Aedes albopictus Strain and Dengue Virus Serotype in the Dengue Fever Outbreaks in Japan: Implications of Wolbachia Infection
From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely d...
Saved in:
Published in | Japanese Journal of Infectious Diseases Vol. 75; no. 2; pp. 140 - 143 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
31.03.2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain. |
---|---|
AbstractList | From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain. From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain.From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain. |
ArticleNumber | JJID.2021.376 |
Author | Moi, Meng Ling Isawa, Haruhiko Sawabe, Kyoko Sasaki, Toshinori Saito, Kazumi Takasaki, Tomohiko |
Author_xml | – sequence: 1 fullname: Sasaki, Toshinori organization: Department of Medical Entomology, National Institute of Infectious Diseases, Japan – sequence: 2 fullname: Moi, Meng Ling organization: Department of Virology I, National Institute of Infectious Diseases, Japan – sequence: 3 fullname: Saito, Kazumi organization: Department of Medical Entomology, National Institute of Infectious Diseases, Japan – sequence: 4 fullname: Isawa, Haruhiko organization: Department of Medical Entomology, National Institute of Infectious Diseases, Japan – sequence: 5 fullname: Takasaki, Tomohiko organization: Department of Virology I, National Institute of Infectious Diseases, Japan – sequence: 6 fullname: Sawabe, Kyoko organization: Department of Medical Entomology, National Institute of Infectious Diseases, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34470970$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v3CAQxVGVqvnXT1CpQuolF2-wMdjuLUqaxKtIOSRqjwizQ5aNF1zAlfbQ716c3ayUXHph0MzvDei9Y3RgnQWEvuRkVtU1Pd-4Z7Cz-by9mhWkyGe04h_QUV7XZVbUlB-kOy3LjFNSHqLjEFaEFIzl5BM6TP2KNBU5Qn8vYAEBy75zg1FxDPghemkslnaBr8A-jYB_Gj_1wbu4GQCnYVzC6_Aa_oDH92PsPMjnME3ncpD2O27XQ2-UjMbZgJ3Gv1zfSbU0ErdWg5r6p-ijln2Az7t6gh6vfzxe3mZ39zft5cVdpjgnMeuobrqSg-wqXuYEaiCEQUOYzDmFrumg0KCV1rRWQDTkQJVeEChlxRjh9ASdbdcO3v0eIUSxNkFB30sLbgyiYLxmyQ5eJPTbO3TlRm_T50TBS54znkqivu6osVvDQgzerKXfiFdfE0C3gPIuBA96j-RETOmJl_TElJ6Y0hMpvaRq3qmUiS8GTpn0_9G2W-0qRPkE-_ekj0b1sNNUTBTT8Ua7Z9RSegGW_gOkaL04 |
CitedBy_id | crossref_primary_10_3389_fmicb_2023_1208633 crossref_primary_10_1371_journal_pone_0310635 crossref_primary_10_3389_fmicb_2023_1287519 crossref_primary_10_1186_s41182_023_00553_5 crossref_primary_10_1186_s13071_024_06375_6 |
Cites_doi | 10.1371/journal.pntd.0002152 10.7883/yoken.JJID.2015.671 10.1371/journal.ppat.1000833 10.2807/1560-7917.ES2014.19.3.20681 10.1016/j.ijid.2014.06.005 10.1371/journal.pntd.0001989 10.7883/yoken.66.189 10.1371/journal.ppat.1006815 10.1007/s11626-012-9520-1 10.1038/nature12060 10.2144/98254bm09 10.1371/journal.pone.0232192 10.3390/vaccines9010032 10.4269/ajtmh.17-0954 10.1098/rspb.1998.0324 10.1128/JB.180.9.2373-2378.1998 10.1111/mve.12384 10.1098/rstb.2019.0809 10.1016/j.virol.2009.10.035 |
ContentType | Journal Article |
Copyright | 2022 Authors Copyright Japan Science and Technology Agency 2022 |
Copyright_xml | – notice: 2022 Authors – notice: Copyright Japan Science and Technology Agency 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TK 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
DOI | 10.7883/yoken.JJID.2021.376 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1884-2836 |
EndPage | 143 |
ExternalDocumentID | 34470970 10_7883_yoken_JJID_2021_376 article_yoken_75_2_75_JJID_2021_376_article_char_en |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- .55 29J 2WC 53G 5GY ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL DIK DU5 E3Z EBS EJD F5P FRP GX1 JSF JSH KQ8 OK1 RJT RNS RZJ TR2 W2D X7M XSB AAYXX CITATION OVT CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TK 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
ID | FETCH-LOGICAL-c660t-b3f9b46eab76410e8e005e905a163eb9be2fefcff38ce0fe1e3cfd0e4a755063 |
ISSN | 1344-6304 1884-2836 |
IngestDate | Fri Jul 11 00:05:58 EDT 2025 Mon Jun 30 12:00:51 EDT 2025 Thu Jan 02 22:56:15 EST 2025 Tue Jul 01 03:55:17 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Thu Aug 17 20:30:17 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Aedes albopictus imported dengue fever susceptibility Wolbachia dengue virus |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c660t-b3f9b46eab76410e8e005e905a163eb9be2fefcff38ce0fe1e3cfd0e4a755063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/yoken/75/2/75_JJID.2021.376/_article/-char/en |
PMID | 34470970 |
PQID | 2646156264 |
PQPubID | 2048383 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2568597062 proquest_journals_2646156264 pubmed_primary_34470970 crossref_primary_10_7883_yoken_JJID_2021_376 crossref_citationtrail_10_7883_yoken_JJID_2021_376 jstage_primary_article_yoken_75_2_75_JJID_2021_376_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022/03/31 |
PublicationDateYYYYMMDD | 2022-03-31 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022/03/31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Japanese Journal of Infectious Diseases |
PublicationTitleAlternate | Jpn J Infect Dis |
PublicationYear | 2022 |
Publisher | National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee Japan Science and Technology Agency |
Publisher_xml | – name: National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee – name: Japan Science and Technology Agency |
References | 13. Braig HR, Zhou W, Dobson SL, et al. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol. 1998;180:2373-2378. 2. Vector-borne Virus Laboratory, Department of Virology I, National Institute of Infectious Diseases. The information of dengue virus infectious diseases. Available at <https://www0.nih.go.jp/vir1/NVL/dengue.htm>. Accessed March 23, 2021. Japanese. 7. Ogunlade ST, Meehan MT, Adekunle AI, et al. A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies. Vaccines. 2021;9:32. 17. Bian G, Xu Y, Lu P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6:e1000833. 16. Chouin-Carneiro T, Ant TH, Herd C, et al. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. Med Vet Entomol. 2020;34:116-119. 5. Kobayashi M, Komagata O, Yonejima M, et al. Retrospective search for dengue vector mosquito Aedes albopictus in areas visited by a German traveler who contracted dengue in Japan. Int J Infect Dis. 2014;26:135-137. 3. Sukehiro N, Kida N, Umezawa M, et al. First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012. Jpn J Infect Dis. 2013;66:189-194. 8. Sasaki T, Kuwata R, Hoshino K, et al. Argonaute 2 suppresses Japanese encephalitis virus infection in Aedes aegypti. Jpn J Infect Dis. 2017;70:38-44. 12. Itokawa K, Hu J, Sukehiro N, et al. Genetic analysis of Aedes aegypti captured at two international airports serving to the greater Tokyo area during 2012–2015. PLoS One. 2020;15:e0232192. 18. Ahmad NA, Mancini MV, Ant TH, et al. Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti. Philos Trans R Soc Lond B Biol Sci. 2021;376:20190809. 1. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2014;496:504-507. 19. Ant TH, Herd CS, Geoghegan V, et al. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 2018;14:e1006815. 15. Blagrove MSC, Arias-Goeta C, Genua CD, et al. A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus. PLoS Negl Trop Dis. 2013;7:e2152. 4. Schmidt-Chanasit J, Emmerich P, Tappe D, et al. Autochthonous dengue virus infection in Japan imported into Germany, September 2013. Euro Surveill. 2014;19: 20681. 10. Tajima S, Nerome R, Nukui Y, et al. A single mutation in the Japanese encephalitis virus E protein (S123R) increases its growth rate in mouse neuroblastoma cells and its pathogenicity in mice. Virology. 2010;396:298-304. 14. Zhou W, Rousset F, O’Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998;265:509-515. 20. Mousson L, Zouache K, Arias-Goeta C, et al. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1989. 6. Kobayashi D, Murota K, Fujita R, et al. Dengue virus infection in Aedes albopictus during the 2014 autochthonous dengue outbreak in Tokyo metropolis, Japan. Am J Trop Med Hyg. 2018;98:1460-1468. 11. Rudbeck L, Dissing J. Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. Biotechniques. 1998;25:588-590,592. 9. Kuwata R, Hoshino K, Isawa H, et al. Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae). In Vitro Cell Dev Biol Anim. 2012;48:369-376. 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 |
References_xml | – reference: 15. Blagrove MSC, Arias-Goeta C, Genua CD, et al. A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus. PLoS Negl Trop Dis. 2013;7:e2152. – reference: 1. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2014;496:504-507. – reference: 9. Kuwata R, Hoshino K, Isawa H, et al. Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae). In Vitro Cell Dev Biol Anim. 2012;48:369-376. – reference: 2. Vector-borne Virus Laboratory, Department of Virology I, National Institute of Infectious Diseases. The information of dengue virus infectious diseases. Available at <https://www0.nih.go.jp/vir1/NVL/dengue.htm>. Accessed March 23, 2021. Japanese. – reference: 20. Mousson L, Zouache K, Arias-Goeta C, et al. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1989. – reference: 16. Chouin-Carneiro T, Ant TH, Herd C, et al. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. Med Vet Entomol. 2020;34:116-119. – reference: 11. Rudbeck L, Dissing J. Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. Biotechniques. 1998;25:588-590,592. – reference: 17. Bian G, Xu Y, Lu P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6:e1000833. – reference: 18. Ahmad NA, Mancini MV, Ant TH, et al. Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti. Philos Trans R Soc Lond B Biol Sci. 2021;376:20190809. – reference: 12. Itokawa K, Hu J, Sukehiro N, et al. Genetic analysis of Aedes aegypti captured at two international airports serving to the greater Tokyo area during 2012–2015. PLoS One. 2020;15:e0232192. – reference: 14. Zhou W, Rousset F, O’Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998;265:509-515. – reference: 6. Kobayashi D, Murota K, Fujita R, et al. Dengue virus infection in Aedes albopictus during the 2014 autochthonous dengue outbreak in Tokyo metropolis, Japan. Am J Trop Med Hyg. 2018;98:1460-1468. – reference: 10. Tajima S, Nerome R, Nukui Y, et al. A single mutation in the Japanese encephalitis virus E protein (S123R) increases its growth rate in mouse neuroblastoma cells and its pathogenicity in mice. Virology. 2010;396:298-304. – reference: 3. Sukehiro N, Kida N, Umezawa M, et al. First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012. Jpn J Infect Dis. 2013;66:189-194. – reference: 13. Braig HR, Zhou W, Dobson SL, et al. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol. 1998;180:2373-2378. – reference: 4. Schmidt-Chanasit J, Emmerich P, Tappe D, et al. Autochthonous dengue virus infection in Japan imported into Germany, September 2013. Euro Surveill. 2014;19: 20681. – reference: 19. Ant TH, Herd CS, Geoghegan V, et al. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 2018;14:e1006815. – reference: 5. Kobayashi M, Komagata O, Yonejima M, et al. Retrospective search for dengue vector mosquito Aedes albopictus in areas visited by a German traveler who contracted dengue in Japan. Int J Infect Dis. 2014;26:135-137. – reference: 7. Ogunlade ST, Meehan MT, Adekunle AI, et al. A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies. Vaccines. 2021;9:32. – reference: 8. Sasaki T, Kuwata R, Hoshino K, et al. Argonaute 2 suppresses Japanese encephalitis virus infection in Aedes aegypti. Jpn J Infect Dis. 2017;70:38-44. – ident: 2 – ident: 15 doi: 10.1371/journal.pntd.0002152 – ident: 8 doi: 10.7883/yoken.JJID.2015.671 – ident: 17 doi: 10.1371/journal.ppat.1000833 – ident: 4 doi: 10.2807/1560-7917.ES2014.19.3.20681 – ident: 5 doi: 10.1016/j.ijid.2014.06.005 – ident: 20 doi: 10.1371/journal.pntd.0001989 – ident: 3 doi: 10.7883/yoken.66.189 – ident: 19 doi: 10.1371/journal.ppat.1006815 – ident: 9 doi: 10.1007/s11626-012-9520-1 – ident: 1 doi: 10.1038/nature12060 – ident: 11 doi: 10.2144/98254bm09 – ident: 12 doi: 10.1371/journal.pone.0232192 – ident: 7 doi: 10.3390/vaccines9010032 – ident: 6 doi: 10.4269/ajtmh.17-0954 – ident: 14 doi: 10.1098/rspb.1998.0324 – ident: 13 doi: 10.1128/JB.180.9.2373-2378.1998 – ident: 16 doi: 10.1111/mve.12384 – ident: 18 doi: 10.1098/rstb.2019.0809 – ident: 10 doi: 10.1016/j.virol.2009.10.035 |
SSID | ssj0025510 |
Score | 2.3176892 |
Snippet | From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 140 |
SubjectTerms | Aedes - genetics Aedes - virology Aedes albopictus Anaplasmataceae Infections - microbiology Anaplasmataceae Infections - virology Animals Aquatic insects Bacteria Dengue - epidemiology Dengue - immunology Dengue - virology Dengue fever dengue virus Dengue Virus - genetics Dengue Virus - immunology Disease Outbreaks Disease Susceptibility Disease transmission Fever imported dengue fever Japan - epidemiology Mosquitoes Outbreaks Serogroup Strains (organisms) Susceptibility Symbiosis Vector-borne diseases Viral diseases Viruses Wolbachia Wolbachia - genetics Wolbachia - virology |
Title | Aedes albopictus Strain and Dengue Virus Serotype in the Dengue Fever Outbreaks in Japan: Implications of Wolbachia Infection |
URI | https://www.jstage.jst.go.jp/article/yoken/75/2/75_JJID.2021.376/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/34470970 https://www.proquest.com/docview/2646156264 https://www.proquest.com/docview/2568597062 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese Journal of Infectious Diseases, 2022/03/31, Vol.75(2), pp.140-143 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLa2gRAviDuFgYzEW0nJxbl0b4Nt6ooGDxToW5Q4JyW0TaY0EWIS_53jS9J0KmhMvKSVL9Fxjj_7HPvzMSGvXDfgsbgDkLupYzAnSYwgChwjCQBwgokSxsWO7tkHb_SZjafudGf3oMNaqqt4wC-2niu5jlYxDfUqTsn-g2bbl2IC_kf94hM1jM8r6fgQElgJhnFxnvGqXok9ZvT0Nb04n9XQ_5KVIh3KQi62alajzjwBbHL_I34KNB3nkhk7xslTkj1Ou1RztCi_FotYEC8jHFIUfyvfMGxFPVg158wW6oiKKogCHKl9oNaA_xStInVh9qQQi2BFmbWqL2S6oNuKFYPZukomr3zqv48u6mW27tPRD2kAj6Ky_pbNi-46BrrA-mBfQ_No1j43SBJbBFUM4iu1qX-cZCLUilyGWS6zqgLojPUOY4bnqNuPB6DSgoAZaHF53QlCXe2igWB3RntLRZrShoOl4k1dnpP8IBCxMX4Wc8gH4_Hp0QBbbw0c_1IEcGlT6K4UytKh74a2eIhaoagVYq2wKSOO5SEKdskNG10kedB92tKb0FNUkTiaRqqIW0KYN1tE2bDKbn5Hx2QGf_a5pO01uUvu6M9PD5VI98gO5PfJrTNNC3lAfkkg0DUQqAICRSBQ1depBAJtgEAxE4HQZEog0BYIIlcq_4B2YUCLlLYwoC0MHpLJyfHk3cjQ94oY3PPMyoiddBgzD6LY95hlQgA4FcHQdCN0TiAexmCnkPI0dQIOZgoWODxNTGCRj_685zwie3mRwxNCsXF-DH7iWhyY7TO0th2wY8v2fOa6fNgjdvNZQ65j7ov2L0L0vYUutKI3FNwjr9tK5yrkzN-Lv1X6agtfoxP1yH6j61APcKsQfSX0dzz86ZGXbTZOP2JPEfGHUAvRYwrcoW96do88Vn2klUMEEzUx7-n_kPAZub0eNfbJXlXW8Bz9gSp-ITv-b_1dF34 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aedes+albopictus+Strain+and+Dengue+Virus+Serotype+in+the+Dengue+Fever+Outbreaks+in+Japan%3A+Implications+of+Wolbachia+Infection&rft.jtitle=Japanese+Journal+of+Infectious+Diseases&rft.au=Sasaki%2C+Toshinori&rft.au=Moi%2C+Meng+Ling&rft.au=Saito%2C+Kazumi&rft.au=Isawa%2C+Haruhiko&rft.date=2022-03-31&rft.pub=National+Institute+of+Infectious+Diseases%2C+Japanese+Journal+of+Infectious+Diseases+Editorial+Committee&rft.issn=1344-6304&rft.eissn=1884-2836&rft.volume=75&rft.issue=2&rft.spage=140&rft.epage=143&rft_id=info:doi/10.7883%2Fyoken.JJID.2021.376&rft.externalDocID=article_yoken_75_2_75_JJID_2021_376_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon |