A review: poisoning by anticoagulant rodenticides in non-target animals globally
Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been r...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 81; no. 2; pp. 298 - 313 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2019
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors. |
---|---|
AbstractList | Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors. Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors.Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors. Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors. |
Author | MIZUKAWA, Hazuki NAKAYAMA, Shouta M.M. ISHIZUKA, Mayumi IKENAKA, Yoshinori MORITA, Ayuko |
Author_xml | – sequence: 1 fullname: NAKAYAMA, Shouta M.M. organization: Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan – sequence: 2 fullname: MORITA, Ayuko organization: Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan – sequence: 3 fullname: IKENAKA, Yoshinori organization: Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan – sequence: 4 fullname: MIZUKAWA, Hazuki organization: Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan – sequence: 5 fullname: ISHIZUKA, Mayumi organization: Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30587672$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhi1URLeFG2cUiQuHpnjs2I45IJWKL6kSHOBsOc4k9SobL3ayaP99He2ygkpcbI_nmfE7fi_I2RhGJOQl0Gtgmr1d7zbpGlRJFagnZAW8UqWquD4jK6pBlooJek4uUlpTyqCS-hk551TUSiq2It9viog7j7_fFdvgUxj92BfNvrDj5F2w_TzkUxFDi8uFbzEVfiyyhHKysccpg35jh1T0Q2jsMOyfk6ddjvHFcb8kPz99_HH7pbz79vnr7c1d6aSkU6kbx4QVmnPgDJRspQLb1ayrKw1QWUdpjaCbhiJDobpK06Z2FXeqZVQJ5Jfk_aHvdm422LqsL9rBbGOWE_cmWG_-zYz-3vRhZyTXgtE6N3hzbBDDrxnTZDY-ORzywBjmZBhIoFIIqTP6-hG6DnMc83iGMa4lKKVEpl79regk5c9nZ-DqALgYUorYnRCgZvHSLF4aUGbxMuPsEe78ZCcflnn88L-iD4eidZpsj6cXbMz2DXiAazBsWY5Fp6S7t9HgyB8A2i67Dw |
CitedBy_id | crossref_primary_10_1007_s10344_024_01812_4 crossref_primary_10_1016_j_scitotenv_2023_166290 crossref_primary_10_3390_life13010105 crossref_primary_10_1016_j_scitotenv_2023_168551 crossref_primary_10_3390_toxics9100267 crossref_primary_10_1016_j_scitotenv_2024_175883 crossref_primary_10_25225_jvb_20110 crossref_primary_10_1007_s00244_020_00763_6 crossref_primary_10_3389_ftox_2022_907892 crossref_primary_10_1080_20008686_2021_2016560 crossref_primary_10_1016_j_envpol_2023_121899 crossref_primary_10_1016_j_scitotenv_2020_144386 crossref_primary_10_2984_77_1_7 crossref_primary_10_3390_ph17060764 crossref_primary_10_7868_25000640240110 crossref_primary_10_1007_s10646_021_02374_w crossref_primary_10_1111_ibi_13047 crossref_primary_10_1016_j_scitotenv_2023_166293 crossref_primary_10_1111_ele_14456 crossref_primary_10_1016_j_envpol_2024_125034 crossref_primary_10_56178_eh_v39i1_1480 crossref_primary_10_7589_JWD_D_21_00144 crossref_primary_10_31073_vet_biotech45_06 crossref_primary_10_1016_j_envres_2024_120302 crossref_primary_10_1292_jvms_22_0079 crossref_primary_10_1016_j_envpol_2024_124944 crossref_primary_10_1002_wsb_1483 crossref_primary_10_1007_s10646_021_02411_8 crossref_primary_10_3390_ani15060800 crossref_primary_10_3390_ani15060766 crossref_primary_10_1016_j_scitotenv_2022_157192 crossref_primary_10_1016_j_scitotenv_2024_173191 crossref_primary_10_1016_j_jnc_2023_126540 crossref_primary_10_1007_s10340_023_01737_y crossref_primary_10_1016_j_scitotenv_2024_174282 crossref_primary_10_3356_JRR_20_34 crossref_primary_10_1016_j_cbpc_2024_109841 crossref_primary_10_1186_s12917_024_03943_x crossref_primary_10_1007_s11356_024_33026_1 crossref_primary_10_1002_etc_5042 crossref_primary_10_1002_etc_5361 crossref_primary_10_1126_science_ade2357 crossref_primary_10_1002_ps_6179 crossref_primary_10_1016_j_chroma_2024_465600 crossref_primary_10_1016_j_envres_2024_120382 crossref_primary_10_21931_RB_2020_05_04_26 crossref_primary_10_1371_journal_pgph_0002211 crossref_primary_10_3390_toxics10020063 crossref_primary_10_2460_javma_21_08_0364 crossref_primary_10_1007_s10646_022_02559_x crossref_primary_10_1016_j_scitotenv_2021_151291 crossref_primary_10_1186_s42269_023_01055_4 crossref_primary_10_1016_j_scitotenv_2024_170492 crossref_primary_10_3356_JRR_20_122 crossref_primary_10_3389_fvets_2020_616276 crossref_primary_10_3390_conservation4040039 crossref_primary_10_1016_j_etap_2020_103536 crossref_primary_10_1371_journal_pone_0278642 crossref_primary_10_3390_ani9110919 crossref_primary_10_1021_acs_est_3c09052 crossref_primary_10_3356_jrr245 crossref_primary_10_32402_dovkil2023_04_046 crossref_primary_10_1016_j_jchromb_2021_123005 crossref_primary_10_1016_j_scitotenv_2020_144160 crossref_primary_10_3390_ani11113308 crossref_primary_10_1111_acv_12947 crossref_primary_10_1007_s11356_024_32133_3 crossref_primary_10_1002_etc_5829 crossref_primary_10_1007_s10311_025_01821_y crossref_primary_10_1016_j_scitotenv_2024_169990 crossref_primary_10_1080_10406638_2022_2088576 crossref_primary_10_1002_vrc2_194 crossref_primary_10_1016_j_scitotenv_2023_168761 crossref_primary_10_1647_AVIANMS_D_24_00014 crossref_primary_10_1007_s11252_024_01600_7 crossref_primary_10_1007_s11356_022_18529_z crossref_primary_10_1016_j_scitotenv_2021_147520 crossref_primary_10_1016_j_scitotenv_2024_176445 crossref_primary_10_7120_09627286_31_1_005 crossref_primary_10_1016_j_cvsm_2022_07_013 crossref_primary_10_1002_elan_202400146 crossref_primary_10_1177_10406387231178558 crossref_primary_10_3390_ani14162301 crossref_primary_10_1016_j_scitotenv_2025_178795 crossref_primary_10_1002_ps_5987 crossref_primary_10_1016_j_scitotenv_2020_139444 crossref_primary_10_3390_toxics9100238 crossref_primary_10_3390_cells13090788 |
Cites_doi | 10.1579/0044-7447(2008)37[469:TPBMSI]2.0.CO;2 10.1002/etc.2390 10.1016/j.scitotenv.2014.12.042 10.22353/mjbs.2004.02.13 10.1007/s10646-013-1074-9 10.1016/j.scitotenv.2014.03.094 10.1111/j.1365-2885.2008.00979.x 10.1007/978-3-319-64377-9_2 10.1038/news.2011.24 10.7589/0090-3558-40.4.688 10.7589/0090-3558-35.2.187 10.7589/2013-07-160 10.1007/s10661-013-3422-x 10.2307/1367485 10.1038/nature.2012.11824 10.1016/S0269-7491(98)00141-9 10.1016/j.scitotenv.2007.10.061 10.1021/es501740n 10.1016/j.ecoenv.2014.11.013 10.1897/04-255R.1 10.3356/0892-1016(2007)41[177:BOHAPA]2.0.CO;2 10.1016/j.scitotenv.2012.01.028 10.1016/j.envint.2011.03.010 10.1016/j.cbpc.2010.03.006 10.1023/A:1013793029831 10.1023/A:1008951701780 10.1016/j.scitotenv.2011.03.006 10.1016/j.biocon.2015.01.008 10.1080/03014223.1998.9518160 10.1007/s00244-012-9771-6 10.3161/068.036.0111 10.1007/978-4-431-53859-2_23 10.1016/j.scitotenv.2013.01.100 10.2478/v10262-012-0048-9 10.2193/2005-615 |
ContentType | Journal Article |
Copyright | 2019 by the Japanese Society of Veterinary Science Copyright Japan Science and Technology Agency Feb 2019 2019 The Japanese Society of Veterinary Science 2019 |
Copyright_xml | – notice: 2019 by the Japanese Society of Veterinary Science – notice: Copyright Japan Science and Technology Agency Feb 2019 – notice: 2019 The Japanese Society of Veterinary Science 2019 |
DBID | AAYXX CITATION NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.17-0717 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 313 |
ExternalDocumentID | PMC6395208 30587672 10_1292_jvms_17_0717 article_jvms_81_2_81_17_0717_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX B.T CITATION OVT PGMZT NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c660t-9bc25a5933132176d671af82f849114ac008e19bb0e2e57f490b8c43c7d2075e3 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 17:52:16 EDT 2025 Fri Jul 11 11:17:29 EDT 2025 Mon Jun 30 11:20:37 EDT 2025 Wed Feb 19 02:33:26 EST 2025 Tue Jul 01 04:14:35 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Wed Apr 05 06:41:43 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | raptor comprehensive review non-target animal anticoagulant rodenticide residue |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c660t-9bc25a5933132176d671af82f849114ac008e19bb0e2e57f490b8c43c7d2075e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.17-0717 |
PMID | 30587672 |
PQID | 2239617775 |
PQPubID | 2028964 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6395208 proquest_miscellaneous_2161065569 proquest_journals_2239617775 pubmed_primary_30587672 crossref_primary_10_1292_jvms_17_0717 crossref_citationtrail_10_1292_jvms_17_0717 jstage_primary_article_jvms_81_2_81_17_0717_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2019 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 39. Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. and Johnston, J. J. 2014. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33: 74–81. 53. The IUCN Red List of Threatened SpeciesTM, 2017. Falco cherrug, Saker Falcon. https://www.iucnredlist.org/species/22696495/110525916 [accessed on November 30, 2018]. 5. Christensen, T. K., Lassen, P. and Elmeros, M. 2012. High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch. Environ. Contam. Toxicol. 63: 437–444. 18. Howald, G. R., Mineau, P., Elliott, J. E. and Cheng, K. M. 1999. Brodifacoum poisoning of avian scavengers during rat control on a seabird colony. Ecotoxicology 8: 431–447. 44. Sánchez-Barbudo, I. S., Camarero, P. R. and Mateo, R. 2012. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420: 280–288. 52. The IUCN Red List of Threatened SpeciesTM, 2017. Aquila heliaca, Eastern Imperial Eagle. https://www.iucnredlist.org/species/22696048/117070289 [accessed on November 30, 2018]. 59. Walker, L. A., Llewellyn, N. R., Pereira, M. G., Potter, E. D., Sainsbury, A. W. and Shore, R. F. 2015. Anticoagulant rodenticides in sparrowhawks: a Predatory Bird Monitoring Scheme (PBMS) report.:1–29. http://nora.nerc.ac.uk/id/eprint/511023/ [accessed on November 30, 2018]. 11. Elmeros, M., Christensen, T. K. and Lassen, P. 2011. Concentrations of anticoagulant rodenticides in stoats Mustela erminea and weasels Mustela nivalis from Denmark. Sci. Total Environ. 409: 2373–2378. 50. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 2003. Anticoagulant rodenticides and raptors: recent findings from New York, 1998-2001. Bull. Environ. Contam. Toxicol. 70: 34–40. 56. Tome, R., Catry, P., Bloise, C. and Korpimaki, E. 2008. Breeding density and success, and diet composition of Little Owls Athene noctua in steppe-like habitats in Portugal. Ornis Fenn. 85: 22–32. 13. Fournier-Chambrillon, C., Berny, P. J., Coiffier, O., Barbedienne, P., Dassé, B., Delas, G., Galineau, H., Mazet, A., Pouzenc, P., Rosoux, R. and Fournier, P. 2004. Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: implications for conservation of European mink (Mustela lutreola). J. Wildl. Dis. 40: 688–695. 26. Langford, K. H., Reid, M. and Thomas, K. V. 2013. The occurrence of second generation anticoagulant rodenticides in non-target raptor species in Norway. Sci. Total Environ. 450-451: 205–208. 1. Albert, C. A., Wilson, L. K., Mineau, P., Trudeau, S. and Elliott, J. E. 2010. Anticoagulant rodenticides in three owl species from Western Canada, 1988-2003. Arch. Environ. Contam. Toxicol. 58: 451–459. 42. Riley, S. P. D., Bromley, C., Poppenga, R. H., Uzal, F. A., Whited, L. and Sauvajot, R. M. 2007. Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J. Wildl. Manage. 71: 1874–1884. 24. Korpimaki, E. 1985. Diet of the Kestrel Falco tinnunculus in the breeding season. Ornis Fenn. 62: 130–137. 55. Thomas, P. J., Mineau, P., Shore, R. F., Champoux, L., Martin, P. A., Wilson, L. K., Fitzgerald, G. and Elliott, J. E. 2011. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37: 914–920. 23. Johnston, J. J., Pitt, W. C., Sugihara, R. T., Eisemann, J. D., Primus, T. M., Holmes, M. J., Crocker, J. and Hart, A. 2005. Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, U.S.A.Environ. Toxicol. Chem. 24: 1557–1567. 7. Dowding, C. V., Shore, R. F., Worgan, A., Baker, P. J. and Harris, S. 2010. Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environ. Pollut. 158: 161–166. 16. Hashimoto, T. 2009. Eradication and Ecosystem Impact of rats in the Ogasawara Islands. pp. 153–159. In: Restoring the Oceanic Island Ecosystem, Springer, Basel. 38. Pitt, W. C., Berentsen, A. R., Shiels, A. B., Volker, S. F., Eisemann, J. D., Wegmann, A. S. and Howald, G. R. 2015. Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biol. Conserv. 185: 36–46. 9. Ebbert, S. and Burek-Huntington, K. 2010. Anticoagulant residual concentration and poisoning in birds following a large-scale aerial broadcast of 25-ppm brodifacoum bait for rat eradication on Rat Island, Alaska. Proc. 24th Vertebr. Pest Conf. Publ. Univ. Calif., Davis: 153–160. 49. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 1999. Poisoning of wildlife with anticoagulant rodenticides in New York. J. Wildl. Dis. 35: 187–193. 46. Shore, R. F., Birks, J. D. S., Afsar, A., Wienburg, C. L. and Kitchener, A. C. 2003. Spatial and temporal analysis of second-generation anticoagulant rodenticide residues in polecats (Mustela putorius) from throughout their range in Britain, 1992-1999. Environ. Pollut. 122: 183–193. 22. Johnsen, T. V., Systad, G. H., Jacobsen, K. O., Nygard, T. and Bustnes, J. O. 2007. The occurrence of reindeer calves in the diet of nesting Golden Eagles in Finnmark, northern Norway. Ornis Fenn. 84: 112–118. 30. Masuda, B. M., Fisher, P. and Beaven, B. 2015. Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. Ecotoxicol. Environ. Saf. 113: 1–8. 27. Livezey, K. C. 2007. Barred owl habitat and prey: a review and synthesis of the literature. J. Raptor Res. 41: 177–201. 32. McEwan, L. C. and Hirth, D. H. 1980. Food habitats of bald eagles in north-central Florida. Condor 82: 229–231. 43. Ruiz-Suárez, N., Henríquez-Hernández, L. A., Valerón, P. F., Boada, L. D., Zumbado, M., Camacho, M., Almeida-González, M. and Luzardo, O. P. 2014. Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Sci. Total Environ. 485-486: 371–376. 34. Mougeot, F., Garcia, J. T. and Viñuela, J. 2011. Breeding biology, behaviour, diet and conservation of the red kite (Milvus milvus), with particular emphasis on Mediterranean populations. Ecol. Conserv. Eur. Dwell. For. raptors owls.:190–204. http://www.eeza.csic.es/Documentos/Publicaciones/2011-Red_kite_book_chapter.pdf [accessed on November 30, 2018]. 60. Walker, L. A., Shore, R. F., Turk, A., Pereira, M. G. and Best, J. 2008. T 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 6. Dennis, G. C. and Gartrell, B. D. 2015. Nontarget mortality of New Zealand lesser short-tailed bats (Mystacina tuberculata) caused by diphacinone. J. Wildl. Dis. 51: 177–186. – reference: 43. Ruiz-Suárez, N., Henríquez-Hernández, L. A., Valerón, P. F., Boada, L. D., Zumbado, M., Camacho, M., Almeida-González, M. and Luzardo, O. P. 2014. Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Sci. Total Environ. 485-486: 371–376. – reference: 52. The IUCN Red List of Threatened SpeciesTM, 2017. Aquila heliaca, Eastern Imperial Eagle. https://www.iucnredlist.org/species/22696048/117070289 [accessed on November 30, 2018]. – reference: 27. Livezey, K. C. 2007. Barred owl habitat and prey: a review and synthesis of the literature. J. Raptor Res. 41: 177–201. – reference: 25. Lambert, O., Pouliquen, H., Larhantec, M., Thorin, C. and L’Hostis, M. 2007. Exposure of raptors and waterbirds to anticoagulant rodenticides (difenacoum, bromadiolone, coumatetralyl, coumafen, brodifacoum): epidemiological survey in Loire Atlantique (France). Bull. Environ. Contam. Toxicol. 79: 91–94. – reference: 35. Murphy, E. C., Clapperton, B. K., Bradfield, P. M. F. and Speed, H. J. 1998. Brodifacoum residues in target and non-target animals following large-scale poison operations in New Zealand podocarp-hardwood forests. New Zeal. J. Zool. (Lond.) 25: 307–314. – reference: 31. McDonald, R. A., Harris, S., Turnbull, G., Brown, P. and Fletcher, M. 1998. Anticoagulant rodenticides in stoats (Mustela erminea) and weasels (Mustela nivalis) in England. Environ. Pollut. 103: 17–23. – reference: 55. Thomas, P. J., Mineau, P., Shore, R. F., Champoux, L., Martin, P. A., Wilson, L. K., Fitzgerald, G. and Elliott, J. E. 2011. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37: 914–920. – reference: 5. Christensen, T. K., Lassen, P. and Elmeros, M. 2012. High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch. Environ. Contam. Toxicol. 63: 437–444. – reference: 57. Vandenbroucke, V., Bousquet-Melou, A., De Backer, P. and Croubels, S. 2008. Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J. Vet. Pharmacol. Ther. 31: 437–445. – reference: 51. The IUCN Red List of Threatened SpeciesTM, 2017. Aquila adalberti, Spanish Imperial Eagle. Available from https://www.iucnredlist.org/species/22696042/110743671 [accessed on November 30, 2018]. – reference: 44. Sánchez-Barbudo, I. S., Camarero, P. R. and Mateo, R. 2012. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420: 280–288. – reference: 63. Zawadzka, D. and Zawadzki, J. 2001. Breeding Populations and Diets of the Sparrowhawk Accipiter nisus and the Hobby Falco subbuteo in the Wigry National Park (Ne Poland) Breeding populations and diets of the Sparrowhawk Accipiter nisus and the Hobby Falco subbuteo in the Wigry National Pa. Acta Ornithol. 36: 25–31. – reference: 61. Walker, L. A., Turk, A., Long, S. M., Wienburg, C. L., Best, J. and Shore, R. F. 2008. Second generation anticoagulant rodenticides in tawny owls (Strix aluco) from Great Britain. Sci. Total Environ. 392: 93–98. – reference: 42. Riley, S. P. D., Bromley, C., Poppenga, R. H., Uzal, F. A., Whited, L. and Sauvajot, R. M. 2007. Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J. Wildl. Manage. 71: 1874–1884. – reference: 36. Novgorod, N., ЦeHTp, K.И.B, HOBrOpOд, H. 2010. The Imperial Eagle is a Vanishing Species in the Tyva Republic, Russia. Rap. Res. Raptors Conserv. 20: 177–185. – reference: 19. Hughes, J., Sharp, E., Taylor, M. J., Melton, L. and Hartley, G. 2013. Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland. Ecotoxicology 22: 974–984. – reference: 39. Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. and Johnston, J. J. 2014. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33: 74–81. – reference: 60. Walker, L. A., Shore, R. F., Turk, A., Pereira, M. G. and Best, J. 2008. The Predatory Bird Monitoring Scheme: identifying chemical risks to top predators in Britain. Ambio 37: 466–471. – reference: 24. Korpimaki, E. 1985. Diet of the Kestrel Falco tinnunculus in the breeding season. Ornis Fenn. 62: 130–137. – reference: 56. Tome, R., Catry, P., Bloise, C. and Korpimaki, E. 2008. Breeding density and success, and diet composition of Little Owls Athene noctua in steppe-like habitats in Portugal. Ornis Fenn. 85: 22–32. – reference: 62. Watanabe, K. P., Saengtienchai, A., Tanaka, K. D., Ikenaka, Y. and Ishizuka, M. 2010. Comparison of warfarin sensitivity between rat and bird species. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 152: 114–119. – reference: 8. Eason, C. T., Murphy, E. C., Wright, G. R. G. and Spurr, E. B. 2002. Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicology 11: 35–48. – reference: 29. Lovett, R. A. 2012. Killing rats is killing birds. NATNEWS 2012: 10.1038/nature.2012.11824. – reference: 17. Haw, J. M., Clout, M. N. and Powlesland, R. G. 2001. Diet of moreporks (Ninox novaeseelandiae) in Pureora Forest determined from prey remains in regurgitated pellets. N. Z. J. Ecol. 25: 61–67. – reference: 1. Albert, C. A., Wilson, L. K., Mineau, P., Trudeau, S. and Elliott, J. E. 2010. Anticoagulant rodenticides in three owl species from Western Canada, 1988-2003. Arch. Environ. Contam. Toxicol. 58: 451–459. – reference: 2. Borrell, B. 2011. Where eagles die. NATNEWS 2011: 10.1038/news.2011.24. – reference: 58. Walker, L. A., Llewellyn, N. R., Pereira, M. G., Potter, E. D., Sainsbury, A. W. and Shore, R. F. 2013. Anticoagulant rodenticides in predatory birds 2011: a Predatory Bird Monitoring Scheme (PBMS) report.:1–29. http://nora.nerc.ac.uk/id/eprint/500093/ [accessed on November 30, 2018]. – reference: 30. Masuda, B. M., Fisher, P. and Beaven, B. 2015. Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. Ecotoxicol. Environ. Saf. 113: 1–8. – reference: 11. Elmeros, M., Christensen, T. K. and Lassen, P. 2011. Concentrations of anticoagulant rodenticides in stoats Mustela erminea and weasels Mustela nivalis from Denmark. Sci. Total Environ. 409: 2373–2378. – reference: 18. Howald, G. R., Mineau, P., Elliott, J. E. and Cheng, K. M. 1999. Brodifacoum poisoning of avian scavengers during rat control on a seabird colony. Ecotoxicology 8: 431–447. – reference: 28. López-Perea, J. J., Camarero, P. R., Molina-López, R. A., Parpal, L., Obón, E., Solá, J. and Mateo, R. 2015. Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Sci. Total Environ. 511: 259–267. – reference: 38. Pitt, W. C., Berentsen, A. R., Shiels, A. B., Volker, S. F., Eisemann, J. D., Wegmann, A. S. and Howald, G. R. 2015. Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biol. Conserv. 185: 36–46. – reference: 47. Shore, R. F., Birks, J. D. S. and Freestone, P. 1999. Exposure of non-target vertebrates to second-generation rodenticides in Britain, with particular reference to the polecat Mustela putorius. N. Z. J. Ecol. 23: 199–206. – reference: 12. Erickson, W. and Urban, D. 2004. Potential Risks of Nine Rodenticides to Birds and Non Target Mammals: A Comparative Approach. United States Environ. Prot. Agency, Washington, D.C. – reference: 7. Dowding, C. V., Shore, R. F., Worgan, A., Baker, P. J. and Harris, S. 2010. Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environ. Pollut. 158: 161–166. – reference: 21. Jacob, J. and Buckle, A. 2018. Use of anticoagulant rodenticides in different applications around the world. pp. 11–43. In: Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology (Principles, Approaches and Perspectives) (van den Brink, N., Elliott, J., Shore, R. and Rattner, B. eds.), Springer, Cham. – reference: 59. Walker, L. A., Llewellyn, N. R., Pereira, M. G., Potter, E. D., Sainsbury, A. W. and Shore, R. F. 2015. Anticoagulant rodenticides in sparrowhawks: a Predatory Bird Monitoring Scheme (PBMS) report.:1–29. http://nora.nerc.ac.uk/id/eprint/511023/ [accessed on November 30, 2018]. – reference: 33. Ministry of the Environment, Government of Japan 2018. Third revision to the 4th Version of the Japanese Red Lists. https://www.env.go.jp/press/files/jp/109278.pdf (in Japanese) [accessed on November 30, 2018]. – reference: 26. Langford, K. H., Reid, M. and Thomas, K. V. 2013. The occurrence of second generation anticoagulant rodenticides in non-target raptor species in Norway. Sci. Total Environ. 450-451: 205–208. – reference: 48. Stansley, W., Cummings, M., Vudathala, D. and Murphy, L. A. 2014. Anticoagulant rodenticides in red-tailed hawks, Buteo jamaicensis, and great horned owls, Bubo virginianus, from New Jersey, U.S.A., 2008–2010. Bull. Environ. Contam. Toxicol. 92: 6–9. – reference: 10. Elliott, J. E., Hindmarch, S., Albert, C. A., Emery, J., Mineau, P. and Maisonneuve, F. 2014. Exposure pathways of anticoagulant rodenticides to nontarget wildlife. Environ. Monit. Assess. 186: 895–906. – reference: 16. Hashimoto, T. 2009. Eradication and Ecosystem Impact of rats in the Ogasawara Islands. pp. 153–159. In: Restoring the Oceanic Island Ecosystem, Springer, Basel. – reference: 32. McEwan, L. C. and Hirth, D. H. 1980. Food habitats of bald eagles in north-central Florida. Condor 82: 229–231. – reference: 54. The IUCN Red List of Threatened SpeciesTM, 2017. Milvus milvus, Red Kite. https://www.iucnredlist.org/species/22695072/131877336 [accessed on November 30, 2018]. – reference: 37. Obuch, J. and Karaska, D. 2010. The Eurasian eagle-owl (Bubo bubo) diet in the Orava Region (N Slovakia). Slovak Raptor J. 4: 83–98. – reference: 23. Johnston, J. J., Pitt, W. C., Sugihara, R. T., Eisemann, J. D., Primus, T. M., Holmes, M. J., Crocker, J. and Hart, A. 2005. Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, U.S.A.Environ. Toxicol. Chem. 24: 1557–1567. – reference: 40. Rattner, B. A., Horak, K. E., Warner, S. E., Day, D. D., Meteyer, C. U., Volker, S. F., Eisemann, J. D. and Johnston, J. J. 2011. Acute toxicity, histopathology, and coagulopathy in American kestrels (Falco sparverius) following administration of the rodenticide diphacinone. Environ. Toxicol. Chem. 30: 1213–1222. – reference: 46. Shore, R. F., Birks, J. D. S., Afsar, A., Wienburg, C. L. and Kitchener, A. C. 2003. Spatial and temporal analysis of second-generation anticoagulant rodenticide residues in polecats (Mustela putorius) from throughout their range in Britain, 1992-1999. Environ. Pollut. 122: 183–193. – reference: 41. Rattner, B. A., Lazarus, R. S., Elliott, J. E., Shore, R. F. and van den Brink, N. 2014. Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ. Sci. Technol. 48: 8433–8445. – reference: 53. The IUCN Red List of Threatened SpeciesTM, 2017. Falco cherrug, Saker Falcon. https://www.iucnredlist.org/species/22696495/110525916 [accessed on November 30, 2018]. – reference: 3. Carl, D. M. and Michael, N. K. 1995. Are red-tailed hawks and great horned owls diurnal-nocturnal dietary counterparts?Wilson Bull. 107: 615–628. – reference: 20. Jackson, W. R. and Ashton, A. D. 1992. A review of available anticoagulants and their use in the United States. Proc. Fifteenth Vertebr. Pest Conf.:156–160. – reference: 49. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 1999. Poisoning of wildlife with anticoagulant rodenticides in New York. J. Wildl. Dis. 35: 187–193. – reference: 9. Ebbert, S. and Burek-Huntington, K. 2010. Anticoagulant residual concentration and poisoning in birds following a large-scale aerial broadcast of 25-ppm brodifacoum bait for rat eradication on Rat Island, Alaska. Proc. 24th Vertebr. Pest Conf. Publ. Univ. Calif., Davis: 153–160. – reference: 14. Gillies, C. A. and Pierce, R. J. 1999. Secondary poisoning of mammalian predators during possum and rodent control operations at Trounson Kauri Park, Northland, New Zealand. N. Z. J. Ecol. 23: 183–192. – reference: 22. Johnsen, T. V., Systad, G. H., Jacobsen, K. O., Nygard, T. and Bustnes, J. O. 2007. The occurrence of reindeer calves in the diet of nesting Golden Eagles in Finnmark, northern Norway. Ornis Fenn. 84: 112–118. – reference: 34. Mougeot, F., Garcia, J. T. and Viñuela, J. 2011. Breeding biology, behaviour, diet and conservation of the red kite (Milvus milvus), with particular emphasis on Mediterranean populations. Ecol. Conserv. Eur. Dwell. For. raptors owls.:190–204. http://www.eeza.csic.es/Documentos/Publicaciones/2011-Red_kite_book_chapter.pdf [accessed on November 30, 2018]. – reference: 13. Fournier-Chambrillon, C., Berny, P. J., Coiffier, O., Barbedienne, P., Dassé, B., Delas, G., Galineau, H., Mazet, A., Pouzenc, P., Rosoux, R. and Fournier, P. 2004. Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: implications for conservation of European mink (Mustela lutreola). J. Wildl. Dis. 40: 688–695. – reference: 45. Serieys, L. E. K., Armenta, T. C., Moriarty, J. G., Boydston, E. E., Lyren, L. M., Poppenga, R. H., Crooks, K. R., Wayne, R. K. and Riley, S. P. D. 2015. Anticoagulant rodenticides in urban bobcats: exposure, risk factors and potential effects based on a 16-year study. Ecotoxicology 24: 844–862. – reference: 4. Chiba, Y. and Chiba, H. 2014. Ogasawara Buzzard (Buteo buteo toyoshimai) utilizes small islands of the Bonin (Ogasawara) Islands during the rodenticides application season. Tokyo Metrop. Univ. Institutional Repos.: 67–79 (The title in Japanese is translated into English by the authors). – reference: 50. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 2003. Anticoagulant rodenticides and raptors: recent findings from New York, 1998-2001. Bull. Environ. Contam. Toxicol. 70: 34–40. – reference: 15. Gombobaatar, S., Sumiya, D., Shagdarsuren, O., Potapov, E. R. and Fox, N. 2004. Saker falcon (Falco cherrug milvipes Jerdon) mortality in central Mongolia and population threats. Mong. J. Biol. Sci. 2: 13–21. – ident: 59 doi: 10.1579/0044-7447(2008)37[469:TPBMSI]2.0.CO;2 – ident: 39 – ident: 12 – ident: 38 doi: 10.1002/etc.2390 – ident: 51 – ident: 55 – ident: 28 doi: 10.1016/j.scitotenv.2014.12.042 – ident: 15 doi: 10.22353/mjbs.2004.02.13 – ident: 9 – ident: 19 doi: 10.1007/s10646-013-1074-9 – ident: 49 – ident: 42 doi: 10.1016/j.scitotenv.2014.03.094 – ident: 45 – ident: 22 – ident: 56 doi: 10.1111/j.1365-2885.2008.00979.x – ident: 17 – ident: 21 doi: 10.1007/978-3-319-64377-9_2 – ident: 1 – ident: 34 – ident: 50 – ident: 2 doi: 10.1038/news.2011.24 – ident: 58 – ident: 13 doi: 10.7589/0090-3558-40.4.688 – ident: 48 doi: 10.7589/0090-3558-35.2.187 – ident: 6 doi: 10.7589/2013-07-160 – ident: 10 doi: 10.1007/s10661-013-3422-x – ident: 44 – ident: 32 doi: 10.2307/1367485 – ident: 29 doi: 10.1038/nature.2012.11824 – ident: 4 – ident: 31 doi: 10.1016/S0269-7491(98)00141-9 – ident: 60 doi: 10.1016/j.scitotenv.2007.10.061 – ident: 40 doi: 10.1021/es501740n – ident: 33 – ident: 14 – ident: 30 doi: 10.1016/j.ecoenv.2014.11.013 – ident: 23 doi: 10.1897/04-255R.1 – ident: 53 – ident: 57 – ident: 27 doi: 10.3356/0892-1016(2007)41[177:BOHAPA]2.0.CO;2 – ident: 43 doi: 10.1016/j.scitotenv.2012.01.028 – ident: 54 doi: 10.1016/j.envint.2011.03.010 – ident: 24 – ident: 7 – ident: 47 – ident: 20 – ident: 61 doi: 10.1016/j.cbpc.2010.03.006 – ident: 8 doi: 10.1023/A:1013793029831 – ident: 3 – ident: 18 doi: 10.1023/A:1008951701780 – ident: 11 doi: 10.1016/j.scitotenv.2011.03.006 – ident: 37 doi: 10.1016/j.biocon.2015.01.008 – ident: 35 doi: 10.1080/03014223.1998.9518160 – ident: 5 doi: 10.1007/s00244-012-9771-6 – ident: 62 doi: 10.3161/068.036.0111 – ident: 52 – ident: 16 doi: 10.1007/978-4-431-53859-2_23 – ident: 26 doi: 10.1016/j.scitotenv.2013.01.100 – ident: 36 doi: 10.2478/v10262-012-0048-9 – ident: 46 – ident: 41 doi: 10.2193/2005-615 – ident: 25 |
SSID | ssj0021469 |
Score | 2.494114 |
SecondaryResourceType | review_article |
Snippet | Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In... Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 298 |
SubjectTerms | anticoagulant rodenticide Anticoagulants Birds of prey comprehensive review Diet Invertebrates non-target animal Nontarget organisms Poisoning Prey raptor residue Reviews Rodenticides Species Toxicology |
Title | A review: poisoning by anticoagulant rodenticides in non-target animals globally |
URI | https://www.jstage.jst.go.jp/article/jvms/81/2/81_17-0717/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/30587672 https://www.proquest.com/docview/2239617775 https://www.proquest.com/docview/2161065569 https://pubmed.ncbi.nlm.nih.gov/PMC6395208 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2019, Vol.81(2), pp.298-313 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9RAEJ4A-sALEVSsAlkTfTLFbq_dbSXEECNBzRkfPMNb091u5cjRQ-4g3H_vN7e9xiOQ-NKXnU3b2fnx7c7sDNEblUSlc9A0VcpeCOsnQ1OpKDRZVRqTwSdVfKDf_65OBsnX0_R0hRbdRlsGTu7d2nE_qcHVaP_2z-wjFP5wXhshj9-f31xM9iWfuEm9So_gkzT3MugnXTyBu1f7qntShRpev02Bvzt7yTk9Pgc---3ug553Myj_cUnHT2ijxZLiyC_-Jq24Zou2fnGCy_yWrei3gfOn9ONI-EsqH8TlmBOI4LGEmQnwFaJQcj_6ZipgTDl5yA4rNxHDRjTjJvSp4iAcXoBjwhcQGc2e0eD4889PJ2HbTCG0SkXTMDc2Tss073GtRqlVpbQs6yyuswT2LiktwICTuTGRi12q6ySPTGaTntVVDFjhes9pDW91L0jUdVZzwNSmFhOVNspqravcMZjDBi6gdwsuFratNM4NL0YF7zjA84J5XkhdMM8DettRX_oKGw_QHfgF6aha3fJUmSxifrTU3SBfXoMFCGhnsYrFQsgKQKMcCE7rNKDX3TD0i4MmZePG16ABJAZMSxV-a9svevcBsJVwJjoOSC-JQ0fAtbuXR5rh2byGN4BhGkfZy__8-Ve0DqSW-7OfHVqbXl27XaChqdnDPuDLt725uP8F5A8MRw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review%3A+poisoning+by+anticoagulant+rodenticides+in+non-target+animals+globally&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=NAKAYAMA%2C+Shouta+M.M.&rft.au=MORITA%2C+Ayuko&rft.au=IKENAKA%2C+Yoshinori&rft.au=MIZUKAWA%2C+Hazuki&rft.date=2019&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=81&rft.issue=2&rft.spage=298&rft.epage=313&rft_id=info:doi/10.1292%2Fjvms.17-0717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1292_jvms_17_0717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |