544_CR60 publication-title: Environ Microbiol doi: 10.1111/1462-2920.13614 – volume: 10 start-page: 680 year: 2007 ident: 544_CR6 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2007.01058.x – volume: 112 start-page: 7033 year: 2015 ident: 544_CR38 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1502956112 – volume: 19 start-page: 637 year: 2013 ident: 544_CR22 publication-title: Glob Change Biol doi: 10.1111/gcb.12065 – volume: 72 start-page: 939 year: 2008 ident: 544_CR30 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2007.0038 – volume: 23 start-page: 77 year: 1991 ident: 544_CR55 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(91)90165-G – volume: 7 start-page: 2010 year: 2013 ident: 544_CR12 publication-title: ISME J doi: 10.1038/ismej.2013.91 – volume: 205 start-page: 1054 year: 2015 ident: 544_CR14 publication-title: New Phytol doi: 10.1111/nph.13111 – volume: 18 start-page: 1907 year: 2016 ident: 544_CR61 publication-title: Environ Microbiol doi: 10.1111/1462-2920.13098 – volume: 20 start-page: 601 year: 1988 ident: 544_CR34 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(88)90141-1 – volume: 92 start-page: 687 year: 2012 ident: 544_CR67 publication-title: Can J Plant Sci doi: 10.4141/cjps2011-147 – volume: 101 start-page: 47 year: 2013 ident: 544_CR69 publication-title: J Ecol doi: 10.1111/1365-2745.12014 – volume: 110 start-page: 20888 year: 2013 ident: 544_CR1 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1308149110 – volume: 20 start-page: 202 year: 2017 ident: 544_CR49 publication-title: Ecol Lett doi: 10.1111/ele.12722 – volume: 12 start-page: 475 year: 2009 ident: 544_CR9 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2009.01317.x – volume: 468 start-page: 553 year: 2010 ident: 544_CR15 publication-title: Nature doi: 10.1038/nature09492 – volume: 27 start-page: 374 year: 1998 ident: 544_CR62 publication-title: Biol Fertil Soils doi: 10.1007/s003740050446 – volume: 37 start-page: 112 year: 2013 ident: 544_CR66 publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2012.00343.x – volume: 88 start-page: 147 year: 2010 ident: 544_CR56 publication-title: Nutr Cycl Agroecosystems doi: 10.1007/s10705-009-9314-3 – volume: 11 start-page: 296 year: 2008 ident: 544_CR68 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2007.01139.x – ident: 544_CR53 doi: 10.1007/s11069-016-2592-6 – volume: 97 start-page: 2259 year: 2016 ident: 544_CR7 publication-title: Ecology doi: 10.1002/ecy.1456 – volume: 13 start-page: 959 year: 2010 ident: 544_CR39 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2010.01486.x – volume: 13 start-page: 1642 year: 2011 ident: 544_CR50 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2011.02480.x – volume: 464 start-page: 881 year: 2010 ident: 544_CR23 publication-title: Nature doi: 10.1038/nature08931 – volume: 3 start-page: 738 year: 2009 ident: 544_CR17 publication-title: ISME J doi: 10.1038/ismej.2009.16 – volume: 2 start-page: 221 year: 2008 ident: 544_CR24 publication-title: ISME J doi: 10.1038/ismej.2007.109 – volume: 16 start-page: 116 year: 2013 ident: 544_CR4 publication-title: Ecol Lett doi: 10.1111/ele.12056 – volume: 110 start-page: 988 year: 2013 ident: 544_CR32 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1220608110 – volume: 28 start-page: 1473 year: 2017 ident: 544_CR2 publication-title: Land Degrad Dev doi: 10.1002/ldr.2668 – volume: 216 start-page: 1236 year: 2017 ident: 544_CR13 publication-title: New Phytol doi: 10.1111/nph.14499 – volume: 17 start-page: 841 year: 2015 ident: 544_CR44 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12539 – volume: 103 start-page: 626 year: 2006 ident: 544_CR52 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0507535103 – ident: 544_CR37 – volume: 333 start-page: 1750 year: 2011 ident: 544_CR5 publication-title: Science doi: 10.1126/science.1204498 – volume: 134 start-page: 57 year: 2017 ident: 544_CR21 publication-title: Biogeochemistry doi: 10.1007/s10533-017-0342-9 – volume: 44 start-page: 1 year: 2000 ident: 544_CR40 publication-title: J Arid Environ doi: 10.1006/jare.1999.0577 – volume: 515 start-page: 505 year: 2014 ident: 544_CR10 publication-title: Nature doi: 10.1038/nature13855 – volume: 24 start-page: 13 year: 2001 ident: 544_CR29 publication-title: Ecography doi: 10.1034/j.1600-0587.2001.240103.x – volume: 269 start-page: 79 year: 2016 ident: 544_CR43 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.01.039 – volume: 7 start-page: 13630 year: 2016 ident: 544_CR58 publication-title: Nat Commun doi: 10.1038/ncomms13630 – volume: 113 start-page: 263 year: 2017 ident: 544_CR20 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.06.022 – volume: 8 start-page: 430 year: 2014 ident: 544_CR18 publication-title: ISME J doi: 10.1038/ismej.2013.146 |
SSID | ssj0000914748 |
Score | 2.5359082 |
Snippet | Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground communities,... Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in below-ground... Abstract Background Grazing is a major modulator of biodiversity and productivity in grasslands. However, our understanding of grazing-induced changes in... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 170 |
SubjectTerms | Bacteria Biodiversity Biogeography Carbon Cattle grazing Community composition Decomposition Ecosystems Environmental aspects Food webs Fungi Genetic aspects Grasslands Grazing Microbial composition Microbiomes Microbiota (Symbiotic organisms) Organic carbon Organic soils Productivity Respiration RNA sequencing Seasonal variations SOC-decomposition enzymatic activity Soil fertility Soil incubation Soil microbiology Soil microorganisms Soil productivity Steppes Studies Temperate meadow steppe Vegetation |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fixMxEA5yIPgi_nb1TqIIgrBctptkk8dTPE8ffFAP7i1kk-xZ7pot3Rbpf38zyV7pIuiLD-1DMyndmcnMfLvTbwh5Cym7ssorADmiLbmCt1bh3Sbra-Y5MnCmBtlv8uycf70QF3ujvrAnLNMDZ8Ud-zDTuC0I1nHnJdbntYasKTrO9Sxg9IWctwemUgzWFW-4Gh9jVkoeDwAkJPZtwUtwXm4niSjx9f8ZlffS0rRlci8HnT4g98fikZ7kH_2Q3AnxEbmbx0luH5Orzyski74sAWeDxTxdzDPN0iLQ9FQ8352jfgUhjg79_JrmoU6OOrtq-0gh_0Ts6aQ2errMZLBpugSdR7oAd-h_U3CL5TI8Ieenn35-PCvHYQqlk5KtSy-cYFI5yZpW2SAcRBdXaeu6NKTTcmaZA03brusUAitEzZz5CgBJU3tVPyUHsY_hOaGztlIt6L7S3kE662ynZdBOQinJZMvagrBbzRo3Mo3jwItrkxCHkiYbw4AxDBrDbAvyfrdlmWk2_ib8Ac21E0SG7PQB6MyMfmP-5TcFeYPGNsiBEbHJ5tJuhsF8-fHdnAgoI5lWjSrIu1Go6-EKnB3_swB6QNqsieThRBIOqZsu3_qUGYPEYKBqgAIKEGtdkNe7ZdyJjW8x9BuUqRCxSi0K8iy74O66cd4TFKTw5c3EOSeKma7E-a9EIQ5FmYZD8uJ_aPIluTdLx0pDyD0kB-vVJhxBpbZuX6VDeQNUnjmI priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgCIkL4pvAQAYhISFFcxrbsU9oIMbgwAGY1Jvl2M5WsSalaYX63_Oe44ZFSDu0h_qlSvy-n19-j5A34LILq7yCJEfUOVfwVSusNllfMs8RgTM2yH6Tp2f861zMU8GtT22Ve5sYDbXvHNbIj8DEgreB8L58v_qd49QoPF1NIzRuklsIXYZSXc2rscYCvpBXXKXDzELJox7SCYndW_ARnOe7iTuKqP3_2-YrzmnaOHnFE53cI3dTCEmPB57fJzdC-4DcHoZK7h6SX5_XCBl9nkO2DXzzdLkYwJaWgcaz8aFGR_0aDB3tu8UlHUY7Oersuu5aCl6oxc5OaltPVwMkbJwxQRctXYJQdH8oCMdqFR6Rs5NPPz-e5mmkQu6kZJvcCyeYVE6yqlY2CAc2xhXauiaO6rScWea0L23TNArTK8ydOfMFpCVV6VX5mBy0XRueEjqrC1VzDRbPO3BqjW20DNpJCCiZrFmdEbbfWeMS3jiOvbg0Me9Q0gzMMMAMg8wwu4y8Gy9ZDWAb1xF_QHaNhIiTHX-APTNJ7YwPM41CFwRruPMSs7tSQ8wlGg73HjLyGpltEAmjxVabc7vte_Plx3dzLCCYZFpVKiNvE1HTwRM4m95cgH1A8KwJ5eGEElTVTZf3MmWSqejNP8HOyKtxGa_E9rc2dFukKTBvlVpk5MkgguNz49QnCEvhz6uJcE42ZrrSLi4ikDiEZhqU5Nn1t_Wc3JlFhdFgUg_JwWa9DS8gEtvUL6O6_QVNXjFm priority: 102 providerName: ProQuest |
Title | Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30236158 https://www.proquest.com/docview/2122248713 https://www.proquest.com/docview/2111148695 https://pubmed.ncbi.nlm.nih.gov/PMC6149009 https://doaj.org/article/de29d30de50f4cd69966398465f4492e |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_3geCL-H3Vc4kiCEI13aZp8iByJ_eh4CGnC_sW0iQ9F3fbdbuL7n_vTNpdrniID9uHzbRsMjOZ-aWz8yPkJYTsxEgnAeRkRcwlXAqJp03Gpcxx7MAZCmQvxPmIfxpn4x2yobfqFrC5Edohn9RoMX3z--f6PTj8u-DwUrxtACMILMmCT8Z5vN4l-xCYciQ0-Nxl-2FjVgnPA5_WEPLiGLCD7N5z3viUXqQKDf3_3ravxa1-TeW1IHV6l9zpskt61JrDPbLjq_vkVss3uX5AfpwtsJv0VQxAHFTq6GzS9mGaeRpem7fHd9QtYA-kTT2Z0pb1yVJrFkVdUQhQFRZ9UlM5Om-7xQb6CTqp6Azspf5FwW7mc_-QjE5Pvn04jzu2hdgKwZaxy2zGhLSC5YU0PrOw_dhEGVsGFk_DmWFWudSUZSkReSGs5swlgFjy1Mn0Edmr6sofEDosEllwBZuhsxDvSlMq4ZUVkGsyUbAiImyzstp2rciREWOqAySRQrfK0KAMjcrQ64i83t4yb_tw_Ev4GNW1FcQW2uELWDPdeaR2fqjQHn3GSm6dQOCXKkjHspLDb_cReYHK1tgko8IqnCuzahr98eulPsogz2RK5jIirzqhsoYZWNP9qQHWAftq9SQPe5LgxbY_vLEpvXECDWkFZFgAadOIPN8O451YGVf5eoUyCUJaobKIPG5NcDtvJISCjBUenveMs7cw_ZFq8j30GIesTYHDPPnv-T0lt4fBd8Cx2CHZWy5W_hnka8tiQHbzcT4g-8cnF18uB-HUA65n42QQ_PMPcCM_IQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgJKSozsZx7ANC5VG2tPQArbQ349hOWdFNls2uqv1T_EZmnOzSCKm3HpJDPIkSz-ObsSczhLwEyE6MdBKCnKyIuYRTIXG1ybiUOY4VOEOC7KEYHvMvo2y0Qf6s_oXBtMqVTQyG2tUW18i3wcQC2oB7n76b_o6xaxTurq5aaLRise-XZxCyNW_3PgJ_Xw0Gu5-OPgzjrqtAbIVg89hlNmNCWsHyQhqfWVAzmyhjy9Ct0nBmmFUuNWVZSowwMHzkzCXgmeepkyk89wq5CsDLMNjLR_l6TQewl-dcdpuniRTbDYQvArPF4Mg4j5c9-AtdAv7HgnNg2E_UPId8u7fIzc5lpTutjN0mG766Q661TSyXd8mvzzMsUX0SQ3QPcuLoZNwWd5p4Gvbi2zVB6mZgWGlTj09p20rKUmtmRV1RQL0KM0mpqRydtiVoQ08LOq7oBISwPqMgjNOpv0eOL2Wy75PNqq78Q0IHRSILrsDCOgsgWppSCa-sAAeWiYIVEWGrmdW2q2-ObTZOdYhzpNAtMzQwQyMz9DIib9a3TNviHhcRv0d2rQmxLne4AHOmOzXXzg8UCrnPWMmtExhNpgp8vKzk8O4-Ii-Q2Rorb1SY2nNiFk2j975_0zsZOK9MyVxG5HVHVNbwBdZ0f0rAPGCxrh7lVo8STIPtD69kSnemqdH_FCkiz9fDeCem21W-XiBNgnGyUFlEHrQiuP5u7DIFbjA8PO8JZ29i-iPV-GcoXA6uoAIleXTxaz0j14dHXw_0wd7h_mNyYxCUR4E53yKb89nCPwEvcF48DapHyY_L1vW_lHdtAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grazing-induced+microbiome+alterations+drive+soil+organic+carbon+turnover+and+productivity+in+meadow+steppe&rft.jtitle=Microbiome&rft.au=Xun%2C+Weibing&rft.au=Yan%2C+Ruirui&rft.au=Ren%2C+Yi&rft.au=Jin%2C+Dongyan&rft.date=2018-09-20&rft.pub=BioMed+Central+Ltd&rft.issn=2049-2618&rft.eissn=2049-2618&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs40168-018-0544-y&rft.externalDocID=A555109878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |