A review: poisoning by anticoagulant rodenticides in non-target animals globally

Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been r...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 81; no. 2; pp. 298 - 313
Main Authors NAKAYAMA, Shouta M.M., MORITA, Ayuko, IKENAKA, Yoshinori, MIZUKAWA, Hazuki, ISHIZUKA, Mayumi
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2019
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors.
AbstractList Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors.
Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors.Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors.
Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors.
Author MIZUKAWA, Hazuki
NAKAYAMA, Shouta M.M.
ISHIZUKA, Mayumi
IKENAKA, Yoshinori
MORITA, Ayuko
Author_xml – sequence: 1
  fullname: NAKAYAMA, Shouta M.M.
  organization: Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
– sequence: 2
  fullname: MORITA, Ayuko
  organization: Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
– sequence: 3
  fullname: IKENAKA, Yoshinori
  organization: Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
– sequence: 4
  fullname: MIZUKAWA, Hazuki
  organization: Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
– sequence: 5
  fullname: ISHIZUKA, Mayumi
  organization: Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30587672$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URLeFG2cUiQuHpnjs2I45IJWKL6kSHOBsOc4k9SobL3ayaP99He2ygkpcbI_nmfE7fi_I2RhGJOQl0Gtgmr1d7zbpGlRJFagnZAW8UqWquD4jK6pBlooJek4uUlpTyqCS-hk551TUSiq2It9viog7j7_fFdvgUxj92BfNvrDj5F2w_TzkUxFDi8uFbzEVfiyyhHKysccpg35jh1T0Q2jsMOyfk6ddjvHFcb8kPz99_HH7pbz79vnr7c1d6aSkU6kbx4QVmnPgDJRspQLb1ayrKw1QWUdpjaCbhiJDobpK06Z2FXeqZVQJ5Jfk_aHvdm422LqsL9rBbGOWE_cmWG_-zYz-3vRhZyTXgtE6N3hzbBDDrxnTZDY-ORzywBjmZBhIoFIIqTP6-hG6DnMc83iGMa4lKKVEpl79regk5c9nZ-DqALgYUorYnRCgZvHSLF4aUGbxMuPsEe78ZCcflnn88L-iD4eidZpsj6cXbMz2DXiAazBsWY5Fp6S7t9HgyB8A2i67Dw
CitedBy_id crossref_primary_10_1007_s10344_024_01812_4
crossref_primary_10_1016_j_scitotenv_2023_166290
crossref_primary_10_3390_life13010105
crossref_primary_10_1016_j_scitotenv_2023_168551
crossref_primary_10_3390_toxics9100267
crossref_primary_10_1016_j_scitotenv_2024_175883
crossref_primary_10_25225_jvb_20110
crossref_primary_10_1007_s00244_020_00763_6
crossref_primary_10_3389_ftox_2022_907892
crossref_primary_10_1080_20008686_2021_2016560
crossref_primary_10_1016_j_envpol_2023_121899
crossref_primary_10_1016_j_scitotenv_2020_144386
crossref_primary_10_2984_77_1_7
crossref_primary_10_3390_ph17060764
crossref_primary_10_7868_25000640240110
crossref_primary_10_1007_s10646_021_02374_w
crossref_primary_10_1111_ibi_13047
crossref_primary_10_1016_j_scitotenv_2023_166293
crossref_primary_10_1111_ele_14456
crossref_primary_10_1016_j_envpol_2024_125034
crossref_primary_10_56178_eh_v39i1_1480
crossref_primary_10_7589_JWD_D_21_00144
crossref_primary_10_31073_vet_biotech45_06
crossref_primary_10_1016_j_envres_2024_120302
crossref_primary_10_1292_jvms_22_0079
crossref_primary_10_1016_j_envpol_2024_124944
crossref_primary_10_1002_wsb_1483
crossref_primary_10_1007_s10646_021_02411_8
crossref_primary_10_3390_ani15060800
crossref_primary_10_3390_ani15060766
crossref_primary_10_1016_j_scitotenv_2022_157192
crossref_primary_10_1016_j_scitotenv_2024_173191
crossref_primary_10_1016_j_jnc_2023_126540
crossref_primary_10_1007_s10340_023_01737_y
crossref_primary_10_1016_j_scitotenv_2024_174282
crossref_primary_10_3356_JRR_20_34
crossref_primary_10_1016_j_cbpc_2024_109841
crossref_primary_10_1186_s12917_024_03943_x
crossref_primary_10_1007_s11356_024_33026_1
crossref_primary_10_1002_etc_5042
crossref_primary_10_1002_etc_5361
crossref_primary_10_1126_science_ade2357
crossref_primary_10_1002_ps_6179
crossref_primary_10_1016_j_chroma_2024_465600
crossref_primary_10_1016_j_envres_2024_120382
crossref_primary_10_21931_RB_2020_05_04_26
crossref_primary_10_1371_journal_pgph_0002211
crossref_primary_10_3390_toxics10020063
crossref_primary_10_2460_javma_21_08_0364
crossref_primary_10_1007_s10646_022_02559_x
crossref_primary_10_1016_j_scitotenv_2021_151291
crossref_primary_10_1186_s42269_023_01055_4
crossref_primary_10_1016_j_scitotenv_2024_170492
crossref_primary_10_3356_JRR_20_122
crossref_primary_10_3389_fvets_2020_616276
crossref_primary_10_3390_conservation4040039
crossref_primary_10_1016_j_etap_2020_103536
crossref_primary_10_1371_journal_pone_0278642
crossref_primary_10_3390_ani9110919
crossref_primary_10_1021_acs_est_3c09052
crossref_primary_10_3356_jrr245
crossref_primary_10_32402_dovkil2023_04_046
crossref_primary_10_1016_j_jchromb_2021_123005
crossref_primary_10_1016_j_scitotenv_2020_144160
crossref_primary_10_3390_ani11113308
crossref_primary_10_1111_acv_12947
crossref_primary_10_1007_s11356_024_32133_3
crossref_primary_10_1002_etc_5829
crossref_primary_10_1007_s10311_025_01821_y
crossref_primary_10_1016_j_scitotenv_2024_169990
crossref_primary_10_1080_10406638_2022_2088576
crossref_primary_10_1002_vrc2_194
crossref_primary_10_1016_j_scitotenv_2023_168761
crossref_primary_10_1647_AVIANMS_D_24_00014
crossref_primary_10_1007_s11252_024_01600_7
crossref_primary_10_1007_s11356_022_18529_z
crossref_primary_10_1016_j_scitotenv_2021_147520
crossref_primary_10_1016_j_scitotenv_2024_176445
crossref_primary_10_7120_09627286_31_1_005
crossref_primary_10_1016_j_cvsm_2022_07_013
crossref_primary_10_1002_elan_202400146
crossref_primary_10_1177_10406387231178558
crossref_primary_10_3390_ani14162301
crossref_primary_10_1016_j_scitotenv_2025_178795
crossref_primary_10_1002_ps_5987
crossref_primary_10_1016_j_scitotenv_2020_139444
crossref_primary_10_3390_toxics9100238
crossref_primary_10_3390_cells13090788
Cites_doi 10.1579/0044-7447(2008)37[469:TPBMSI]2.0.CO;2
10.1002/etc.2390
10.1016/j.scitotenv.2014.12.042
10.22353/mjbs.2004.02.13
10.1007/s10646-013-1074-9
10.1016/j.scitotenv.2014.03.094
10.1111/j.1365-2885.2008.00979.x
10.1007/978-3-319-64377-9_2
10.1038/news.2011.24
10.7589/0090-3558-40.4.688
10.7589/0090-3558-35.2.187
10.7589/2013-07-160
10.1007/s10661-013-3422-x
10.2307/1367485
10.1038/nature.2012.11824
10.1016/S0269-7491(98)00141-9
10.1016/j.scitotenv.2007.10.061
10.1021/es501740n
10.1016/j.ecoenv.2014.11.013
10.1897/04-255R.1
10.3356/0892-1016(2007)41[177:BOHAPA]2.0.CO;2
10.1016/j.scitotenv.2012.01.028
10.1016/j.envint.2011.03.010
10.1016/j.cbpc.2010.03.006
10.1023/A:1013793029831
10.1023/A:1008951701780
10.1016/j.scitotenv.2011.03.006
10.1016/j.biocon.2015.01.008
10.1080/03014223.1998.9518160
10.1007/s00244-012-9771-6
10.3161/068.036.0111
10.1007/978-4-431-53859-2_23
10.1016/j.scitotenv.2013.01.100
10.2478/v10262-012-0048-9
10.2193/2005-615
ContentType Journal Article
Copyright 2019 by the Japanese Society of Veterinary Science
Copyright Japan Science and Technology Agency Feb 2019
2019 The Japanese Society of Veterinary Science 2019
Copyright_xml – notice: 2019 by the Japanese Society of Veterinary Science
– notice: Copyright Japan Science and Technology Agency Feb 2019
– notice: 2019 The Japanese Society of Veterinary Science 2019
DBID AAYXX
CITATION
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.17-0717
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 313
ExternalDocumentID PMC6395208
30587672
10_1292_jvms_17_0717
article_jvms_81_2_81_17_0717_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
B.T
CITATION
OVT
PGMZT
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c660t-9bc25a5933132176d671af82f849114ac008e19bb0e2e57f490b8c43c7d2075e3
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 17:52:16 EDT 2025
Fri Jul 11 11:17:29 EDT 2025
Mon Jun 30 11:20:37 EDT 2025
Wed Feb 19 02:33:26 EST 2025
Tue Jul 01 04:14:35 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Wed Apr 05 06:41:43 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords raptor
comprehensive review
non-target animal
anticoagulant rodenticide
residue
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c660t-9bc25a5933132176d671af82f849114ac008e19bb0e2e57f490b8c43c7d2075e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.17-0717
PMID 30587672
PQID 2239617775
PQPubID 2028964
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6395208
proquest_miscellaneous_2161065569
proquest_journals_2239617775
pubmed_primary_30587672
crossref_primary_10_1292_jvms_17_0717
crossref_citationtrail_10_1292_jvms_17_0717
jstage_primary_article_jvms_81_2_81_17_0717_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2019
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 39. Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. and Johnston, J. J. 2014. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33: 74–81.
53. The IUCN Red List of Threatened SpeciesTM, 2017. Falco cherrug, Saker Falcon. https://www.iucnredlist.org/species/22696495/110525916 [accessed on November 30, 2018].
5. Christensen, T. K., Lassen, P. and Elmeros, M. 2012. High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch. Environ. Contam. Toxicol. 63: 437–444.
18. Howald, G. R., Mineau, P., Elliott, J. E. and Cheng, K. M. 1999. Brodifacoum poisoning of avian scavengers during rat control on a seabird colony. Ecotoxicology 8: 431–447.
44. Sánchez-Barbudo, I. S., Camarero, P. R. and Mateo, R. 2012. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420: 280–288.
52. The IUCN Red List of Threatened SpeciesTM, 2017. Aquila heliaca, Eastern Imperial Eagle. https://www.iucnredlist.org/species/22696048/117070289 [accessed on November 30, 2018].
59. Walker, L. A., Llewellyn, N. R., Pereira, M. G., Potter, E. D., Sainsbury, A. W. and Shore, R. F. 2015. Anticoagulant rodenticides in sparrowhawks: a Predatory Bird Monitoring Scheme (PBMS) report.:1–29. http://nora.nerc.ac.uk/id/eprint/511023/ [accessed on November 30, 2018].
11. Elmeros, M., Christensen, T. K. and Lassen, P. 2011. Concentrations of anticoagulant rodenticides in stoats Mustela erminea and weasels Mustela nivalis from Denmark. Sci. Total Environ. 409: 2373–2378.
50. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 2003. Anticoagulant rodenticides and raptors: recent findings from New York, 1998-2001. Bull. Environ. Contam. Toxicol. 70: 34–40.
56. Tome, R., Catry, P., Bloise, C. and Korpimaki, E. 2008. Breeding density and success, and diet composition of Little Owls Athene noctua in steppe-like habitats in Portugal. Ornis Fenn. 85: 22–32.
13. Fournier-Chambrillon, C., Berny, P. J., Coiffier, O., Barbedienne, P., Dassé, B., Delas, G., Galineau, H., Mazet, A., Pouzenc, P., Rosoux, R. and Fournier, P. 2004. Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: implications for conservation of European mink (Mustela lutreola). J. Wildl. Dis. 40: 688–695.
26. Langford, K. H., Reid, M. and Thomas, K. V. 2013. The occurrence of second generation anticoagulant rodenticides in non-target raptor species in Norway. Sci. Total Environ. 450-451: 205–208.
1. Albert, C. A., Wilson, L. K., Mineau, P., Trudeau, S. and Elliott, J. E. 2010. Anticoagulant rodenticides in three owl species from Western Canada, 1988-2003. Arch. Environ. Contam. Toxicol. 58: 451–459.
42. Riley, S. P. D., Bromley, C., Poppenga, R. H., Uzal, F. A., Whited, L. and Sauvajot, R. M. 2007. Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J. Wildl. Manage. 71: 1874–1884.
24. Korpimaki, E. 1985. Diet of the Kestrel Falco tinnunculus in the breeding season. Ornis Fenn. 62: 130–137.
55. Thomas, P. J., Mineau, P., Shore, R. F., Champoux, L., Martin, P. A., Wilson, L. K., Fitzgerald, G. and Elliott, J. E. 2011. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37: 914–920.
23. Johnston, J. J., Pitt, W. C., Sugihara, R. T., Eisemann, J. D., Primus, T. M., Holmes, M. J., Crocker, J. and Hart, A. 2005. Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, U.S.A.Environ. Toxicol. Chem. 24: 1557–1567.
7. Dowding, C. V., Shore, R. F., Worgan, A., Baker, P. J. and Harris, S. 2010. Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environ. Pollut. 158: 161–166.
16. Hashimoto, T. 2009. Eradication and Ecosystem Impact of rats in the Ogasawara Islands. pp. 153–159. In: Restoring the Oceanic Island Ecosystem, Springer, Basel.
38. Pitt, W. C., Berentsen, A. R., Shiels, A. B., Volker, S. F., Eisemann, J. D., Wegmann, A. S. and Howald, G. R. 2015. Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biol. Conserv. 185: 36–46.
9. Ebbert, S. and Burek-Huntington, K. 2010. Anticoagulant residual concentration and poisoning in birds following a large-scale aerial broadcast of 25-ppm brodifacoum bait for rat eradication on Rat Island, Alaska. Proc. 24th Vertebr. Pest Conf. Publ. Univ. Calif., Davis: 153–160.
49. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 1999. Poisoning of wildlife with anticoagulant rodenticides in New York. J. Wildl. Dis. 35: 187–193.
46. Shore, R. F., Birks, J. D. S., Afsar, A., Wienburg, C. L. and Kitchener, A. C. 2003. Spatial and temporal analysis of second-generation anticoagulant rodenticide residues in polecats (Mustela putorius) from throughout their range in Britain, 1992-1999. Environ. Pollut. 122: 183–193.
22. Johnsen, T. V., Systad, G. H., Jacobsen, K. O., Nygard, T. and Bustnes, J. O. 2007. The occurrence of reindeer calves in the diet of nesting Golden Eagles in Finnmark, northern Norway. Ornis Fenn. 84: 112–118.
30. Masuda, B. M., Fisher, P. and Beaven, B. 2015. Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. Ecotoxicol. Environ. Saf. 113: 1–8.
27. Livezey, K. C. 2007. Barred owl habitat and prey: a review and synthesis of the literature. J. Raptor Res. 41: 177–201.
32. McEwan, L. C. and Hirth, D. H. 1980. Food habitats of bald eagles in north-central Florida. Condor 82: 229–231.
43. Ruiz-Suárez, N., Henríquez-Hernández, L. A., Valerón, P. F., Boada, L. D., Zumbado, M., Camacho, M., Almeida-González, M. and Luzardo, O. P. 2014. Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Sci. Total Environ. 485-486: 371–376.
34. Mougeot, F., Garcia, J. T. and Viñuela, J. 2011. Breeding biology, behaviour, diet and conservation of the red kite (Milvus milvus), with particular emphasis on Mediterranean populations. Ecol. Conserv. Eur. Dwell. For. raptors owls.:190–204. http://www.eeza.csic.es/Documentos/Publicaciones/2011-Red_kite_book_chapter.pdf [accessed on November 30, 2018].
60. Walker, L. A., Shore, R. F., Turk, A., Pereira, M. G. and Best, J. 2008. T
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 6. Dennis, G. C. and Gartrell, B. D. 2015. Nontarget mortality of New Zealand lesser short-tailed bats (Mystacina tuberculata) caused by diphacinone. J. Wildl. Dis. 51: 177–186.
– reference: 43. Ruiz-Suárez, N., Henríquez-Hernández, L. A., Valerón, P. F., Boada, L. D., Zumbado, M., Camacho, M., Almeida-González, M. and Luzardo, O. P. 2014. Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Sci. Total Environ. 485-486: 371–376.
– reference: 52. The IUCN Red List of Threatened SpeciesTM, 2017. Aquila heliaca, Eastern Imperial Eagle. https://www.iucnredlist.org/species/22696048/117070289 [accessed on November 30, 2018].
– reference: 27. Livezey, K. C. 2007. Barred owl habitat and prey: a review and synthesis of the literature. J. Raptor Res. 41: 177–201.
– reference: 25. Lambert, O., Pouliquen, H., Larhantec, M., Thorin, C. and L’Hostis, M. 2007. Exposure of raptors and waterbirds to anticoagulant rodenticides (difenacoum, bromadiolone, coumatetralyl, coumafen, brodifacoum): epidemiological survey in Loire Atlantique (France). Bull. Environ. Contam. Toxicol. 79: 91–94.
– reference: 35. Murphy, E. C., Clapperton, B. K., Bradfield, P. M. F. and Speed, H. J. 1998. Brodifacoum residues in target and non-target animals following large-scale poison operations in New Zealand podocarp-hardwood forests. New Zeal. J. Zool. (Lond.) 25: 307–314.
– reference: 31. McDonald, R. A., Harris, S., Turnbull, G., Brown, P. and Fletcher, M. 1998. Anticoagulant rodenticides in stoats (Mustela erminea) and weasels (Mustela nivalis) in England. Environ. Pollut. 103: 17–23.
– reference: 55. Thomas, P. J., Mineau, P., Shore, R. F., Champoux, L., Martin, P. A., Wilson, L. K., Fitzgerald, G. and Elliott, J. E. 2011. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37: 914–920.
– reference: 5. Christensen, T. K., Lassen, P. and Elmeros, M. 2012. High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch. Environ. Contam. Toxicol. 63: 437–444.
– reference: 57. Vandenbroucke, V., Bousquet-Melou, A., De Backer, P. and Croubels, S. 2008. Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J. Vet. Pharmacol. Ther. 31: 437–445.
– reference: 51. The IUCN Red List of Threatened SpeciesTM, 2017. Aquila adalberti, Spanish Imperial Eagle. Available from https://www.iucnredlist.org/species/22696042/110743671 [accessed on November 30, 2018].
– reference: 44. Sánchez-Barbudo, I. S., Camarero, P. R. and Mateo, R. 2012. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420: 280–288.
– reference: 63. Zawadzka, D. and Zawadzki, J. 2001. Breeding Populations and Diets of the Sparrowhawk Accipiter nisus and the Hobby Falco subbuteo in the Wigry National Park (Ne Poland) Breeding populations and diets of the Sparrowhawk Accipiter nisus and the Hobby Falco subbuteo in the Wigry National Pa. Acta Ornithol. 36: 25–31.
– reference: 61. Walker, L. A., Turk, A., Long, S. M., Wienburg, C. L., Best, J. and Shore, R. F. 2008. Second generation anticoagulant rodenticides in tawny owls (Strix aluco) from Great Britain. Sci. Total Environ. 392: 93–98.
– reference: 42. Riley, S. P. D., Bromley, C., Poppenga, R. H., Uzal, F. A., Whited, L. and Sauvajot, R. M. 2007. Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J. Wildl. Manage. 71: 1874–1884.
– reference: 36. Novgorod, N., ЦeHTp, K.И.B, HOBrOpOд, H. 2010. The Imperial Eagle is a Vanishing Species in the Tyva Republic, Russia. Rap. Res. Raptors Conserv. 20: 177–185.
– reference: 19. Hughes, J., Sharp, E., Taylor, M. J., Melton, L. and Hartley, G. 2013. Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland. Ecotoxicology 22: 974–984.
– reference: 39. Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. and Johnston, J. J. 2014. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33: 74–81.
– reference: 60. Walker, L. A., Shore, R. F., Turk, A., Pereira, M. G. and Best, J. 2008. The Predatory Bird Monitoring Scheme: identifying chemical risks to top predators in Britain. Ambio 37: 466–471.
– reference: 24. Korpimaki, E. 1985. Diet of the Kestrel Falco tinnunculus in the breeding season. Ornis Fenn. 62: 130–137.
– reference: 56. Tome, R., Catry, P., Bloise, C. and Korpimaki, E. 2008. Breeding density and success, and diet composition of Little Owls Athene noctua in steppe-like habitats in Portugal. Ornis Fenn. 85: 22–32.
– reference: 62. Watanabe, K. P., Saengtienchai, A., Tanaka, K. D., Ikenaka, Y. and Ishizuka, M. 2010. Comparison of warfarin sensitivity between rat and bird species. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 152: 114–119.
– reference: 8. Eason, C. T., Murphy, E. C., Wright, G. R. G. and Spurr, E. B. 2002. Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicology 11: 35–48.
– reference: 29. Lovett, R. A. 2012. Killing rats is killing birds. NATNEWS 2012: 10.1038/nature.2012.11824.
– reference: 17. Haw, J. M., Clout, M. N. and Powlesland, R. G. 2001. Diet of moreporks (Ninox novaeseelandiae) in Pureora Forest determined from prey remains in regurgitated pellets. N. Z. J. Ecol. 25: 61–67.
– reference: 1. Albert, C. A., Wilson, L. K., Mineau, P., Trudeau, S. and Elliott, J. E. 2010. Anticoagulant rodenticides in three owl species from Western Canada, 1988-2003. Arch. Environ. Contam. Toxicol. 58: 451–459.
– reference: 2. Borrell, B. 2011. Where eagles die. NATNEWS 2011: 10.1038/news.2011.24.
– reference: 58. Walker, L. A., Llewellyn, N. R., Pereira, M. G., Potter, E. D., Sainsbury, A. W. and Shore, R. F. 2013. Anticoagulant rodenticides in predatory birds 2011: a Predatory Bird Monitoring Scheme (PBMS) report.:1–29. http://nora.nerc.ac.uk/id/eprint/500093/ [accessed on November 30, 2018].
– reference: 30. Masuda, B. M., Fisher, P. and Beaven, B. 2015. Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. Ecotoxicol. Environ. Saf. 113: 1–8.
– reference: 11. Elmeros, M., Christensen, T. K. and Lassen, P. 2011. Concentrations of anticoagulant rodenticides in stoats Mustela erminea and weasels Mustela nivalis from Denmark. Sci. Total Environ. 409: 2373–2378.
– reference: 18. Howald, G. R., Mineau, P., Elliott, J. E. and Cheng, K. M. 1999. Brodifacoum poisoning of avian scavengers during rat control on a seabird colony. Ecotoxicology 8: 431–447.
– reference: 28. López-Perea, J. J., Camarero, P. R., Molina-López, R. A., Parpal, L., Obón, E., Solá, J. and Mateo, R. 2015. Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Sci. Total Environ. 511: 259–267.
– reference: 38. Pitt, W. C., Berentsen, A. R., Shiels, A. B., Volker, S. F., Eisemann, J. D., Wegmann, A. S. and Howald, G. R. 2015. Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biol. Conserv. 185: 36–46.
– reference: 47. Shore, R. F., Birks, J. D. S. and Freestone, P. 1999. Exposure of non-target vertebrates to second-generation rodenticides in Britain, with particular reference to the polecat Mustela putorius. N. Z. J. Ecol. 23: 199–206.
– reference: 12. Erickson, W. and Urban, D. 2004. Potential Risks of Nine Rodenticides to Birds and Non Target Mammals: A Comparative Approach. United States Environ. Prot. Agency, Washington, D.C.
– reference: 7. Dowding, C. V., Shore, R. F., Worgan, A., Baker, P. J. and Harris, S. 2010. Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environ. Pollut. 158: 161–166.
– reference: 21. Jacob, J. and Buckle, A. 2018. Use of anticoagulant rodenticides in different applications around the world. pp. 11–43. In: Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology (Principles, Approaches and Perspectives) (van den Brink, N., Elliott, J., Shore, R. and Rattner, B. eds.), Springer, Cham.
– reference: 59. Walker, L. A., Llewellyn, N. R., Pereira, M. G., Potter, E. D., Sainsbury, A. W. and Shore, R. F. 2015. Anticoagulant rodenticides in sparrowhawks: a Predatory Bird Monitoring Scheme (PBMS) report.:1–29. http://nora.nerc.ac.uk/id/eprint/511023/ [accessed on November 30, 2018].
– reference: 33. Ministry of the Environment, Government of Japan 2018. Third revision to the 4th Version of the Japanese Red Lists. https://www.env.go.jp/press/files/jp/109278.pdf (in Japanese) [accessed on November 30, 2018].
– reference: 26. Langford, K. H., Reid, M. and Thomas, K. V. 2013. The occurrence of second generation anticoagulant rodenticides in non-target raptor species in Norway. Sci. Total Environ. 450-451: 205–208.
– reference: 48. Stansley, W., Cummings, M., Vudathala, D. and Murphy, L. A. 2014. Anticoagulant rodenticides in red-tailed hawks, Buteo jamaicensis, and great horned owls, Bubo virginianus, from New Jersey, U.S.A., 2008–2010. Bull. Environ. Contam. Toxicol. 92: 6–9.
– reference: 10. Elliott, J. E., Hindmarch, S., Albert, C. A., Emery, J., Mineau, P. and Maisonneuve, F. 2014. Exposure pathways of anticoagulant rodenticides to nontarget wildlife. Environ. Monit. Assess. 186: 895–906.
– reference: 16. Hashimoto, T. 2009. Eradication and Ecosystem Impact of rats in the Ogasawara Islands. pp. 153–159. In: Restoring the Oceanic Island Ecosystem, Springer, Basel.
– reference: 32. McEwan, L. C. and Hirth, D. H. 1980. Food habitats of bald eagles in north-central Florida. Condor 82: 229–231.
– reference: 54. The IUCN Red List of Threatened SpeciesTM, 2017. Milvus milvus, Red Kite. https://www.iucnredlist.org/species/22695072/131877336 [accessed on November 30, 2018].
– reference: 37. Obuch, J. and Karaska, D. 2010. The Eurasian eagle-owl (Bubo bubo) diet in the Orava Region (N Slovakia). Slovak Raptor J. 4: 83–98.
– reference: 23. Johnston, J. J., Pitt, W. C., Sugihara, R. T., Eisemann, J. D., Primus, T. M., Holmes, M. J., Crocker, J. and Hart, A. 2005. Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, U.S.A.Environ. Toxicol. Chem. 24: 1557–1567.
– reference: 40. Rattner, B. A., Horak, K. E., Warner, S. E., Day, D. D., Meteyer, C. U., Volker, S. F., Eisemann, J. D. and Johnston, J. J. 2011. Acute toxicity, histopathology, and coagulopathy in American kestrels (Falco sparverius) following administration of the rodenticide diphacinone. Environ. Toxicol. Chem. 30: 1213–1222.
– reference: 46. Shore, R. F., Birks, J. D. S., Afsar, A., Wienburg, C. L. and Kitchener, A. C. 2003. Spatial and temporal analysis of second-generation anticoagulant rodenticide residues in polecats (Mustela putorius) from throughout their range in Britain, 1992-1999. Environ. Pollut. 122: 183–193.
– reference: 41. Rattner, B. A., Lazarus, R. S., Elliott, J. E., Shore, R. F. and van den Brink, N. 2014. Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ. Sci. Technol. 48: 8433–8445.
– reference: 53. The IUCN Red List of Threatened SpeciesTM, 2017. Falco cherrug, Saker Falcon. https://www.iucnredlist.org/species/22696495/110525916 [accessed on November 30, 2018].
– reference: 3. Carl, D. M. and Michael, N. K. 1995. Are red-tailed hawks and great horned owls diurnal-nocturnal dietary counterparts?Wilson Bull. 107: 615–628.
– reference: 20. Jackson, W. R. and Ashton, A. D. 1992. A review of available anticoagulants and their use in the United States. Proc. Fifteenth Vertebr. Pest Conf.:156–160.
– reference: 49. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 1999. Poisoning of wildlife with anticoagulant rodenticides in New York. J. Wildl. Dis. 35: 187–193.
– reference: 9. Ebbert, S. and Burek-Huntington, K. 2010. Anticoagulant residual concentration and poisoning in birds following a large-scale aerial broadcast of 25-ppm brodifacoum bait for rat eradication on Rat Island, Alaska. Proc. 24th Vertebr. Pest Conf. Publ. Univ. Calif., Davis: 153–160.
– reference: 14. Gillies, C. A. and Pierce, R. J. 1999. Secondary poisoning of mammalian predators during possum and rodent control operations at Trounson Kauri Park, Northland, New Zealand. N. Z. J. Ecol. 23: 183–192.
– reference: 22. Johnsen, T. V., Systad, G. H., Jacobsen, K. O., Nygard, T. and Bustnes, J. O. 2007. The occurrence of reindeer calves in the diet of nesting Golden Eagles in Finnmark, northern Norway. Ornis Fenn. 84: 112–118.
– reference: 34. Mougeot, F., Garcia, J. T. and Viñuela, J. 2011. Breeding biology, behaviour, diet and conservation of the red kite (Milvus milvus), with particular emphasis on Mediterranean populations. Ecol. Conserv. Eur. Dwell. For. raptors owls.:190–204. http://www.eeza.csic.es/Documentos/Publicaciones/2011-Red_kite_book_chapter.pdf [accessed on November 30, 2018].
– reference: 13. Fournier-Chambrillon, C., Berny, P. J., Coiffier, O., Barbedienne, P., Dassé, B., Delas, G., Galineau, H., Mazet, A., Pouzenc, P., Rosoux, R. and Fournier, P. 2004. Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: implications for conservation of European mink (Mustela lutreola). J. Wildl. Dis. 40: 688–695.
– reference: 45. Serieys, L. E. K., Armenta, T. C., Moriarty, J. G., Boydston, E. E., Lyren, L. M., Poppenga, R. H., Crooks, K. R., Wayne, R. K. and Riley, S. P. D. 2015. Anticoagulant rodenticides in urban bobcats: exposure, risk factors and potential effects based on a 16-year study. Ecotoxicology 24: 844–862.
– reference: 4. Chiba, Y. and Chiba, H. 2014. Ogasawara Buzzard (Buteo buteo toyoshimai) utilizes small islands of the Bonin (Ogasawara) Islands during the rodenticides application season. Tokyo Metrop. Univ. Institutional Repos.: 67–79 (The title in Japanese is translated into English by the authors).
– reference: 50. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 2003. Anticoagulant rodenticides and raptors: recent findings from New York, 1998-2001. Bull. Environ. Contam. Toxicol. 70: 34–40.
– reference: 15. Gombobaatar, S., Sumiya, D., Shagdarsuren, O., Potapov, E. R. and Fox, N. 2004. Saker falcon (Falco cherrug milvipes Jerdon) mortality in central Mongolia and population threats. Mong. J. Biol. Sci. 2: 13–21.
– ident: 59
  doi: 10.1579/0044-7447(2008)37[469:TPBMSI]2.0.CO;2
– ident: 39
– ident: 12
– ident: 38
  doi: 10.1002/etc.2390
– ident: 51
– ident: 55
– ident: 28
  doi: 10.1016/j.scitotenv.2014.12.042
– ident: 15
  doi: 10.22353/mjbs.2004.02.13
– ident: 9
– ident: 19
  doi: 10.1007/s10646-013-1074-9
– ident: 49
– ident: 42
  doi: 10.1016/j.scitotenv.2014.03.094
– ident: 45
– ident: 22
– ident: 56
  doi: 10.1111/j.1365-2885.2008.00979.x
– ident: 17
– ident: 21
  doi: 10.1007/978-3-319-64377-9_2
– ident: 1
– ident: 34
– ident: 50
– ident: 2
  doi: 10.1038/news.2011.24
– ident: 58
– ident: 13
  doi: 10.7589/0090-3558-40.4.688
– ident: 48
  doi: 10.7589/0090-3558-35.2.187
– ident: 6
  doi: 10.7589/2013-07-160
– ident: 10
  doi: 10.1007/s10661-013-3422-x
– ident: 44
– ident: 32
  doi: 10.2307/1367485
– ident: 29
  doi: 10.1038/nature.2012.11824
– ident: 4
– ident: 31
  doi: 10.1016/S0269-7491(98)00141-9
– ident: 60
  doi: 10.1016/j.scitotenv.2007.10.061
– ident: 40
  doi: 10.1021/es501740n
– ident: 33
– ident: 14
– ident: 30
  doi: 10.1016/j.ecoenv.2014.11.013
– ident: 23
  doi: 10.1897/04-255R.1
– ident: 53
– ident: 57
– ident: 27
  doi: 10.3356/0892-1016(2007)41[177:BOHAPA]2.0.CO;2
– ident: 43
  doi: 10.1016/j.scitotenv.2012.01.028
– ident: 54
  doi: 10.1016/j.envint.2011.03.010
– ident: 24
– ident: 7
– ident: 47
– ident: 20
– ident: 61
  doi: 10.1016/j.cbpc.2010.03.006
– ident: 8
  doi: 10.1023/A:1013793029831
– ident: 3
– ident: 18
  doi: 10.1023/A:1008951701780
– ident: 11
  doi: 10.1016/j.scitotenv.2011.03.006
– ident: 37
  doi: 10.1016/j.biocon.2015.01.008
– ident: 35
  doi: 10.1080/03014223.1998.9518160
– ident: 5
  doi: 10.1007/s00244-012-9771-6
– ident: 62
  doi: 10.3161/068.036.0111
– ident: 52
– ident: 16
  doi: 10.1007/978-4-431-53859-2_23
– ident: 26
  doi: 10.1016/j.scitotenv.2013.01.100
– ident: 36
  doi: 10.2478/v10262-012-0048-9
– ident: 46
– ident: 41
  doi: 10.2193/2005-615
– ident: 25
SSID ssj0021469
Score 2.494114
SecondaryResourceType review_article
Snippet Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In...
Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 298
SubjectTerms anticoagulant rodenticide
Anticoagulants
Birds of prey
comprehensive review
Diet
Invertebrates
non-target animal
Nontarget organisms
Poisoning
Prey
raptor
residue
Reviews
Rodenticides
Species
Toxicology
Title A review: poisoning by anticoagulant rodenticides in non-target animals globally
URI https://www.jstage.jst.go.jp/article/jvms/81/2/81_17-0717/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/30587672
https://www.proquest.com/docview/2239617775
https://www.proquest.com/docview/2161065569
https://pubmed.ncbi.nlm.nih.gov/PMC6395208
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2019, Vol.81(2), pp.298-313
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9RAEJ4A-sALEVSsAlkTfTLFbq_dbSXEECNBzRkfPMNb091u5cjRQ-4g3H_vN7e9xiOQ-NKXnU3b2fnx7c7sDNEblUSlc9A0VcpeCOsnQ1OpKDRZVRqTwSdVfKDf_65OBsnX0_R0hRbdRlsGTu7d2nE_qcHVaP_2z-wjFP5wXhshj9-f31xM9iWfuEm9So_gkzT3MugnXTyBu1f7qntShRpev02Bvzt7yTk9Pgc---3ug553Myj_cUnHT2ijxZLiyC_-Jq24Zou2fnGCy_yWrei3gfOn9ONI-EsqH8TlmBOI4LGEmQnwFaJQcj_6ZipgTDl5yA4rNxHDRjTjJvSp4iAcXoBjwhcQGc2e0eD4889PJ2HbTCG0SkXTMDc2Tss073GtRqlVpbQs6yyuswT2LiktwICTuTGRi12q6ySPTGaTntVVDFjhes9pDW91L0jUdVZzwNSmFhOVNspqravcMZjDBi6gdwsuFratNM4NL0YF7zjA84J5XkhdMM8DettRX_oKGw_QHfgF6aha3fJUmSxifrTU3SBfXoMFCGhnsYrFQsgKQKMcCE7rNKDX3TD0i4MmZePG16ABJAZMSxV-a9svevcBsJVwJjoOSC-JQ0fAtbuXR5rh2byGN4BhGkfZy__8-Ve0DqSW-7OfHVqbXl27XaChqdnDPuDLt725uP8F5A8MRw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review%3A+poisoning+by+anticoagulant+rodenticides+in+non-target+animals+globally&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=NAKAYAMA%2C+Shouta+M.M.&rft.au=MORITA%2C+Ayuko&rft.au=IKENAKA%2C+Yoshinori&rft.au=MIZUKAWA%2C+Hazuki&rft.date=2019&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=81&rft.issue=2&rft.spage=298&rft.epage=313&rft_id=info:doi/10.1292%2Fjvms.17-0717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1292_jvms_17_0717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon