Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
Michael Talkowski and colleagues examine karyotypically balanced genomic rearrangement landscapes in the germline at single-nucleotide resolution. They find predominant roles for complex reorganization and non-homologous repair in such 'chromothripsis' processes, suggesting a mechanism of...
Saved in:
Published in | Nature genetics Vol. 44; no. 4; pp. 390 - 397 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.04.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Michael Talkowski and colleagues examine karyotypically balanced genomic rearrangement landscapes in the germline at single-nucleotide resolution. They find predominant roles for complex reorganization and non-homologous repair in such 'chromothripsis' processes, suggesting a mechanism of template switching and blunt-end ligation.
We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations. |
---|---|
AbstractList | We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically-interpreted translocations and inversions. We confirm that the recently described phenomenon of “chromothripsis” (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline where it can resolve to a karyotypically balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign CNVs. We compared these results to experimentally-generated DNA breakage-repair by sequencing seven transgenic animals, and revealed extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion is the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations. We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations. [PUBLICATION ABSTRACT] We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31 %) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations. We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations.We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations. Michael Talkowski and colleagues examine karyotypically balanced genomic rearrangement landscapes in the germline at single-nucleotide resolution. They find predominant roles for complex reorganization and non-homologous repair in such 'chromothripsis' processes, suggesting a mechanism of template switching and blunt-end ligation. We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations. We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints |
Audience | Academic |
Author | Chiang, Colby MacDonald, Marcy E Blumenthal, Ian Shen, Yiping Gusella, James F Talkowski, Michael E Hanscom, Carrie Hall, Ira M Borowsky, Mark L Lee, Charles Mills, Ryan E Morton, Cynthia C McLaughlan, Clive J Ohsumi, Toshiro K Snell, Russell G Jacobsen, Jessie C Reid, Suzanne J Bawden, C Simon Faull, Richard L M Daly, Mark J Rudiger, Skye R Lindgren, Amelia M Ernst, Carl Kirby, Andrew Heilbut, Adrian |
AuthorAffiliation | 9 Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA 2 Departments of Genetics and Neurology, Harvard Medical School, Boston, MA, USA 3 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA 5 Molecular Biology and Reproductive Technology Laboratories, Livestock and Farming Systems Division, South Australian Research and Development Institute, Roseworthy, SA, Australia 6 The Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand 1 Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA 4 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA 11 Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA 7 School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand 12 Department of Obstetrics, Gynecology, and Repr |
AuthorAffiliation_xml | – name: 2 Departments of Genetics and Neurology, Harvard Medical School, Boston, MA, USA – name: 4 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA – name: 8 Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand – name: 12 Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, USA – name: 6 The Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand – name: 5 Molecular Biology and Reproductive Technology Laboratories, Livestock and Farming Systems Division, South Australian Research and Development Institute, Roseworthy, SA, Australia – name: 7 School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand – name: 10 Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA, USA – name: 11 Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA – name: 3 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – name: 1 Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA – name: 9 Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA |
Author_xml | – sequence: 1 givenname: Colby surname: Chiang fullname: Chiang, Colby organization: Center for Human Genetic Research, Massachusetts General Hospital – sequence: 2 givenname: Jessie C surname: Jacobsen fullname: Jacobsen, Jessie C organization: Center for Human Genetic Research, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Department of Neurology, Harvard Medical School – sequence: 3 givenname: Carl surname: Ernst fullname: Ernst, Carl organization: Center for Human Genetic Research, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Department of Neurology, Harvard Medical School, Present address: Department of Psychiatry, McGill University, Montreal, Quebec, Canada – sequence: 4 givenname: Carrie surname: Hanscom fullname: Hanscom, Carrie organization: Center for Human Genetic Research, Massachusetts General Hospital – sequence: 5 givenname: Adrian surname: Heilbut fullname: Heilbut, Adrian organization: Center for Human Genetic Research, Massachusetts General Hospital – sequence: 6 givenname: Ian surname: Blumenthal fullname: Blumenthal, Ian organization: Center for Human Genetic Research, Massachusetts General Hospital – sequence: 7 givenname: Ryan E surname: Mills fullname: Mills, Ryan E organization: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School – sequence: 8 givenname: Andrew surname: Kirby fullname: Kirby, Andrew organization: Center for Human Genetic Research, Massachusetts General Hospital, Program in Medical and Population Genetics, Broad Institute – sequence: 9 givenname: Amelia M surname: Lindgren fullname: Lindgren, Amelia M organization: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School – sequence: 10 givenname: Skye R surname: Rudiger fullname: Rudiger, Skye R organization: Livestock and Farming Systems Division, Molecular Biology Laboratory, South Australian Research and Development Institute, Livestock and Farming Systems Division, Reproductive Technology Laboratory, South Australian Research and Development Institute – sequence: 11 givenname: Clive J surname: McLaughlan fullname: McLaughlan, Clive J organization: Livestock and Farming Systems Division, Molecular Biology Laboratory, South Australian Research and Development Institute, Livestock and Farming Systems Division, Reproductive Technology Laboratory, South Australian Research and Development Institute – sequence: 12 givenname: C Simon surname: Bawden fullname: Bawden, C Simon organization: Livestock and Farming Systems Division, Molecular Biology Laboratory, South Australian Research and Development Institute, Livestock and Farming Systems Division, Reproductive Technology Laboratory, South Australian Research and Development Institute – sequence: 13 givenname: Suzanne J surname: Reid fullname: Reid, Suzanne J organization: The Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, School of Biological Sciences, Faculty of Science, The University of Auckland – sequence: 14 givenname: Richard L M surname: Faull fullname: Faull, Richard L M organization: The Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, The University of Auckland – sequence: 15 givenname: Russell G surname: Snell fullname: Snell, Russell G organization: The Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, School of Biological Sciences, Faculty of Science, The University of Auckland – sequence: 16 givenname: Ira M surname: Hall fullname: Hall, Ira M organization: Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine – sequence: 17 givenname: Yiping surname: Shen fullname: Shen, Yiping organization: Center for Human Genetic Research, Massachusetts General Hospital, Department of Laboratory Medicine, Children's Hospital Boston – sequence: 18 givenname: Toshiro K surname: Ohsumi fullname: Ohsumi, Toshiro K organization: Department of Molecular Biology, Massachusetts General Hospital – sequence: 19 givenname: Mark L surname: Borowsky fullname: Borowsky, Mark L organization: Department of Molecular Biology, Massachusetts General Hospital – sequence: 20 givenname: Mark J surname: Daly fullname: Daly, Mark J organization: Center for Human Genetic Research, Massachusetts General Hospital, Program in Medical and Population Genetics, Broad Institute – sequence: 21 givenname: Charles surname: Lee fullname: Lee, Charles organization: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School – sequence: 22 givenname: Cynthia C surname: Morton fullname: Morton, Cynthia C organization: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Program in Medical and Population Genetics, Broad Institute, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital – sequence: 23 givenname: Marcy E surname: MacDonald fullname: MacDonald, Marcy E organization: Center for Human Genetic Research, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Department of Neurology, Harvard Medical School, Program in Medical and Population Genetics, Broad Institute – sequence: 24 givenname: James F surname: Gusella fullname: Gusella, James F organization: Center for Human Genetic Research, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Department of Neurology, Harvard Medical School, Program in Medical and Population Genetics, Broad Institute – sequence: 25 givenname: Michael E surname: Talkowski fullname: Talkowski, Michael E email: talkowski@chgr.mgh.harvard.edu organization: Center for Human Genetic Research, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Department of Neurology, Harvard Medical School, Program in Medical and Population Genetics, Broad Institute |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25767237$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22388000$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9tu1DAQhiNURA8g3gBFQgi4SLFzdG6QqhWHSpUqcbq1Js7EdevYi52FljfiLZndbrtdQAjlIgd__mfm95_9ZMd5h0nymLNDzgrxyunDPGf5vWSPV2Wd8YaLHXpmNc9KVtS7yX6M54zxsmTiQbKb54UQjLG95OfMj3OLl2lAHzQ48wMm410Krk_nAXs_GgduSqleduZHb732i0j0HExIB2-t_26cTtVZoNXoR7BpFxAuQGNqXHoB4cpPV3OjwNqrtAMLTmGfagyjNQ5JCUIAp3FEN8VV3Yneo0ZnFClMqMOqpYfJ_QFsxEfr-0Hy-e2bT7P32cnpu-PZ0Umm6ppNWSV4o_q-qYqqZdDnQ5vX2CPULVSYD5w1vGvyVrUdhyrvVdexCvoK1VApIcjMg-T1te580Y3YK2orgJXzYEaaRXowcnvFmTOp_TdZFCU5XJPA87VA8F8XGCc5mqjQ0uRI3sm2LkrRtnVJ5It_ktRNKbho66Xo09_Qc78IjowgivNGlGVZbCgNFqVxg6cO1VJUHuWiatuyYsuyh3-h6OpxNIqCNRj6vrXh5dYGYia8nDQsYpTHHz_8P3v6ZZt9ctfqW49v4knAszUAkQI0UDCUiRuuauomLxrismtOBR9jwEEqM61SQ5MZSxYtvRTSabn8TTZHdMvfSP5Jro8oEkEpDXd930Z_AS3JIYU |
CODEN | NGENEC |
CitedBy_id | crossref_primary_10_1016_j_ajhg_2012_10_016 crossref_primary_10_1097_HRP_0000000000000002 crossref_primary_10_1002_mgg3_2248 crossref_primary_10_1002_humu_22541 crossref_primary_10_1038_s41467_020_20605_2 crossref_primary_10_1016_j_tig_2014_01_001 crossref_primary_10_1016_j_tranon_2020_100884 crossref_primary_10_1038_s41467_020_18255_5 crossref_primary_10_1186_s13059_017_1158_6 crossref_primary_10_1016_j_ejmg_2014_07_004 crossref_primary_10_1016_j_tig_2015_05_010 crossref_primary_10_1038_s41586_020_2287_8 crossref_primary_10_3390_women3030032 crossref_primary_10_1101_gr_221028_117 crossref_primary_10_3233_JHD_231516 crossref_primary_10_1016_j_ajhg_2019_02_024 crossref_primary_10_3390_jcm9030613 crossref_primary_10_1159_000438812 crossref_primary_10_18632_oncotarget_4900 crossref_primary_10_1007_s11248_015_9906_4 crossref_primary_10_1186_1471_2164_15_367 crossref_primary_10_1016_j_tig_2022_06_003 crossref_primary_10_1038_srep41120 crossref_primary_10_1093_g3journal_jkac185 crossref_primary_10_1038_s12276_020_00529_z crossref_primary_10_1101_gr_164806_113 crossref_primary_10_1002_cphg_103 crossref_primary_10_1038_s41467_017_01343_4 crossref_primary_10_1056_NEJMoa1208594 crossref_primary_10_1007_s00439_013_1263_x crossref_primary_10_1101_gr_157602_113 crossref_primary_10_1101_gr_175547_114 crossref_primary_10_7554_eLife_50292 crossref_primary_10_1038_s41588_019_0360_8 crossref_primary_10_1007_s00441_015_2305_6 crossref_primary_10_1002_mgg3_496 crossref_primary_10_1371_journal_pone_0090852 crossref_primary_10_1016_j_ceb_2016_03_003 crossref_primary_10_1038_cddis_2016_298 crossref_primary_10_1038_nrn3570 crossref_primary_10_3390_diagnostics12081900 crossref_primary_10_1016_j_cell_2012_03_028 crossref_primary_10_3390_ijms232112900 crossref_primary_10_1016_j_fertnstert_2014_09_006 crossref_primary_10_1101_sqb_2015_80_027623 crossref_primary_10_1007_s10725_016_0152_4 crossref_primary_10_1371_journal_pbio_2000731 crossref_primary_10_1177_15353702221082612 crossref_primary_10_3389_fpls_2019_00043 crossref_primary_10_1186_s13039_014_0100_9 crossref_primary_10_1371_journal_pgen_1007780 crossref_primary_10_1101_gad_250258_114 crossref_primary_10_3390_genes12121969 crossref_primary_10_1371_journal_pone_0100089 crossref_primary_10_1016_j_ajhg_2015_02_005 crossref_primary_10_1371_journal_pgen_1006446 crossref_primary_10_1016_j_gim_2022_09_017 crossref_primary_10_1159_000445859 crossref_primary_10_1073_pnas_1721351115 crossref_primary_10_1038_ncb2941 crossref_primary_10_1038_ng_3720 crossref_primary_10_1038_s41576_023_00663_0 crossref_primary_10_18632_oncoscience_178 crossref_primary_10_3389_fgene_2019_00393 crossref_primary_10_1038_s41431_017_0068_0 crossref_primary_10_1002_humu_24106 crossref_primary_10_1159_000441081 crossref_primary_10_1371_journal_pgen_1004139 crossref_primary_10_1093_nar_gkw1329 crossref_primary_10_1038_s41586_023_05974_0 crossref_primary_10_1101_gr_141382_112 crossref_primary_10_1016_j_xhgg_2023_100261 crossref_primary_10_1093_nar_gks1463 crossref_primary_10_1016_j_mrfmmm_2018_10_001 crossref_primary_10_1159_000443665 crossref_primary_10_1016_j_cell_2013_02_023 crossref_primary_10_1016_j_ajhg_2019_10_003 crossref_primary_10_1371_journal_pgen_1003051 crossref_primary_10_3390_genes14020483 crossref_primary_10_1038_nmeth_4366 crossref_primary_10_1002_humu_23408 crossref_primary_10_1093_humrep_deu003 crossref_primary_10_1016_j_ceb_2013_02_008 crossref_primary_10_1038_nm_2988 crossref_primary_10_1016_j_oncohp_2013_05_001 crossref_primary_10_1016_j_ajhg_2014_09_005 crossref_primary_10_1016_j_cell_2019_05_013 crossref_primary_10_1002_humu_22953 crossref_primary_10_1002_mgg3_1114 crossref_primary_10_1002_ajmg_a_61539 crossref_primary_10_1016_j_dnarep_2021_103207 crossref_primary_10_1038_mp_2013_42 crossref_primary_10_7555_JBR_35_20200197 crossref_primary_10_1051_medsci_20143003014 crossref_primary_10_1093_nar_gku525 crossref_primary_10_1371_journal_pgen_1003276 crossref_primary_10_1093_nar_gkz1085 crossref_primary_10_1016_j_celrep_2012_05_009 crossref_primary_10_1093_nar_gkw026 crossref_primary_10_4161_cc_25266 crossref_primary_10_1186_s13039_018_0394_0 crossref_primary_10_1038_s41576_024_00808_9 crossref_primary_10_1242_dmm_029462 crossref_primary_10_1371_journal_pgen_1003280 crossref_primary_10_1016_j_cell_2013_04_010 crossref_primary_10_21320_2500_2139_2017_10_2_191_205 crossref_primary_10_1101_gr_145631_112 crossref_primary_10_1101_gad_229559_113 crossref_primary_10_1136_jmedgenet_2018_105778 crossref_primary_10_1007_s10815_023_02986_7 crossref_primary_10_3390_cells10051102 crossref_primary_10_1186_s13073_017_0399_z crossref_primary_10_1016_j_ajhg_2014_03_020 crossref_primary_10_1016_j_omtn_2019_07_009 crossref_primary_10_1146_annurev_genet_120213_092228 crossref_primary_10_1038_nrc3352 crossref_primary_10_1038_s41431_019_0341_5 crossref_primary_10_1002_humu_23146 crossref_primary_10_1007_s00439_012_1216_9 crossref_primary_10_1002_gcc_21981 crossref_primary_10_1016_j_nbd_2015_01_004 crossref_primary_10_1159_000507837 crossref_primary_10_1186_s13039_015_0199_3 crossref_primary_10_1186_s13039_019_0455_z crossref_primary_10_1186_s12920_020_0729_7 crossref_primary_10_3390_ijms24010794 crossref_primary_10_1016_j_ajhg_2018_04_005 crossref_primary_10_1101_gr_191247_115 crossref_primary_10_1159_000503366 crossref_primary_10_1016_j_ajhg_2021_02_012 crossref_primary_10_1038_s41684_022_00978_1 crossref_primary_10_3233_JHD_210482 crossref_primary_10_1016_j_molcel_2023_11_002 crossref_primary_10_1002_humu_22240 crossref_primary_10_1136_jmedgenet_2014_102757 crossref_primary_10_3389_fgene_2024_1358334 crossref_primary_10_1016_j_mrrev_2018_06_004 crossref_primary_10_1002_0471142905_hg0722s80 crossref_primary_10_1002_ajmg_b_32204 crossref_primary_10_1038_ejhg_2016_64 crossref_primary_10_1038_s41467_024_49985_5 crossref_primary_10_1038_s41598_021_86242_x crossref_primary_10_3390_genes11030291 crossref_primary_10_1016_j_molcel_2015_01_005 crossref_primary_10_1038_ejhg_2013_147 crossref_primary_10_1038_nrc3537 crossref_primary_10_1371_journal_pgen_1007858 crossref_primary_10_1016_j_ajhg_2015_05_012 crossref_primary_10_1016_j_celrep_2014_11_022 crossref_primary_10_1038_srep20681 crossref_primary_10_1016_j_semcdb_2016_02_019 crossref_primary_10_1186_s13039_024_00675_3 crossref_primary_10_1111_cge_12928 crossref_primary_10_1186_1471_2164_15_82 crossref_primary_10_1007_s00438_014_0876_7 crossref_primary_10_1038_s41588_019_0575_8 crossref_primary_10_1134_S0026893322030049 crossref_primary_10_1186_s13039_022_00600_6 crossref_primary_10_1186_s13059_016_0993_1 crossref_primary_10_1016_j_cca_2016_06_011 crossref_primary_10_1016_j_ajhg_2024_10_006 crossref_primary_10_1002_gcc_22258 crossref_primary_10_1093_hmg_ddw393 crossref_primary_10_1007_s00439_023_02591_9 crossref_primary_10_1038_nature14493 crossref_primary_10_1101_gr_152744_112 crossref_primary_10_1016_j_dnarep_2014_02_006 crossref_primary_10_1093_gigascience_gix061 crossref_primary_10_1083_jcb_202301106 crossref_primary_10_1101_gr_143677_112 crossref_primary_10_1016_j_cancergen_2013_05_021 crossref_primary_10_1016_j_cell_2017_01_037 crossref_primary_10_1186_s13073_019_0675_1 crossref_primary_10_1186_s13039_019_0415_7 |
Cites_doi | 10.1159/000077461 10.1016/j.ajhg.2011.03.013 10.1016/j.ajhg.2008.01.011 10.1038/nature09708 10.1016/j.tig.2009.05.005 10.1136/jmg.2007.052787 10.1074/jbc.R700039200 10.1016/j.cell.2010.10.027 10.1038/nbt.1600 10.1093/hmg/ddr073 10.1093/bioinformatics/btp324 10.1126/science.1149504 10.1038/nature07517 10.1016/S0168-9525(00)02093-X 10.1038/sj.gt.3302074 10.1038/nature08516 10.1016/j.ajhg.2011.09.011 10.1002/pd.2215 10.1371/journal.pgen.1000110 10.1016/j.cell.2007.11.037 10.1038/ng.128 10.1016/j.tibs.2007.04.003 10.1007/s00439-003-1079-1 10.1534/genetics.110.124776 10.1016/j.cell.2010.11.055 10.1038/ng.564 10.1093/bioinformatics/btp352 10.1002/mc.20507 10.1093/humrep/dep266 10.1101/gr.074492.107 10.1101/gr.111609.110 10.1038/85798 10.1093/hmg/ddq063 10.1182/blood-2011-03-344069 10.1016/S0092-8674(00)81369-0 10.1038/nature09744 10.1101/gr.078212.108 10.1371/journal.pgen.0010049 10.1371/journal.pgen.1000327 10.1016/j.cell.2011.07.042 10.1093/bioinformatics/btq033 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2012 2015 INIST-CNRS COPYRIGHT 2012 Nature Publishing Group Copyright Nature Publishing Group Apr 2012 |
Copyright_xml | – notice: Springer Nature America, Inc. 2012 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2012 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/ng.2202 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1546-1718 |
EndPage | 397 |
ExternalDocumentID | PMC3340016 2655307431 A285994504 22388000 25767237 10_1038_ng_2202 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Australia United States |
GeographicLocations_xml | – name: Australia – name: United States |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS032765 – fundername: NICHD NIH HHS grantid: R21 HD065286 – fundername: NIGMS NIH HHS grantid: P01 GM061354 – fundername: CIHR – fundername: NINDS NIH HHS grantid: NS32765 – fundername: NICHD NIH HHS grantid: HD065286 – fundername: NINDS NIH HHS grantid: P50 NS016367 – fundername: NIGMS NIH HHS grantid: GM061354 – fundername: NIMH NIH HHS grantid: MH087123 – fundername: NINDS NIH HHS grantid: NS16367 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABTAH ABUWG ACBWK ACGFO ACGFS ACIWK ACMJI ACNCT ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR IOV ISR ITC L7B LGEZI LK8 LOTEE M0L M1P M2O M7P MVM N9A NADUK NNMJJ NXXTH ODYON P2P PKN PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TN5 TSG TUS UKHRP VQA X7M XJT XOL Y6R YHZ ZGI ZXP ZY4 ~8M ~KM AAYXX ABFSG ACMFV ACSTC AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT AEZWR AFHIU AHWEU AIXLP IQODW NFIDA PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c660t-5817cdd753590ad2f926edea69a5e2f1071b729c9b1a52dcbb05ad5ecf5c88103 |
IEDL.DBID | 7X7 |
ISSN | 1061-4036 1546-1718 |
IngestDate | Thu Aug 21 14:31:30 EDT 2025 Fri Jul 11 03:53:06 EDT 2025 Fri Jul 11 01:56:41 EDT 2025 Fri Jul 25 08:56:29 EDT 2025 Tue Jun 17 20:42:54 EDT 2025 Tue Jun 10 20:11:43 EDT 2025 Fri Jun 27 03:54:35 EDT 2025 Fri Jun 27 04:19:13 EDT 2025 Mon Jul 21 06:06:32 EDT 2025 Mon Jul 21 09:16:04 EDT 2025 Tue Jul 01 01:50:10 EDT 2025 Thu Apr 24 22:50:20 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Repair Germ line |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c660t-5817cdd753590ad2f926edea69a5e2f1071b729c9b1a52dcbb05ad5ecf5c88103 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Current affiliation: Department of Psychiatry, McGill University, Montreal, QC equally contributing authors |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3340016 |
PMID | 22388000 |
PQID | 1011784443 |
PQPubID | 33429 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3340016 proquest_miscellaneous_963489964 proquest_miscellaneous_1034818966 proquest_journals_1011784443 gale_infotracmisc_A285994504 gale_infotracacademiconefile_A285994504 gale_incontextgauss_ISR_A285994504 gale_incontextgauss_IOV_A285994504 pubmed_primary_22388000 pascalfrancis_primary_25767237 crossref_citationtrail_10_1038_ng_2202 crossref_primary_10_1038_ng_2202 springer_journals_10_1038_ng_2202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: New York, NY – name: United States |
PublicationTitle | Nature genetics |
PublicationTitleAbbrev | Nat Genet |
PublicationTitleAlternate | Nat Genet |
PublicationYear | 2012 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Lupski, Stankiewicz (CR2) 2005; 1 Jacobsen (CR24) 2010; 19 Talkowski (CR18) 2011; 88 Magrangeas, Avet-Loiseau, Munshi, Minvielle (CR11) 2011; 118 Korbel (CR34) 2007; 318 Lam (CR26) 2010; 28 Iliakis (CR1) 2004; 104 Li, Ruan, Durbin (CR37) 2008; 18 Vanneste (CR30) 2009; 24 Li (CR39) 2009; 25 Stephens (CR9) 2011; 144 De Gregori (CR6) 2007; 44 Liu (CR31) 2011; 146 Kidd (CR25) 2010; 143 Arlt (CR21) 2011; 187 Quinlan, Hall (CR41) 2010; 26 Mills (CR15) 2011; 470 Lieber (CR16) 2008; 283 Higgins (CR33) 2008; 82 Berger (CR10) 2011; 470 Talkowski (CR19) 2011; 89 Bacolla, Wells (CR28) 2009; 48 Kloosterman (CR12) 2011; 20 Astbury (CR29) 2004; 114 Lee, Carvalho, Lupski (CR4) 2007; 131 Zerbino, Birney (CR40) 2008; 18 Conrad (CR14) 2010; 42 Khanna, Jackson (CR20) 2001; 27 Wells (CR27) 2007; 32 Li, Durbin (CR38) 2009; 25 Zhang, Carvalho, Lupski (CR3) 2009; 25 Ou (CR32) 2011; 21 Campbell (CR8) 2008; 40 Mangiarini (CR23) 1996; 87 Giardino (CR7) 2009; 29 Bennardo, Cheng, Huang, Stark (CR17) 2008; 4 Jurka (CR36) 2000; 16 Hastings, Ira, Lupski (CR5) 2009; 5 Conrad (CR13) 2010; 464 Bentley (CR35) 2008; 456 Würtele, Little, Chartrand (CR22) 2003; 10 H Li (BFng2202_CR38) 2009; 25 DF Conrad (BFng2202_CR14) 2010; 42 DF Conrad (BFng2202_CR13) 2010; 464 N Bennardo (BFng2202_CR17) 2008; 4 JR Lupski (BFng2202_CR2) 2005; 1 PJ Hastings (BFng2202_CR5) 2009; 5 JM Kidd (BFng2202_CR25) 2010; 143 MF Berger (BFng2202_CR10) 2011; 470 J Jurka (BFng2202_CR36) 2000; 16 F Magrangeas (BFng2202_CR11) 2011; 118 E Vanneste (BFng2202_CR30) 2009; 24 AW Higgins (BFng2202_CR33) 2008; 82 WP Kloosterman (BFng2202_CR12) 2011; 20 L Mangiarini (BFng2202_CR23) 1996; 87 PJ Campbell (BFng2202_CR8) 2008; 40 DR Bentley (BFng2202_CR35) 2008; 456 H Li (BFng2202_CR37) 2008; 18 MR Lieber (BFng2202_CR16) 2008; 283 DR Zerbino (BFng2202_CR40) 2008; 18 ME Talkowski (BFng2202_CR18) 2011; 88 AR Quinlan (BFng2202_CR41) 2010; 26 JO Korbel (BFng2202_CR34) 2007; 318 D Giardino (BFng2202_CR7) 2009; 29 PJ Stephens (BFng2202_CR9) 2011; 144 RE Mills (BFng2202_CR15) 2011; 470 JC Jacobsen (BFng2202_CR24) 2010; 19 H Li (BFng2202_CR39) 2009; 25 RD Wells (BFng2202_CR27) 2007; 32 JA Lee (BFng2202_CR4) 2007; 131 KK Khanna (BFng2202_CR20) 2001; 27 M De Gregori (BFng2202_CR6) 2007; 44 F Zhang (BFng2202_CR3) 2009; 25 C Astbury (BFng2202_CR29) 2004; 114 A Bacolla (BFng2202_CR28) 2009; 48 HY Lam (BFng2202_CR26) 2010; 28 Z Ou (BFng2202_CR32) 2011; 21 G Iliakis (BFng2202_CR1) 2004; 104 ME Talkowski (BFng2202_CR19) 2011; 89 H Würtele (BFng2202_CR22) 2003; 10 MF Arlt (BFng2202_CR21) 2011; 187 P Liu (BFng2202_CR31) 2011; 146 |
References_xml | – volume: 104 start-page: 14 year: 2004 end-page: 20 ident: CR1 article-title: Mechanisms of DNA double strand break repair and chromosome aberration formation publication-title: Cytogenet. Genome Res. doi: 10.1159/000077461 – volume: 88 start-page: 469 year: 2011 end-page: 481 ident: CR18 article-title: Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2011.03.013 – volume: 82 start-page: 712 year: 2008 end-page: 722 ident: CR33 article-title: Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project publication-title: Am. J. Hum. Genet doi: 10.1016/j.ajhg.2008.01.011 – volume: 470 start-page: 59 year: 2011 end-page: 65 ident: CR15 article-title: Mapping copy number variation by population-scale genome sequencing publication-title: Nature doi: 10.1038/nature09708 – volume: 25 start-page: 298 year: 2009 end-page: 307 ident: CR3 article-title: Complex human chromosomal and genomic rearrangements publication-title: Trends Genet. doi: 10.1016/j.tig.2009.05.005 – volume: 44 start-page: 750 year: 2007 end-page: 762 ident: CR6 article-title: Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients publication-title: J. Med. Genet. doi: 10.1136/jmg.2007.052787 – volume: 283 start-page: 1 year: 2008 end-page: 5 ident: CR16 article-title: The mechanism of human nonhomologous DNA end joining publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700039200 – volume: 143 start-page: 837 year: 2010 end-page: 847 ident: CR25 article-title: A human genome structural variation sequencing resource reveals insights into mutational mechanisms publication-title: Cell doi: 10.1016/j.cell.2010.10.027 – volume: 28 start-page: 47 year: 2010 end-page: 55 ident: CR26 article-title: Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1600 – volume: 20 start-page: 1916 year: 2011 end-page: 1924 ident: CR12 article-title: Chromothripsis as a mechanism driving complex structural rearrangements in the germline publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr073 – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: CR38 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 318 start-page: 420 year: 2007 end-page: 426 ident: CR34 article-title: Paired-end mapping reveals extensive structural variation in the human genome publication-title: Science doi: 10.1126/science.1149504 – volume: 456 start-page: 53 year: 2008 end-page: 59 ident: CR35 article-title: Accurate whole human genome sequencing using reversible terminator chemistry publication-title: Nature doi: 10.1038/nature07517 – volume: 16 start-page: 418 year: 2000 end-page: 420 ident: CR36 article-title: Repbase update: a database and an electronic journal of repetitive elements publication-title: Trends Genet. doi: 10.1016/S0168-9525(00)02093-X – volume: 10 start-page: 1791 year: 2003 end-page: 1799 ident: CR22 article-title: Illegitimate DNA integration in mammalian cells publication-title: Gene Ther. doi: 10.1038/sj.gt.3302074 – volume: 464 start-page: 704 year: 2010 end-page: 712 ident: CR13 article-title: Origins and functional impact of copy number variation in the human genome publication-title: Nature doi: 10.1038/nature08516 – volume: 89 start-page: 551 year: 2011 end-page: 563 ident: CR19 article-title: Assessment of 2q23.1 microdeletion syndrome implicates as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2011.09.011 – volume: 29 start-page: 257 year: 2009 end-page: 265 ident: CR7 article-title: balanced chromosome rearrangements in prenatal diagnosis publication-title: Prenat. Diagn. doi: 10.1002/pd.2215 – volume: 4 start-page: e1000110 year: 2008 ident: CR17 article-title: Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000110 – volume: 131 start-page: 1235 year: 2007 end-page: 1247 ident: CR4 article-title: DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders publication-title: Cell doi: 10.1016/j.cell.2007.11.037 – volume: 40 start-page: 722 year: 2008 end-page: 729 ident: CR8 article-title: Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing publication-title: Nat. Genet. doi: 10.1038/ng.128 – volume: 32 start-page: 271 year: 2007 end-page: 278 ident: CR27 article-title: Non-B DNA conformations, mutagenesis and disease publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2007.04.003 – volume: 114 start-page: 448 year: 2004 end-page: 457 ident: CR29 article-title: Delineation of complex chromosomal rearrangements: evidence for increased complexity publication-title: Hum. Genet. doi: 10.1007/s00439-003-1079-1 – volume: 187 start-page: 675 year: 2011 end-page: 683 ident: CR21 article-title: Comparison of constitutional and replication stress–induced genome structural variation by SNP array and mate-pair sequencing publication-title: Genetics doi: 10.1534/genetics.110.124776 – volume: 144 start-page: 27 year: 2011 end-page: 40 ident: CR9 article-title: Massive genomic rearrangement acquired in a single catastrophic event during cancer development publication-title: Cell doi: 10.1016/j.cell.2010.11.055 – volume: 42 start-page: 385 year: 2010 end-page: 391 ident: CR14 article-title: Mutation spectrum revealed by breakpoint sequencing of human germline CNVs publication-title: Nat. Genet. doi: 10.1038/ng.564 – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: CR39 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 48 start-page: 273 year: 2009 end-page: 285 ident: CR28 article-title: Non-B DNA conformations as determinants of mutagenesis and human disease publication-title: Mol. Carcinog. doi: 10.1002/mc.20507 – volume: 24 start-page: 2679 year: 2009 end-page: 2682 ident: CR30 article-title: What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate publication-title: Hum. Reprod. doi: 10.1093/humrep/dep266 – volume: 18 start-page: 821 year: 2008 end-page: 829 ident: CR40 article-title: Velvet: algorithms for short read assembly using de Bruijn graphs publication-title: Genome Res. doi: 10.1101/gr.074492.107 – volume: 21 start-page: 33 year: 2011 end-page: 46 ident: CR32 article-title: Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes publication-title: Genome Res. doi: 10.1101/gr.111609.110 – volume: 27 start-page: 247 year: 2001 end-page: 254 ident: CR20 article-title: DNA double-strand breaks: signaling, repair and the cancer connection publication-title: Nat. Genet. doi: 10.1038/85798 – volume: 19 start-page: 1873 year: 2010 end-page: 1882 ident: CR24 article-title: An ovine transgenic Huntington's disease model publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq063 – volume: 118 start-page: 675 year: 2011 end-page: 678 ident: CR11 article-title: Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients publication-title: Blood doi: 10.1182/blood-2011-03-344069 – volume: 87 start-page: 493 year: 1996 end-page: 506 ident: CR23 article-title: Exon 1 of the gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice publication-title: Cell doi: 10.1016/S0092-8674(00)81369-0 – volume: 470 start-page: 214 year: 2011 end-page: 220 ident: CR10 article-title: The genomic complexity of primary human prostate cancer publication-title: Nature doi: 10.1038/nature09744 – volume: 18 start-page: 1851 year: 2008 end-page: 1858 ident: CR37 article-title: Mapping short DNA sequencing reads and calling variants using mapping quality scores publication-title: Genome Res. doi: 10.1101/gr.078212.108 – volume: 1 start-page: e49 year: 2005 ident: CR2 article-title: Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0010049 – volume: 5 start-page: e1000327 year: 2009 ident: CR5 article-title: A microhomology-mediated break-induced replication model for the origin of human copy number variation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000327 – volume: 146 start-page: 889 year: 2011 end-page: 903 ident: CR31 article-title: Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements publication-title: Cell doi: 10.1016/j.cell.2011.07.042 – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: CR41 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 32 start-page: 271 year: 2007 ident: BFng2202_CR27 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2007.04.003 – volume: 144 start-page: 27 year: 2011 ident: BFng2202_CR9 publication-title: Cell doi: 10.1016/j.cell.2010.11.055 – volume: 10 start-page: 1791 year: 2003 ident: BFng2202_CR22 publication-title: Gene Ther. doi: 10.1038/sj.gt.3302074 – volume: 87 start-page: 493 year: 1996 ident: BFng2202_CR23 publication-title: Cell doi: 10.1016/S0092-8674(00)81369-0 – volume: 4 start-page: e1000110 year: 2008 ident: BFng2202_CR17 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000110 – volume: 19 start-page: 1873 year: 2010 ident: BFng2202_CR24 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq063 – volume: 1 start-page: e49 year: 2005 ident: BFng2202_CR2 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0010049 – volume: 470 start-page: 214 year: 2011 ident: BFng2202_CR10 publication-title: Nature doi: 10.1038/nature09744 – volume: 40 start-page: 722 year: 2008 ident: BFng2202_CR8 publication-title: Nat. Genet. doi: 10.1038/ng.128 – volume: 27 start-page: 247 year: 2001 ident: BFng2202_CR20 publication-title: Nat. Genet. doi: 10.1038/85798 – volume: 26 start-page: 841 year: 2010 ident: BFng2202_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 21 start-page: 33 year: 2011 ident: BFng2202_CR32 publication-title: Genome Res. doi: 10.1101/gr.111609.110 – volume: 29 start-page: 257 year: 2009 ident: BFng2202_CR7 publication-title: Prenat. Diagn. doi: 10.1002/pd.2215 – volume: 283 start-page: 1 year: 2008 ident: BFng2202_CR16 publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700039200 – volume: 470 start-page: 59 year: 2011 ident: BFng2202_CR15 publication-title: Nature doi: 10.1038/nature09708 – volume: 5 start-page: e1000327 year: 2009 ident: BFng2202_CR5 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000327 – volume: 20 start-page: 1916 year: 2011 ident: BFng2202_CR12 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr073 – volume: 24 start-page: 2679 year: 2009 ident: BFng2202_CR30 publication-title: Hum. Reprod. doi: 10.1093/humrep/dep266 – volume: 464 start-page: 704 year: 2010 ident: BFng2202_CR13 publication-title: Nature doi: 10.1038/nature08516 – volume: 187 start-page: 675 year: 2011 ident: BFng2202_CR21 publication-title: Genetics doi: 10.1534/genetics.110.124776 – volume: 143 start-page: 837 year: 2010 ident: BFng2202_CR25 publication-title: Cell doi: 10.1016/j.cell.2010.10.027 – volume: 318 start-page: 420 year: 2007 ident: BFng2202_CR34 publication-title: Science doi: 10.1126/science.1149504 – volume: 16 start-page: 418 year: 2000 ident: BFng2202_CR36 publication-title: Trends Genet. doi: 10.1016/S0168-9525(00)02093-X – volume: 131 start-page: 1235 year: 2007 ident: BFng2202_CR4 publication-title: Cell doi: 10.1016/j.cell.2007.11.037 – volume: 25 start-page: 1754 year: 2009 ident: BFng2202_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 118 start-page: 675 year: 2011 ident: BFng2202_CR11 publication-title: Blood doi: 10.1182/blood-2011-03-344069 – volume: 18 start-page: 1851 year: 2008 ident: BFng2202_CR37 publication-title: Genome Res. doi: 10.1101/gr.078212.108 – volume: 146 start-page: 889 year: 2011 ident: BFng2202_CR31 publication-title: Cell doi: 10.1016/j.cell.2011.07.042 – volume: 82 start-page: 712 year: 2008 ident: BFng2202_CR33 publication-title: Am. J. Hum. Genet doi: 10.1016/j.ajhg.2008.01.011 – volume: 456 start-page: 53 year: 2008 ident: BFng2202_CR35 publication-title: Nature doi: 10.1038/nature07517 – volume: 88 start-page: 469 year: 2011 ident: BFng2202_CR18 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2011.03.013 – volume: 28 start-page: 47 year: 2010 ident: BFng2202_CR26 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1600 – volume: 89 start-page: 551 year: 2011 ident: BFng2202_CR19 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2011.09.011 – volume: 114 start-page: 448 year: 2004 ident: BFng2202_CR29 publication-title: Hum. Genet. doi: 10.1007/s00439-003-1079-1 – volume: 25 start-page: 2078 year: 2009 ident: BFng2202_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 104 start-page: 14 year: 2004 ident: BFng2202_CR1 publication-title: Cytogenet. Genome Res. doi: 10.1159/000077461 – volume: 25 start-page: 298 year: 2009 ident: BFng2202_CR3 publication-title: Trends Genet. doi: 10.1016/j.tig.2009.05.005 – volume: 18 start-page: 821 year: 2008 ident: BFng2202_CR40 publication-title: Genome Res. doi: 10.1101/gr.074492.107 – volume: 42 start-page: 385 year: 2010 ident: BFng2202_CR14 publication-title: Nat. Genet. doi: 10.1038/ng.564 – volume: 44 start-page: 750 year: 2007 ident: BFng2202_CR6 publication-title: J. Med. Genet. doi: 10.1136/jmg.2007.052787 – volume: 48 start-page: 273 year: 2009 ident: BFng2202_CR28 publication-title: Mol. Carcinog. doi: 10.1002/mc.20507 |
SSID | ssj0014408 |
Score | 2.4929411 |
Snippet | Michael Talkowski and colleagues examine karyotypically balanced genomic rearrangement landscapes in the germline at single-nucleotide resolution. They find... We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted... We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically-interpreted... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 390 |
SubjectTerms | 631/208/2489/144 631/208/69 Agriculture Animal genetic engineering Animal Genetics and Genomics Animals Animals, Genetically Modified Autism Biological and medical sciences Biomedical and Life Sciences Biomedicine Cancer Cancer Research Chromosome Breakage Chromosome Inversion Chromosomes DNA DNA End-Joining Repair - genetics Experiments Fundamental and applied biological sciences. Psychology Gene Function Gene Rearrangement Genetic research Genetically modified animals Genetics of eukaryotes. Biological and molecular evolution Genomes Genomics Germ-Line Mutation Hospitals Human Genetics Humans Medical research Molecular and cellular biology Molecular genetics Molecular Sequence Data Mutagenesis. Repair Neoplasms - genetics Oligonucleotide Array Sequence Analysis Physiological aspects Sequence Analysis, DNA Translocation, Genetic |
Title | Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration |
URI | https://link.springer.com/article/10.1038/ng.2202 https://www.ncbi.nlm.nih.gov/pubmed/22388000 https://www.proquest.com/docview/1011784443 https://www.proquest.com/docview/1034818966 https://www.proquest.com/docview/963489964 https://pubmed.ncbi.nlm.nih.gov/PMC3340016 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRISqnizUFYGITiFOg_ncUKlalWQKKhQtLfIdpzdVXedkGQF-5P4l8wkzrahlEsuGcfjzMMz9vgzIa8ShIFzQ-GoJGcOzBCRI5n0HaVCTzIllWwhhT6dhMdnwccJn9gFt9qWVfY-sXXUWaFwjRys23WjOAgC_135w8Fbo3B31V6hcZNsI3QZanU02SRcuG_ZHYULMU_Cbcqd7ph5vGembz3PrqX0s5H1yXdKUcP_ybuLLf4VeV4toPxrF7WdnI7ukh0bVdL9Tg3ukRva3Ce3unsm1w_Ib7T6hf5FK11cOntJhcloiYihXT0MNYVxZsUSWxWrGqhLMa9oDqpS_IR-qZph8V5dLKEvSKXFOTgjOjf0XFTrolmXKPDFmkosl1Q6o8DpEsNY-JKoKjzG0B6oa_ttcJIE7Z0r2kNWAEsPydnR4beDY8fe0eCoMGSNw2M3UlkGSQ9PmMi8PPFCnWkRJoJrL4fk0pUQv6tEuoJ7mZKScZFxrXKu4hhE8YhsweD0E0KhBS6_xFz6fhD5Wqo8Z1yyPMacMeAj8rqXVaosgDneo7FI2410P07NNEWhjgjdEJYdZsdVkpco7BQRMAyW2EzFqq7TD5-_p_sI6ZcEnAXXEX09HRC9sUR5AdwoYY81wJgQWWtAuTugBDtWg9fjgeJtWMeUMPL8CNr3mphaR1OnF2YxIi82r_HTWDxnNGgLDjyAuAwSW_gz19CAHw4g9Q6Bjcedbl_07yFgEGMjEg20fkOACOXDN2Y-a5HKQZCYUwBrvX1c5nwgkaf_H90zchtCVa-rmdolW0210s8hHGzkuLV5eMYH7phsvz88-XL6B5aeZtk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0CpFCCRUcbNQikEcTwHHiXM8IFQVql16IEGL-hZsx9lddTcJya7KfhIvfCMzObYNpbz12RN7nDk8Y89ByIsQy8DZnrR0mDALTgjfUkw5ltYeV0wrraqSQnv7Xv_Q_XQkjlbI7zYXBsMqW51YKeo403hHDtJt237guq7zPv9hYdcofF1tW2jUbLFjFifgspXvBh-Avi853_54sNW3mq4ClvY8NrNEYPs6jsFMFyGTMU9C7pnYSC-UwvAE3CFbgcWpQ2VLwWOtFBMyFkYnQgeBzRyY9wq56jogmpiZvrUMKcF30jr1zkO_DJ9F1-q09uBtOnzDeXN3055-zRlwM5cl0COpG2n8y9I9H7D516ttdRhu3yJrjRVLN2u2u01WTHqHXKv7Wi7ukl-oZSbmJy1MdibXk8o0pjlWKK3jb2iapdYom-JX2bwE6FyOC5oAa2YnsC7VIwwWLLMprAWuuzwG5UfHKT2WxSKbLXJksMmCKgzP1CamgOkUzWaYSRYFpk1UCXzVujM8lEFaxpq2JTIApXvk8FKod5-swubMQ0LhC7zuCYRyHNd3jNJJwoRiSYA-qit65FVLq0g3BdOxb8ckqh7unSBKhxEStUfoEjCva4ScB3mOxI6w4kaKIT1DOS_LaPD5W7SJJQRDVzD3IqCvXzpArxugJANstGzSKGBPWMmrA7negQS9oTvDGx3GW6KOLqjPHR--bzkxahRbGZ2KYY88Ww7j1BislxrgFty4C3YgONLwZy6AAb3vgqvvARoPat4-XZ9jgSLGesTvcP0SACuid0fS8aiqjA6ERB8GUGvl4yzmHYo8-v_unpLr_YO93Wh3sL_zmNwAM5nX8VrrZHVWzM0TMEVnaqOSf0q-X7bC-QOEz6H9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0CpFICRUcbNQikEcT6GOE-d4QKhqWXUpFAQU9S3YjrO76m4Skl2V_SR-ga9jJse2oZS3PntijzOHZ-w5CHkWYhk425OWDhNmwQnhW4opx9La44pppVVVUujDvrd74L47FIcr5HebC4Nhla1OrBR1nGm8Iwfptm0_cF3X2UyasIhPO_03-Q8LO0jhS2vbTqNmkT2zOAb3rXw92AFaP-e8__br9q7VdBiwtOexmSUC29dxDCa7CJmMeRJyz8RGeqEUhifgGtkKrE8dKlsKHmulmJCxMDoROghs5sC8l8hl3_EDlLFgexlegm-mdRqehz4aPpGu1SnuwWY6fMV5c4_TnoTNeXA9lyXQJqmbavzL6j0bvPnXC251MPZvkLXGoqVbNQveJCsmvUWu1D0uF7fJL9Q4E_OTFiY7lfdJZRrTHKuV1rE4NM1Sa5RN8atsXgJ0LscFTYBNs2NYl-oRBg6W2RTWAjdeHoEipOOUHslikc0WOTLbZEEVhmpqE1PAdIomNMwkiwJTKKpkvmrdGR7QIDljTdtyGYDSHXJwIdS7S1Zhc-Y-ofAFXv0EQjmO6ztG6SRhQrEkQH_VFT3yoqVVpJvi6djDYxJVj_hOEKXDCInaI3QJmNf1Qs6CPEViR1h9I0U-Hsp5WUaDj9-iLSwnGLqCuecBffncAXrZACUZYKNlk1IBe8KqXh3I9Q4k6BDdGd7oMN4SdXRHfe748H3LiVGj5MroRCR75MlyGKfGwL3UALfgxl2wCcGphj9zDgycAS64_R6gca_m7ZP1ORYrYqxH_A7XLwGwOnp3JB2PqirpQEj0ZwC1Vj5OY96hyIP_7-4xuQqqJno_2N97SK6Bxczr0K11sjor5uYRWKUztVGJPyXfL1rf_AHeAqYz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+reorganization+and+predominant+non-homologous+repair+following+chromosomal+breakage+in+karyotypically+balanced+germline+rearrangements+and+transgenic+integration&rft.jtitle=Nature+genetics&rft.au=Chiang%2C+Colby&rft.au=Jacobsen%2C+Jessie+C&rft.au=Ernst%2C+Carl&rft.au=Hanscom%2C+Carrie&rft.date=2012-04-01&rft.issn=1061-4036&rft.eissn=1546-1718&rft.volume=44&rft.issue=4&rft.spage=390&rft.epage=397&rft_id=info:doi/10.1038%2Fng.2202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_ng_2202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon |