Cleavage-Activation of Respiratory Viruses – Half a Century of History from Sendai Virus to SARS-CoV-2
Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a cl...
Saved in:
Published in | Japanese Journal of Infectious Diseases Vol. 77; no. 1; pp. 1 - 6 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Japan
National Institute of Infectious Diseases
31.01.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it. |
---|---|
AbstractList | Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it. Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it.Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it. |
ArticleNumber | JJID.2023.353 |
Author | Takeda, Makoto |
Author_xml | – sequence: 1 fullname: Takeda, Makoto organization: Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38030267$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc-O0zAQhy20iP0DT4CELHHhkuJ44tg5Vl2gXa2EtIW9Wo47YV3SuNjOSr3xDrwhT0LSlkrshYvH0nzf2JrfJTnrfIeEvM7ZRCoF73f-O3aTm5vF9YQzDhMQ8Ixc5EoVGVdQng13KIqsBFack8sY14xxIXL2gpyDYsB4KS_Iw6xF82i-YTa1yT2a5HxHfUPvMG5dMMmHHb13oY8Y6e-fv-jctA01dIZd6ofWQM5d3FNN8Bu6xG5l3MGgydPl9G6Zzfx9xl-S541pI7461ivy9eOHL7N5dvv502I2vc1sWbKUyUpUKEq7KkVtZcGRgUQhwPIaQaEVhawZNivGKlDW8qaRDVpUFmtmBBdwRd4d5m6D_9FjTHrjosW2NR36PmquKiEZr3g1oG-foGvfh274nQYGClguinHgmyPV1xtc6W1wGxN2-u8OBwAOgA0-xoDNCcmZHpPS-6T0mJQek9JDUoNVPbGsS_v1p2Bc-x93cXDXMQ3Rnd4zITnb4tGRUufj8Y97YuyDCRo7-ANxj7Ug |
CitedBy_id | crossref_primary_10_1128_jvi_01853_24 |
Cites_doi | 10.1038/s41594-020-0468-7 10.1038/s41467-022-33911-8 10.1016/0042-6822(76)90178-1 10.1128/JVI.00128-13 10.1007/BF01309262 10.1128/iai.39.2.879-888.1983 10.1038/s41467-020-15562-9 10.1038/s41586-021-04266-9 10.1371/journal.ppat.1003774 10.1002/j.1460-2075.1992.tb05305.x 10.1371/journal.pone.0215822 10.1038/s41467-023-37059-x 10.1073/pnas.85.2.324 10.1128/JVI.03799-13 10.1016/j.cell.2020.02.052 10.1186/s12916-020-01673-z 10.1128/iai.31.3.1214-1222.1981 10.1016/j.cell.2020.09.032 10.1016/0042-6822(81)90201-4 10.1016/0042-6822(87)90261-3 10.1016/0042-6822(75)90284-6 10.1038/s41586-022-04474-x 10.1016/j.virol.2017.11.012 10.1002/j.1460-2075.1990.tb07643.x 10.1128/jvi.12.6.1457-1465.1973 10.1073/pnas.2002589117 10.1101/2021.06.17.448820 10.1128/JVI.02205-08 10.1128/JVI.00676-08 10.1128/JVI.01542-10 10.1128/jvi.8.5.619-629.1971 10.1128/jvi.56.3.904-911.1985 10.1128/jvi.68.9.6074-6078.1994 10.1128/JVI.01118-06 10.1016/j.virusres.2014.11.021 10.1038/s41586-022-04442-5 10.1128/JVI.01387-16 10.1038/s41564-021-00908-w 10.1016/j.molcel.2020.04.022 10.1016/j.cell.2020.02.058 10.1101/2022.01.19.476898 10.1016/j.celrep.2020.108630 10.1128/jvi.00851-23 10.1016/j.isci.2021.102322 10.1038/s41586-022-04462-1 10.1128/JVI.03372-12 10.1016/0042-6822(75)90285-8 10.1128/JVI.01815-18 10.1016/j.chom.2020.11.012 10.1128/JVI.03677-13 10.1093/infdis/jiv246 10.1016/j.ebiom.2023.104561 10.1128/JVI.01890-13 10.2807/1560-7917.ES.2020.26.1.2002106 10.1016/0042-6822(74)90187-1 10.1128/JVI.01490-13 10.1101/2022.04.20.488969 10.1073/pnas.0306446101 10.1038/s41586-022-04441-6 10.1016/j.cell.2022.09.018 10.1128/JVI.01933-08 10.1016/j.vaccine.2012.10.001 10.1111/1348-0421.12945 10.7554/eLife.64508 10.26508/lsa.202000786 10.1016/j.ics.2004.01.040 |
ContentType | Journal Article |
Copyright | 2024 Authors Copyright Japan Science and Technology Agency 2024 |
Copyright_xml | – notice: 2024 Authors – notice: Copyright Japan Science and Technology Agency 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TK 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
DOI | 10.7883/yoken.JJID.2023.353 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1884-2836 |
EndPage | 6 |
ExternalDocumentID | 38030267 10_7883_yoken_JJID_2023_353 article_yoken_77_1_77_JJID_2023_353_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29J 2WC 53G 5GY ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL DIK DU5 E3Z EBS EJD F5P FRP GX1 JSF JSH KQ8 OK1 RJT RNS RZJ TR2 W2D X7M XSB AAYXX CITATION OVT CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TK 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
ID | FETCH-LOGICAL-c660t-7959e56cd65bc742e037e553c2be38ec547b0efd00938cc2ff7fece8ceb0a5253 |
ISSN | 1344-6304 1884-2836 |
IngestDate | Thu Jul 10 22:53:41 EDT 2025 Mon Jun 30 12:00:47 EDT 2025 Mon Jul 21 05:39:52 EDT 2025 Tue Jul 01 03:55:22 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Thu Feb 01 14:11:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | protease TMPRSS2 SARS-CoV-2 cleavage Sendai virus |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c660t-7959e56cd65bc742e037e553c2be38ec547b0efd00938cc2ff7fece8ceb0a5253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/yoken/77/1/77_JJID.2023.353/_article/-char/en |
PMID | 38030267 |
PQID | 3038301545 |
PQPubID | 2048383 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2895702929 proquest_journals_3038301545 pubmed_primary_38030267 crossref_primary_10_7883_yoken_JJID_2023_353 crossref_citationtrail_10_7883_yoken_JJID_2023_353 jstage_primary_article_yoken_77_1_77_JJID_2023_353_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024/01/31 |
PublicationDateYYYYMMDD | 2024-01-31 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024/01/31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Japanese Journal of Infectious Diseases |
PublicationTitleAlternate | Jpn J Infect Dis |
PublicationYear | 2024 |
Publisher | National Institute of Infectious Diseases Japan Science and Technology Agency |
Publisher_xml | – name: National Institute of Infectious Diseases – name: Japan Science and Technology Agency |
References | 15. Garten W, Matrosovich M, Matrosovich T, et al. Cleavage of influenza virus hemagglutinin by host cell protease. Int Congr Ser. 2004;1263:218-221. 20. Shirogane Y, Takeda M, Iwasaki M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942-8946. 11. Stieneke-Grober A, Vey M, Angliker H, et al. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992;11:2407-2414. 28. Gierer S, Bertram S, Kaup F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013;87:5502-5511. 10. Kawaoka Y, Webster RG. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc Natl Acad Sci U S A. 1988;85:324-328. 54. Leung K, Shum MH, Leung GM, et al. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021;26:2002106. 56. Saito A, Irie T, Suzuki R, et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 delta P681R mutation. Nature. 2022;602:300-306. 37. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620. 65. Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell. 2022;185:3992-4007.e16. 18. Chaipan C, Kobasa D, Bertram S, et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol. 2009;83:3200-3211. 23. Tarnow C, Engels G, Arendt A, et al. TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol. 2014;88:4744-4751. 14. Gotoh B, Ogasawara T, Toyoda T, et al. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990;9:4189-4195. 31. Shirato K, Kanou K, Kawase M, et al. Clinical isolates of human coronavirus 229E bypass the endosome for cell entry. J Virol. 2017;91:e01387-16. 61. Lubinski B, Jaimes JA, Whittaker GR. Intrinsic furin-mediated cleavability of the spike S1/S2 site from SARS-CoV-2 variant B.1.1.529 (Omicron). bioRxiv. July 26, 2022. doi:10.1101/2022.04.20.488969. Preprint. 34. Nao N, Sato K, Yamagishi J, et al. Consensus and variations in cell line specificity among human metapneumovirus strains. PLoS One. 2019;14:e0215822. 40. Mykytyn AZ, Breugem TI, Riesebosch S, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife. 2021;10:e64508. 19. Bottcher-Friebertshauser E, Lu Y, Meyer D, et al. Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine. 2012;30:7374-7380. 12. Horimoto T, Nakayama K, Smeekens SP, et al. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol. 1994;68:6074-6078. 35. Simmons G, Reeves JD, Rennekamp AJ, et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A. 2004;101:4240-4245. 66. Uraki R, Iida S, Halfmann PJ, et al. Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates. Nat Commun. 2023;14:1620. 63. Mykytyn AZ, Breugem TI, Geurts MH, et al. SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models. J Virol. 2023;97:e0085123. 46. Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78:779-784.e1-e5. 51. Gobeil SM, Janowska K, McDowell S, et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep. 2021;34:108630. 32. Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9-15. 24. Cheng Z, Zhou J, To KK, et al. Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza. J Infect Dis. 2015;212:1214-1221. 60. Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706-714. 4. Tashiro M, Homma M. Evidence of proteolytic activation of Sendai virus in mouse lung. Arch Virol. 1983;77:127-137. 43. Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18:216. 44. Andolfo I, Russo R, Lasorsa VA, et al. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. iScience. 2021;24:102322. 22. Hatesuer B, Bertram S, Mehnert N, et al. Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog. 2013;9:e1003774. 45. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-280.e1-e8. 5. Tashiro M, Homma M. Pneumotropism of Sendai virus in relation to protease-mediated activation in mouse lungs. Infect Immun. 1983;39:879-888. 16. Böttcher E, Matrosovich T, Beyerle M, et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006;80:9896-9898. 38. Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3:e202000786. 49. Wrobel AG, Benton DJ, Xu P, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol. 2020;27:763-767. 3. Homma M, Ouchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. 3. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol. 1973;12:1457-1465. 27. Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658-12664. 55. Saito A, Irie T, Suzuki R, et al. SARS-CoV-2 spike P681R mutation, a hollmark of the delta variant, enhances viral fusogenicity and pathogenicity. bioRxiv. July 19, 2021. doi:https://doi.org/10.1101/2021.06.17.448820. Preprint. 50. Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol. 2020;66:15-23. 9. Bosch FX, Garten W, Klenk HD, et al. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology. 1981;113:725-735. 17. Abe M, Tahara M, Sakai K, et al. TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J Virol. 2013;87:11930-11935. 29. Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87:12552-12561. 33. Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A. 2020;117:7001-7003. 39. Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6:899-909. 62. Lamers MM, Mykytyn AZ, Breugem TI, et al. SARS-CoV-2 Omicron efficiently infects human airway, but not alveolar epithelium. bioRxiv. January 20, 2022. doi:https://doi.org/10.1101/2022.01.19.476898. Preprint. 21. Sakai K, Ami Y, Tahara M, et al. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. J Virol. 2014;88:5608-5616. 30. Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013;87:6150-6160. 2. Scheid A, Choppin PW. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475-490. 53. Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183:739-751.e8. 57. Furusawa Y, Kiso M, Iida S, et al. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. eBioMedicine. 2023;91:104561. 48. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281-292.e6. 6. Nagai Y, Klenk HD, Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976;72:494-508. 7. Lazarowitz SG, Choppin PW. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440-454. 8. Klenk HD, Rott R, Orlich M, et al. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426-439. 36. Kawase M, Shirato K, Matsuyama S, et al. Protease-mediated entry via the endosome of human coronavirus 229E. J Virol. 2009;83:712-721. 59. Shuai H, Chan JF, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022;603:693-699. 58. Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omi 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 4. Tashiro M, Homma M. Evidence of proteolytic activation of Sendai virus in mouse lung. Arch Virol. 1983;77:127-137. – reference: 23. Tarnow C, Engels G, Arendt A, et al. TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol. 2014;88:4744-4751. – reference: 50. Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol. 2020;66:15-23. – reference: 56. Saito A, Irie T, Suzuki R, et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 delta P681R mutation. Nature. 2022;602:300-306. – reference: 60. Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706-714. – reference: 40. Mykytyn AZ, Breugem TI, Riesebosch S, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife. 2021;10:e64508. – reference: 28. Gierer S, Bertram S, Kaup F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013;87:5502-5511. – reference: 53. Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183:739-751.e8. – reference: 37. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620. – reference: 29. Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87:12552-12561. – reference: 64. Halfmann PJ, Iida S, Iwatsuki-Horimoto K, et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature. 2022;603:687-692. – reference: 12. Horimoto T, Nakayama K, Smeekens SP, et al. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol. 1994;68:6074-6078. – reference: 65. Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell. 2022;185:3992-4007.e16. – reference: 52. Weissman D, Alameh MG, de Silva T, et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe. 2021;29:23-31.e4. – reference: 31. Shirato K, Kanou K, Kawase M, et al. Clinical isolates of human coronavirus 229E bypass the endosome for cell entry. J Virol. 2017;91:e01387-16. – reference: 2. Scheid A, Choppin PW. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475-490. – reference: 34. Nao N, Sato K, Yamagishi J, et al. Consensus and variations in cell line specificity among human metapneumovirus strains. PLoS One. 2019;14:e0215822. – reference: 8. Klenk HD, Rott R, Orlich M, et al. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426-439. – reference: 16. Böttcher E, Matrosovich T, Beyerle M, et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006;80:9896-9898. – reference: 21. Sakai K, Ami Y, Tahara M, et al. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. J Virol. 2014;88:5608-5616. – reference: 32. Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9-15. – reference: 43. Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18:216. – reference: 11. Stieneke-Grober A, Vey M, Angliker H, et al. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992;11:2407-2414. – reference: 14. Gotoh B, Ogasawara T, Toyoda T, et al. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990;9:4189-4195. – reference: 10. Kawaoka Y, Webster RG. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc Natl Acad Sci U S A. 1988;85:324-328. – reference: 26. Sturman LS, Ricard CS, Holmes KV. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol. 1985;56:904-911. – reference: 41. Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93:e01815-18. – reference: 19. Bottcher-Friebertshauser E, Lu Y, Meyer D, et al. Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine. 2012;30:7374-7380. – reference: 22. Hatesuer B, Bertram S, Mehnert N, et al. Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog. 2013;9:e1003774. – reference: 57. Furusawa Y, Kiso M, Iida S, et al. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. eBioMedicine. 2023;91:104561. – reference: 15. Garten W, Matrosovich M, Matrosovich T, et al. Cleavage of influenza virus hemagglutinin by host cell protease. Int Congr Ser. 2004;1263:218-221. – reference: 59. Shuai H, Chan JF, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022;603:693-699. – reference: 20. Shirogane Y, Takeda M, Iwasaki M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942-8946. – reference: 39. Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6:899-909. – reference: 27. Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658-12664. – reference: 47. Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120-134. – reference: 38. Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3:e202000786. – reference: 55. Saito A, Irie T, Suzuki R, et al. SARS-CoV-2 spike P681R mutation, a hollmark of the delta variant, enhances viral fusogenicity and pathogenicity. bioRxiv. July 19, 2021. doi:https://doi.org/10.1101/2021.06.17.448820. Preprint. – reference: 51. Gobeil SM, Janowska K, McDowell S, et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep. 2021;34:108630. – reference: 7. Lazarowitz SG, Choppin PW. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440-454. – reference: 3. Homma M, Ouchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. 3. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol. 1973;12:1457-1465. – reference: 44. Andolfo I, Russo R, Lasorsa VA, et al. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. iScience. 2021;24:102322. – reference: 49. Wrobel AG, Benton DJ, Xu P, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol. 2020;27:763-767. – reference: 1. Homma M. Trypsin action on the growth of Sendai virus in tissue culture cells. I. Restoration of the infectivity for L cells by direct action of tyrpsin on L cell-borne Sendai virus. J Virol. 1971;8:619-629. – reference: 6. Nagai Y, Klenk HD, Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976;72:494-508. – reference: 42. Iwata-Yoshikawa N, Kakizaki M, Shiwa-Sudo N, et al. Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. Nat Commun. 2022;13:6100. – reference: 24. Cheng Z, Zhou J, To KK, et al. Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza. J Infect Dis. 2015;212:1214-1221. – reference: 36. Kawase M, Shirato K, Matsuyama S, et al. Protease-mediated entry via the endosome of human coronavirus 229E. J Virol. 2009;83:712-721. – reference: 62. Lamers MM, Mykytyn AZ, Breugem TI, et al. SARS-CoV-2 Omicron efficiently infects human airway, but not alveolar epithelium. bioRxiv. January 20, 2022. doi:https://doi.org/10.1101/2022.01.19.476898. Preprint. – reference: 54. Leung K, Shum MH, Leung GM, et al. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021;26:2002106. – reference: 48. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281-292.e6. – reference: 9. Bosch FX, Garten W, Klenk HD, et al. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology. 1981;113:725-735. – reference: 5. Tashiro M, Homma M. Pneumotropism of Sendai virus in relation to protease-mediated activation in mouse lungs. Infect Immun. 1983;39:879-888. – reference: 46. Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78:779-784.e1-e5. – reference: 18. Chaipan C, Kobasa D, Bertram S, et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol. 2009;83:3200-3211. – reference: 30. Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013;87:6150-6160. – reference: 33. Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A. 2020;117:7001-7003. – reference: 35. Simmons G, Reeves JD, Rennekamp AJ, et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A. 2004;101:4240-4245. – reference: 13. Toyoda T, Sakaguchi T, Imai K, et al. Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virology. 1987;158:242-247. – reference: 66. Uraki R, Iida S, Halfmann PJ, et al. Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates. Nat Commun. 2023;14:1620. – reference: 63. Mykytyn AZ, Breugem TI, Geurts MH, et al. SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models. J Virol. 2023;97:e0085123. – reference: 61. Lubinski B, Jaimes JA, Whittaker GR. Intrinsic furin-mediated cleavability of the spike S1/S2 site from SARS-CoV-2 variant B.1.1.529 (Omicron). bioRxiv. July 26, 2022. doi:10.1101/2022.04.20.488969. Preprint. – reference: 25. Storz J, Rott R, Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infect Immun. 1981;31:1214-1222. – reference: 17. Abe M, Tahara M, Sakai K, et al. TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J Virol. 2013;87:11930-11935. – reference: 45. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-280.e1-e8. – reference: 58. Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature. 2022;603:700-705. – ident: 49 doi: 10.1038/s41594-020-0468-7 – ident: 42 doi: 10.1038/s41467-022-33911-8 – ident: 6 doi: 10.1016/0042-6822(76)90178-1 – ident: 28 doi: 10.1128/JVI.00128-13 – ident: 4 doi: 10.1007/BF01309262 – ident: 5 doi: 10.1128/iai.39.2.879-888.1983 – ident: 37 doi: 10.1038/s41467-020-15562-9 – ident: 56 doi: 10.1038/s41586-021-04266-9 – ident: 22 doi: 10.1371/journal.ppat.1003774 – ident: 11 doi: 10.1002/j.1460-2075.1992.tb05305.x – ident: 34 doi: 10.1371/journal.pone.0215822 – ident: 66 doi: 10.1038/s41467-023-37059-x – ident: 10 doi: 10.1073/pnas.85.2.324 – ident: 23 doi: 10.1128/JVI.03799-13 – ident: 45 doi: 10.1016/j.cell.2020.02.052 – ident: 43 doi: 10.1186/s12916-020-01673-z – ident: 25 doi: 10.1128/iai.31.3.1214-1222.1981 – ident: 53 doi: 10.1016/j.cell.2020.09.032 – ident: 9 doi: 10.1016/0042-6822(81)90201-4 – ident: 13 doi: 10.1016/0042-6822(87)90261-3 – ident: 8 doi: 10.1016/0042-6822(75)90284-6 – ident: 60 doi: 10.1038/s41586-022-04474-x – ident: 32 doi: 10.1016/j.virol.2017.11.012 – ident: 14 doi: 10.1002/j.1460-2075.1990.tb07643.x – ident: 3 doi: 10.1128/jvi.12.6.1457-1465.1973 – ident: 33 doi: 10.1073/pnas.2002589117 – ident: 55 doi: 10.1101/2021.06.17.448820 – ident: 18 doi: 10.1128/JVI.02205-08 – ident: 20 doi: 10.1128/JVI.00676-08 – ident: 27 doi: 10.1128/JVI.01542-10 – ident: 1 doi: 10.1128/jvi.8.5.619-629.1971 – ident: 26 doi: 10.1128/jvi.56.3.904-911.1985 – ident: 12 doi: 10.1128/jvi.68.9.6074-6078.1994 – ident: 16 doi: 10.1128/JVI.01118-06 – ident: 47 doi: 10.1016/j.virusres.2014.11.021 – ident: 59 doi: 10.1038/s41586-022-04442-5 – ident: 31 doi: 10.1128/JVI.01387-16 – ident: 39 doi: 10.1038/s41564-021-00908-w – ident: 46 doi: 10.1016/j.molcel.2020.04.022 – ident: 48 doi: 10.1016/j.cell.2020.02.058 – ident: 62 doi: 10.1101/2022.01.19.476898 – ident: 51 doi: 10.1016/j.celrep.2020.108630 – ident: 63 doi: 10.1128/jvi.00851-23 – ident: 44 doi: 10.1016/j.isci.2021.102322 – ident: 58 doi: 10.1038/s41586-022-04462-1 – ident: 30 doi: 10.1128/JVI.03372-12 – ident: 7 doi: 10.1016/0042-6822(75)90285-8 – ident: 41 doi: 10.1128/JVI.01815-18 – ident: 52 doi: 10.1016/j.chom.2020.11.012 – ident: 21 doi: 10.1128/JVI.03677-13 – ident: 24 doi: 10.1093/infdis/jiv246 – ident: 57 doi: 10.1016/j.ebiom.2023.104561 – ident: 29 doi: 10.1128/JVI.01890-13 – ident: 54 doi: 10.2807/1560-7917.ES.2020.26.1.2002106 – ident: 2 doi: 10.1016/0042-6822(74)90187-1 – ident: 17 doi: 10.1128/JVI.01490-13 – ident: 61 doi: 10.1101/2022.04.20.488969 – ident: 35 doi: 10.1073/pnas.0306446101 – ident: 64 doi: 10.1038/s41586-022-04441-6 – ident: 65 doi: 10.1016/j.cell.2022.09.018 – ident: 36 doi: 10.1128/JVI.01933-08 – ident: 19 doi: 10.1016/j.vaccine.2012.10.001 – ident: 50 doi: 10.1111/1348-0421.12945 – ident: 40 doi: 10.7554/eLife.64508 – ident: 38 doi: 10.26508/lsa.202000786 – ident: 15 doi: 10.1016/j.ics.2004.01.040 |
SSID | ssj0025510 |
Score | 2.3478472 |
SecondaryResourceType | review_article |
Snippet | Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Animals Avian flu Cleavage Coronaviruses COVID-19 Furin Furin - metabolism Hemagglutinins Humans Influenza Membrane fusion Membrane Fusion Proteins Membranes Newcastle disease Pandemics Peptide Hydrolases - metabolism protease Proteins Respiratory diseases SARS-CoV-2 SARS-CoV-2 - genetics Sendai virus Sendai virus - genetics Sendai virus - metabolism Severe acute respiratory syndrome coronavirus 2 Spike protein TMPRSS2 Viral diseases Virulence Virus Internalization Viruses |
Title | Cleavage-Activation of Respiratory Viruses – Half a Century of History from Sendai Virus to SARS-CoV-2 |
URI | https://www.jstage.jst.go.jp/article/yoken/77/1/77_JJID.2023.353/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/38030267 https://www.proquest.com/docview/3038301545 https://www.proquest.com/docview/2895702929 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese Journal of Infectious Diseases, 2024/01/31, Vol.77(1), pp.1-6 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgIMQL4j-BgYzEGySkdhx7j6WASiV4oN3Ut8hxHBitmmnLJo0nvgPfkE_CXeykKSoT48WqHPuU9H4-39n3h5AXLOe5KmQSalHmYKDoIlR7hQxlMSg0bHCg0jZevp_S8X4ymYv5-kC_iS6p88h83xpX8j9chT7gK0bJXoKzHVHogN_AX2iBw9D-E49HS6vPQCCEQ9NWKXPJRdbX5weHx6cneLTqnRr4y7FeYkjkyO02zUF-kyrk3IWaTC0Y6YduHiqm0-HnaTiqDnz4YKvHwh6LtSs3M084vy6Y5699On19phe20C42aFHVVf-sgaF_SiuknXjkSRKm3BUMjqzrUyoJQUlJ-zLVl2bpY8cJyEFvp023iXAwyTGVxHm1sKtoMvnwNsIC7xF3KYU3E2b_sZF17oVg2CCZrCGSIZEMiWRA5Cq5xsCgaMLC550zENhVLm9F-30uPxUSeb3lTTZ0mOvfQI3_Yv9uoTSayuw2ueVNDDp0eLlDrtjVXXLjo3eiuEe-boENrUragw31sKG_fvykCBiqqQcMjvSAoQgY6gDjZtC6omvA3Cf779_NRuPQF9wITZrGdYh1561ITZGK3MiE2ZhLKwQ3LLdcWSMSmce2LPAYTBnDylICsKwyNo-1YII_IDuramUfEcq04lrGJuHWgA0O8krkjANJi9l-1CAgrP0LM-Oz0WNRlGV2AfMC8qqbdOSSsVw8_I3jTTfYr1Q_WMpsgM3GpG4MRj2CkAnIbsvXzC-pkwz0PsUb6yMgz7vHIJjxtg2WH6y0jKk9IWMG5kdAHjo8dO_BFeytLJWPL_dBT8jN9arcJTv18al9CjpxnT9r4PwbVs23JQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cleavage-Activation+of+Respiratory+Viruses+%E2%80%93+Half+a+Century+of+History+from+Sendai+Virus+to+SARS-CoV-2&rft.jtitle=Japanese+journal+of+infectious+diseases&rft.au=Takeda%2C+Makoto&rft.date=2024-01-31&rft.issn=1344-6304&rft.eissn=1884-2836&rft.volume=77&rft.issue=1&rft.spage=1&rft.epage=6&rft_id=info:doi/10.7883%2Fyoken.JJID.2023.353&rft.externalDBID=n%2Fa&rft.externalDocID=10_7883_yoken_JJID_2023_353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon |