Cleavage-Activation of Respiratory Viruses – Half a Century of History from Sendai Virus to SARS-CoV-2

Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a cl...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Infectious Diseases Vol. 77; no. 1; pp. 1 - 6
Main Author Takeda, Makoto
Format Journal Article
LanguageEnglish
Published Japan National Institute of Infectious Diseases 31.01.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it.
AbstractList Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it.
Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it.Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it.
ArticleNumber JJID.2023.353
Author Takeda, Makoto
Author_xml – sequence: 1
  fullname: Takeda, Makoto
  organization: Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38030267$$D View this record in MEDLINE/PubMed
BookMark eNqFkc-O0zAQhy20iP0DT4CELHHhkuJ44tg5Vl2gXa2EtIW9Wo47YV3SuNjOSr3xDrwhT0LSlkrshYvH0nzf2JrfJTnrfIeEvM7ZRCoF73f-O3aTm5vF9YQzDhMQ8Ixc5EoVGVdQng13KIqsBFack8sY14xxIXL2gpyDYsB4KS_Iw6xF82i-YTa1yT2a5HxHfUPvMG5dMMmHHb13oY8Y6e-fv-jctA01dIZd6ofWQM5d3FNN8Bu6xG5l3MGgydPl9G6Zzfx9xl-S541pI7461ivy9eOHL7N5dvv502I2vc1sWbKUyUpUKEq7KkVtZcGRgUQhwPIaQaEVhawZNivGKlDW8qaRDVpUFmtmBBdwRd4d5m6D_9FjTHrjosW2NR36PmquKiEZr3g1oG-foGvfh274nQYGClguinHgmyPV1xtc6W1wGxN2-u8OBwAOgA0-xoDNCcmZHpPS-6T0mJQek9JDUoNVPbGsS_v1p2Bc-x93cXDXMQ3Rnd4zITnb4tGRUufj8Y97YuyDCRo7-ANxj7Ug
CitedBy_id crossref_primary_10_1128_jvi_01853_24
Cites_doi 10.1038/s41594-020-0468-7
10.1038/s41467-022-33911-8
10.1016/0042-6822(76)90178-1
10.1128/JVI.00128-13
10.1007/BF01309262
10.1128/iai.39.2.879-888.1983
10.1038/s41467-020-15562-9
10.1038/s41586-021-04266-9
10.1371/journal.ppat.1003774
10.1002/j.1460-2075.1992.tb05305.x
10.1371/journal.pone.0215822
10.1038/s41467-023-37059-x
10.1073/pnas.85.2.324
10.1128/JVI.03799-13
10.1016/j.cell.2020.02.052
10.1186/s12916-020-01673-z
10.1128/iai.31.3.1214-1222.1981
10.1016/j.cell.2020.09.032
10.1016/0042-6822(81)90201-4
10.1016/0042-6822(87)90261-3
10.1016/0042-6822(75)90284-6
10.1038/s41586-022-04474-x
10.1016/j.virol.2017.11.012
10.1002/j.1460-2075.1990.tb07643.x
10.1128/jvi.12.6.1457-1465.1973
10.1073/pnas.2002589117
10.1101/2021.06.17.448820
10.1128/JVI.02205-08
10.1128/JVI.00676-08
10.1128/JVI.01542-10
10.1128/jvi.8.5.619-629.1971
10.1128/jvi.56.3.904-911.1985
10.1128/jvi.68.9.6074-6078.1994
10.1128/JVI.01118-06
10.1016/j.virusres.2014.11.021
10.1038/s41586-022-04442-5
10.1128/JVI.01387-16
10.1038/s41564-021-00908-w
10.1016/j.molcel.2020.04.022
10.1016/j.cell.2020.02.058
10.1101/2022.01.19.476898
10.1016/j.celrep.2020.108630
10.1128/jvi.00851-23
10.1016/j.isci.2021.102322
10.1038/s41586-022-04462-1
10.1128/JVI.03372-12
10.1016/0042-6822(75)90285-8
10.1128/JVI.01815-18
10.1016/j.chom.2020.11.012
10.1128/JVI.03677-13
10.1093/infdis/jiv246
10.1016/j.ebiom.2023.104561
10.1128/JVI.01890-13
10.2807/1560-7917.ES.2020.26.1.2002106
10.1016/0042-6822(74)90187-1
10.1128/JVI.01490-13
10.1101/2022.04.20.488969
10.1073/pnas.0306446101
10.1038/s41586-022-04441-6
10.1016/j.cell.2022.09.018
10.1128/JVI.01933-08
10.1016/j.vaccine.2012.10.001
10.1111/1348-0421.12945
10.7554/eLife.64508
10.26508/lsa.202000786
10.1016/j.ics.2004.01.040
ContentType Journal Article
Copyright 2024 Authors
Copyright Japan Science and Technology Agency 2024
Copyright_xml – notice: 2024 Authors
– notice: Copyright Japan Science and Technology Agency 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
DOI 10.7883/yoken.JJID.2023.353
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1884-2836
EndPage 6
ExternalDocumentID 38030267
10_7883_yoken_JJID_2023_353
article_yoken_77_1_77_JJID_2023_353_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29J
2WC
53G
5GY
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
JSF
JSH
KQ8
OK1
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
ID FETCH-LOGICAL-c660t-7959e56cd65bc742e037e553c2be38ec547b0efd00938cc2ff7fece8ceb0a5253
ISSN 1344-6304
1884-2836
IngestDate Thu Jul 10 22:53:41 EDT 2025
Mon Jun 30 12:00:47 EDT 2025
Mon Jul 21 05:39:52 EDT 2025
Tue Jul 01 03:55:22 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Thu Feb 01 14:11:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords protease
TMPRSS2
SARS-CoV-2
cleavage
Sendai virus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c660t-7959e56cd65bc742e037e553c2be38ec547b0efd00938cc2ff7fece8ceb0a5253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/yoken/77/1/77_JJID.2023.353/_article/-char/en
PMID 38030267
PQID 3038301545
PQPubID 2048383
PageCount 6
ParticipantIDs proquest_miscellaneous_2895702929
proquest_journals_3038301545
pubmed_primary_38030267
crossref_primary_10_7883_yoken_JJID_2023_353
crossref_citationtrail_10_7883_yoken_JJID_2023_353
jstage_primary_article_yoken_77_1_77_JJID_2023_353_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024/01/31
PublicationDateYYYYMMDD 2024-01-31
PublicationDate_xml – month: 01
  year: 2024
  text: 2024/01/31
  day: 31
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Japanese Journal of Infectious Diseases
PublicationTitleAlternate Jpn J Infect Dis
PublicationYear 2024
Publisher National Institute of Infectious Diseases
Japan Science and Technology Agency
Publisher_xml – name: National Institute of Infectious Diseases
– name: Japan Science and Technology Agency
References 15. Garten W, Matrosovich M, Matrosovich T, et al. Cleavage of influenza virus hemagglutinin by host cell protease. Int Congr Ser. 2004;1263:218-221.
20. Shirogane Y, Takeda M, Iwasaki M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942-8946.
11. Stieneke-Grober A, Vey M, Angliker H, et al. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992;11:2407-2414.
28. Gierer S, Bertram S, Kaup F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013;87:5502-5511.
10. Kawaoka Y, Webster RG. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc Natl Acad Sci U S A. 1988;85:324-328.
54. Leung K, Shum MH, Leung GM, et al. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021;26:2002106.
56. Saito A, Irie T, Suzuki R, et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 delta P681R mutation. Nature. 2022;602:300-306.
37. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620.
65. Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell. 2022;185:3992-4007.e16.
18. Chaipan C, Kobasa D, Bertram S, et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol. 2009;83:3200-3211.
23. Tarnow C, Engels G, Arendt A, et al. TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol. 2014;88:4744-4751.
14. Gotoh B, Ogasawara T, Toyoda T, et al. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990;9:4189-4195.
31. Shirato K, Kanou K, Kawase M, et al. Clinical isolates of human coronavirus 229E bypass the endosome for cell entry. J Virol. 2017;91:e01387-16.
61. Lubinski B, Jaimes JA, Whittaker GR. Intrinsic furin-mediated cleavability of the spike S1/S2 site from SARS-CoV-2 variant B.1.1.529 (Omicron). bioRxiv. July 26, 2022. doi:10.1101/2022.04.20.488969. Preprint.
34. Nao N, Sato K, Yamagishi J, et al. Consensus and variations in cell line specificity among human metapneumovirus strains. PLoS One. 2019;14:e0215822.
40. Mykytyn AZ, Breugem TI, Riesebosch S, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife. 2021;10:e64508.
19. Bottcher-Friebertshauser E, Lu Y, Meyer D, et al. Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine. 2012;30:7374-7380.
12. Horimoto T, Nakayama K, Smeekens SP, et al. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol. 1994;68:6074-6078.
35. Simmons G, Reeves JD, Rennekamp AJ, et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A. 2004;101:4240-4245.
66. Uraki R, Iida S, Halfmann PJ, et al. Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates. Nat Commun. 2023;14:1620.
63. Mykytyn AZ, Breugem TI, Geurts MH, et al. SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models. J Virol. 2023;97:e0085123.
46. Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78:779-784.e1-e5.
51. Gobeil SM, Janowska K, McDowell S, et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep. 2021;34:108630.
32. Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9-15.
24. Cheng Z, Zhou J, To KK, et al. Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza. J Infect Dis. 2015;212:1214-1221.
60. Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706-714.
4. Tashiro M, Homma M. Evidence of proteolytic activation of Sendai virus in mouse lung. Arch Virol. 1983;77:127-137.
43. Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18:216.
44. Andolfo I, Russo R, Lasorsa VA, et al. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. iScience. 2021;24:102322.
22. Hatesuer B, Bertram S, Mehnert N, et al. Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog. 2013;9:e1003774.
45. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-280.e1-e8.
5. Tashiro M, Homma M. Pneumotropism of Sendai virus in relation to protease-mediated activation in mouse lungs. Infect Immun. 1983;39:879-888.
16. Böttcher E, Matrosovich T, Beyerle M, et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006;80:9896-9898.
38. Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3:e202000786.
49. Wrobel AG, Benton DJ, Xu P, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol. 2020;27:763-767.
3. Homma M, Ouchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. 3. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol. 1973;12:1457-1465.
27. Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658-12664.
55. Saito A, Irie T, Suzuki R, et al. SARS-CoV-2 spike P681R mutation, a hollmark of the delta variant, enhances viral fusogenicity and pathogenicity. bioRxiv. July 19, 2021. doi:https://doi.org/10.1101/2021.06.17.448820. Preprint.
50. Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol. 2020;66:15-23.
9. Bosch FX, Garten W, Klenk HD, et al. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology. 1981;113:725-735.
17. Abe M, Tahara M, Sakai K, et al. TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J Virol. 2013;87:11930-11935.
29. Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87:12552-12561.
33. Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A. 2020;117:7001-7003.
39. Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6:899-909.
62. Lamers MM, Mykytyn AZ, Breugem TI, et al. SARS-CoV-2 Omicron efficiently infects human airway, but not alveolar epithelium. bioRxiv. January 20, 2022. doi:https://doi.org/10.1101/2022.01.19.476898. Preprint.
21. Sakai K, Ami Y, Tahara M, et al. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. J Virol. 2014;88:5608-5616.
30. Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013;87:6150-6160.
2. Scheid A, Choppin PW. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475-490.
53. Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183:739-751.e8.
57. Furusawa Y, Kiso M, Iida S, et al. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. eBioMedicine. 2023;91:104561.
48. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281-292.e6.
6. Nagai Y, Klenk HD, Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976;72:494-508.
7. Lazarowitz SG, Choppin PW. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440-454.
8. Klenk HD, Rott R, Orlich M, et al. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426-439.
36. Kawase M, Shirato K, Matsuyama S, et al. Protease-mediated entry via the endosome of human coronavirus 229E. J Virol. 2009;83:712-721.
59. Shuai H, Chan JF, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022;603:693-699.
58. Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omi
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 4. Tashiro M, Homma M. Evidence of proteolytic activation of Sendai virus in mouse lung. Arch Virol. 1983;77:127-137.
– reference: 23. Tarnow C, Engels G, Arendt A, et al. TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol. 2014;88:4744-4751.
– reference: 50. Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol. 2020;66:15-23.
– reference: 56. Saito A, Irie T, Suzuki R, et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 delta P681R mutation. Nature. 2022;602:300-306.
– reference: 60. Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706-714.
– reference: 40. Mykytyn AZ, Breugem TI, Riesebosch S, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife. 2021;10:e64508.
– reference: 28. Gierer S, Bertram S, Kaup F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013;87:5502-5511.
– reference: 53. Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183:739-751.e8.
– reference: 37. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620.
– reference: 29. Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87:12552-12561.
– reference: 64. Halfmann PJ, Iida S, Iwatsuki-Horimoto K, et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature. 2022;603:687-692.
– reference: 12. Horimoto T, Nakayama K, Smeekens SP, et al. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol. 1994;68:6074-6078.
– reference: 65. Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell. 2022;185:3992-4007.e16.
– reference: 52. Weissman D, Alameh MG, de Silva T, et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe. 2021;29:23-31.e4.
– reference: 31. Shirato K, Kanou K, Kawase M, et al. Clinical isolates of human coronavirus 229E bypass the endosome for cell entry. J Virol. 2017;91:e01387-16.
– reference: 2. Scheid A, Choppin PW. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475-490.
– reference: 34. Nao N, Sato K, Yamagishi J, et al. Consensus and variations in cell line specificity among human metapneumovirus strains. PLoS One. 2019;14:e0215822.
– reference: 8. Klenk HD, Rott R, Orlich M, et al. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426-439.
– reference: 16. Böttcher E, Matrosovich T, Beyerle M, et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006;80:9896-9898.
– reference: 21. Sakai K, Ami Y, Tahara M, et al. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. J Virol. 2014;88:5608-5616.
– reference: 32. Shirato K, Kawase M, Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology. 2018;517:9-15.
– reference: 43. Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18:216.
– reference: 11. Stieneke-Grober A, Vey M, Angliker H, et al. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992;11:2407-2414.
– reference: 14. Gotoh B, Ogasawara T, Toyoda T, et al. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990;9:4189-4195.
– reference: 10. Kawaoka Y, Webster RG. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc Natl Acad Sci U S A. 1988;85:324-328.
– reference: 26. Sturman LS, Ricard CS, Holmes KV. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol. 1985;56:904-911.
– reference: 41. Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93:e01815-18.
– reference: 19. Bottcher-Friebertshauser E, Lu Y, Meyer D, et al. Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine. 2012;30:7374-7380.
– reference: 22. Hatesuer B, Bertram S, Mehnert N, et al. Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog. 2013;9:e1003774.
– reference: 57. Furusawa Y, Kiso M, Iida S, et al. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. eBioMedicine. 2023;91:104561.
– reference: 15. Garten W, Matrosovich M, Matrosovich T, et al. Cleavage of influenza virus hemagglutinin by host cell protease. Int Congr Ser. 2004;1263:218-221.
– reference: 59. Shuai H, Chan JF, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022;603:693-699.
– reference: 20. Shirogane Y, Takeda M, Iwasaki M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82:8942-8946.
– reference: 39. Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6:899-909.
– reference: 27. Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658-12664.
– reference: 47. Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120-134.
– reference: 38. Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3:e202000786.
– reference: 55. Saito A, Irie T, Suzuki R, et al. SARS-CoV-2 spike P681R mutation, a hollmark of the delta variant, enhances viral fusogenicity and pathogenicity. bioRxiv. July 19, 2021. doi:https://doi.org/10.1101/2021.06.17.448820. Preprint.
– reference: 51. Gobeil SM, Janowska K, McDowell S, et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep. 2021;34:108630.
– reference: 7. Lazarowitz SG, Choppin PW. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440-454.
– reference: 3. Homma M, Ouchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. 3. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol. 1973;12:1457-1465.
– reference: 44. Andolfo I, Russo R, Lasorsa VA, et al. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. iScience. 2021;24:102322.
– reference: 49. Wrobel AG, Benton DJ, Xu P, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol. 2020;27:763-767.
– reference: 1. Homma M. Trypsin action on the growth of Sendai virus in tissue culture cells. I. Restoration of the infectivity for L cells by direct action of tyrpsin on L cell-borne Sendai virus. J Virol. 1971;8:619-629.
– reference: 6. Nagai Y, Klenk HD, Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976;72:494-508.
– reference: 42. Iwata-Yoshikawa N, Kakizaki M, Shiwa-Sudo N, et al. Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. Nat Commun. 2022;13:6100.
– reference: 24. Cheng Z, Zhou J, To KK, et al. Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza. J Infect Dis. 2015;212:1214-1221.
– reference: 36. Kawase M, Shirato K, Matsuyama S, et al. Protease-mediated entry via the endosome of human coronavirus 229E. J Virol. 2009;83:712-721.
– reference: 62. Lamers MM, Mykytyn AZ, Breugem TI, et al. SARS-CoV-2 Omicron efficiently infects human airway, but not alveolar epithelium. bioRxiv. January 20, 2022. doi:https://doi.org/10.1101/2022.01.19.476898. Preprint.
– reference: 54. Leung K, Shum MH, Leung GM, et al. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021;26:2002106.
– reference: 48. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281-292.e6.
– reference: 9. Bosch FX, Garten W, Klenk HD, et al. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology. 1981;113:725-735.
– reference: 5. Tashiro M, Homma M. Pneumotropism of Sendai virus in relation to protease-mediated activation in mouse lungs. Infect Immun. 1983;39:879-888.
– reference: 46. Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78:779-784.e1-e5.
– reference: 18. Chaipan C, Kobasa D, Bertram S, et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol. 2009;83:3200-3211.
– reference: 30. Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013;87:6150-6160.
– reference: 33. Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A. 2020;117:7001-7003.
– reference: 35. Simmons G, Reeves JD, Rennekamp AJ, et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A. 2004;101:4240-4245.
– reference: 13. Toyoda T, Sakaguchi T, Imai K, et al. Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virology. 1987;158:242-247.
– reference: 66. Uraki R, Iida S, Halfmann PJ, et al. Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates. Nat Commun. 2023;14:1620.
– reference: 63. Mykytyn AZ, Breugem TI, Geurts MH, et al. SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models. J Virol. 2023;97:e0085123.
– reference: 61. Lubinski B, Jaimes JA, Whittaker GR. Intrinsic furin-mediated cleavability of the spike S1/S2 site from SARS-CoV-2 variant B.1.1.529 (Omicron). bioRxiv. July 26, 2022. doi:10.1101/2022.04.20.488969. Preprint.
– reference: 25. Storz J, Rott R, Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infect Immun. 1981;31:1214-1222.
– reference: 17. Abe M, Tahara M, Sakai K, et al. TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J Virol. 2013;87:11930-11935.
– reference: 45. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-280.e1-e8.
– reference: 58. Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature. 2022;603:700-705.
– ident: 49
  doi: 10.1038/s41594-020-0468-7
– ident: 42
  doi: 10.1038/s41467-022-33911-8
– ident: 6
  doi: 10.1016/0042-6822(76)90178-1
– ident: 28
  doi: 10.1128/JVI.00128-13
– ident: 4
  doi: 10.1007/BF01309262
– ident: 5
  doi: 10.1128/iai.39.2.879-888.1983
– ident: 37
  doi: 10.1038/s41467-020-15562-9
– ident: 56
  doi: 10.1038/s41586-021-04266-9
– ident: 22
  doi: 10.1371/journal.ppat.1003774
– ident: 11
  doi: 10.1002/j.1460-2075.1992.tb05305.x
– ident: 34
  doi: 10.1371/journal.pone.0215822
– ident: 66
  doi: 10.1038/s41467-023-37059-x
– ident: 10
  doi: 10.1073/pnas.85.2.324
– ident: 23
  doi: 10.1128/JVI.03799-13
– ident: 45
  doi: 10.1016/j.cell.2020.02.052
– ident: 43
  doi: 10.1186/s12916-020-01673-z
– ident: 25
  doi: 10.1128/iai.31.3.1214-1222.1981
– ident: 53
  doi: 10.1016/j.cell.2020.09.032
– ident: 9
  doi: 10.1016/0042-6822(81)90201-4
– ident: 13
  doi: 10.1016/0042-6822(87)90261-3
– ident: 8
  doi: 10.1016/0042-6822(75)90284-6
– ident: 60
  doi: 10.1038/s41586-022-04474-x
– ident: 32
  doi: 10.1016/j.virol.2017.11.012
– ident: 14
  doi: 10.1002/j.1460-2075.1990.tb07643.x
– ident: 3
  doi: 10.1128/jvi.12.6.1457-1465.1973
– ident: 33
  doi: 10.1073/pnas.2002589117
– ident: 55
  doi: 10.1101/2021.06.17.448820
– ident: 18
  doi: 10.1128/JVI.02205-08
– ident: 20
  doi: 10.1128/JVI.00676-08
– ident: 27
  doi: 10.1128/JVI.01542-10
– ident: 1
  doi: 10.1128/jvi.8.5.619-629.1971
– ident: 26
  doi: 10.1128/jvi.56.3.904-911.1985
– ident: 12
  doi: 10.1128/jvi.68.9.6074-6078.1994
– ident: 16
  doi: 10.1128/JVI.01118-06
– ident: 47
  doi: 10.1016/j.virusres.2014.11.021
– ident: 59
  doi: 10.1038/s41586-022-04442-5
– ident: 31
  doi: 10.1128/JVI.01387-16
– ident: 39
  doi: 10.1038/s41564-021-00908-w
– ident: 46
  doi: 10.1016/j.molcel.2020.04.022
– ident: 48
  doi: 10.1016/j.cell.2020.02.058
– ident: 62
  doi: 10.1101/2022.01.19.476898
– ident: 51
  doi: 10.1016/j.celrep.2020.108630
– ident: 63
  doi: 10.1128/jvi.00851-23
– ident: 44
  doi: 10.1016/j.isci.2021.102322
– ident: 58
  doi: 10.1038/s41586-022-04462-1
– ident: 30
  doi: 10.1128/JVI.03372-12
– ident: 7
  doi: 10.1016/0042-6822(75)90285-8
– ident: 41
  doi: 10.1128/JVI.01815-18
– ident: 52
  doi: 10.1016/j.chom.2020.11.012
– ident: 21
  doi: 10.1128/JVI.03677-13
– ident: 24
  doi: 10.1093/infdis/jiv246
– ident: 57
  doi: 10.1016/j.ebiom.2023.104561
– ident: 29
  doi: 10.1128/JVI.01890-13
– ident: 54
  doi: 10.2807/1560-7917.ES.2020.26.1.2002106
– ident: 2
  doi: 10.1016/0042-6822(74)90187-1
– ident: 17
  doi: 10.1128/JVI.01490-13
– ident: 61
  doi: 10.1101/2022.04.20.488969
– ident: 35
  doi: 10.1073/pnas.0306446101
– ident: 64
  doi: 10.1038/s41586-022-04441-6
– ident: 65
  doi: 10.1016/j.cell.2022.09.018
– ident: 36
  doi: 10.1128/JVI.01933-08
– ident: 19
  doi: 10.1016/j.vaccine.2012.10.001
– ident: 50
  doi: 10.1111/1348-0421.12945
– ident: 40
  doi: 10.7554/eLife.64508
– ident: 38
  doi: 10.26508/lsa.202000786
– ident: 15
  doi: 10.1016/j.ics.2004.01.040
SSID ssj0025510
Score 2.3478472
SecondaryResourceType review_article
Snippet Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animals
Avian flu
Cleavage
Coronaviruses
COVID-19
Furin
Furin - metabolism
Hemagglutinins
Humans
Influenza
Membrane fusion
Membrane Fusion Proteins
Membranes
Newcastle disease
Pandemics
Peptide Hydrolases - metabolism
protease
Proteins
Respiratory diseases
SARS-CoV-2
SARS-CoV-2 - genetics
Sendai virus
Sendai virus - genetics
Sendai virus - metabolism
Severe acute respiratory syndrome coronavirus 2
Spike protein
TMPRSS2
Viral diseases
Virulence
Virus Internalization
Viruses
Title Cleavage-Activation of Respiratory Viruses – Half a Century of History from Sendai Virus to SARS-CoV-2
URI https://www.jstage.jst.go.jp/article/yoken/77/1/77_JJID.2023.353/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38030267
https://www.proquest.com/docview/3038301545
https://www.proquest.com/docview/2895702929
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese Journal of Infectious Diseases, 2024/01/31, Vol.77(1), pp.1-6
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgIMQL4j-BgYzEGySkdhx7j6WASiV4oN3Ut8hxHBitmmnLJo0nvgPfkE_CXeykKSoT48WqHPuU9H4-39n3h5AXLOe5KmQSalHmYKDoIlR7hQxlMSg0bHCg0jZevp_S8X4ymYv5-kC_iS6p88h83xpX8j9chT7gK0bJXoKzHVHogN_AX2iBw9D-E49HS6vPQCCEQ9NWKXPJRdbX5weHx6cneLTqnRr4y7FeYkjkyO02zUF-kyrk3IWaTC0Y6YduHiqm0-HnaTiqDnz4YKvHwh6LtSs3M084vy6Y5699On19phe20C42aFHVVf-sgaF_SiuknXjkSRKm3BUMjqzrUyoJQUlJ-zLVl2bpY8cJyEFvp023iXAwyTGVxHm1sKtoMvnwNsIC7xF3KYU3E2b_sZF17oVg2CCZrCGSIZEMiWRA5Cq5xsCgaMLC550zENhVLm9F-30uPxUSeb3lTTZ0mOvfQI3_Yv9uoTSayuw2ueVNDDp0eLlDrtjVXXLjo3eiuEe-boENrUragw31sKG_fvykCBiqqQcMjvSAoQgY6gDjZtC6omvA3Cf779_NRuPQF9wITZrGdYh1561ITZGK3MiE2ZhLKwQ3LLdcWSMSmce2LPAYTBnDylICsKwyNo-1YII_IDuramUfEcq04lrGJuHWgA0O8krkjANJi9l-1CAgrP0LM-Oz0WNRlGV2AfMC8qqbdOSSsVw8_I3jTTfYr1Q_WMpsgM3GpG4MRj2CkAnIbsvXzC-pkwz0PsUb6yMgz7vHIJjxtg2WH6y0jKk9IWMG5kdAHjo8dO_BFeytLJWPL_dBT8jN9arcJTv18al9CjpxnT9r4PwbVs23JQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cleavage-Activation+of+Respiratory+Viruses+%E2%80%93+Half+a+Century+of+History+from+Sendai+Virus+to+SARS-CoV-2&rft.jtitle=Japanese+journal+of+infectious+diseases&rft.au=Takeda%2C+Makoto&rft.date=2024-01-31&rft.issn=1344-6304&rft.eissn=1884-2836&rft.volume=77&rft.issue=1&rft.spage=1&rft.epage=6&rft_id=info:doi/10.7883%2Fyoken.JJID.2023.353&rft.externalDBID=n%2Fa&rft.externalDocID=10_7883_yoken_JJID_2023_353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon