Defining immune engagement thresholds for in vivo control of virus-driven lymphoproliferation

Copyright: © 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Persistent infections are...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 10; no. 6; p. e1004220
Main Authors Godinho-Silva, Cristina, Marques, Sofia, Fontinha, Diana, Veiga-Fernandes, Henrique, Stevenson, Philip G., Simas, J Pedro
Format Journal Article
LanguageEnglish
Published United States PLOS 01.06.2014
Public Library of Science
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Copyright: © 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. JPS was funded by Fundação para a Ciência e Tecnologia (PTDC/SAU-MII/099314/2008); HMSP-ICT/0021/2010) Portugal. CGS, SM, and DF were supported by scholarships from Fundação para a Ciência e Tecnologia, Portugal. PGS is an ARC Future Fellow.
AbstractList Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.
Persistent infections are subject to constant surveillance by [CD8.sup.+] cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.
Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.
  Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.
Persistent infections are subject to constant surveillance by CD8 + cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. Chronic viral infections cause huge morbidity and mortality worldwide. γ-herpesviruses provide an example relevant to all human demographics, causing, inter alia , Hodgkin's disease, Burkitt's lymphoma, Kaposi's Sarcoma, and nasopharyngeal carcinoma. The proliferation of latently infected B cells and their control by CD8 + T cells are central to pathogenesis. Although many viral T cell targets have been identified in vitro , the functional impact of their engagement in vivo remains ill-defined. With the well-established Murid Herpesvirus-4 infection model, we used a range of recombinant viruses to define functional thresholds for the engagement of a latently expressed viral epitope. These data advance significantly our understanding of how the immune system must function to control γ-herpesvirus infection, with implications for vaccination and anti-cancer immunotherapy.
Copyright: © 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. JPS was funded by Fundação para a Ciência e Tecnologia (PTDC/SAU-MII/099314/2008); HMSP-ICT/0021/2010) Portugal. CGS, SM, and DF were supported by scholarships from Fundação para a Ciência e Tecnologia, Portugal. PGS is an ARC Future Fellow.
Audience Academic
Author Godinho-Silva, Cristina
Fontinha, Diana
Marques, Sofia
Stevenson, Philip G.
Veiga-Fernandes, Henrique
Simas, J Pedro
AuthorAffiliation 1 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
2 Sir Albert Sakzewski Virus Research Center and Queensland and Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
Dartmouth Medical School, United States of America
AuthorAffiliation_xml – name: Dartmouth Medical School, United States of America
– name: 2 Sir Albert Sakzewski Virus Research Center and Queensland and Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
– name: 1 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
Author_xml – scopusid: 56096790600
  sequence: 1
  givenname: Cristina
  orcidid: 0000-0002-0300-8839
  surname: Godinho-Silva
  fullname: Godinho-Silva, Cristina
– scopusid: 7004641665
  sequence: 2
  givenname: Sofia
  orcidid: 0000-0003-1467-1529
  surname: Marques
  fullname: Marques, Sofia
– sequence: 3
  givenname: Diana
  orcidid: 0000-0002-0046-648X
  surname: Fontinha
  fullname: Fontinha, Diana
– scopusid: 6508113770
  sequence: 4
  givenname: Henrique
  orcidid: 0000-0001-6216-1836
  surname: Veiga-Fernandes
  fullname: Veiga-Fernandes, Henrique
– sequence: 5
  fullname: Stevenson, Philip G.
– scopusid: 7003457329
  sequence: 6
  givenname: J Pedro
  orcidid: 0000-0001-6982-9253
  surname: Simas
  fullname: Simas, J Pedro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24967892$$D View this record in MEDLINE/PubMed
BookMark eNqVktuL1DAYxYusuBf9D0QrvujDjEmaNK0PwrLeBhYFL48SvubSydAm3aQd3P_ezE12RBDpQ9vkd07T853z7MR5p7PsMUZzXHD8auWn4KCbDwOMc4wQJQTdy84wY8WMF5ye3Hk-zc5jXCUGF7h8kJ0SWpe8qslZ9uOtNtZZ1-a27yenc-1aaHWv3ZiPy6Dj0ncq5saH3Lp8bdc-l96NwXe5N-k9THGmgl1rl3e3_bD0Q9qyRgcYrXcPs_sGuqgf7e8X2ff3775dfZxdf_6wuLq8nsmS1ePMqFKBYZRywyUlDWmaStWYAS2JxqYwnAFXDdG14bWiYGpFSpAlFLygHHBxkT3d-Q6dj2KfTBSYUc54gXGdiMWOUB5WYgi2h3ArPFixXfChFRBGKzstSsZLVKO60tpQrKoKS0CqaRAmABXw5PVm_7Wp6bWSKasA3ZHp8Y6zS9H6taCIkwqVyeDF3iD4m0nHUfQ2St114LSftudOI6YM04Q-36EtpKNZZ3xylBtcXBYVqRnidPN3879Q6VK6t2leacZp_Ujw8kiwman-ObYwxSgWX7_8B_vpmH1yN5rfmRwKl4DXO0AGH2PQRkg7bruSTmw7gZHYtPswQ7Fpt9i3O4npH-KD_z9kz3ayIAEGEfTaxhFSzChFLBgmqR-_ALFYDBk
CitedBy_id crossref_primary_10_4049_jimmunol_2300513
crossref_primary_10_1073_pnas_1904034116
crossref_primary_10_1089_vim_2019_0080
crossref_primary_10_1128_JVI_00813_16
crossref_primary_10_1111_imcb_12299
Cites_doi 10.1371/journal.pbio.0030120
10.1073/pnas.92.7.2479
10.1002/(SICI)1521-4141(199904)29:04<1059::AID-IMMU1059>3.0.CO;2-L
10.1371/journal.ppat.1000255
10.1084/jem.192.7.943
10.1016/j.chom.2010.06.014
10.1002/eji.200425459
10.1128/JVI.77.21.11507-11516.2003
10.1016/S1074-7613(04)00047-0
10.1074/jbc.M112.439810
10.1084/jem.180.4.1471
10.4049/jimmunol.0803218
10.1128/JVI.76.14.7125-7132.2002
10.1371/journal.pone.0001048
10.1016/S0966-842X(98)01306-7
10.1016/j.virol.2008.07.034
10.1084/jem.184.3.863
10.1128/JVI.66.8.5161-5167.1992
10.1038/35095584
10.1371/journal.ppat.1000039
10.1038/nrclinonc.2012.111
10.1016/0092-8674(90)90020-F
10.1084/jem.20070256
10.1099/vir.0.021881-0
10.1128/JVI.06101-11
10.1128/JVI.77.21.11517-11530.2003
10.1128/JVI.00297-09
10.1086/322003
10.1016/S0168-1702(02)00120-X
10.1016/S1074-7613(01)00213-8
10.1038/381616a0
10.1128/JVI.67.9.5247-5252.1993
10.1128/JVI.71.8.5894-5904.1997
10.1038/375685a0
10.1016/S0021-9258(18)35879-4
10.1016/j.chom.2014.03.010
10.1038/cmi.2008.45
10.1084/jem.20020890
10.1038/nm0896-906
10.1098/rstb.2000.0779
10.1038/ni818
10.1371/journal.ppat.1003858
10.1371/journal.ppat.1000177
10.1128/JVI.77.7.4306-4314.2003
10.1099/0022-1317-80-2-477
10.1084/jem.20051357
10.1073/pnas.040575197
10.1086/507648
10.1038/nature07657
10.1084/jem.177.6.1541
10.1155/2012/153863
10.1128/MCB.18.9.5219
10.1128/JVI.77.13.7308-7318.2003
10.1128/JVI.02700-05
10.1016/0092-8674(94)90169-4
10.1371/journal.ppat.1000490
10.1099/vir.0.80138-0
10.1128/JVI.01608-10
10.1073/pnas.96.13.7508
10.1099/vir.0.013300-0
10.1146/annurev.immunol.25.022106.141553
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Godinho-Silva et al 2014 Godinho-Silva et al
2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Godinho-Silva C, Marques S, Fontinha D, Veiga-Fernandes H, Stevenson PG, et al. (2014) Defining Immune Engagement Thresholds for In Vivo Control of Virus-Driven Lymphoproliferation. PLoS Pathog 10(6): e1004220. doi:10.1371/journal.ppat.1004220
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Godinho-Silva et al 2014 Godinho-Silva et al
– notice: 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Godinho-Silva C, Marques S, Fontinha D, Veiga-Fernandes H, Stevenson PG, et al. (2014) Defining Immune Engagement Thresholds for In Vivo Control of Virus-Driven Lymphoproliferation. PLoS Pathog 10(6): e1004220. doi:10.1371/journal.ppat.1004220
DBID RCLKO
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1004220
DatabaseName RCAAP open access repository
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DissertationSchool Repositório da Universidade de Lisboa
DocumentTitleAlternate CTL Control of Virus-Driven Lymphoproliferation
EISSN 1553-7374
ExternalDocumentID 1547573119
oai_doaj_org_article_657609098eef41d881ca0dbb012aa8a7
PMC4072806
A382950749
24967892
10_1371_journal_ppat_1004220
10451_51219
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RCLKO
RIG
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c659t-fd6daf5447f7c42b2bb8d915a462e1f3f75a7db2e9f79d4af9d26ac6a37347a13
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Fri Nov 26 17:14:08 EST 2021
Wed Aug 27 01:27:59 EDT 2025
Thu Aug 21 14:03:23 EDT 2025
Fri Jul 11 12:23:07 EDT 2025
Tue Jun 17 21:30:35 EDT 2025
Tue Jun 10 20:43:58 EDT 2025
Fri Jun 27 03:57:18 EDT 2025
Fri Jun 27 04:16:08 EDT 2025
Mon Jul 21 05:59:36 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Tue Jul 01 02:41:02 EDT 2025
Fri Aug 01 16:28:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-fd6daf5447f7c42b2bb8d915a462e1f3f75a7db2e9f79d4af9d26ac6a37347a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: CGS SM HVF PGS JPS. Performed the experiments: CGS SM DF. Analyzed the data: CGS SM DF HVF PGS JPS. Contributed reagents/materials/analysis tools: CGS SM. Contributed to the writing of the manuscript: CGS PGS JPS.
The authors have declared that no competing interests exist.
ORCID 0000-0001-6982-9253
0000-0003-1467-1529
0000-0001-6216-1836
0000-0002-0046-648X
0000-0002-0300-8839
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1004220
PMID 24967892
PQID 1541374514
PQPubID 23479
ParticipantIDs plos_journals_1547573119
doaj_primary_oai_doaj_org_article_657609098eef41d881ca0dbb012aa8a7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4072806
proquest_miscellaneous_1541374514
gale_infotracmisc_A382950749
gale_infotracacademiconefile_A382950749
gale_incontextgauss_ISR_A382950749
gale_incontextgauss_ISN_A382950749
pubmed_primary_24967892
crossref_citationtrail_10_1371_journal_ppat_1004220
crossref_primary_10_1371_journal_ppat_1004220
rcaap_revistas_10451_51219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2014
Publisher PLOS
Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: PLOS
– name: Public Library of Science
– name: Public Library of Science (PLoS)
References SC Jameson (ref48) 1993; 177
J Stebbing (ref31) 2003; 77
DA Price (ref52) 2005; 202
TN Schumacher (ref43) 1990; 62
AD Hislop (ref54) 2007; 25
SM Alam (ref46) 1996; 381
J Levitskaya (ref12) 1995; 375
J Zuo (ref17) 2011; 85
MF Callan (ref53) 1996; 2
JP Simas (ref4) 1998; 6
CM Bollard (ref2) 2012; 9
L Rodrigues (ref23) 2006; 80
S El-Gogo (ref58) 2008; 380
GT Belz (ref61) 2000; 97
AA Nash (ref6) 2001; 356
JP Simas (ref8) 2004; 85
SM Husain (ref34) 1999; 96
H Lee (ref28) 1998; 18
NP Croft (ref15) 2009; 5
X Wang (ref30) 2010; 91
NJ Bennett (ref11) 2005; 3
RS Midgley (ref38) 2003; 77
W Chen (ref44) 1994; 180
JM Boname (ref21) 2005; 35
J Loh (ref59) 2012; 86
M Matsumura (ref42) 1992; 267
CM Smith (ref57) 2007; 2
PG Stevenson (ref51) 1999; 29
S Marques (ref29) 2008; 4
A Guihot (ref32) 2006; 194
KA Hogquist (ref49) 1994; 76
US Rangaswamy (ref26) 2014; 10
JM Boname (ref20) 2004; 20
EJ Usherwood (ref35) 2000; 192
RS Midgley (ref39) 2003; 77
CM Collins (ref50) 2009; 83
DH Fremont (ref45) 1995; 92
J Zuo (ref16) 2009; 5
M Pires de Miranda (ref24) 2013; 288
E Flano (ref9) 2002; 196
D Horst (ref14) 2009; 182
S Vigano (ref41) 2012; 2012
JM Boname (ref19) 2001; 15
S Ehtisham (ref55) 1993; 67
K Fruh (ref18) 2002; 88
PG Stevenson (ref22) 2002; 3
S Marques (ref10) 2003; 77
AD Hislop (ref13) 2007; 204
Y Chen (ref40) 2008; 5
PG Stevenson (ref1) 2009; 90
AL Burkhardt (ref27) 1992; 66
B Frederico (ref56) 2014; 15
HWt Virgin (ref7) 1997; 71
SH Speck (ref5) 2010; 8
AM Siegel (ref25) 2008; 4
D Zehn (ref47) 2009; 458
C Brander (ref33) 2001; 184
SA Tibbetts (ref37) 2002; 76
RD Cardin (ref60) 1996; 184
PG Stevenson (ref36) 1999; 80
DA Thorley-Lawson (ref3) 2001; 1
22171269 - J Virol. 2012 Mar;86(5):2887-93
11015436 - J Exp Med. 2000 Oct 2;192(7):943-52
18389062 - PLoS Pathog. 2008 Apr;4(4):e1000039
18846211 - PLoS Pathog. 2008 Oct;4(10):e1000177
12634388 - J Virol. 2003 Apr;77(7):4306-14
15030774 - Immunity. 2004 Mar;20(3):305-17
12072512 - J Virol. 2002 Jul;76(14):7125-32
16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61
19386718 - J Virol. 2009 Jul;83(13):6484-93
1331092 - J Biol Chem. 1992 Nov 25;267(33):23589-95
17620360 - J Exp Med. 2007 Aug 6;204(8):1863-73
24391506 - PLoS Pathog. 2014 Jan;10(1):e1003858
7540727 - Nature. 1995 Jun 22;375(6533):685-8
17940612 - PLoS One. 2007;2(10):e1048
23227083 - Clin Dev Immunol. 2012;2012:153863
19557156 - PLoS Pathog. 2009 Jun;5(6):e1000490
10073710 - J Gen Virol. 1999 Feb;80 ( Pt 2):477-83
8394447 - J Virol. 1993 Sep;67(9):5247-52
16991082 - J Infect Dis. 2006 Oct 15;194(8):1078-88
12297327 - Virus Res. 2002 Sep;88(1-2):55-69
19201886 - J Immunol. 2009 Feb 15;182(4):2313-24
12101398 - Nat Immunol. 2002 Aug;3(8):733-40
19605591 - J Gen Virol. 2009 Oct;90(Pt 10):2317-30
1321296 - J Virol. 1992 Aug;66(8):5161-7
21123379 - J Virol. 2011 Feb;85(4):1604-14
9223479 - J Virol. 1997 Aug;71(8):5894-904
11313012 - Philos Trans R Soc Lond B Biol Sci. 2001 Apr 29;356(1408):569-79
11672544 - Immunity. 2001 Oct;15(4):627-36
7523572 - J Exp Med. 1994 Oct 1;180(4):1471-83
14557637 - J Virol. 2003 Nov;77(21):11517-30
8705861 - Nat Med. 1996 Aug;2(8):906-11
14557636 - J Virol. 2003 Nov;77(21):11507-16
18774154 - Virology. 2008 Oct 25;380(2):322-7
10229071 - Eur J Immunol. 1999 Apr;29(4):1059-67
12438427 - J Exp Med. 2002 Nov 18;196(10):1363-72
12805429 - J Virol. 2003 Jul;77(13):7308-18
8287475 - Cell. 1994 Jan 14;76(1):17-27
9717216 - Trends Microbiol. 1998 Jul;6(7):276-82
19182777 - Nature. 2009 Mar 12;458(7235):211-4
20638646 - Cell Host Microbe. 2010 Jul 22;8(1):100-15
15769185 - PLoS Biol. 2005 Apr;3(4):e120
8496675 - J Exp Med. 1993 Jun 1;177(6):1541-50
11905817 - Nat Rev Immunol. 2001 Oct;1(1):75-82
8637599 - Nature. 1996 Jun 13;381(6583):616-20
9064346 - J Exp Med. 1996 Sep 1;184(3):863-71
10694575 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2725-30
23258536 - J Biol Chem. 2013 Feb 8;288(6):3858-70
9710606 - Mol Cell Biol. 1998 Sep;18(9):5219-28
2199065 - Cell. 1990 Aug 10;62(3):563-7
10377445 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7508-13
15593121 - Eur J Immunol. 2005 Jan;35(1):171-9
16731951 - J Virol. 2006 Jun;80(12):6123-35
19119421 - PLoS Pathog. 2009 Jan;5(1):e1000255
11424007 - J Infect Dis. 2001 Jul 15;184(2):119-26
15448339 - J Gen Virol. 2004 Oct;85(Pt 10):2789-97
20554797 - J Gen Virol. 2010 Oct;91(Pt 10):2564-73
7708669 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2479-83
18954560 - Cell Mol Immunol. 2008 Oct;5(5):365-72
22801669 - Nat Rev Clin Oncol. 2012 Sep;9(9):510-9
24721574 - Cell Host Microbe. 2014 Apr 9;15(4):457-70
17378764 - Annu Rev Immunol. 2007;25:587-617
References_xml – volume: 3
  start-page: e120
  year: 2005
  ident: ref11
  article-title: Gamma-herpesvirus latency requires T cell evasion during episome maintenance
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030120
– volume: 92
  start-page: 2479
  year: 1995
  ident: ref45
  article-title: Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.7.2479
– volume: 29
  start-page: 1059
  year: 1999
  ident: ref51
  article-title: Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection
  publication-title: Eur J Immunol
  doi: 10.1002/(SICI)1521-4141(199904)29:04<1059::AID-IMMU1059>3.0.CO;2-L
– volume: 5
  start-page: e1000255
  year: 2009
  ident: ref16
  article-title: The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000255
– volume: 192
  start-page: 943
  year: 2000
  ident: ref35
  article-title: Control of gammaherpesvirus latency by latent antigen-specific CD8(+) T cells
  publication-title: J Exp Med
  doi: 10.1084/jem.192.7.943
– volume: 8
  start-page: 100
  year: 2010
  ident: ref5
  article-title: Viral latency and its regulation: lessons from the gamma-herpesviruses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.06.014
– volume: 35
  start-page: 171
  year: 2005
  ident: ref21
  article-title: The murine gamma-herpesvirus-68 MK3 protein causes TAP degradation independent of MHC class I heavy chain degradation
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200425459
– volume: 77
  start-page: 11507
  year: 2003
  ident: ref39
  article-title: HLA-A11-restricted epitope polymorphism among Epstein-Barr virus strains in the highly HLA-A11-positive Chinese population: incidence and immunogenicity of variant epitope sequences
  publication-title: J Virol
  doi: 10.1128/JVI.77.21.11507-11516.2003
– volume: 20
  start-page: 305
  year: 2004
  ident: ref20
  article-title: Viral degradation of the MHC class I peptide loading complex
  publication-title: Immunity
  doi: 10.1016/S1074-7613(04)00047-0
– volume: 288
  start-page: 3858
  year: 2013
  ident: ref24
  article-title: Role of Src homology domain binding in signaling complexes assembled by the murid gamma-herpesvirus M2 protein
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.439810
– volume: 180
  start-page: 1471
  year: 1994
  ident: ref44
  article-title: Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues
  publication-title: J Exp Med
  doi: 10.1084/jem.180.4.1471
– volume: 182
  start-page: 2313
  year: 2009
  ident: ref14
  article-title: Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0803218
– volume: 76
  start-page: 7125
  year: 2002
  ident: ref37
  article-title: Immune control of the number and reactivation phenotype of cells latently infected with a gammaherpesvirus
  publication-title: J Virol
  doi: 10.1128/JVI.76.14.7125-7132.2002
– volume: 2
  start-page: e1048
  year: 2007
  ident: ref57
  article-title: Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001048
– volume: 6
  start-page: 276
  year: 1998
  ident: ref4
  article-title: Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(98)01306-7
– volume: 380
  start-page: 322
  year: 2008
  ident: ref58
  article-title: In vivo attenuation of recombinant murine gammaherpesvirus 68 (MHV-68) is due to the expression and immunogenicity but not to the insertion of foreign sequences
  publication-title: Virology
  doi: 10.1016/j.virol.2008.07.034
– volume: 184
  start-page: 863
  year: 1996
  ident: ref60
  article-title: Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells
  publication-title: J Exp Med
  doi: 10.1084/jem.184.3.863
– volume: 66
  start-page: 5161
  year: 1992
  ident: ref27
  article-title: An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases
  publication-title: J Virol
  doi: 10.1128/JVI.66.8.5161-5167.1992
– volume: 1
  start-page: 75
  year: 2001
  ident: ref3
  article-title: Epstein-Barr virus: exploiting the immune system
  publication-title: Nat Rev Immunol
  doi: 10.1038/35095584
– volume: 4
  start-page: e1000039
  year: 2008
  ident: ref25
  article-title: The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000039
– volume: 9
  start-page: 510
  year: 2012
  ident: ref2
  article-title: T-cell therapy in the treatment of post-transplant lymphoproliferative disease
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2012.111
– volume: 62
  start-page: 563
  year: 1990
  ident: ref43
  article-title: Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90020-F
– volume: 204
  start-page: 1863
  year: 2007
  ident: ref13
  article-title: A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates
  publication-title: J Exp Med
  doi: 10.1084/jem.20070256
– volume: 91
  start-page: 2564
  year: 2010
  ident: ref30
  article-title: Widespread sequence variation in the Epstein-Barr virus latent membrane protein 2A gene among northern Chinese isolates
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.021881-0
– volume: 86
  start-page: 2887
  year: 2012
  ident: ref59
  article-title: Specific mutation of a gammaherpesvirus-expressed antigen in response to CD8 T cell selection in vivo
  publication-title: J Virol
  doi: 10.1128/JVI.06101-11
– volume: 77
  start-page: 11517
  year: 2003
  ident: ref38
  article-title: Latent gene sequencing reveals familial relationships among Chinese Epstein-Barr virus strains and evidence for positive selection of A11 epitope changes
  publication-title: J Virol
  doi: 10.1128/JVI.77.21.11517-11530.2003
– volume: 83
  start-page: 6484
  year: 2009
  ident: ref50
  article-title: Identification of infected B-cell populations by using a recombinant murine gammaherpesvirus 68 expressing a fluorescent protein
  publication-title: J Virol
  doi: 10.1128/JVI.00297-09
– volume: 184
  start-page: 119
  year: 2001
  ident: ref33
  article-title: Definition of an optimal cytotoxic T lymphocyte epitope in the latently expressed Kaposi's sarcoma-associated herpesvirus kaposin protein
  publication-title: J Infect Dis
  doi: 10.1086/322003
– volume: 88
  start-page: 55
  year: 2002
  ident: ref18
  article-title: Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses
  publication-title: Virus Res
  doi: 10.1016/S0168-1702(02)00120-X
– volume: 15
  start-page: 627
  year: 2001
  ident: ref19
  article-title: MHC class I ubiquitination by a viral PHD/LAP finger protein
  publication-title: Immunity
  doi: 10.1016/S1074-7613(01)00213-8
– volume: 381
  start-page: 616
  year: 1996
  ident: ref46
  article-title: T-cell-receptor affinity and thymocyte positive selection
  publication-title: Nature
  doi: 10.1038/381616a0
– volume: 67
  start-page: 5247
  year: 1993
  ident: ref55
  article-title: Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells
  publication-title: J Virol
  doi: 10.1128/JVI.67.9.5247-5252.1993
– volume: 71
  start-page: 5894
  year: 1997
  ident: ref7
  article-title: Complete sequence and genomic analysis of murine gammaherpesvirus 68
  publication-title: J Virol
  doi: 10.1128/JVI.71.8.5894-5904.1997
– volume: 375
  start-page: 685
  year: 1995
  ident: ref12
  article-title: Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1
  publication-title: Nature
  doi: 10.1038/375685a0
– volume: 267
  start-page: 23589
  year: 1992
  ident: ref42
  article-title: In vitro peptide binding to soluble empty class I major histocompatibility complex molecules isolated from transfected Drosophila melanogaster cells
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)35879-4
– volume: 15
  start-page: 457
  year: 2014
  ident: ref56
  article-title: A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.03.010
– volume: 5
  start-page: 365
  year: 2008
  ident: ref40
  article-title: Potent dendritic cell vaccine loaded with latent membrane protein 2A (LMP2A)
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2008.45
– volume: 196
  start-page: 1363
  year: 2002
  ident: ref9
  article-title: Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20020890
– volume: 2
  start-page: 906
  year: 1996
  ident: ref53
  article-title: Large clonal expansions of CD8+ T cells in acute infectious mononucleosis
  publication-title: Nat Med
  doi: 10.1038/nm0896-906
– volume: 356
  start-page: 569
  year: 2001
  ident: ref6
  article-title: Natural history of murine gamma-herpesvirus infection
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2000.0779
– volume: 3
  start-page: 733
  year: 2002
  ident: ref22
  article-title: K3-mediated evasion of CD8(+) T cells aids amplification of a latent gamma-herpesvirus
  publication-title: Nat Immunol
  doi: 10.1038/ni818
– volume: 10
  start-page: e1003858
  year: 2014
  ident: ref26
  article-title: Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003858
– volume: 4
  start-page: e1000177
  year: 2008
  ident: ref29
  article-title: A single CD8+ T cell epitope sets the long-term latent load of a murid herpesvirus
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000177
– volume: 77
  start-page: 4306
  year: 2003
  ident: ref31
  article-title: Kaposi's sarcoma-associated herpesvirus cytotoxic T lymphocytes recognize and target Darwinian positively selected autologous K1 epitopes
  publication-title: J Virol
  doi: 10.1128/JVI.77.7.4306-4314.2003
– volume: 80
  start-page: 477
  issue: Pt 2
  year: 1999
  ident: ref36
  article-title: Immunological control of a murine gammaherpesvirus independent of CD8+ T cells
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-80-2-477
– volume: 202
  start-page: 1349
  year: 2005
  ident: ref52
  article-title: Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses
  publication-title: J Exp Med
  doi: 10.1084/jem.20051357
– volume: 97
  start-page: 2725
  year: 2000
  ident: ref61
  article-title: Postexposure vaccination massively increases the prevalence of gamma-herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.040575197
– volume: 194
  start-page: 1078
  year: 2006
  ident: ref32
  article-title: Low T cell responses to human herpesvirus 8 in patients with AIDS-related and classic Kaposi sarcoma
  publication-title: J Infect Dis
  doi: 10.1086/507648
– volume: 458
  start-page: 211
  year: 2009
  ident: ref47
  article-title: Complete but curtailed T-cell response to very low-affinity antigen
  publication-title: Nature
  doi: 10.1038/nature07657
– volume: 177
  start-page: 1541
  year: 1993
  ident: ref48
  article-title: Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells
  publication-title: J Exp Med
  doi: 10.1084/jem.177.6.1541
– volume: 2012
  start-page: 153863
  year: 2012
  ident: ref41
  article-title: Functional avidity: a measure to predict the efficacy of effector T cells?
  publication-title: Clin Dev Immunol
  doi: 10.1155/2012/153863
– volume: 18
  start-page: 5219
  year: 1998
  ident: ref28
  article-title: Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.9.5219
– volume: 77
  start-page: 7308
  year: 2003
  ident: ref10
  article-title: Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes
  publication-title: J Virol
  doi: 10.1128/JVI.77.13.7308-7318.2003
– volume: 80
  start-page: 6123
  year: 2006
  ident: ref23
  article-title: Activation of Vav by the gammaherpesvirus M2 protein contributes to the establishment of viral latency in B lymphocytes
  publication-title: J Virol
  doi: 10.1128/JVI.02700-05
– volume: 76
  start-page: 17
  year: 1994
  ident: ref49
  article-title: T cell receptor antagonist peptides induce positive selection
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90169-4
– volume: 5
  start-page: e1000490
  year: 2009
  ident: ref15
  article-title: Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000490
– volume: 85
  start-page: 2789
  year: 2004
  ident: ref8
  article-title: The M2 gene product of murine gammaherpesvirus 68 is required for efficient colonization of splenic follicles but is not necessary for expansion of latently infected germinal centre B cells
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.80138-0
– volume: 85
  start-page: 1604
  year: 2011
  ident: ref17
  article-title: The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways
  publication-title: J Virol
  doi: 10.1128/JVI.01608-10
– volume: 96
  start-page: 7508
  year: 1999
  ident: ref34
  article-title: Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8(+) T lymphocytes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.13.7508
– volume: 90
  start-page: 2317
  year: 2009
  ident: ref1
  article-title: Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.013300-0
– volume: 25
  start-page: 587
  year: 2007
  ident: ref54
  article-title: Cellular responses to viral infection in humans: lessons from Epstein-Barr virus
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.25.022106.141553
– reference: 14557637 - J Virol. 2003 Nov;77(21):11517-30
– reference: 18846211 - PLoS Pathog. 2008 Oct;4(10):e1000177
– reference: 11424007 - J Infect Dis. 2001 Jul 15;184(2):119-26
– reference: 8705861 - Nat Med. 1996 Aug;2(8):906-11
– reference: 10377445 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7508-13
– reference: 10229071 - Eur J Immunol. 1999 Apr;29(4):1059-67
– reference: 18954560 - Cell Mol Immunol. 2008 Oct;5(5):365-72
– reference: 11015436 - J Exp Med. 2000 Oct 2;192(7):943-52
– reference: 11905817 - Nat Rev Immunol. 2001 Oct;1(1):75-82
– reference: 16991082 - J Infect Dis. 2006 Oct 15;194(8):1078-88
– reference: 14557636 - J Virol. 2003 Nov;77(21):11507-16
– reference: 7708669 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2479-83
– reference: 2199065 - Cell. 1990 Aug 10;62(3):563-7
– reference: 9710606 - Mol Cell Biol. 1998 Sep;18(9):5219-28
– reference: 8637599 - Nature. 1996 Jun 13;381(6583):616-20
– reference: 17378764 - Annu Rev Immunol. 2007;25:587-617
– reference: 19605591 - J Gen Virol. 2009 Oct;90(Pt 10):2317-30
– reference: 18774154 - Virology. 2008 Oct 25;380(2):322-7
– reference: 1331092 - J Biol Chem. 1992 Nov 25;267(33):23589-95
– reference: 24721574 - Cell Host Microbe. 2014 Apr 9;15(4):457-70
– reference: 8394447 - J Virol. 1993 Sep;67(9):5247-52
– reference: 12634388 - J Virol. 2003 Apr;77(7):4306-14
– reference: 12297327 - Virus Res. 2002 Sep;88(1-2):55-69
– reference: 10694575 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2725-30
– reference: 23258536 - J Biol Chem. 2013 Feb 8;288(6):3858-70
– reference: 23227083 - Clin Dev Immunol. 2012;2012:153863
– reference: 11672544 - Immunity. 2001 Oct;15(4):627-36
– reference: 1321296 - J Virol. 1992 Aug;66(8):5161-7
– reference: 9064346 - J Exp Med. 1996 Sep 1;184(3):863-71
– reference: 7540727 - Nature. 1995 Jun 22;375(6533):685-8
– reference: 17940612 - PLoS One. 2007;2(10):e1048
– reference: 19557156 - PLoS Pathog. 2009 Jun;5(6):e1000490
– reference: 12101398 - Nat Immunol. 2002 Aug;3(8):733-40
– reference: 15593121 - Eur J Immunol. 2005 Jan;35(1):171-9
– reference: 24391506 - PLoS Pathog. 2014 Jan;10(1):e1003858
– reference: 17620360 - J Exp Med. 2007 Aug 6;204(8):1863-73
– reference: 22801669 - Nat Rev Clin Oncol. 2012 Sep;9(9):510-9
– reference: 8496675 - J Exp Med. 1993 Jun 1;177(6):1541-50
– reference: 19201886 - J Immunol. 2009 Feb 15;182(4):2313-24
– reference: 12072512 - J Virol. 2002 Jul;76(14):7125-32
– reference: 22171269 - J Virol. 2012 Mar;86(5):2887-93
– reference: 10073710 - J Gen Virol. 1999 Feb;80 ( Pt 2):477-83
– reference: 16731951 - J Virol. 2006 Jun;80(12):6123-35
– reference: 19119421 - PLoS Pathog. 2009 Jan;5(1):e1000255
– reference: 7523572 - J Exp Med. 1994 Oct 1;180(4):1471-83
– reference: 15448339 - J Gen Virol. 2004 Oct;85(Pt 10):2789-97
– reference: 21123379 - J Virol. 2011 Feb;85(4):1604-14
– reference: 20638646 - Cell Host Microbe. 2010 Jul 22;8(1):100-15
– reference: 20554797 - J Gen Virol. 2010 Oct;91(Pt 10):2564-73
– reference: 12438427 - J Exp Med. 2002 Nov 18;196(10):1363-72
– reference: 8287475 - Cell. 1994 Jan 14;76(1):17-27
– reference: 19386718 - J Virol. 2009 Jul;83(13):6484-93
– reference: 9223479 - J Virol. 1997 Aug;71(8):5894-904
– reference: 15769185 - PLoS Biol. 2005 Apr;3(4):e120
– reference: 9717216 - Trends Microbiol. 1998 Jul;6(7):276-82
– reference: 18389062 - PLoS Pathog. 2008 Apr;4(4):e1000039
– reference: 12805429 - J Virol. 2003 Jul;77(13):7308-18
– reference: 11313012 - Philos Trans R Soc Lond B Biol Sci. 2001 Apr 29;356(1408):569-79
– reference: 19182777 - Nature. 2009 Mar 12;458(7235):211-4
– reference: 16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61
– reference: 15030774 - Immunity. 2004 Mar;20(3):305-17
SSID ssj0041316
Score 2.128324
Snippet Copyright: © 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits...
Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted...
Persistent infections are subject to constant surveillance by [CD8.sup.+] cytotoxic T cells (CTL). Their control should therefore depend on MHC class...
Persistent infections are subject to constant surveillance by CD8 + cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted...
  Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
rcaap
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1004220
SubjectTerms 3T3 Cells
Adoptive Transfer
Animals
Antigenic determinants
Antigens
B cells
Biology and life sciences
CD4-Positive T-Lymphocytes - immunology
Cell Proliferation
Cells, Cultured
Cricetinae
Distribution
Epitopes, T-Lymphocyte - genetics
Epitopes, T-Lymphocyte - immunology
Health aspects
Herpesviridae Infections - immunology
Herpesviridae Infections - virology
Herpesviruses
Histocompatibility Antigens Class I - immunology
Immune system
Immunoglobulins
Ligands
Lymphocyte Activation - immunology
Medical research
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, Knockout
Ovalbumin - biosynthesis
Ovalbumin - immunology
Physiological aspects
Rhadinovirus - genetics
Rhadinovirus - immunology
T cell receptors
T cells
T-Lymphocytes, Cytotoxic - immunology
Vaccines
Virus Latency - genetics
Virus Latency - immunology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlS6GX0nc2TYtaCj25sa2XdUwfIS00h7aBXIqQ9UgWFtusdwP5952xtUtMW3Lp0asxRjOfpU_rmW8IeRuVDKIG8GIZY8ZFHTOtCp-VTopS-DzagMXJ307lyRn_ei7Ob7T6wpywUR54dNyhBEKc61xXIURe-KoqnM19XcPCam1lhzpy2PO2h6lxDYaVeWh6ik1xMsWkTEVzTBWHKUbvu86ifDRqYOWTTWnQ7t-t0LNu2fZ_o59_ZlHeXTlruxvb0_FD8iDxSno0zucRuROax-Te2Gny-gn59SnEoRUEXWBBSKChuUhpL3QN4ezxK1RPgcHSRUOvFlctTUnstI1wvdr0mV_hykiX1wCAtsNuPzGM-HlKzo4___x4kqXOChmEQK-z6KW3UXCuonK8rMu6rrwuhOWyDEVkUQmrfF0GHZX23EbtS2mdtEwxrmzBnpFZ0zZhj1CIiyi9rbhznEcmtPb4148TjlVAFss5YVvXGpdkx7H7xdIM39IUHD9GDxkMiEkBmZNsd1c3ym7cYv8Bo7azRdHs4QeAkklQMrdBaU7eYMwNymI0mHdzYTd9b778ODVHrCo1UGeu_2n0fWL0LhnFFibrbKp1AJeh3NbE8mBiCS-3mwzvIf62c-4NMF4lFCsKGHq9xaTBuzBZrgntZrABR3GgwnPyfMTozjFw2gZ6oiEsaoLeieemI83icpAdRym9Kpdzsj_g3GAaOpxg4HmoUWSAORZ6_3_E4QW5D7SUjwl5B2S2Xm3CS6B-6_rV8Jb_BtwuVmM
  priority: 102
  providerName: Directory of Open Access Journals
Title Defining immune engagement thresholds for in vivo control of virus-driven lymphoproliferation
URI http://hdl.handle.net/10451/51219
https://www.ncbi.nlm.nih.gov/pubmed/24967892
https://www.proquest.com/docview/1541374514
https://pubmed.ncbi.nlm.nih.gov/PMC4072806
https://doaj.org/article/657609098eef41d881ca0dbb012aa8a7
http://dx.doi.org/10.1371/journal.ppat.1004220
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBddwmAvY99N1wVvDPbkUtuSZT2M0Y-UZqxhdM3IyxCyPtJCsD07Gct_vzvbCTNr2GOsE5HvTtLvrNPvCHnveGxZCs6L1xh9ylLnCx4YP9QxC5k5dsri5eSrSXw5pZ9nbLZHNjVbWwVW94Z2WE9qWi6Ofv9cf4IJ_7Gu2sCDTaejolBICI2sVhDE92Fv4jhVr-j2XAFW7CBuL9Dt6tnZoGoe_-1q3SsWeXUfFP03o7JfaqWKv7aqiyfkcYsxvZPGKZ6SPZs9Iw-bqpPr5-THuXV1WQhvjJdDrDfK5m0KjHcDpq3wRKryAM1648z7fvcr986ahHYvd_C7XFX-eYmrpPdlDc6QF1j5x9nGl16Q6cXo5uzSb6ss-GAOsfSdiY1yjFLuuKZhGqZpYkTAFI1DG7jIcaa4SUMrHBeGKidMGCsdq4hHlKsgekl6WZ7ZfeIl1rLQqIRqTamLmBAGPwNppqMEgGM4INFGtVK3FORYCWMh63M1DqFIoyGJBpGtQQbE3_YqGgqO_8ifotW2skigXT_Iy7ls56OMIc6CsQkYsqOBSZJAq2OTprBfK5UoPiDv0OYSKTIyzMGZq1VVyfG3iTyJklAAjKZip9B1R-hDK-RyeFmt2nsPoDKk3upIHnYkYaLrTvM--t_mnSsJ6JczHgUBNL3d-KTEXpg4l9l8VcuAoijA4gF51fjoVjEQeQNUEWAW3vHejua6LdndbU1BjrR6yXE8IAe1n0tMSYdoBv4P-YokoMhAHOwe72vyCIAnbVLuDklvWa7sGwB3y3RIHvAZH5L-6Wjy9XpYfyIZ1nP4DwjsUkk
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+Immune+Engagement+Thresholds+for+In+Vivo+Control+of+Virus-Driven+Lymphoproliferation&rft.jtitle=PLoS+pathogens&rft.au=Godinho-Silva%2C+Cristina&rft.au=Marques%2C+Sofia&rft.au=Fontinha%2C+Diana&rft.au=Veiga-Fernandes%2C+Henrique&rft.date=2014-06-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7374&rft.volume=10&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.ppat.1004220&rft.externalDocID=1547573119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon