Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking
Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and tempo...
Saved in:
Published in | Journal of cardiovascular magnetic resonance Vol. 23; no. 1; pp. 60 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
17.05.2021
BioMed Central Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing.
Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS.
Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001-0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001-0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution.
Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution. |
---|---|
AbstractList | Background Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. Methods Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 x 1.5 mm through-plane 5 mm, standard 1.8 x 1.8 x 8mm and low 3.0 x 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. Results Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001-0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001-0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. Conclusion Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution. Keywords: Myocardial deformation, Strain, Cardiovascular magnetic resonance, Temporal resolution, Spatial resolution, Reproducibility Abstract Background Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. Methods Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. Results Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001–0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001–0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. Conclusion Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution. Background Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. Methods Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. Results Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001–0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001–0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. Conclusion Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution. Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing.BACKGROUNDMyocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing.Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS.METHODSIntra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS.Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001-0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001-0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution.RESULTSTemporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001-0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001-0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution.Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution.CONCLUSIONTemporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution. Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 x 1.5 mm through-plane 5 mm, standard 1.8 x 1.8 x 8mm and low 3.0 x 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001-0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001-0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution. Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001-0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001-0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution. |
ArticleNumber | 60 |
Audience | Academic |
Author | Billing, Marcus Hasenfuß, Gerd Metschies, Georg Kowallick, Johannes T. Pieske-Kraigher, Elisabeth Schmidt-Rimpler, Jonas Backhaus, Sören J. Bigalke, Boris Kutty, Shelby Gertz, Roman J. Schuster, Andreas Lapinskas, Tomas Kelle, Sebastian Lotz, Joachim Pieske, Burkert |
Author_xml | – sequence: 1 givenname: Sören J. orcidid: 0000-0002-2683-6418 surname: Backhaus fullname: Backhaus, Sören J. – sequence: 2 givenname: Georg surname: Metschies fullname: Metschies, Georg – sequence: 3 givenname: Marcus surname: Billing fullname: Billing, Marcus – sequence: 4 givenname: Jonas surname: Schmidt-Rimpler fullname: Schmidt-Rimpler, Jonas – sequence: 5 givenname: Johannes T. surname: Kowallick fullname: Kowallick, Johannes T. – sequence: 6 givenname: Roman J. surname: Gertz fullname: Gertz, Roman J. – sequence: 7 givenname: Tomas surname: Lapinskas fullname: Lapinskas, Tomas – sequence: 8 givenname: Elisabeth surname: Pieske-Kraigher fullname: Pieske-Kraigher, Elisabeth – sequence: 9 givenname: Burkert surname: Pieske fullname: Pieske, Burkert – sequence: 10 givenname: Joachim surname: Lotz fullname: Lotz, Joachim – sequence: 11 givenname: Boris surname: Bigalke fullname: Bigalke, Boris – sequence: 12 givenname: Shelby surname: Kutty fullname: Kutty, Shelby – sequence: 13 givenname: Gerd surname: Hasenfuß fullname: Hasenfuß, Gerd – sequence: 14 givenname: Sebastian surname: Kelle fullname: Kelle, Sebastian – sequence: 15 givenname: Andreas orcidid: 0000-0003-1508-1125 surname: Schuster fullname: Schuster, Andreas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34001175$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl2L1DAUhousuB_6B7yQgiDedE0y-bwRlvVrYcEbBe_CaZp2srbJmKQL_nvTmR2ZWUR60cPJ-z6cnLzn1YkP3lbVS4wuMZb8XcJEcdkgghuEBEUNe1KdYbYiDSXqx0mpkRIN51ScVucp3SGElUDiWXW6oqXGgp1V6YPtnXd-qPPa1mGT3QRjne20CbEU4Ls6bSC7UkebwjhnF3zdh1gbiJ0L95DMPEKsJxi8zc5sZR68sXVBDQu5t5DnaOscwfwsjefV0x7GZF88_C-q758-frv-0tx-_XxzfXXbGM5RbqiSisgWG7DGcEaAWOBAO2FIC8yAkkYxpTjqlF0BV6oVHUGC97KjRth2dVHd7LhdgDu9iWWe-FsHcHrbCHHQEMvIo9WWIdIShU3fI4okV2zFEesktIVPQRTW-x1rM7eT7Yz15TbjEfT4xLu1HsK9lpgIwhbA2wdADL9mm7KeXDJ2HMHbMCdNGJGSEKxQkb5-JL0Lc_RlVTtVeUN-oBqgXMD5Piz7XaD6inNGqUCUFtXlP1Tl6-zkTMlT70r_yPDmwLC2MOb1_t3TsfDV4Ub-rmKfrSKQO4GJIaVoe21choVTRnCjxkgvMda7GOsSY72NsV6s5JF1T_-P6Q8NkPSR |
CitedBy_id | crossref_primary_10_1259_bjr_20220233 crossref_primary_10_1186_s12933_024_02372_2 crossref_primary_10_1038_s41598_022_16228_w crossref_primary_10_1186_s12968_023_00929_w crossref_primary_10_3390_jcdd9120438 crossref_primary_10_1007_s10554_024_03162_3 crossref_primary_10_1016_j_compbiomed_2023_107008 crossref_primary_10_1016_j_ultras_2023_107021 crossref_primary_10_1038_s41598_023_50405_9 crossref_primary_10_1016_j_jocmr_2025_101884 crossref_primary_10_3389_fcvm_2024_1286271 crossref_primary_10_1016_j_compmedimag_2024_102435 crossref_primary_10_1016_j_ejrad_2022_110644 crossref_primary_10_1016_j_ijcard_2023_131563 crossref_primary_10_1016_j_ijcard_2024_132630 crossref_primary_10_1007_s11604_023_01433_y crossref_primary_10_1002_jmri_28083 crossref_primary_10_1093_ehjimp_qyad033 crossref_primary_10_1093_ehjci_jeab221 crossref_primary_10_1002_jmri_29445 crossref_primary_10_1007_s10554_021_02391_0 crossref_primary_10_1002_jmri_28053 crossref_primary_10_1007_s10554_023_02989_6 crossref_primary_10_1002_jmri_29280 crossref_primary_10_1016_j_ejrad_2024_111386 crossref_primary_10_3390_children10020271 crossref_primary_10_1093_ehjimp_qyae078 |
Cites_doi | 10.1161/CIRCIMAGING.115.004077 10.1109/TMI.2012.2230016 10.1186/s12968-018-0448-9 10.1016/j.jcmg.2015.02.005 10.1186/1532-429X-14-43 10.1016/j.jacc.2018.02.064 10.1186/1532-429X-13-58 10.1371/journal.pone.0193746 10.1093/ehjci/jev058 10.1002/mrm.28437 10.1016/j.ejrad.2012.11.012 10.1007/s10741-017-9621-8 10.1016/j.ijcard.2011.10.137 10.5603/KP.a2013.0319 10.1161/hc0402.102975 10.1016/j.jacc.2010.02.070 10.1016/j.jcmg.2017.10.024 10.1002/ejhf.154 10.1038/s41598-018-32226-3 10.1186/1476-7120-11-16 10.1002/jmri.24979 10.1161/CIRCIMAGING.109.862334 10.1371/journal.pone.0158280 10.1016/j.crad.2015.05.006 10.1016/j.jacc.2013.02.061 10.1146/annurev.fl.23.010191.001401 10.1161/CIRCULATIONAHA.108.811547 10.1007/BF01420984 10.3791/2356-v 10.1016/j.jcmg.2017.11.034 10.1016/S0140-6736(86)90837-8 10.1186/s12968-016-0269-7 10.1093/ehjci/jez041 10.1016/j.jcmg.2016.12.025 10.1371/journal.pone.0210127 10.1093/ehjci/jew082 10.1093/ehjci/jeu181 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7SC 7SP 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K9. L7M LK8 L~C L~D M0S M1P M7P M7Z P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12968-021-00740-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Biochemistry Abstracts 1 Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-429X |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_e502b291cff04086953605d8ab9604a7 PMC8127257 A665447044 34001175 10_1186_s12968_021_00740_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US Netherlands |
GeographicLocations_xml | – name: Netherlands – name: United States--US |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- .1- .FO 0R~ 29K 2VQ 2WC 36B 4.4 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AALRI AAWTL AAXUO AAYWO AAYXX ABDBF ABUWG ACGEJ ACGFO ACGFS ACIWK ACPRK ACUHS ACVFH ADBBV ADCNI ADCVX ADRAZ ADUKV ADVLN ADXPE AENEX AEUPX AFCTW AFJKZ AFKRA AFPKN AFPUW AFRAH AFRHN AHBYD AHMBA AHSBF AHYZX AIGII AITUG AJUYK AJWEG AKBMS AKRWK AKYEP ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMTXH AOIJS APXCP ARAPS AWYRJ BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CAG CCPQU CITATION COF CS3 D-I DIK DU5 E3Z EAP EBC EBD EBS EJD EMB EMK EMOBN EST ESX F5P FDB FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE HZ~ IAO IHR IHW INR IPNFZ KQ8 LK8 M1P M41 M48 M7P O5R O5S O9- OK1 OVT P2P P62 P6G PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SMD SOJ SV3 TDBHL TFW TR2 TUS UKHRP Z5R ZCN -5E -5G -A0 -BR 3V. ACRMQ ADINQ C24 CGR CUY CVF EAD ECM EIF INH M~E NPM PMFND 7SC 7SP 7U5 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ JQ2 K9. L7M L~C L~D M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c660t-498928b1caecc652a2ea6a4d7c2ba5ca98c959960d9e3a699b7d2076f8d4c7eb3 |
IEDL.DBID | M48 |
ISSN | 1097-6647 1532-429X |
IngestDate | Wed Aug 27 01:30:38 EDT 2025 Thu Aug 21 18:20:04 EDT 2025 Thu Jul 10 18:49:10 EDT 2025 Fri Jul 25 18:54:52 EDT 2025 Tue Jun 17 21:28:03 EDT 2025 Tue Jun 10 20:16:26 EDT 2025 Thu May 22 21:22:13 EDT 2025 Wed Feb 19 02:08:56 EST 2025 Tue Jul 01 02:54:56 EDT 2025 Thu Apr 24 22:53:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Myocardial deformation Temporal resolution Cardiovascular magnetic resonance Reproducibility Spatial resolution Strain |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c660t-498928b1caecc652a2ea6a4d7c2ba5ca98c959960d9e3a699b7d2076f8d4c7eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1508-1125 0000-0002-2683-6418 |
OpenAccessLink | https://doaj.org/article/e502b291cff04086953605d8ab9604a7 |
PMID | 34001175 |
PQID | 2528870760 |
PQPubID | 55371 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e502b291cff04086953605d8ab9604a7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8127257 proquest_miscellaneous_2528822190 proquest_journals_2528870760 gale_infotracmisc_A665447044 gale_infotracacademiconefile_A665447044 gale_healthsolutions_A665447044 pubmed_primary_34001175 crossref_citationtrail_10_1186_s12968_021_00740_5 crossref_primary_10_1186_s12968_021_00740_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-17 |
PublicationDateYYYYMMDD | 2021-05-17 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York – name: London |
PublicationTitle | Journal of cardiovascular magnetic resonance |
PublicationTitleAlternate | J Cardiovasc Magn Reson |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central Elsevier |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: Elsevier |
References | Ersbøll (10.1186/s12968-021-00740-5_bib12) 2013; 61 10.1186/s12968-021-00740-5_bib25 Mordi (10.1186/s12968-021-00740-5_bib4) 2015; 8 Liang (10.1186/s12968-021-00740-5_bib32) 2013; 32 Pennell (10.1186/s12968-021-00740-5_bib14) 2010; 121 Amzulescu (10.1186/s12968-021-00740-5_bib31) 2019; 20 Cao (10.1186/s12968-021-00740-5_bib15) 2018; 20 Morton (10.1186/s12968-021-00740-5_bib20) 2012; 14 Eitel (10.1186/s12968-021-00740-5_bib11) 2018; 11 Schuster (10.1186/s12968-021-00740-5_bib17) 2016; 9 Stanton (10.1186/s12968-021-00740-5_bib2) 2009; 2 Scatteia (10.1186/s12968-021-00740-5_bib18) 2017; 22 Vo (10.1186/s12968-021-00740-5_bib36) 2018; 11 Schuster (10.1186/s12968-021-00740-5_bib21) 2015; 70 Bucius (10.1186/s12968-021-00740-5_bib37) 2019 Barron (10.1186/s12968-021-00740-5_bib33) 1994; 12 Hor (10.1186/s12968-021-00740-5_bib34) 2011 Giusca (10.1186/s12968-021-00740-5_bib16) 2018; 8 Rösner (10.1186/s12968-021-00740-5_bib27) 2015; 16 Mangion (10.1186/s12968-021-00740-5_bib5) 2018 Park (10.1186/s12968-021-00740-5_bib6) 2018; 71 Russo (10.1186/s12968-021-00740-5_bib7) 2014; 16 Bergenzaun (10.1186/s12968-021-00740-5_bib1) 2013; 11 Kowallick (10.1186/s12968-021-00740-5_bib19) 2016; 43 Romano (10.1186/s12968-021-00740-5_bib10) 2018 Biering-Sørensen (10.1186/s12968-021-00740-5_bib13) 2016; 11 Nagueh (10.1186/s12968-021-00740-5_bib8) 2016; 17 Pedrizzetti (10.1186/s12968-021-00740-5_bib26) 2016; 18 Adrian (10.1186/s12968-021-00740-5_bib35) 1991; 23 Buss (10.1186/s12968-021-00740-5_bib9) 2015; 16 Schuster (10.1186/s12968-021-00740-5_bib39) 2013; 82 Cerqueira (10.1186/s12968-021-00740-5_bib29) 2002; 105 Backhaus (10.1186/s12968-021-00740-5_bib38) 2021; 85 Neizel (10.1186/s12968-021-00740-5_bib3) 2010; 56 Backhaus (10.1186/s12968-021-00740-5_bib28) 2019; 14 Bland (10.1186/s12968-021-00740-5_bib30) 1986; 327 Gertz (10.1186/s12968-021-00740-5_bib22) 2018; 13 Schuster (10.1186/s12968-021-00740-5_bib23) 2011; 13 Schuster (10.1186/s12968-021-00740-5_bib24) 2013; 166 |
References_xml | – volume: 9 start-page: e004077 year: 2016 ident: 10.1186/s12968-021-00740-5_bib17 article-title: Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.115.004077 – volume: 32 start-page: 435 year: 2013 ident: 10.1186/s12968-021-00740-5_bib32 article-title: On feature motion decorrelation in ultrasound speckle tracking publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2230016 – volume: 20 start-page: 26 year: 2018 ident: 10.1186/s12968-021-00740-5_bib15 article-title: A comparison of both DENSE and feature tracking techniques with tagging for the cardiovascular magnetic resonance assessment of myocardial strain publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-018-0448-9 – volume: 8 start-page: 540 year: 2015 ident: 10.1186/s12968-021-00740-5_bib4 article-title: The combined incremental prognostic value of LVEF, late gadolinium enhancement, and global circumferential strain assessed by CMR publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2015.02.005 – volume: 14 start-page: 43 year: 2012 ident: 10.1186/s12968-021-00740-5_bib20 article-title: Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-14-43 – volume: 71 start-page: 1947 year: 2018 ident: 10.1186/s12968-021-00740-5_bib6 article-title: Global longitudinal strain to predict mortality in patients with acute heart failure publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.02.064 – volume: 13 start-page: 58 year: 2011 ident: 10.1186/s12968-021-00740-5_bib23 article-title: Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-13-58 – volume: 13 start-page: e0193746 year: 2018 ident: 10.1186/s12968-021-00740-5_bib22 article-title: Inter-vendor reproducibility of left and right ventricular cardiovascular magnetic resonance myocardial feature-tracking publication-title: PLoS ONE doi: 10.1371/journal.pone.0193746 – volume: 16 start-page: 1137 year: 2015 ident: 10.1186/s12968-021-00740-5_bib27 article-title: The influence of frame rate on two-dimensional speckle-tracking strain measurements: a study on silico-simulated models and images recorded in patients publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jev058 – volume: 85 start-page: 357 year: 2021 ident: 10.1186/s12968-021-00740-5_bib38 article-title: Head-to-head comparison of cardiovascular MR feature tracking cine versus acquisition-based deformation strain imaging using myocardial tagging and strain encoding publication-title: Magn Reson Med doi: 10.1002/mrm.28437 – volume: 82 start-page: 296 year: 2013 ident: 10.1186/s12968-021-00740-5_bib39 article-title: The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2012.11.012 – year: 2019 ident: 10.1186/s12968-021-00740-5_bib37 article-title: Comparison of feature tracking, fast-SENC, and myocardial tagging for global and segmental left ventricular strain publication-title: ESC Heart Fail – volume: 22 start-page: 465 year: 2017 ident: 10.1186/s12968-021-00740-5_bib18 article-title: Strain imaging using cardiac magnetic resonance publication-title: Heart Fail Rev doi: 10.1007/s10741-017-9621-8 – volume: 166 start-page: 413 year: 2013 ident: 10.1186/s12968-021-00740-5_bib24 article-title: Cardiovascular magnetic resonance myocardial feature tracking for quantitative viability assessment in ischemic cardiomyopathy publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2011.10.137 – ident: 10.1186/s12968-021-00740-5_bib25 doi: 10.5603/KP.a2013.0319 – volume: 105 start-page: 539 year: 2002 ident: 10.1186/s12968-021-00740-5_bib29 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart publication-title: Circulation doi: 10.1161/hc0402.102975 – volume: 56 start-page: 1056 year: 2010 ident: 10.1186/s12968-021-00740-5_bib3 article-title: Impact of systolic and diastolic deformation indexes assessed by strain-encoded imaging to predict persistent severe myocardial dysfunction in patients after acute myocardial infarction at follow-up publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2010.02.070 – year: 2018 ident: 10.1186/s12968-021-00740-5_bib10 article-title: Feature-tracking global longitudinal strain predicts death in a multicenter population of patients with ischemic and nonischemic dilated cardiomyopathy incremental to ejection fraction and late gadolinium enhancement publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2017.10.024 – volume: 16 start-page: 1301 year: 2014 ident: 10.1186/s12968-021-00740-5_bib7 article-title: Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community-based cohort publication-title: Eur J Heart Fail doi: 10.1002/ejhf.154 – volume: 8 start-page: 14100 year: 2018 ident: 10.1186/s12968-021-00740-5_bib16 article-title: Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging publication-title: Sci Rep doi: 10.1038/s41598-018-32226-3 – volume: 11 start-page: 16 year: 2013 ident: 10.1186/s12968-021-00740-5_bib1 article-title: Mitral annular plane systolic excursion (MAPSE) in shock: a valuable echocardiographic parameter in intensive care patients publication-title: Cardiovasc Ultrasound doi: 10.1186/1476-7120-11-16 – volume: 43 start-page: 128 year: 2016 ident: 10.1186/s12968-021-00740-5_bib19 article-title: Inter-study reproducibility of left ventricular torsion and torsion rate quantification using MR myocardial feature tracking publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24979 – volume: 2 start-page: 356 year: 2009 ident: 10.1186/s12968-021-00740-5_bib2 article-title: Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.109.862334 – volume: 11 start-page: e0158280 year: 2016 ident: 10.1186/s12968-021-00740-5_bib13 article-title: Regional Longitudinal Myocardial Deformation Provides Incremental Prognostic Information in Patients with ST-Segment Elevation Myocardial Infarction publication-title: PLoS ONE doi: 10.1371/journal.pone.0158280 – volume: 70 start-page: 989 year: 2015 ident: 10.1186/s12968-021-00740-5_bib21 article-title: Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility publication-title: Clin Radiol doi: 10.1016/j.crad.2015.05.006 – volume: 61 start-page: 2365 year: 2013 ident: 10.1186/s12968-021-00740-5_bib12 article-title: Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.02.061 – volume: 23 start-page: 261 year: 1991 ident: 10.1186/s12968-021-00740-5_bib35 article-title: Particle-Imaging Techniques for Experimental Fluid Mechanics publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.23.010191.001401 – volume: 121 start-page: 692 year: 2010 ident: 10.1186/s12968-021-00740-5_bib14 article-title: Cardiovascular magnetic resonance publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.811547 – volume: 12 start-page: 43 year: 1994 ident: 10.1186/s12968-021-00740-5_bib33 article-title: Performance of optical flow techniques publication-title: Int J Comput Vision doi: 10.1007/BF01420984 – year: 2011 ident: 10.1186/s12968-021-00740-5_bib34 article-title: Magnetic resonance derived myocardial strain assessment using feature tracking publication-title: J Vis Exp doi: 10.3791/2356-v – volume: 11 start-page: 1433 year: 2018 ident: 10.1186/s12968-021-00740-5_bib11 article-title: Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2017.11.034 – year: 2018 ident: 10.1186/s12968-021-00740-5_bib5 article-title: Circumferential strain predicts major adverse cardiovascular events following an acute ST-segment-elevation myocardial infarction publication-title: Radiology. – volume: 327 start-page: 307 year: 1986 ident: 10.1186/s12968-021-00740-5_bib30 article-title: Statistical Methods for assessing agreement between two methods of clinical measurement publication-title: The Lancet doi: 10.1016/S0140-6736(86)90837-8 – volume: 18 start-page: 51 year: 2016 ident: 10.1186/s12968-021-00740-5_bib26 article-title: Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-016-0269-7 – volume: 20 start-page: 605 year: 2019 ident: 10.1186/s12968-021-00740-5_bib31 article-title: Myocardial strain imaging: review of general principles, validation, and sources of discrepancies publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jez041 – volume: 11 start-page: 196 year: 2018 ident: 10.1186/s12968-021-00740-5_bib36 article-title: MRI-derived myocardial strain measures in normal subjects publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2016.12.025 – volume: 14 start-page: e0210127 year: 2019 ident: 10.1186/s12968-021-00740-5_bib28 article-title: Cardiovascular magnetic resonance imaging feature tracking: Impact of training on observer performance and reproducibility publication-title: PLoS ONE doi: 10.1371/journal.pone.0210127 – volume: 17 start-page: 1321 year: 2016 ident: 10.1186/s12968-021-00740-5_bib8 article-title: Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the european association of cardiovascular imaging publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jew082 – volume: 16 start-page: 307 year: 2015 ident: 10.1186/s12968-021-00740-5_bib9 article-title: Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jeu181 |
SSID | ssj0019707 |
Score | 2.4300735 |
Snippet | Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac... Background Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of... Abstract Background Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 60 |
SubjectTerms | Cardiac function Cardiovascular magnetic resonance Congestive heart failure Deformation analysis Ejection fraction Frames Heart Heart Ventricles - diagnostic imaging Humans Image acquisition Magnetic Resonance Imaging Magnetic Resonance Imaging, Cine Medical imaging equipment Myocardial deformation Post-production processing Predictive Value of Tests Reproducibility Reproducibility of Results Spatial discrimination Spatial resolution Strain Strain analysis Temporal resolution Tracking Ventricle Ventricular Function, Left |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgvIKtGAkJA7IquP181geVYVUTlTqzbIdB5DaLGK3_58ZxxuthQQXbtF6EmVnxvOIZ74h5E0_2kEaK5lahRWThkcWIRBmXGYXx6j4UOCLL77o80v5-Upd7Y36wpqwGR54ZtxJVlxE4fo0jqBvVuNxI1eDDRFhRULpIweft0um6vmBM9zsWmSsPtmAV9OWYTkC-kzOVOOGClr_nzZ5zym1BZN7HujsAblfQ0d6Or_yQ3InT4fk7kU9HH9ENh_zWMY9UAjq6BpswQ2QV-ypaxqmgW6wfhquIceuKkchaKWpKUqlN-HbhL2NhQwBOTKFR-E0IzrmAgRK4f0SfmR_TC7PPn39cM7qTAWWtOZbJp11wsY-BZCdViKIHHSQg0kiBpWCs8kVxJbB5VXQzkUzCG40ijQZyLyfkINpPeVnhA5hAHPZR8iJMoQFIWLzlbaIKypkCKIj_Y7FPlXAcZx7ce1L4mG1n8XiQSy-iMWrjrxb7vk5w238lfo9Sm6hRKjs8gMokK8K5P-lQB15hXL3c9_psuH9Kc5lBuWVsiNvCwVueWRvqJ0LwAYEz2oojxpK2KqpXd7plq-mYuOFEmDo8YC0I6-XZbwTy9-mvL6tNAKcC9A8nVVx-dMrOeOtdsQ0StpwpV2ZfnwvQOIQ3Bkw2c__BxtfkHui7C_FenNEDra_bvMxxGvb-LJszd9zYzsM priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtCqWX0Hfdpq0KhR6KiK3Vy6eSPkIopKcG9ib0chpI7DTe_P_MyFo3ppDbshovXs1oHpqZbwj52HQmCm0Ekyu3YkLXnnlwhFktUus7L-uY4YuPf6mjE_FzLdflwm0sZZVbnZgVdRwC3pHvc8nhPGAe6cvlX4ZTozC7WkZo3CcPELoMS7r0eg64mlbndmlMsjKlhN42zRi1P4KdU4ZhgQJa0ZrJhWHK-P3_a-lbZmpZQnnLJh0-JrvFmaQHE_efkHupf0oeHpd0-TMyfk9dHgBBwc2jA2iHCyAvaFTn1PWRjlhRDZ8h6i5CSMGNpWFRpkov3GmP3Y6ZDCE6EoWfwvlGtEsZGpTC-wW8dn9OTg5__P52xMqUBRaUqjdMtKblxjfBATeV5I4np5yIOnDvZHCtCW3GcIltWjnVtl5HDnxAJgcNsfgLstMPfXpFaHQRFGjjIUpK4Cg4j-1YyiDSKBfO8Yo02y22oUCQ4ySMc5tDEaPsxBYLbLGZLVZW5PP8zOUEwHEn9Vfk3EyJ4Nn5i-Hq1JazaJOsuedtE7oOVJhRmMGuZTTOI1KN0xV5j3y3UyfqrALsAU5qBnEWoiKfMgUqAdxeV3oZYBsQTmtBubeghMMblstb2bJFeYz2n6hX5MO8jE9iQVyfhutCw8HcAM3LSRTnP70SEwJrRfRCSBe7slzpz_5kaHFw9zQo8dd3v9Yb8ojnkyNZo_fIzubqOr0F32zj3-UDeAP0MDWD priority: 102 providerName: ProQuest |
Title | Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34001175 https://www.proquest.com/docview/2528870760 https://www.proquest.com/docview/2528822190 https://pubmed.ncbi.nlm.nih.gov/PMC8127257 https://doaj.org/article/e502b291cff04086953605d8ab9604a7 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_uA8QX8fuiZ11B8EFWk-1-5UHkTq8eQg8RC31bdjebU-il2vZA_3tnNmm84CH4Ukp3EtL5nuzObwh5XtSmEtoIJsduzITOPfOQCLNcxNLXXuZVgi-enqnTmfg4l_Mdsh131DFwfW1ph_OkZqvFq58_fr0Fg3-TDN6o12uIWcowPGyAETFncpfsQ2TSaKhT8WdXodSpfRo3XZlSQm-baK69xyBQJTz_v732lbA1PFJ5JUZNbpNbXXJJj1ptuEN2YnOX3Jh22-f3yPp9rNNACAppH12Ct7gA8g6dakFdU9E1nrCG71CFd0pJIa2lYXBslV648wa7HxMZQnZECrfCeUe0jgkqlMLzBXwNf5_MJidf3p2ybuoCC0rlGyZKU3Lji-BAukpyx6NTTlQ6cO9kcKUJZcJ0qco4dqosva54rhUKPWiozR-QvWbZxANCK1eBQy08VE0REgfnsT1LGUQe5cI5npFiy2IbOkhynIyxsKk0Mcq2YrEgFpvEYmVGXvbXfG8BOf5JfYyS6ykRTDv9sFyd2842bZQ597wsQl2DSzMKd7RzWRnnEbnG6Yw8RbnbtjO1dwn2CCc3g3oLkZEXiQLVFNnrut4GYAPCaw0oDweUYMxhuLzVLbu1Bcslh1CAW6gZedYv45V4QK6Jy8uOhkP4AZqHrSr2f3osWkTWjOiBkg64Mlxpvn1NUOOQ_mlw6o_-i-mPyU2eDEmyQh-Svc3qMj6B1G3jR2RXzzV8msmHEdk_Pjn79HmUXoOMkqX-Bq24QMs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4lkChRoJxAFZTbx-5YBQoVRb2u2plXoztuMUpDZbulsh_hS_kRnnQSOk3npbxZOs4_G84plvCHlT1KYS2ggmJ27ChM498-AIs1zE0tde5lWCL54dqOmR-Hosj1fIn74WBtMqe52YFHU1D_iNfJNLDvKA50gfz38y7BqFp6t9C412W-zF378gZFt82N0G_r7lfOfL4ecp67oKsKBUvmSiNCU3vggOZq8kdzw65USlA_dOBleaUCbMkqqME6fK0uuKw__iSwUNsSc89xa5DYY3R4nSx0OAV5Q6lWfjoS5TSui-SMeozQXYVWUYJkSg1c6ZHBnC1C_gf6twxSyOUzav2MCdB-R-57zSrXa3PSQrsXlE7sy64_nHZLEd69RwgoJbSeegjc6AvEO_OqWuqegCM7jhN0T53aan4DbTMEqLpWfupMHqykSGkCCRwqOwnxKtY4IipTC_gJ_5n5CjG1n_p2S1mTfxGaGVq0BhFx6isgiOifNY_qUMIpty4RzPSNEvsQ0d5Dl23ji1KfQxyrZsscAWm9hiZUbeD_ect4Af11J_Qs4NlAjWnS7ML05sJ_s2ypx7XhahrkFlGoUn5rmsjPOIjON0RjaQ77atfB1Ujt3CztAgPkJk5F2iQKWDy-u62glYBoTvGlGujyhBWYTxcL-3bKesFvafaGXk9TCMd2ICXhPnlx0NB_MGNGvtVhxeeiJaxNeM6NEmHa3KeKT58T1BmYN7qcFoPL9-Whvk7vRwtm_3dw_2XpB7PEmRZIVeJ6vLi8v4EvzCpX-VhJGSbzct_X8BUaBzfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+the+optimal+temporal+and+spatial+resolution+for+cardiovascular+magnetic+resonance+imaging+feature+tracking&rft.jtitle=Journal+of+cardiovascular+magnetic+resonance&rft.au=Backhaus%2C+S%C3%B6ren+J.&rft.au=Metschies%2C+Georg&rft.au=Billing%2C+Marcus&rft.au=Schmidt-Rimpler%2C+Jonas&rft.date=2021-05-17&rft.issn=1097-6647&rft.volume=23&rft.issue=1&rft.spage=60&rft_id=info:doi/10.1186%2Fs12968-021-00740-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12968_021_00740_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6647&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6647&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6647&client=summon |