Aedes albopictus Strain and Dengue Virus Serotype in the Dengue Fever Outbreaks in Japan: Implications of Wolbachia Infection

From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely d...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Infectious Diseases Vol. 75; no. 2; pp. 140 - 143
Main Authors Sasaki, Toshinori, Moi, Meng Ling, Saito, Kazumi, Isawa, Haruhiko, Takasaki, Tomohiko, Sawabe, Kyoko
Format Journal Article
LanguageEnglish
Published Japan National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee 31.03.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain.
AbstractList From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain.
From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain.From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from the Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of the indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Furthermore, the A. albopictus EBN 201808 strain showed the same susceptibility to DENV3 as the A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain.
ArticleNumber JJID.2021.376
Author Moi, Meng Ling
Isawa, Haruhiko
Sawabe, Kyoko
Sasaki, Toshinori
Saito, Kazumi
Takasaki, Tomohiko
Author_xml – sequence: 1
  fullname: Sasaki, Toshinori
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Japan
– sequence: 2
  fullname: Moi, Meng Ling
  organization: Department of Virology I, National Institute of Infectious Diseases, Japan
– sequence: 3
  fullname: Saito, Kazumi
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Japan
– sequence: 4
  fullname: Isawa, Haruhiko
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Japan
– sequence: 5
  fullname: Takasaki, Tomohiko
  organization: Department of Virology I, National Institute of Infectious Diseases, Japan
– sequence: 6
  fullname: Sawabe, Kyoko
  organization: Department of Medical Entomology, National Institute of Infectious Diseases, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34470970$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v3CAQxVGVqvnXT1CpQuolF2-wMdjuLUqaxKtIOSRqjwizQ5aNF1zAlfbQ716c3ayUXHph0MzvDei9Y3RgnQWEvuRkVtU1Pd-4Z7Cz-by9mhWkyGe04h_QUV7XZVbUlB-kOy3LjFNSHqLjEFaEFIzl5BM6TP2KNBU5Qn8vYAEBy75zg1FxDPghemkslnaBr8A-jYB_Gj_1wbu4GQCnYVzC6_Aa_oDH92PsPMjnME3ncpD2O27XQ2-UjMbZgJ3Gv1zfSbU0ErdWg5r6p-ijln2Az7t6gh6vfzxe3mZ39zft5cVdpjgnMeuobrqSg-wqXuYEaiCEQUOYzDmFrumg0KCV1rRWQDTkQJVeEChlxRjh9ASdbdcO3v0eIUSxNkFB30sLbgyiYLxmyQ5eJPTbO3TlRm_T50TBS54znkqivu6osVvDQgzerKXfiFdfE0C3gPIuBA96j-RETOmJl_TElJ6Y0hMpvaRq3qmUiS8GTpn0_9G2W-0qRPkE-_ekj0b1sNNUTBTT8Ua7Z9RSegGW_gOkaL04
CitedBy_id crossref_primary_10_3389_fmicb_2023_1208633
crossref_primary_10_1371_journal_pone_0310635
crossref_primary_10_3389_fmicb_2023_1287519
crossref_primary_10_1186_s41182_023_00553_5
crossref_primary_10_1186_s13071_024_06375_6
Cites_doi 10.1371/journal.pntd.0002152
10.7883/yoken.JJID.2015.671
10.1371/journal.ppat.1000833
10.2807/1560-7917.ES2014.19.3.20681
10.1016/j.ijid.2014.06.005
10.1371/journal.pntd.0001989
10.7883/yoken.66.189
10.1371/journal.ppat.1006815
10.1007/s11626-012-9520-1
10.1038/nature12060
10.2144/98254bm09
10.1371/journal.pone.0232192
10.3390/vaccines9010032
10.4269/ajtmh.17-0954
10.1098/rspb.1998.0324
10.1128/JB.180.9.2373-2378.1998
10.1111/mve.12384
10.1098/rstb.2019.0809
10.1016/j.virol.2009.10.035
ContentType Journal Article
Copyright 2022 Authors
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Authors
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
DOI 10.7883/yoken.JJID.2021.376
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1884-2836
EndPage 143
ExternalDocumentID 34470970
10_7883_yoken_JJID_2021_376
article_yoken_75_2_75_JJID_2021_376_article_char_en
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
.55
29J
2WC
53G
5GY
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
JSF
JSH
KQ8
OK1
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
ID FETCH-LOGICAL-c660t-b3f9b46eab76410e8e005e905a163eb9be2fefcff38ce0fe1e3cfd0e4a755063
ISSN 1344-6304
1884-2836
IngestDate Fri Jul 11 00:05:58 EDT 2025
Mon Jun 30 12:00:51 EDT 2025
Thu Jan 02 22:56:15 EST 2025
Tue Jul 01 03:55:17 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Thu Aug 17 20:30:17 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Aedes albopictus
imported dengue fever
susceptibility
Wolbachia
dengue virus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c660t-b3f9b46eab76410e8e005e905a163eb9be2fefcff38ce0fe1e3cfd0e4a755063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/yoken/75/2/75_JJID.2021.376/_article/-char/en
PMID 34470970
PQID 2646156264
PQPubID 2048383
PageCount 4
ParticipantIDs proquest_miscellaneous_2568597062
proquest_journals_2646156264
pubmed_primary_34470970
crossref_primary_10_7883_yoken_JJID_2021_376
crossref_citationtrail_10_7883_yoken_JJID_2021_376
jstage_primary_article_yoken_75_2_75_JJID_2021_376_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022/03/31
PublicationDateYYYYMMDD 2022-03-31
PublicationDate_xml – month: 03
  year: 2022
  text: 2022/03/31
  day: 31
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Japanese Journal of Infectious Diseases
PublicationTitleAlternate Jpn J Infect Dis
PublicationYear 2022
Publisher National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
Japan Science and Technology Agency
Publisher_xml – name: National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
– name: Japan Science and Technology Agency
References 13. Braig HR, Zhou W, Dobson SL, et al. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol. 1998;180:2373-2378.
2. Vector-borne Virus Laboratory, Department of Virology I, National Institute of Infectious Diseases. The information of dengue virus infectious diseases. Available at <https://www0.nih.go.jp/vir1/NVL/dengue.htm>. Accessed March 23, 2021. Japanese.
7. Ogunlade ST, Meehan MT, Adekunle AI, et al. A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies. Vaccines. 2021;9:32.
17. Bian G, Xu Y, Lu P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6:e1000833.
16. Chouin-Carneiro T, Ant TH, Herd C, et al. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. Med Vet Entomol. 2020;34:116-119.
5. Kobayashi M, Komagata O, Yonejima M, et al. Retrospective search for dengue vector mosquito Aedes albopictus in areas visited by a German traveler who contracted dengue in Japan. Int J Infect Dis. 2014;26:135-137.
3. Sukehiro N, Kida N, Umezawa M, et al. First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012. Jpn J Infect Dis. 2013;66:189-194.
8. Sasaki T, Kuwata R, Hoshino K, et al. Argonaute 2 suppresses Japanese encephalitis virus infection in Aedes aegypti. Jpn J Infect Dis. 2017;70:38-44.
12. Itokawa K, Hu J, Sukehiro N, et al. Genetic analysis of Aedes aegypti captured at two international airports serving to the greater Tokyo area during 2012–2015. PLoS One. 2020;15:e0232192.
18. Ahmad NA, Mancini MV, Ant TH, et al. Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti. Philos Trans R Soc Lond B Biol Sci. 2021;376:20190809.
1. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2014;496:504-507.
19. Ant TH, Herd CS, Geoghegan V, et al. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 2018;14:e1006815.
15. Blagrove MSC, Arias-Goeta C, Genua CD, et al. A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus. PLoS Negl Trop Dis. 2013;7:e2152.
4. Schmidt-Chanasit J, Emmerich P, Tappe D, et al. Autochthonous dengue virus infection in Japan imported into Germany, September 2013. Euro Surveill. 2014;19: 20681.
10. Tajima S, Nerome R, Nukui Y, et al. A single mutation in the Japanese encephalitis virus E protein (S123R) increases its growth rate in mouse neuroblastoma cells and its pathogenicity in mice. Virology. 2010;396:298-304.
14. Zhou W, Rousset F, O’Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998;265:509-515.
20. Mousson L, Zouache K, Arias-Goeta C, et al. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1989.
6. Kobayashi D, Murota K, Fujita R, et al. Dengue virus infection in Aedes albopictus during the 2014 autochthonous dengue outbreak in Tokyo metropolis, Japan. Am J Trop Med Hyg. 2018;98:1460-1468.
11. Rudbeck L, Dissing J. Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. Biotechniques. 1998;25:588-590,592.
9. Kuwata R, Hoshino K, Isawa H, et al. Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae). In Vitro Cell Dev Biol Anim. 2012;48:369-376.
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
References_xml – reference: 15. Blagrove MSC, Arias-Goeta C, Genua CD, et al. A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus. PLoS Negl Trop Dis. 2013;7:e2152.
– reference: 1. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2014;496:504-507.
– reference: 9. Kuwata R, Hoshino K, Isawa H, et al. Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae). In Vitro Cell Dev Biol Anim. 2012;48:369-376.
– reference: 2. Vector-borne Virus Laboratory, Department of Virology I, National Institute of Infectious Diseases. The information of dengue virus infectious diseases. Available at <https://www0.nih.go.jp/vir1/NVL/dengue.htm>. Accessed March 23, 2021. Japanese.
– reference: 20. Mousson L, Zouache K, Arias-Goeta C, et al. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1989.
– reference: 16. Chouin-Carneiro T, Ant TH, Herd C, et al. Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti. Med Vet Entomol. 2020;34:116-119.
– reference: 11. Rudbeck L, Dissing J. Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. Biotechniques. 1998;25:588-590,592.
– reference: 17. Bian G, Xu Y, Lu P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6:e1000833.
– reference: 18. Ahmad NA, Mancini MV, Ant TH, et al. Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti. Philos Trans R Soc Lond B Biol Sci. 2021;376:20190809.
– reference: 12. Itokawa K, Hu J, Sukehiro N, et al. Genetic analysis of Aedes aegypti captured at two international airports serving to the greater Tokyo area during 2012–2015. PLoS One. 2020;15:e0232192.
– reference: 14. Zhou W, Rousset F, O’Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998;265:509-515.
– reference: 6. Kobayashi D, Murota K, Fujita R, et al. Dengue virus infection in Aedes albopictus during the 2014 autochthonous dengue outbreak in Tokyo metropolis, Japan. Am J Trop Med Hyg. 2018;98:1460-1468.
– reference: 10. Tajima S, Nerome R, Nukui Y, et al. A single mutation in the Japanese encephalitis virus E protein (S123R) increases its growth rate in mouse neuroblastoma cells and its pathogenicity in mice. Virology. 2010;396:298-304.
– reference: 3. Sukehiro N, Kida N, Umezawa M, et al. First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012. Jpn J Infect Dis. 2013;66:189-194.
– reference: 13. Braig HR, Zhou W, Dobson SL, et al. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol. 1998;180:2373-2378.
– reference: 4. Schmidt-Chanasit J, Emmerich P, Tappe D, et al. Autochthonous dengue virus infection in Japan imported into Germany, September 2013. Euro Surveill. 2014;19: 20681.
– reference: 19. Ant TH, Herd CS, Geoghegan V, et al. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 2018;14:e1006815.
– reference: 5. Kobayashi M, Komagata O, Yonejima M, et al. Retrospective search for dengue vector mosquito Aedes albopictus in areas visited by a German traveler who contracted dengue in Japan. Int J Infect Dis. 2014;26:135-137.
– reference: 7. Ogunlade ST, Meehan MT, Adekunle AI, et al. A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies. Vaccines. 2021;9:32.
– reference: 8. Sasaki T, Kuwata R, Hoshino K, et al. Argonaute 2 suppresses Japanese encephalitis virus infection in Aedes aegypti. Jpn J Infect Dis. 2017;70:38-44.
– ident: 2
– ident: 15
  doi: 10.1371/journal.pntd.0002152
– ident: 8
  doi: 10.7883/yoken.JJID.2015.671
– ident: 17
  doi: 10.1371/journal.ppat.1000833
– ident: 4
  doi: 10.2807/1560-7917.ES2014.19.3.20681
– ident: 5
  doi: 10.1016/j.ijid.2014.06.005
– ident: 20
  doi: 10.1371/journal.pntd.0001989
– ident: 3
  doi: 10.7883/yoken.66.189
– ident: 19
  doi: 10.1371/journal.ppat.1006815
– ident: 9
  doi: 10.1007/s11626-012-9520-1
– ident: 1
  doi: 10.1038/nature12060
– ident: 11
  doi: 10.2144/98254bm09
– ident: 12
  doi: 10.1371/journal.pone.0232192
– ident: 7
  doi: 10.3390/vaccines9010032
– ident: 6
  doi: 10.4269/ajtmh.17-0954
– ident: 14
  doi: 10.1098/rspb.1998.0324
– ident: 13
  doi: 10.1128/JB.180.9.2373-2378.1998
– ident: 16
  doi: 10.1111/mve.12384
– ident: 18
  doi: 10.1098/rstb.2019.0809
– ident: 10
  doi: 10.1016/j.virol.2009.10.035
SSID ssj0025510
Score 2.3176892
Snippet From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 140
SubjectTerms Aedes - genetics
Aedes - virology
Aedes albopictus
Anaplasmataceae Infections - microbiology
Anaplasmataceae Infections - virology
Animals
Aquatic insects
Bacteria
Dengue - epidemiology
Dengue - immunology
Dengue - virology
Dengue fever
dengue virus
Dengue Virus - genetics
Dengue Virus - immunology
Disease Outbreaks
Disease Susceptibility
Disease transmission
Fever
imported dengue fever
Japan - epidemiology
Mosquitoes
Outbreaks
Serogroup
Strains (organisms)
Susceptibility
Symbiosis
Vector-borne diseases
Viral diseases
Viruses
Wolbachia
Wolbachia - genetics
Wolbachia - virology
Title Aedes albopictus Strain and Dengue Virus Serotype in the Dengue Fever Outbreaks in Japan: Implications of Wolbachia Infection
URI https://www.jstage.jst.go.jp/article/yoken/75/2/75_JJID.2021.376/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/34470970
https://www.proquest.com/docview/2646156264
https://www.proquest.com/docview/2568597062
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese Journal of Infectious Diseases, 2022/03/31, Vol.75(2), pp.140-143
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLa2gRAviDuFgYzEW0nJxbl0b4Nt6ooGDxToW5Q4JyW0TaY0EWIS_53jS9J0KmhMvKSVL9Fxjj_7HPvzMSGvXDfgsbgDkLupYzAnSYwgChwjCQBwgokSxsWO7tkHb_SZjafudGf3oMNaqqt4wC-2niu5jlYxDfUqTsn-g2bbl2IC_kf94hM1jM8r6fgQElgJhnFxnvGqXok9ZvT0Nb04n9XQ_5KVIh3KQi62alajzjwBbHL_I34KNB3nkhk7xslTkj1Ou1RztCi_FotYEC8jHFIUfyvfMGxFPVg158wW6oiKKogCHKl9oNaA_xStInVh9qQQi2BFmbWqL2S6oNuKFYPZukomr3zqv48u6mW27tPRD2kAj6Ky_pbNi-46BrrA-mBfQ_No1j43SBJbBFUM4iu1qX-cZCLUilyGWS6zqgLojPUOY4bnqNuPB6DSgoAZaHF53QlCXe2igWB3RntLRZrShoOl4k1dnpP8IBCxMX4Wc8gH4_Hp0QBbbw0c_1IEcGlT6K4UytKh74a2eIhaoagVYq2wKSOO5SEKdskNG10kedB92tKb0FNUkTiaRqqIW0KYN1tE2bDKbn5Hx2QGf_a5pO01uUvu6M9PD5VI98gO5PfJrTNNC3lAfkkg0DUQqAICRSBQ1depBAJtgEAxE4HQZEog0BYIIlcq_4B2YUCLlLYwoC0MHpLJyfHk3cjQ94oY3PPMyoiddBgzD6LY95hlQgA4FcHQdCN0TiAexmCnkPI0dQIOZgoWODxNTGCRj_685zwie3mRwxNCsXF-DH7iWhyY7TO0th2wY8v2fOa6fNgjdvNZQ65j7ov2L0L0vYUutKI3FNwjr9tK5yrkzN-Lv1X6agtfoxP1yH6j61APcKsQfSX0dzz86ZGXbTZOP2JPEfGHUAvRYwrcoW96do88Vn2klUMEEzUx7-n_kPAZub0eNfbJXlXW8Bz9gSp-ITv-b_1dF34
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aedes+albopictus+Strain+and+Dengue+Virus+Serotype+in+the+Dengue+Fever+Outbreaks+in+Japan%3A+Implications+of+Wolbachia+Infection&rft.jtitle=Japanese+Journal+of+Infectious+Diseases&rft.au=Sasaki%2C+Toshinori&rft.au=Moi%2C+Meng+Ling&rft.au=Saito%2C+Kazumi&rft.au=Isawa%2C+Haruhiko&rft.date=2022-03-31&rft.pub=National+Institute+of+Infectious+Diseases%2C+Japanese+Journal+of+Infectious+Diseases+Editorial+Committee&rft.issn=1344-6304&rft.eissn=1884-2836&rft.volume=75&rft.issue=2&rft.spage=140&rft.epage=143&rft_id=info:doi/10.7883%2Fyoken.JJID.2021.376&rft.externalDocID=article_yoken_75_2_75_JJID_2021_376_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon