Defining immune engagement thresholds for in vivo control of virus-driven lymphoproliferation
Copyright: © 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Persistent infections are...
Saved in:
Published in | PLoS pathogens Vol. 10; no. 6; p. e1004220 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
PLOS
01.06.2014
Public Library of Science Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Copyright: © 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.
JPS was funded by Fundação para a Ciência e Tecnologia (PTDC/SAU-MII/099314/2008); HMSP-ICT/0021/2010) Portugal. CGS, SM, and DF were supported by scholarships from Fundação para a Ciência e Tecnologia, Portugal. PGS is an ARC Future Fellow. |
---|---|
AbstractList | Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. Persistent infections are subject to constant surveillance by [CD8.sup.+] cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. Persistent infections are subject to constant surveillance by CD8 + cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. Chronic viral infections cause huge morbidity and mortality worldwide. γ-herpesviruses provide an example relevant to all human demographics, causing, inter alia , Hodgkin's disease, Burkitt's lymphoma, Kaposi's Sarcoma, and nasopharyngeal carcinoma. The proliferation of latently infected B cells and their control by CD8 + T cells are central to pathogenesis. Although many viral T cell targets have been identified in vitro , the functional impact of their engagement in vivo remains ill-defined. With the well-established Murid Herpesvirus-4 infection model, we used a range of recombinant viruses to define functional thresholds for the engagement of a latently expressed viral epitope. These data advance significantly our understanding of how the immune system must function to control γ-herpesvirus infection, with implications for vaccination and anti-cancer immunotherapy. Copyright: © 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. JPS was funded by Fundação para a Ciência e Tecnologia (PTDC/SAU-MII/099314/2008); HMSP-ICT/0021/2010) Portugal. CGS, SM, and DF were supported by scholarships from Fundação para a Ciência e Tecnologia, Portugal. PGS is an ARC Future Fellow. |
Audience | Academic |
Author | Godinho-Silva, Cristina Fontinha, Diana Marques, Sofia Stevenson, Philip G. Veiga-Fernandes, Henrique Simas, J Pedro |
AuthorAffiliation | 1 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal 2 Sir Albert Sakzewski Virus Research Center and Queensland and Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia Dartmouth Medical School, United States of America |
AuthorAffiliation_xml | – name: Dartmouth Medical School, United States of America – name: 2 Sir Albert Sakzewski Virus Research Center and Queensland and Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia – name: 1 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal |
Author_xml | – scopusid: 56096790600 sequence: 1 givenname: Cristina orcidid: 0000-0002-0300-8839 surname: Godinho-Silva fullname: Godinho-Silva, Cristina – scopusid: 7004641665 sequence: 2 givenname: Sofia orcidid: 0000-0003-1467-1529 surname: Marques fullname: Marques, Sofia – sequence: 3 givenname: Diana orcidid: 0000-0002-0046-648X surname: Fontinha fullname: Fontinha, Diana – scopusid: 6508113770 sequence: 4 givenname: Henrique orcidid: 0000-0001-6216-1836 surname: Veiga-Fernandes fullname: Veiga-Fernandes, Henrique – sequence: 5 fullname: Stevenson, Philip G. – scopusid: 7003457329 sequence: 6 givenname: J Pedro orcidid: 0000-0001-6982-9253 surname: Simas fullname: Simas, J Pedro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24967892$$D View this record in MEDLINE/PubMed |
BookMark | eNqVktuL1DAYxYusuBf9D0QrvujDjEmaNK0PwrLeBhYFL48SvubSydAm3aQd3P_ezE12RBDpQ9vkd07T853z7MR5p7PsMUZzXHD8auWn4KCbDwOMc4wQJQTdy84wY8WMF5ye3Hk-zc5jXCUGF7h8kJ0SWpe8qslZ9uOtNtZZ1-a27yenc-1aaHWv3ZiPy6Dj0ncq5saH3Lp8bdc-l96NwXe5N-k9THGmgl1rl3e3_bD0Q9qyRgcYrXcPs_sGuqgf7e8X2ff3775dfZxdf_6wuLq8nsmS1ePMqFKBYZRywyUlDWmaStWYAS2JxqYwnAFXDdG14bWiYGpFSpAlFLygHHBxkT3d-Q6dj2KfTBSYUc54gXGdiMWOUB5WYgi2h3ArPFixXfChFRBGKzstSsZLVKO60tpQrKoKS0CqaRAmABXw5PVm_7Wp6bWSKasA3ZHp8Y6zS9H6taCIkwqVyeDF3iD4m0nHUfQ2St114LSftudOI6YM04Q-36EtpKNZZ3xylBtcXBYVqRnidPN3879Q6VK6t2leacZp_Ujw8kiwman-ObYwxSgWX7_8B_vpmH1yN5rfmRwKl4DXO0AGH2PQRkg7bruSTmw7gZHYtPswQ7Fpt9i3O4npH-KD_z9kz3ayIAEGEfTaxhFSzChFLBgmqR-_ALFYDBk |
CitedBy_id | crossref_primary_10_4049_jimmunol_2300513 crossref_primary_10_1073_pnas_1904034116 crossref_primary_10_1089_vim_2019_0080 crossref_primary_10_1128_JVI_00813_16 crossref_primary_10_1111_imcb_12299 |
Cites_doi | 10.1371/journal.pbio.0030120 10.1073/pnas.92.7.2479 10.1002/(SICI)1521-4141(199904)29:04<1059::AID-IMMU1059>3.0.CO;2-L 10.1371/journal.ppat.1000255 10.1084/jem.192.7.943 10.1016/j.chom.2010.06.014 10.1002/eji.200425459 10.1128/JVI.77.21.11507-11516.2003 10.1016/S1074-7613(04)00047-0 10.1074/jbc.M112.439810 10.1084/jem.180.4.1471 10.4049/jimmunol.0803218 10.1128/JVI.76.14.7125-7132.2002 10.1371/journal.pone.0001048 10.1016/S0966-842X(98)01306-7 10.1016/j.virol.2008.07.034 10.1084/jem.184.3.863 10.1128/JVI.66.8.5161-5167.1992 10.1038/35095584 10.1371/journal.ppat.1000039 10.1038/nrclinonc.2012.111 10.1016/0092-8674(90)90020-F 10.1084/jem.20070256 10.1099/vir.0.021881-0 10.1128/JVI.06101-11 10.1128/JVI.77.21.11517-11530.2003 10.1128/JVI.00297-09 10.1086/322003 10.1016/S0168-1702(02)00120-X 10.1016/S1074-7613(01)00213-8 10.1038/381616a0 10.1128/JVI.67.9.5247-5252.1993 10.1128/JVI.71.8.5894-5904.1997 10.1038/375685a0 10.1016/S0021-9258(18)35879-4 10.1016/j.chom.2014.03.010 10.1038/cmi.2008.45 10.1084/jem.20020890 10.1038/nm0896-906 10.1098/rstb.2000.0779 10.1038/ni818 10.1371/journal.ppat.1003858 10.1371/journal.ppat.1000177 10.1128/JVI.77.7.4306-4314.2003 10.1099/0022-1317-80-2-477 10.1084/jem.20051357 10.1073/pnas.040575197 10.1086/507648 10.1038/nature07657 10.1084/jem.177.6.1541 10.1155/2012/153863 10.1128/MCB.18.9.5219 10.1128/JVI.77.13.7308-7318.2003 10.1128/JVI.02700-05 10.1016/0092-8674(94)90169-4 10.1371/journal.ppat.1000490 10.1099/vir.0.80138-0 10.1128/JVI.01608-10 10.1073/pnas.96.13.7508 10.1099/vir.0.013300-0 10.1146/annurev.immunol.25.022106.141553 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Godinho-Silva et al 2014 Godinho-Silva et al 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Godinho-Silva C, Marques S, Fontinha D, Veiga-Fernandes H, Stevenson PG, et al. (2014) Defining Immune Engagement Thresholds for In Vivo Control of Virus-Driven Lymphoproliferation. PLoS Pathog 10(6): e1004220. doi:10.1371/journal.ppat.1004220 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Godinho-Silva et al 2014 Godinho-Silva et al – notice: 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Godinho-Silva C, Marques S, Fontinha D, Veiga-Fernandes H, Stevenson PG, et al. (2014) Defining Immune Engagement Thresholds for In Vivo Control of Virus-Driven Lymphoproliferation. PLoS Pathog 10(6): e1004220. doi:10.1371/journal.ppat.1004220 |
DBID | RCLKO AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1004220 |
DatabaseName | RCAAP open access repository CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DissertationSchool | Repositório da Universidade de Lisboa |
DocumentTitleAlternate | CTL Control of Virus-Driven Lymphoproliferation |
EISSN | 1553-7374 |
ExternalDocumentID | 1547573119 oai_doaj_org_article_657609098eef41d881ca0dbb012aa8a7 PMC4072806 A382950749 24967892 10_1371_journal_ppat_1004220 10451_51219 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 QF4 QN7 RCLKO RIG RNS RPM RZL SV3 TR2 TUS UKHRP WOQ WOW ~8M AAYXX CITATION CGR CUY CVF ECM EIF NPM PMFND 7X8 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c659t-fd6daf5447f7c42b2bb8d915a462e1f3f75a7db2e9f79d4af9d26ac6a37347a13 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Fri Nov 26 17:14:08 EST 2021 Wed Aug 27 01:27:59 EDT 2025 Thu Aug 21 14:03:23 EDT 2025 Fri Jul 11 12:23:07 EDT 2025 Tue Jun 17 21:30:35 EDT 2025 Tue Jun 10 20:43:58 EDT 2025 Fri Jun 27 03:57:18 EDT 2025 Fri Jun 27 04:16:08 EDT 2025 Mon Jul 21 05:59:36 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Tue Jul 01 02:41:02 EDT 2025 Fri Aug 01 16:28:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c659t-fd6daf5447f7c42b2bb8d915a462e1f3f75a7db2e9f79d4af9d26ac6a37347a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: CGS SM HVF PGS JPS. Performed the experiments: CGS SM DF. Analyzed the data: CGS SM DF HVF PGS JPS. Contributed reagents/materials/analysis tools: CGS SM. Contributed to the writing of the manuscript: CGS PGS JPS. The authors have declared that no competing interests exist. |
ORCID | 0000-0001-6982-9253 0000-0003-1467-1529 0000-0001-6216-1836 0000-0002-0046-648X 0000-0002-0300-8839 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1004220 |
PMID | 24967892 |
PQID | 1541374514 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1547573119 doaj_primary_oai_doaj_org_article_657609098eef41d881ca0dbb012aa8a7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4072806 proquest_miscellaneous_1541374514 gale_infotracmisc_A382950749 gale_infotracacademiconefile_A382950749 gale_incontextgauss_ISR_A382950749 gale_incontextgauss_ISN_A382950749 pubmed_primary_24967892 crossref_citationtrail_10_1371_journal_ppat_1004220 crossref_primary_10_1371_journal_ppat_1004220 rcaap_revistas_10451_51219 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2014 |
Publisher | PLOS Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: PLOS – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | SC Jameson (ref48) 1993; 177 J Stebbing (ref31) 2003; 77 DA Price (ref52) 2005; 202 TN Schumacher (ref43) 1990; 62 AD Hislop (ref54) 2007; 25 SM Alam (ref46) 1996; 381 J Levitskaya (ref12) 1995; 375 J Zuo (ref17) 2011; 85 MF Callan (ref53) 1996; 2 JP Simas (ref4) 1998; 6 CM Bollard (ref2) 2012; 9 L Rodrigues (ref23) 2006; 80 S El-Gogo (ref58) 2008; 380 GT Belz (ref61) 2000; 97 AA Nash (ref6) 2001; 356 JP Simas (ref8) 2004; 85 SM Husain (ref34) 1999; 96 H Lee (ref28) 1998; 18 NP Croft (ref15) 2009; 5 X Wang (ref30) 2010; 91 NJ Bennett (ref11) 2005; 3 RS Midgley (ref38) 2003; 77 W Chen (ref44) 1994; 180 JM Boname (ref21) 2005; 35 J Loh (ref59) 2012; 86 M Matsumura (ref42) 1992; 267 CM Smith (ref57) 2007; 2 PG Stevenson (ref51) 1999; 29 S Marques (ref29) 2008; 4 A Guihot (ref32) 2006; 194 KA Hogquist (ref49) 1994; 76 US Rangaswamy (ref26) 2014; 10 JM Boname (ref20) 2004; 20 EJ Usherwood (ref35) 2000; 192 RS Midgley (ref39) 2003; 77 CM Collins (ref50) 2009; 83 DH Fremont (ref45) 1995; 92 J Zuo (ref16) 2009; 5 M Pires de Miranda (ref24) 2013; 288 E Flano (ref9) 2002; 196 D Horst (ref14) 2009; 182 S Vigano (ref41) 2012; 2012 JM Boname (ref19) 2001; 15 S Ehtisham (ref55) 1993; 67 K Fruh (ref18) 2002; 88 PG Stevenson (ref22) 2002; 3 S Marques (ref10) 2003; 77 AD Hislop (ref13) 2007; 204 Y Chen (ref40) 2008; 5 PG Stevenson (ref1) 2009; 90 AL Burkhardt (ref27) 1992; 66 B Frederico (ref56) 2014; 15 HWt Virgin (ref7) 1997; 71 SH Speck (ref5) 2010; 8 AM Siegel (ref25) 2008; 4 D Zehn (ref47) 2009; 458 C Brander (ref33) 2001; 184 SA Tibbetts (ref37) 2002; 76 RD Cardin (ref60) 1996; 184 PG Stevenson (ref36) 1999; 80 DA Thorley-Lawson (ref3) 2001; 1 22171269 - J Virol. 2012 Mar;86(5):2887-93 11015436 - J Exp Med. 2000 Oct 2;192(7):943-52 18389062 - PLoS Pathog. 2008 Apr;4(4):e1000039 18846211 - PLoS Pathog. 2008 Oct;4(10):e1000177 12634388 - J Virol. 2003 Apr;77(7):4306-14 15030774 - Immunity. 2004 Mar;20(3):305-17 12072512 - J Virol. 2002 Jul;76(14):7125-32 16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61 19386718 - J Virol. 2009 Jul;83(13):6484-93 1331092 - J Biol Chem. 1992 Nov 25;267(33):23589-95 17620360 - J Exp Med. 2007 Aug 6;204(8):1863-73 24391506 - PLoS Pathog. 2014 Jan;10(1):e1003858 7540727 - Nature. 1995 Jun 22;375(6533):685-8 17940612 - PLoS One. 2007;2(10):e1048 23227083 - Clin Dev Immunol. 2012;2012:153863 19557156 - PLoS Pathog. 2009 Jun;5(6):e1000490 10073710 - J Gen Virol. 1999 Feb;80 ( Pt 2):477-83 8394447 - J Virol. 1993 Sep;67(9):5247-52 16991082 - J Infect Dis. 2006 Oct 15;194(8):1078-88 12297327 - Virus Res. 2002 Sep;88(1-2):55-69 19201886 - J Immunol. 2009 Feb 15;182(4):2313-24 12101398 - Nat Immunol. 2002 Aug;3(8):733-40 19605591 - J Gen Virol. 2009 Oct;90(Pt 10):2317-30 1321296 - J Virol. 1992 Aug;66(8):5161-7 21123379 - J Virol. 2011 Feb;85(4):1604-14 9223479 - J Virol. 1997 Aug;71(8):5894-904 11313012 - Philos Trans R Soc Lond B Biol Sci. 2001 Apr 29;356(1408):569-79 11672544 - Immunity. 2001 Oct;15(4):627-36 7523572 - J Exp Med. 1994 Oct 1;180(4):1471-83 14557637 - J Virol. 2003 Nov;77(21):11517-30 8705861 - Nat Med. 1996 Aug;2(8):906-11 14557636 - J Virol. 2003 Nov;77(21):11507-16 18774154 - Virology. 2008 Oct 25;380(2):322-7 10229071 - Eur J Immunol. 1999 Apr;29(4):1059-67 12438427 - J Exp Med. 2002 Nov 18;196(10):1363-72 12805429 - J Virol. 2003 Jul;77(13):7308-18 8287475 - Cell. 1994 Jan 14;76(1):17-27 9717216 - Trends Microbiol. 1998 Jul;6(7):276-82 19182777 - Nature. 2009 Mar 12;458(7235):211-4 20638646 - Cell Host Microbe. 2010 Jul 22;8(1):100-15 15769185 - PLoS Biol. 2005 Apr;3(4):e120 8496675 - J Exp Med. 1993 Jun 1;177(6):1541-50 11905817 - Nat Rev Immunol. 2001 Oct;1(1):75-82 8637599 - Nature. 1996 Jun 13;381(6583):616-20 9064346 - J Exp Med. 1996 Sep 1;184(3):863-71 10694575 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2725-30 23258536 - J Biol Chem. 2013 Feb 8;288(6):3858-70 9710606 - Mol Cell Biol. 1998 Sep;18(9):5219-28 2199065 - Cell. 1990 Aug 10;62(3):563-7 10377445 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7508-13 15593121 - Eur J Immunol. 2005 Jan;35(1):171-9 16731951 - J Virol. 2006 Jun;80(12):6123-35 19119421 - PLoS Pathog. 2009 Jan;5(1):e1000255 11424007 - J Infect Dis. 2001 Jul 15;184(2):119-26 15448339 - J Gen Virol. 2004 Oct;85(Pt 10):2789-97 20554797 - J Gen Virol. 2010 Oct;91(Pt 10):2564-73 7708669 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2479-83 18954560 - Cell Mol Immunol. 2008 Oct;5(5):365-72 22801669 - Nat Rev Clin Oncol. 2012 Sep;9(9):510-9 24721574 - Cell Host Microbe. 2014 Apr 9;15(4):457-70 17378764 - Annu Rev Immunol. 2007;25:587-617 |
References_xml | – volume: 3 start-page: e120 year: 2005 ident: ref11 article-title: Gamma-herpesvirus latency requires T cell evasion during episome maintenance publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030120 – volume: 92 start-page: 2479 year: 1995 ident: ref45 article-title: Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.7.2479 – volume: 29 start-page: 1059 year: 1999 ident: ref51 article-title: Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection publication-title: Eur J Immunol doi: 10.1002/(SICI)1521-4141(199904)29:04<1059::AID-IMMU1059>3.0.CO;2-L – volume: 5 start-page: e1000255 year: 2009 ident: ref16 article-title: The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000255 – volume: 192 start-page: 943 year: 2000 ident: ref35 article-title: Control of gammaherpesvirus latency by latent antigen-specific CD8(+) T cells publication-title: J Exp Med doi: 10.1084/jem.192.7.943 – volume: 8 start-page: 100 year: 2010 ident: ref5 article-title: Viral latency and its regulation: lessons from the gamma-herpesviruses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.06.014 – volume: 35 start-page: 171 year: 2005 ident: ref21 article-title: The murine gamma-herpesvirus-68 MK3 protein causes TAP degradation independent of MHC class I heavy chain degradation publication-title: Eur J Immunol doi: 10.1002/eji.200425459 – volume: 77 start-page: 11507 year: 2003 ident: ref39 article-title: HLA-A11-restricted epitope polymorphism among Epstein-Barr virus strains in the highly HLA-A11-positive Chinese population: incidence and immunogenicity of variant epitope sequences publication-title: J Virol doi: 10.1128/JVI.77.21.11507-11516.2003 – volume: 20 start-page: 305 year: 2004 ident: ref20 article-title: Viral degradation of the MHC class I peptide loading complex publication-title: Immunity doi: 10.1016/S1074-7613(04)00047-0 – volume: 288 start-page: 3858 year: 2013 ident: ref24 article-title: Role of Src homology domain binding in signaling complexes assembled by the murid gamma-herpesvirus M2 protein publication-title: J Biol Chem doi: 10.1074/jbc.M112.439810 – volume: 180 start-page: 1471 year: 1994 ident: ref44 article-title: Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues publication-title: J Exp Med doi: 10.1084/jem.180.4.1471 – volume: 182 start-page: 2313 year: 2009 ident: ref14 article-title: Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation publication-title: J Immunol doi: 10.4049/jimmunol.0803218 – volume: 76 start-page: 7125 year: 2002 ident: ref37 article-title: Immune control of the number and reactivation phenotype of cells latently infected with a gammaherpesvirus publication-title: J Virol doi: 10.1128/JVI.76.14.7125-7132.2002 – volume: 2 start-page: e1048 year: 2007 ident: ref57 article-title: Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0001048 – volume: 6 start-page: 276 year: 1998 ident: ref4 article-title: Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis publication-title: Trends Microbiol doi: 10.1016/S0966-842X(98)01306-7 – volume: 380 start-page: 322 year: 2008 ident: ref58 article-title: In vivo attenuation of recombinant murine gammaherpesvirus 68 (MHV-68) is due to the expression and immunogenicity but not to the insertion of foreign sequences publication-title: Virology doi: 10.1016/j.virol.2008.07.034 – volume: 184 start-page: 863 year: 1996 ident: ref60 article-title: Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells publication-title: J Exp Med doi: 10.1084/jem.184.3.863 – volume: 66 start-page: 5161 year: 1992 ident: ref27 article-title: An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases publication-title: J Virol doi: 10.1128/JVI.66.8.5161-5167.1992 – volume: 1 start-page: 75 year: 2001 ident: ref3 article-title: Epstein-Barr virus: exploiting the immune system publication-title: Nat Rev Immunol doi: 10.1038/35095584 – volume: 4 start-page: e1000039 year: 2008 ident: ref25 article-title: The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000039 – volume: 9 start-page: 510 year: 2012 ident: ref2 article-title: T-cell therapy in the treatment of post-transplant lymphoproliferative disease publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2012.111 – volume: 62 start-page: 563 year: 1990 ident: ref43 article-title: Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro publication-title: Cell doi: 10.1016/0092-8674(90)90020-F – volume: 204 start-page: 1863 year: 2007 ident: ref13 article-title: A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates publication-title: J Exp Med doi: 10.1084/jem.20070256 – volume: 91 start-page: 2564 year: 2010 ident: ref30 article-title: Widespread sequence variation in the Epstein-Barr virus latent membrane protein 2A gene among northern Chinese isolates publication-title: J Gen Virol doi: 10.1099/vir.0.021881-0 – volume: 86 start-page: 2887 year: 2012 ident: ref59 article-title: Specific mutation of a gammaherpesvirus-expressed antigen in response to CD8 T cell selection in vivo publication-title: J Virol doi: 10.1128/JVI.06101-11 – volume: 77 start-page: 11517 year: 2003 ident: ref38 article-title: Latent gene sequencing reveals familial relationships among Chinese Epstein-Barr virus strains and evidence for positive selection of A11 epitope changes publication-title: J Virol doi: 10.1128/JVI.77.21.11517-11530.2003 – volume: 83 start-page: 6484 year: 2009 ident: ref50 article-title: Identification of infected B-cell populations by using a recombinant murine gammaherpesvirus 68 expressing a fluorescent protein publication-title: J Virol doi: 10.1128/JVI.00297-09 – volume: 184 start-page: 119 year: 2001 ident: ref33 article-title: Definition of an optimal cytotoxic T lymphocyte epitope in the latently expressed Kaposi's sarcoma-associated herpesvirus kaposin protein publication-title: J Infect Dis doi: 10.1086/322003 – volume: 88 start-page: 55 year: 2002 ident: ref18 article-title: Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses publication-title: Virus Res doi: 10.1016/S0168-1702(02)00120-X – volume: 15 start-page: 627 year: 2001 ident: ref19 article-title: MHC class I ubiquitination by a viral PHD/LAP finger protein publication-title: Immunity doi: 10.1016/S1074-7613(01)00213-8 – volume: 381 start-page: 616 year: 1996 ident: ref46 article-title: T-cell-receptor affinity and thymocyte positive selection publication-title: Nature doi: 10.1038/381616a0 – volume: 67 start-page: 5247 year: 1993 ident: ref55 article-title: Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells publication-title: J Virol doi: 10.1128/JVI.67.9.5247-5252.1993 – volume: 71 start-page: 5894 year: 1997 ident: ref7 article-title: Complete sequence and genomic analysis of murine gammaherpesvirus 68 publication-title: J Virol doi: 10.1128/JVI.71.8.5894-5904.1997 – volume: 375 start-page: 685 year: 1995 ident: ref12 article-title: Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1 publication-title: Nature doi: 10.1038/375685a0 – volume: 267 start-page: 23589 year: 1992 ident: ref42 article-title: In vitro peptide binding to soluble empty class I major histocompatibility complex molecules isolated from transfected Drosophila melanogaster cells publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)35879-4 – volume: 15 start-page: 457 year: 2014 ident: ref56 article-title: A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.03.010 – volume: 5 start-page: 365 year: 2008 ident: ref40 article-title: Potent dendritic cell vaccine loaded with latent membrane protein 2A (LMP2A) publication-title: Cell Mol Immunol doi: 10.1038/cmi.2008.45 – volume: 196 start-page: 1363 year: 2002 ident: ref9 article-title: Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells publication-title: J Exp Med doi: 10.1084/jem.20020890 – volume: 2 start-page: 906 year: 1996 ident: ref53 article-title: Large clonal expansions of CD8+ T cells in acute infectious mononucleosis publication-title: Nat Med doi: 10.1038/nm0896-906 – volume: 356 start-page: 569 year: 2001 ident: ref6 article-title: Natural history of murine gamma-herpesvirus infection publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2000.0779 – volume: 3 start-page: 733 year: 2002 ident: ref22 article-title: K3-mediated evasion of CD8(+) T cells aids amplification of a latent gamma-herpesvirus publication-title: Nat Immunol doi: 10.1038/ni818 – volume: 10 start-page: e1003858 year: 2014 ident: ref26 article-title: Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003858 – volume: 4 start-page: e1000177 year: 2008 ident: ref29 article-title: A single CD8+ T cell epitope sets the long-term latent load of a murid herpesvirus publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000177 – volume: 77 start-page: 4306 year: 2003 ident: ref31 article-title: Kaposi's sarcoma-associated herpesvirus cytotoxic T lymphocytes recognize and target Darwinian positively selected autologous K1 epitopes publication-title: J Virol doi: 10.1128/JVI.77.7.4306-4314.2003 – volume: 80 start-page: 477 issue: Pt 2 year: 1999 ident: ref36 article-title: Immunological control of a murine gammaherpesvirus independent of CD8+ T cells publication-title: J Gen Virol doi: 10.1099/0022-1317-80-2-477 – volume: 202 start-page: 1349 year: 2005 ident: ref52 article-title: Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses publication-title: J Exp Med doi: 10.1084/jem.20051357 – volume: 97 start-page: 2725 year: 2000 ident: ref61 article-title: Postexposure vaccination massively increases the prevalence of gamma-herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.040575197 – volume: 194 start-page: 1078 year: 2006 ident: ref32 article-title: Low T cell responses to human herpesvirus 8 in patients with AIDS-related and classic Kaposi sarcoma publication-title: J Infect Dis doi: 10.1086/507648 – volume: 458 start-page: 211 year: 2009 ident: ref47 article-title: Complete but curtailed T-cell response to very low-affinity antigen publication-title: Nature doi: 10.1038/nature07657 – volume: 177 start-page: 1541 year: 1993 ident: ref48 article-title: Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells publication-title: J Exp Med doi: 10.1084/jem.177.6.1541 – volume: 2012 start-page: 153863 year: 2012 ident: ref41 article-title: Functional avidity: a measure to predict the efficacy of effector T cells? publication-title: Clin Dev Immunol doi: 10.1155/2012/153863 – volume: 18 start-page: 5219 year: 1998 ident: ref28 article-title: Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus publication-title: Mol Cell Biol doi: 10.1128/MCB.18.9.5219 – volume: 77 start-page: 7308 year: 2003 ident: ref10 article-title: Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes publication-title: J Virol doi: 10.1128/JVI.77.13.7308-7318.2003 – volume: 80 start-page: 6123 year: 2006 ident: ref23 article-title: Activation of Vav by the gammaherpesvirus M2 protein contributes to the establishment of viral latency in B lymphocytes publication-title: J Virol doi: 10.1128/JVI.02700-05 – volume: 76 start-page: 17 year: 1994 ident: ref49 article-title: T cell receptor antagonist peptides induce positive selection publication-title: Cell doi: 10.1016/0092-8674(94)90169-4 – volume: 5 start-page: e1000490 year: 2009 ident: ref15 article-title: Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000490 – volume: 85 start-page: 2789 year: 2004 ident: ref8 article-title: The M2 gene product of murine gammaherpesvirus 68 is required for efficient colonization of splenic follicles but is not necessary for expansion of latently infected germinal centre B cells publication-title: J Gen Virol doi: 10.1099/vir.0.80138-0 – volume: 85 start-page: 1604 year: 2011 ident: ref17 article-title: The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways publication-title: J Virol doi: 10.1128/JVI.01608-10 – volume: 96 start-page: 7508 year: 1999 ident: ref34 article-title: Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8(+) T lymphocytes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.13.7508 – volume: 90 start-page: 2317 year: 2009 ident: ref1 article-title: Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4 publication-title: J Gen Virol doi: 10.1099/vir.0.013300-0 – volume: 25 start-page: 587 year: 2007 ident: ref54 article-title: Cellular responses to viral infection in humans: lessons from Epstein-Barr virus publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.25.022106.141553 – reference: 14557637 - J Virol. 2003 Nov;77(21):11517-30 – reference: 18846211 - PLoS Pathog. 2008 Oct;4(10):e1000177 – reference: 11424007 - J Infect Dis. 2001 Jul 15;184(2):119-26 – reference: 8705861 - Nat Med. 1996 Aug;2(8):906-11 – reference: 10377445 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7508-13 – reference: 10229071 - Eur J Immunol. 1999 Apr;29(4):1059-67 – reference: 18954560 - Cell Mol Immunol. 2008 Oct;5(5):365-72 – reference: 11015436 - J Exp Med. 2000 Oct 2;192(7):943-52 – reference: 11905817 - Nat Rev Immunol. 2001 Oct;1(1):75-82 – reference: 16991082 - J Infect Dis. 2006 Oct 15;194(8):1078-88 – reference: 14557636 - J Virol. 2003 Nov;77(21):11507-16 – reference: 7708669 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2479-83 – reference: 2199065 - Cell. 1990 Aug 10;62(3):563-7 – reference: 9710606 - Mol Cell Biol. 1998 Sep;18(9):5219-28 – reference: 8637599 - Nature. 1996 Jun 13;381(6583):616-20 – reference: 17378764 - Annu Rev Immunol. 2007;25:587-617 – reference: 19605591 - J Gen Virol. 2009 Oct;90(Pt 10):2317-30 – reference: 18774154 - Virology. 2008 Oct 25;380(2):322-7 – reference: 1331092 - J Biol Chem. 1992 Nov 25;267(33):23589-95 – reference: 24721574 - Cell Host Microbe. 2014 Apr 9;15(4):457-70 – reference: 8394447 - J Virol. 1993 Sep;67(9):5247-52 – reference: 12634388 - J Virol. 2003 Apr;77(7):4306-14 – reference: 12297327 - Virus Res. 2002 Sep;88(1-2):55-69 – reference: 10694575 - Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2725-30 – reference: 23258536 - J Biol Chem. 2013 Feb 8;288(6):3858-70 – reference: 23227083 - Clin Dev Immunol. 2012;2012:153863 – reference: 11672544 - Immunity. 2001 Oct;15(4):627-36 – reference: 1321296 - J Virol. 1992 Aug;66(8):5161-7 – reference: 9064346 - J Exp Med. 1996 Sep 1;184(3):863-71 – reference: 7540727 - Nature. 1995 Jun 22;375(6533):685-8 – reference: 17940612 - PLoS One. 2007;2(10):e1048 – reference: 19557156 - PLoS Pathog. 2009 Jun;5(6):e1000490 – reference: 12101398 - Nat Immunol. 2002 Aug;3(8):733-40 – reference: 15593121 - Eur J Immunol. 2005 Jan;35(1):171-9 – reference: 24391506 - PLoS Pathog. 2014 Jan;10(1):e1003858 – reference: 17620360 - J Exp Med. 2007 Aug 6;204(8):1863-73 – reference: 22801669 - Nat Rev Clin Oncol. 2012 Sep;9(9):510-9 – reference: 8496675 - J Exp Med. 1993 Jun 1;177(6):1541-50 – reference: 19201886 - J Immunol. 2009 Feb 15;182(4):2313-24 – reference: 12072512 - J Virol. 2002 Jul;76(14):7125-32 – reference: 22171269 - J Virol. 2012 Mar;86(5):2887-93 – reference: 10073710 - J Gen Virol. 1999 Feb;80 ( Pt 2):477-83 – reference: 16731951 - J Virol. 2006 Jun;80(12):6123-35 – reference: 19119421 - PLoS Pathog. 2009 Jan;5(1):e1000255 – reference: 7523572 - J Exp Med. 1994 Oct 1;180(4):1471-83 – reference: 15448339 - J Gen Virol. 2004 Oct;85(Pt 10):2789-97 – reference: 21123379 - J Virol. 2011 Feb;85(4):1604-14 – reference: 20638646 - Cell Host Microbe. 2010 Jul 22;8(1):100-15 – reference: 20554797 - J Gen Virol. 2010 Oct;91(Pt 10):2564-73 – reference: 12438427 - J Exp Med. 2002 Nov 18;196(10):1363-72 – reference: 8287475 - Cell. 1994 Jan 14;76(1):17-27 – reference: 19386718 - J Virol. 2009 Jul;83(13):6484-93 – reference: 9223479 - J Virol. 1997 Aug;71(8):5894-904 – reference: 15769185 - PLoS Biol. 2005 Apr;3(4):e120 – reference: 9717216 - Trends Microbiol. 1998 Jul;6(7):276-82 – reference: 18389062 - PLoS Pathog. 2008 Apr;4(4):e1000039 – reference: 12805429 - J Virol. 2003 Jul;77(13):7308-18 – reference: 11313012 - Philos Trans R Soc Lond B Biol Sci. 2001 Apr 29;356(1408):569-79 – reference: 19182777 - Nature. 2009 Mar 12;458(7235):211-4 – reference: 16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61 – reference: 15030774 - Immunity. 2004 Mar;20(3):305-17 |
SSID | ssj0041316 |
Score | 2.128324 |
Snippet | Copyright: © 2014 Godinho-Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits... Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted... Persistent infections are subject to constant surveillance by [CD8.sup.+] cytotoxic T cells (CTL). Their control should therefore depend on MHC class... Persistent infections are subject to constant surveillance by CD8 + cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted... Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref rcaap |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1004220 |
SubjectTerms | 3T3 Cells Adoptive Transfer Animals Antigenic determinants Antigens B cells Biology and life sciences CD4-Positive T-Lymphocytes - immunology Cell Proliferation Cells, Cultured Cricetinae Distribution Epitopes, T-Lymphocyte - genetics Epitopes, T-Lymphocyte - immunology Health aspects Herpesviridae Infections - immunology Herpesviridae Infections - virology Herpesviruses Histocompatibility Antigens Class I - immunology Immune system Immunoglobulins Ligands Lymphocyte Activation - immunology Medical research Mice Mice, Inbred BALB C Mice, Inbred C57BL Mice, Knockout Ovalbumin - biosynthesis Ovalbumin - immunology Physiological aspects Rhadinovirus - genetics Rhadinovirus - immunology T cell receptors T cells T-Lymphocytes, Cytotoxic - immunology Vaccines Virus Latency - genetics Virus Latency - immunology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlS6GX0nc2TYtaCj25sa2XdUwfIS00h7aBXIqQ9UgWFtusdwP5952xtUtMW3Lp0asxRjOfpU_rmW8IeRuVDKIG8GIZY8ZFHTOtCp-VTopS-DzagMXJ307lyRn_ei7Ob7T6wpywUR54dNyhBEKc61xXIURe-KoqnM19XcPCam1lhzpy2PO2h6lxDYaVeWh6ik1xMsWkTEVzTBWHKUbvu86ifDRqYOWTTWnQ7t-t0LNu2fZ_o59_ZlHeXTlruxvb0_FD8iDxSno0zucRuROax-Te2Gny-gn59SnEoRUEXWBBSKChuUhpL3QN4ezxK1RPgcHSRUOvFlctTUnstI1wvdr0mV_hykiX1wCAtsNuPzGM-HlKzo4___x4kqXOChmEQK-z6KW3UXCuonK8rMu6rrwuhOWyDEVkUQmrfF0GHZX23EbtS2mdtEwxrmzBnpFZ0zZhj1CIiyi9rbhznEcmtPb4148TjlVAFss5YVvXGpdkx7H7xdIM39IUHD9GDxkMiEkBmZNsd1c3ym7cYv8Bo7azRdHs4QeAkklQMrdBaU7eYMwNymI0mHdzYTd9b778ODVHrCo1UGeu_2n0fWL0LhnFFibrbKp1AJeh3NbE8mBiCS-3mwzvIf62c-4NMF4lFCsKGHq9xaTBuzBZrgntZrABR3GgwnPyfMTozjFw2gZ6oiEsaoLeieemI83icpAdRym9Kpdzsj_g3GAaOpxg4HmoUWSAORZ6_3_E4QW5D7SUjwl5B2S2Xm3CS6B-6_rV8Jb_BtwuVmM priority: 102 providerName: Directory of Open Access Journals |
Title | Defining immune engagement thresholds for in vivo control of virus-driven lymphoproliferation |
URI | http://hdl.handle.net/10451/51219 https://www.ncbi.nlm.nih.gov/pubmed/24967892 https://www.proquest.com/docview/1541374514 https://pubmed.ncbi.nlm.nih.gov/PMC4072806 https://doaj.org/article/657609098eef41d881ca0dbb012aa8a7 http://dx.doi.org/10.1371/journal.ppat.1004220 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBddwmAvY99N1wVvDPbkUtuSZT2M0Y-UZqxhdM3IyxCyPtJCsD07Gct_vzvbCTNr2GOsE5HvTtLvrNPvCHnveGxZCs6L1xh9ylLnCx4YP9QxC5k5dsri5eSrSXw5pZ9nbLZHNjVbWwVW94Z2WE9qWi6Ofv9cf4IJ_7Gu2sCDTaejolBICI2sVhDE92Fv4jhVr-j2XAFW7CBuL9Dt6tnZoGoe_-1q3SsWeXUfFP03o7JfaqWKv7aqiyfkcYsxvZPGKZ6SPZs9Iw-bqpPr5-THuXV1WQhvjJdDrDfK5m0KjHcDpq3wRKryAM1648z7fvcr986ahHYvd_C7XFX-eYmrpPdlDc6QF1j5x9nGl16Q6cXo5uzSb6ss-GAOsfSdiY1yjFLuuKZhGqZpYkTAFI1DG7jIcaa4SUMrHBeGKidMGCsdq4hHlKsgekl6WZ7ZfeIl1rLQqIRqTamLmBAGPwNppqMEgGM4INFGtVK3FORYCWMh63M1DqFIoyGJBpGtQQbE3_YqGgqO_8ifotW2skigXT_Iy7ls56OMIc6CsQkYsqOBSZJAq2OTprBfK5UoPiDv0OYSKTIyzMGZq1VVyfG3iTyJklAAjKZip9B1R-hDK-RyeFmt2nsPoDKk3upIHnYkYaLrTvM--t_mnSsJ6JczHgUBNL3d-KTEXpg4l9l8VcuAoijA4gF51fjoVjEQeQNUEWAW3vHejua6LdndbU1BjrR6yXE8IAe1n0tMSYdoBv4P-YokoMhAHOwe72vyCIAnbVLuDklvWa7sGwB3y3RIHvAZH5L-6Wjy9XpYfyIZ1nP4DwjsUkk |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+Immune+Engagement+Thresholds+for+In+Vivo+Control+of+Virus-Driven+Lymphoproliferation&rft.jtitle=PLoS+pathogens&rft.au=Godinho-Silva%2C+Cristina&rft.au=Marques%2C+Sofia&rft.au=Fontinha%2C+Diana&rft.au=Veiga-Fernandes%2C+Henrique&rft.date=2014-06-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7374&rft.volume=10&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.ppat.1004220&rft.externalDocID=1547573119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |