Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promo...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 10; no. 9; pp. 1544 - 1556
Main Authors Raposo, Alexandre A.S.F., Vasconcelos, Francisca F., Drechsel, Daniela, Marie, Corentine, Johnston, Caroline, Dolle, Dirk, Bithell, Angela, Gillotin, Sébastien, van den Berg, Debbie L.C., Ettwiller, Laurence, Flicek, Paul, Crawford, Gregory E., Parras, Carlos M., Berninger, Benedikt, Buckley, Noel J., Guillemot, François, Castro, Diogo S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.03.2015
Cell Press
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2015.02.025

Cover

Loading…
Abstract The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program. [Display omitted] •Genome-wide binding of Ascl1 correlates with transcription activation•Ascl1 can bind to both open and closed chromatin in proliferating cells•Ascl1 promotes local chromatin accessibility at its target sites•Chromatin dynamics at Ascl1 sites regulates temporal progression of its program The proneural transcription factor Ascl1 sequentially activates target genes in proliferating and differentiating progenitors during neurogenesis. Here Raposo et al. show that Ascl1 binds closed and open chromatin in proliferating cells. Binding to closed chromatin promotes accessibility and activation of differentiation specific genes. Thus, dynamics of chromatin landscape at Ascl1 target regions regulate the temporal onset of Ascl1 targets.
AbstractList The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.
The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program. • Genome-wide binding of Ascl1 correlates with transcription activation • Ascl1 can bind to both open and closed chromatin in proliferating cells • Ascl1 promotes local chromatin accessibility at its target sites • Chromatin dynamics at Ascl1 sites regulates temporal progression of its program The proneural transcription factor Ascl1 sequentially activates target genes in proliferating and differentiating progenitors during neurogenesis. Here Raposo et al. show that Ascl1 binds closed and open chromatin in proliferating cells. Binding to closed chromatin promotes accessibility and activation of differentiation specific genes. Thus, dynamics of chromatin landscape at Ascl1 target regions regulate the temporal onset of Ascl1 targets.
The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.
The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program. [Display omitted] •Genome-wide binding of Ascl1 correlates with transcription activation•Ascl1 can bind to both open and closed chromatin in proliferating cells•Ascl1 promotes local chromatin accessibility at its target sites•Chromatin dynamics at Ascl1 sites regulates temporal progression of its program The proneural transcription factor Ascl1 sequentially activates target genes in proliferating and differentiating progenitors during neurogenesis. Here Raposo et al. show that Ascl1 binds closed and open chromatin in proliferating cells. Binding to closed chromatin promotes accessibility and activation of differentiation specific genes. Thus, dynamics of chromatin landscape at Ascl1 target regions regulate the temporal onset of Ascl1 targets.
Author Vasconcelos, Francisca F.
van den Berg, Debbie L.C.
Ettwiller, Laurence
Marie, Corentine
Buckley, Noel J.
Parras, Carlos M.
Drechsel, Daniela
Gillotin, Sébastien
Berninger, Benedikt
Guillemot, François
Dolle, Dirk
Crawford, Gregory E.
Bithell, Angela
Castro, Diogo S.
Johnston, Caroline
Flicek, Paul
Raposo, Alexandre A.S.F.
AuthorAffiliation 10 Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
5 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
2 MRC National Institute for Medical Research, London NW7 1AA, UK
4 Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King’s College London, London SE5 9NU, UK
6 Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Cambridge CB10 1SA, UK
8 Centre for Organismal Studies (COS), Ruprecht-Karls-University, 69120 Heidelberg, Germany
9 Institute of Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
1 Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
7 University of Reading, School of Pharmacy, Hopkins Life Sciences Building, Reading RG6 6AP, UK
11 Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, 80336 Munich, Germany
3 Inserm U1127, CNRS UMR 7
AuthorAffiliation_xml – name: 3 Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR-S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, 75013 Paris, France
– name: 12 Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
– name: 4 Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King’s College London, London SE5 9NU, UK
– name: 9 Institute of Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
– name: 7 University of Reading, School of Pharmacy, Hopkins Life Sciences Building, Reading RG6 6AP, UK
– name: 6 Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Cambridge CB10 1SA, UK
– name: 1 Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
– name: 2 MRC National Institute for Medical Research, London NW7 1AA, UK
– name: 10 Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
– name: 11 Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, 80336 Munich, Germany
– name: 5 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
– name: 8 Centre for Organismal Studies (COS), Ruprecht-Karls-University, 69120 Heidelberg, Germany
Author_xml – sequence: 1
  givenname: Alexandre A.S.F.
  surname: Raposo
  fullname: Raposo, Alexandre A.S.F.
  organization: Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
– sequence: 2
  givenname: Francisca F.
  surname: Vasconcelos
  fullname: Vasconcelos, Francisca F.
  organization: Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
– sequence: 3
  givenname: Daniela
  surname: Drechsel
  fullname: Drechsel, Daniela
  organization: MRC National Institute for Medical Research, London NW7 1AA, UK
– sequence: 4
  givenname: Corentine
  surname: Marie
  fullname: Marie, Corentine
  organization: Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR-S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, 75013 Paris, France
– sequence: 5
  givenname: Caroline
  surname: Johnston
  fullname: Johnston, Caroline
  organization: Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King’s College London, London SE5 9NU, UK
– sequence: 6
  givenname: Dirk
  surname: Dolle
  fullname: Dolle, Dirk
  organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
– sequence: 7
  givenname: Angela
  surname: Bithell
  fullname: Bithell, Angela
  organization: University of Reading, School of Pharmacy, Hopkins Life Sciences Building, Reading RG6 6AP, UK
– sequence: 8
  givenname: Sébastien
  surname: Gillotin
  fullname: Gillotin, Sébastien
  organization: MRC National Institute for Medical Research, London NW7 1AA, UK
– sequence: 9
  givenname: Debbie L.C.
  surname: van den Berg
  fullname: van den Berg, Debbie L.C.
  organization: MRC National Institute for Medical Research, London NW7 1AA, UK
– sequence: 10
  givenname: Laurence
  surname: Ettwiller
  fullname: Ettwiller, Laurence
  organization: Centre for Organismal Studies (COS), Ruprecht-Karls-University, 69120 Heidelberg, Germany
– sequence: 11
  givenname: Paul
  surname: Flicek
  fullname: Flicek, Paul
  organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
– sequence: 12
  givenname: Gregory E.
  surname: Crawford
  fullname: Crawford, Gregory E.
  organization: Institute of Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
– sequence: 13
  givenname: Carlos M.
  surname: Parras
  fullname: Parras, Carlos M.
  organization: Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR-S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, 75013 Paris, France
– sequence: 14
  givenname: Benedikt
  surname: Berninger
  fullname: Berninger, Benedikt
  organization: Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
– sequence: 15
  givenname: Noel J.
  surname: Buckley
  fullname: Buckley, Noel J.
  organization: Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
– sequence: 16
  givenname: François
  surname: Guillemot
  fullname: Guillemot, François
  organization: MRC National Institute for Medical Research, London NW7 1AA, UK
– sequence: 17
  givenname: Diogo S.
  surname: Castro
  fullname: Castro, Diogo S.
  email: dscastro@igc.gulbenkian.pt
  organization: Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25753420$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-01213854$$DView record in HAL
BookMark eNqFkl1rFDEUhgep2A_7D0RyqRe7JplkPrwQlqW2hUVB9E4ImeTsbJbZZExmFvvvPdtZS9sLDYEcTt73ycc559mJDx6y7A2jc0ZZ8WE7N9BF6OecMjmnHKd8kZ1xztiMcVGePIpPs8uUthRHQRmrxavslMtS5oLTs-znIpmOkWUI0TqvB-juyDdoxw7DRK7BA7n63UdIyQVPtLdk2ABZbmLY6cF5ssJUMroHYsfofEu-wBhDi77k0uvs5Vp3CS6P60X24_PV9-XNbPX1-na5WM1MIethBvgkW0BOG2b1GjSvRCUN1NbgYqucag6cNhp4YUVZAedcWMoEutaU2ya_yG4nrg16q_rodjreqaCduk-E2CodB2c6UCIXdV5Qo7WVQoqiMZoaJAJeoEQ8sj5NrH5sdmAN-CHq7gn06Y53G9WGvZJ5ldd5iYD3E2DzzHazWKlDjjLO8kqKPUPtu-NhMfwaIQ1q5xJWttMewpgUq3hRMFpXEqVvH9_rgfy3lCgQk8DEkFKE9YOEUXVoGrVVU9OoQ9MoynEeuB-f2YwbsLTh8DrX_c98_CzA6u4dRJWMA2_AughmwO93_wb8AQ7y37g
CitedBy_id crossref_primary_10_3389_fcell_2022_1016367
crossref_primary_10_3389_fcell_2017_00009
crossref_primary_10_1016_j_molmet_2023_101811
crossref_primary_10_3389_fimmu_2024_1458581
crossref_primary_10_1016_j_arr_2021_101447
crossref_primary_10_3390_cells6030026
crossref_primary_10_1073_pnas_2116091119
crossref_primary_10_1073_pnas_1510595112
crossref_primary_10_1177_15353702211024948
crossref_primary_10_18632_oncotarget_8709
crossref_primary_10_3389_fcell_2022_942579
crossref_primary_10_1371_journal_pone_0135830
crossref_primary_10_1038_mp_2017_173
crossref_primary_10_1038_s41593_019_0399_y
crossref_primary_10_3390_cancers13040692
crossref_primary_10_1038_celldisc_2015_45
crossref_primary_10_1016_j_gde_2015_07_004
crossref_primary_10_1038_s41598_025_94400_8
crossref_primary_10_3389_fncel_2023_1237641
crossref_primary_10_1073_pnas_2211690119
crossref_primary_10_1093_nar_gky093
crossref_primary_10_1242_dev_126292
crossref_primary_10_1016_j_stem_2021_01_003
crossref_primary_10_1016_j_jtho_2018_07_096
crossref_primary_10_1016_j_stem_2021_02_009
crossref_primary_10_1073_pnas_2023784119
crossref_primary_10_1021_acssynbio_7b00467
crossref_primary_10_1093_bib_bbab547
crossref_primary_10_1016_j_gep_2021_119198
crossref_primary_10_1016_j_isci_2021_103132
crossref_primary_10_1007_s12264_021_00640_9
crossref_primary_10_1038_s41593_018_0168_3
crossref_primary_10_7554_eLife_40197
crossref_primary_10_1093_abbs_gmw092
crossref_primary_10_1016_j_celrep_2019_07_087
crossref_primary_10_1038_s41467_017_00690_6
crossref_primary_10_3389_fncel_2018_00410
crossref_primary_10_1002_glia_24457
crossref_primary_10_3389_fnmol_2021_642016
crossref_primary_10_1016_j_devcel_2023_08_017
crossref_primary_10_1093_nar_gky1270
crossref_primary_10_3390_cells11111741
crossref_primary_10_1038_s41598_022_06248_x
crossref_primary_10_3389_fnins_2022_903881
crossref_primary_10_1038_s41598_018_23056_4
crossref_primary_10_3389_fnins_2022_917071
crossref_primary_10_1523_ENEURO_0106_15_2015
crossref_primary_10_1534_g3_120_401458
crossref_primary_10_1371_journal_pone_0180337
crossref_primary_10_3389_fgeed_2020_00007
crossref_primary_10_1134_S1062360422040026
crossref_primary_10_1073_pnas_1802620115
crossref_primary_10_1002_glia_23873
crossref_primary_10_1016_j_neuron_2021_07_007
crossref_primary_10_1080_23262133_2017_1329683
crossref_primary_10_1007_s00441_017_2693_x
crossref_primary_10_1038_s41592_022_01595_z
crossref_primary_10_7554_eLife_22631
crossref_primary_10_1038_s41467_019_11477_2
crossref_primary_10_1186_s13059_022_02690_2
crossref_primary_10_1186_s12864_022_08495_8
crossref_primary_10_1038_s41598_019_55665_y
crossref_primary_10_1016_j_chemosphere_2023_139829
crossref_primary_10_1016_j_semcancer_2022_04_001
crossref_primary_10_3389_fnins_2022_919462
crossref_primary_10_1038_srep42895
crossref_primary_10_2337_db16_1355
crossref_primary_10_1007_s11033_025_10367_9
crossref_primary_10_1016_j_brainres_2018_03_013
crossref_primary_10_1038_s41467_018_05379_y
crossref_primary_10_1242_dev_162693
crossref_primary_10_1016_j_bcp_2017_06_129
crossref_primary_10_1016_j_ydbio_2015_10_009
crossref_primary_10_3390_cells13121016
crossref_primary_10_1038_s41467_019_11153_5
crossref_primary_10_1016_j_stem_2015_05_014
crossref_primary_10_1101_gad_350269_122
crossref_primary_10_3389_fnmol_2016_00156
crossref_primary_10_1016_j_gde_2019_06_006
crossref_primary_10_1371_journal_pbio_3001563
crossref_primary_10_3389_fcell_2024_1324584
crossref_primary_10_1242_dev_144113
crossref_primary_10_1016_j_stem_2017_06_004
crossref_primary_10_1038_s41580_022_00464_z
crossref_primary_10_1039_C6MB00851H
crossref_primary_10_1016_j_stem_2024_04_015
crossref_primary_10_1186_s13046_022_02255_y
crossref_primary_10_1098_rsob_220062
crossref_primary_10_1016_j_celrep_2016_09_024
crossref_primary_10_1016_j_celrep_2023_113541
crossref_primary_10_3389_fcell_2022_838431
crossref_primary_10_1016_j_conb_2016_11_011
crossref_primary_10_3389_fncel_2020_00035
crossref_primary_10_1186_s12915_022_01300_8
crossref_primary_10_3389_fncel_2017_00231
crossref_primary_10_1016_j_ceb_2020_08_006
crossref_primary_10_1016_j_stemcr_2021_01_006
crossref_primary_10_1007_s12035_022_03145_2
crossref_primary_10_1016_j_ymeth_2019_02_002
crossref_primary_10_1038_s41598_017_00952_9
crossref_primary_10_1038_s41598_021_01366_4
crossref_primary_10_1016_j_freeradbiomed_2021_05_016
crossref_primary_10_1016_j_gde_2023_102128
crossref_primary_10_1186_s13039_018_0355_7
crossref_primary_10_1371_journal_pone_0313534
crossref_primary_10_1016_j_molmed_2019_01_008
crossref_primary_10_1093_nar_gkx693
crossref_primary_10_1007_s11515_016_1405_3
crossref_primary_10_3389_fgene_2019_00907
crossref_primary_10_1089_cmb_2020_0225
crossref_primary_10_3389_fbioe_2018_00173
crossref_primary_10_1007_s12264_016_0032_y
crossref_primary_10_1093_braincomms_fcaa165
crossref_primary_10_1101_gad_348174_120
crossref_primary_10_3389_fnins_2019_00092
crossref_primary_10_1111_acel_14165
crossref_primary_10_3390_ijms20215306
crossref_primary_10_1007_s12264_021_00751_3
crossref_primary_10_3390_cells12162086
crossref_primary_10_1016_j_semcdb_2016_10_003
crossref_primary_10_1242_dev_133975
crossref_primary_10_1016_j_molcel_2019_06_009
crossref_primary_10_3389_fcvm_2022_972591
crossref_primary_10_1002_glia_23837
crossref_primary_10_1126_sciadv_adl5935
crossref_primary_10_1146_annurev_genet_071719_020653
crossref_primary_10_7554_eLife_32785
crossref_primary_10_1101_gr_203513_115
crossref_primary_10_3390_ijms22179150
crossref_primary_10_1016_j_jgg_2019_10_003
Cites_doi 10.1242/jcs.01122
10.1101/gr.121541.111
10.1093/cercor/bhj167
10.1038/nature11232
10.1242/dev.126.3.525
10.1016/S1097-2765(02)00481-1
10.1016/j.celrep.2013.04.021
10.1126/science.1242366
10.1073/pnas.90.20.9252
10.1371/journal.pbio.1000565
10.1038/nrn874
10.1038/nmeth.1906
10.1128/MCB.23.19.6922-6935.2003
10.1016/S0092-8674(00)81815-2
10.1016/j.neuroscience.2013.08.029
10.1002/stem.17
10.1093/nar/gkt850
10.1186/gb-2008-9-9-r137
10.1101/gad.627811
10.1111/j.1460-9568.2007.05509.x
10.1016/j.neulet.2010.03.004
10.1038/nature08797
10.1242/jcs.037556
10.1101/gr.135129.111
10.1101/pdb.prot5384
10.1016/j.stem.2012.07.007
10.1093/nar/23.10.1686
10.1016/j.stem.2010.01.004
10.1371/journal.pbio.0030283
10.1101/gad.176826.111
10.1242/dev.105866
10.1016/j.devcel.2006.10.006
10.1523/JNEUROSCI.4621-04.2005
10.1523/JNEUROSCI.1615-07.2007
10.1146/annurev.neuro.051508.135600
10.1016/j.cell.2007.12.014
10.1186/gb-2009-10-3-r25
10.1016/S0962-8924(03)00147-8
10.1038/nrg2641
10.3389/fncel.2014.00412
10.1002/j.1460-2075.1991.tb04939.x
10.1016/j.cell.2013.09.028
ContentType Journal Article
Copyright 2015 The Authors
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Attribution - NonCommercial - NoDerivatives
2015 The Authors 2015
Copyright_xml – notice: 2015 The Authors
– notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Attribution - NonCommercial - NoDerivatives
– notice: 2015 The Authors 2015
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.celrep.2015.02.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1556
ExternalDocumentID oai_doaj_org_article_4349360caad54546bca0ce22ed6e76d4
PMC5383937
oai_HAL_hal_01213854v1
25753420
10_1016_j_celrep_2015_02_025
S2211124715001710
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U117570528
– fundername: Wellcome Trust
  grantid: 098051
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c659t-e101d6e30b1dafea28485ce9dc85cd830a2e20bae26d478e2224d01401df02db3
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Wed Aug 27 01:31:44 EDT 2025
Thu Aug 21 18:15:58 EDT 2025
Fri Jul 04 06:38:01 EDT 2025
Thu Jul 10 22:03:08 EDT 2025
Mon Jul 21 05:57:07 EDT 2025
Tue Jul 01 03:07:24 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Wed May 17 01:06:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-e101d6e30b1dafea28485ce9dc85cd830a2e20bae26d478e2224d01401df02db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first author
ORCID 0000-0003-2652-2782
0000-0002-3897-7955
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124715001710
PMID 25753420
PQID 1826610985
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4349360caad54546bca0ce22ed6e76d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5383937
hal_primary_oai_HAL_hal_01213854v1
proquest_miscellaneous_1826610985
pubmed_primary_25753420
crossref_primary_10_1016_j_celrep_2015_02_025
crossref_citationtrail_10_1016_j_celrep_2015_02_025
elsevier_sciencedirect_doi_10_1016_j_celrep_2015_02_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-10
PublicationDateYYYYMMDD 2015-03-10
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2015
Publisher Elsevier Inc
Cell Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Cell Press
– name: Elsevier
References Kriegstein, Alvarez-Buylla (bib22) 2009; 32
Zaret, Carroll (bib41) 2011; 25
Borromeo, Meredith, Castro, Chang, Tung, Guillemot, Johnson (bib8) 2014; 141
Park (bib28) 2009; 10
Geoffroy, Critchley, Castro, Ramelli, Barraclough, Descombes, Guillemot, Raineteau (bib17) 2009; 27
Boyle, Davis, Shulha, Meltzer, Margulies, Weng, Furey, Crawford (bib9) 2008; 132
Ernst, Kellis (bib15) 2012; 9
Martínez-Cerdeño, Noctor, Espinosa, Ariza, Parker, Orasji, Daadi, Bankiewicz, Alvarez-Buylla, Kriegstein (bib25) 2010; 6
Alvarez-Rodríguez, Pons (bib2) 2009; 122
Wapinski, Vierbuchen, Qu, Lee, Chanda, Fuentes, Giresi, Ng, Marro, Neff (bib39) 2013; 155
Kaltezioti, Kouroupi, Oikonomaki, Mantouvalou, Stergiopoulos, Charonis, Rohrer, Matsas, Politis (bib20) 2010; 8
Song, Zhang, Grasfeder, Boyle, Giresi, Lee, Sheffield, Gräf, Huss, Keefe (bib35) 2011; 21
Bergstrom, Penn, Strand, Perry, Rudnicki, Tapscott (bib4) 2002; 9
Roemer, Friedmann (bib32) 1993; 90
Wilkinson, Dennis, Schuurmans (bib40) 2013; 253
Karow, Sánchez, Schichor, Masserdotti, Ortega, Heinrich, Gascón, Khan, Lie, Dellavalle (bib21) 2012; 11
Ohsawa, Ohtsuka, Kageyama (bib27) 2005; 25
Vierbuchen, Ostermeier, Pang, Kokubu, Südhof, Wernig (bib38) 2010; 463
Forgacs, Yook, Janmey, Jeong, Burd (bib16) 2004; 117
Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li, Liu (bib42) 2008; 9
Thurman, Rynes, Humbert, Vierstra, Maurano, Haugen, Sheffield, Stergachis, Wang, Vernot (bib36) 2012; 489
Imayoshi, Isomura, Harima, Kawaguchi, Kori, Miyachi, Fujiwara, Ishidate, Kageyama (bib19) 2013; 342
Rheinbay, Suvà, Gillespie, Wakimoto, Patel, Shahid, Oksuz, Rabkin, Martuza, Rivera (bib31) 2013; 3
Casarosa, Fode, Guillemot (bib11) 1999; 126
Aaker, Patineau, Yang, Ewart, Nakagawa, McLoon, Koyano-Nakagawa (bib1) 2010; 474
Natarajan, Yardimci, Sheffield, Crawford, Ohler (bib26) 2012; 22
Berninger, Costa, Koch, Schroeder, Sutor, Grothe, Götz (bib5) 2007; 27
Burk, Klempnauer (bib10) 1991; 10
Vasconcelos, Castro (bib37) 2014; 8
Ruzinova, Benezra (bib33) 2003; 13
Bellefroid, Bourguignon, Hollemann, Ma, Anderson, Kintner, Pieler (bib3) 1996; 87
Conti, Pollard, Gorba, Reitano, Toselli, Biella, Sun, Sanzone, Ying, Cattaneo, Smith (bib14) 2005; 3
Langmead, Trapnell, Pop, Salzberg (bib23) 2009; 10
Castro, Martynoga, Parras, Ramesh, Pacary, Johnston, Drechsel, Lebel-Potter, Garcia, Hunt (bib13) 2011; 25
Gratton, Torban, Jasmin, Theriault, German, Stifani, Stifani (bib18) 2003; 23
Piper, Elze, Cauchy, Cockerill, Bonifer, Ott (bib29) 2013; 41
Song, Crawford (bib34) 2010; 2010
Berninger, Guillemot, Götz (bib6) 2007; 25
Littlewood, Hancock, Danielian, Parker, Evan (bib24) 1995; 23
Castro, Skowronska-Krawczyk, Armant, Donaldson, Parras, Hunt, Critchley, Nguyen, Gossler, Göttgens (bib12) 2006; 11
Bertrand, Castro, Guillemot (bib7) 2002; 3
Pollard, Conti, Sun, Goffredo, Smith (bib30) 2006; 16
Burk (10.1016/j.celrep.2015.02.025_bib10) 1991; 10
Thurman (10.1016/j.celrep.2015.02.025_bib36) 2012; 489
Ruzinova (10.1016/j.celrep.2015.02.025_bib33) 2003; 13
Langmead (10.1016/j.celrep.2015.02.025_bib23) 2009; 10
Zaret (10.1016/j.celrep.2015.02.025_bib41) 2011; 25
Castro (10.1016/j.celrep.2015.02.025_bib12) 2006; 11
Berninger (10.1016/j.celrep.2015.02.025_bib5) 2007; 27
Conti (10.1016/j.celrep.2015.02.025_bib14) 2005; 3
Piper (10.1016/j.celrep.2015.02.025_bib29) 2013; 41
Imayoshi (10.1016/j.celrep.2015.02.025_bib19) 2013; 342
Littlewood (10.1016/j.celrep.2015.02.025_bib24) 1995; 23
Natarajan (10.1016/j.celrep.2015.02.025_bib26) 2012; 22
Bergstrom (10.1016/j.celrep.2015.02.025_bib4) 2002; 9
Borromeo (10.1016/j.celrep.2015.02.025_bib8) 2014; 141
Geoffroy (10.1016/j.celrep.2015.02.025_bib17) 2009; 27
Rheinbay (10.1016/j.celrep.2015.02.025_bib31) 2013; 3
Wapinski (10.1016/j.celrep.2015.02.025_bib39) 2013; 155
Alvarez-Rodríguez (10.1016/j.celrep.2015.02.025_bib2) 2009; 122
Bertrand (10.1016/j.celrep.2015.02.025_bib7) 2002; 3
Gratton (10.1016/j.celrep.2015.02.025_bib18) 2003; 23
Kriegstein (10.1016/j.celrep.2015.02.025_bib22) 2009; 32
Wilkinson (10.1016/j.celrep.2015.02.025_bib40) 2013; 253
Berninger (10.1016/j.celrep.2015.02.025_bib6) 2007; 25
Aaker (10.1016/j.celrep.2015.02.025_bib1) 2010; 474
Boyle (10.1016/j.celrep.2015.02.025_bib9) 2008; 132
Vasconcelos (10.1016/j.celrep.2015.02.025_bib37) 2014; 8
Castro (10.1016/j.celrep.2015.02.025_bib13) 2011; 25
Zhang (10.1016/j.celrep.2015.02.025_bib42) 2008; 9
Kaltezioti (10.1016/j.celrep.2015.02.025_bib20) 2010; 8
Song (10.1016/j.celrep.2015.02.025_bib34) 2010; 2010
Karow (10.1016/j.celrep.2015.02.025_bib21) 2012; 11
Ohsawa (10.1016/j.celrep.2015.02.025_bib27) 2005; 25
Vierbuchen (10.1016/j.celrep.2015.02.025_bib38) 2010; 463
Martínez-Cerdeño (10.1016/j.celrep.2015.02.025_bib25) 2010; 6
Park (10.1016/j.celrep.2015.02.025_bib28) 2009; 10
Roemer (10.1016/j.celrep.2015.02.025_bib32) 1993; 90
Bellefroid (10.1016/j.celrep.2015.02.025_bib3) 1996; 87
Pollard (10.1016/j.celrep.2015.02.025_bib30) 2006; 16
Ernst (10.1016/j.celrep.2015.02.025_bib15) 2012; 9
Song (10.1016/j.celrep.2015.02.025_bib35) 2011; 21
Casarosa (10.1016/j.celrep.2015.02.025_bib11) 1999; 126
Forgacs (10.1016/j.celrep.2015.02.025_bib16) 2004; 117
References_xml – volume: 13
  start-page: 410
  year: 2003
  end-page: 418
  ident: bib33
  article-title: Id proteins in development, cell cycle and cancer
  publication-title: Trends Cell Biol.
– volume: 21
  start-page: 1757
  year: 2011
  end-page: 1767
  ident: bib35
  article-title: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity
  publication-title: Genome Res.
– volume: 41
  start-page: e201
  year: 2013
  ident: bib29
  article-title: Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data
  publication-title: Nucleic Acids Res.
– volume: 25
  start-page: 930
  year: 2011
  end-page: 945
  ident: bib13
  article-title: A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets
  publication-title: Genes Dev.
– volume: 489
  start-page: 75
  year: 2012
  end-page: 82
  ident: bib36
  article-title: The accessible chromatin landscape of the human genome
  publication-title: Nature
– volume: 10
  start-page: R25
  year: 2009
  ident: bib23
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
– volume: 9
  start-page: 215
  year: 2012
  end-page: 216
  ident: bib15
  article-title: ChromHMM: automating chromatin-state discovery and characterization
  publication-title: Nat. Methods
– volume: 23
  start-page: 1686
  year: 1995
  end-page: 1690
  ident: bib24
  article-title: A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins
  publication-title: Nucleic Acids Res.
– volume: 27
  start-page: 847
  year: 2009
  end-page: 856
  ident: bib17
  article-title: Engineering of dominant active basic helix-loop-helix proteins that are resistant to negative regulation by postnatal central nervous system antineurogenic cues
  publication-title: Stem Cells
– volume: 3
  start-page: e283
  year: 2005
  ident: bib14
  article-title: Niche-independent symmetrical self-renewal of a mammalian tissue stem cell
  publication-title: PLoS Biol.
– volume: 87
  start-page: 1191
  year: 1996
  end-page: 1202
  ident: bib3
  article-title: X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation
  publication-title: Cell
– volume: 10
  start-page: 3713
  year: 1991
  end-page: 3719
  ident: bib10
  article-title: Estrogen-dependent alterations in differentiation state of myeloid cells caused by a v-myb/estrogen receptor fusion protein
  publication-title: EMBO J.
– volume: 253
  start-page: 256
  year: 2013
  end-page: 273
  ident: bib40
  article-title: Proneural genes in neocortical development
  publication-title: Neuroscience
– volume: 126
  start-page: 525
  year: 1999
  end-page: 534
  ident: bib11
  article-title: Mash1 regulates neurogenesis in the ventral telencephalon
  publication-title: Development
– volume: 11
  start-page: 471
  year: 2012
  end-page: 476
  ident: bib21
  article-title: Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells
  publication-title: Cell Stem Cell
– volume: 25
  start-page: 5857
  year: 2005
  end-page: 5865
  ident: bib27
  article-title: Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors
  publication-title: J. Neurosci.
– volume: 342
  start-page: 1203
  year: 2013
  end-page: 1208
  ident: bib19
  article-title: Oscillatory control of factors determining multipotency and fate in mouse neural progenitors
  publication-title: Science
– volume: 2010
  year: 2010
  ident: bib34
  article-title: DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells
  publication-title: Cold Spring Harbor Protoc.
– volume: 132
  start-page: 311
  year: 2008
  end-page: 322
  ident: bib9
  article-title: High-resolution mapping and characterization of open chromatin across the genome
  publication-title: Cell
– volume: 141
  start-page: 2803
  year: 2014
  end-page: 2812
  ident: bib8
  article-title: A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord
  publication-title: Development
– volume: 22
  start-page: 1711
  year: 2012
  end-page: 1722
  ident: bib26
  article-title: Predicting cell-type-specific gene expression from regions of open chromatin
  publication-title: Genome Res.
– volume: 474
  start-page: 46
  year: 2010
  end-page: 51
  ident: bib1
  article-title: Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system
  publication-title: Neurosci. Lett.
– volume: 9
  start-page: R137
  year: 2008
  ident: bib42
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
– volume: 32
  start-page: 149
  year: 2009
  end-page: 184
  ident: bib22
  article-title: The glial nature of embryonic and adult neural stem cells
  publication-title: Annu. Rev. Neurosci.
– volume: 10
  start-page: 669
  year: 2009
  end-page: 680
  ident: bib28
  article-title: ChIP-seq: advantages and challenges of a maturing technology
  publication-title: Nat. Rev. Genet.
– volume: 3
  start-page: 517
  year: 2002
  end-page: 530
  ident: bib7
  article-title: Proneural genes and the specification of neural cell types
  publication-title: Nat. Rev. Neurosci.
– volume: 25
  start-page: 2227
  year: 2011
  end-page: 2241
  ident: bib41
  article-title: Pioneer transcription factors: establishing competence for gene expression
  publication-title: Genes Dev.
– volume: 122
  start-page: 595
  year: 2009
  end-page: 599
  ident: bib2
  article-title: Expression of the proneural gene encoding Mash1 suppresses MYCN mitotic activity
  publication-title: J. Cell Sci.
– volume: 6
  start-page: 238
  year: 2010
  end-page: 250
  ident: bib25
  article-title: Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats
  publication-title: Cell Stem Cell
– volume: 463
  start-page: 1035
  year: 2010
  end-page: 1041
  ident: bib38
  article-title: Direct conversion of fibroblasts to functional neurons by defined factors
  publication-title: Nature
– volume: 9
  start-page: 587
  year: 2002
  end-page: 600
  ident: bib4
  article-title: Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression
  publication-title: Mol. Cell
– volume: 16
  start-page: i112
  year: 2006
  end-page: i120
  ident: bib30
  article-title: Adherent neural stem (NS) cells from fetal and adult forebrain
  publication-title: Cereb. Cortex
– volume: 90
  start-page: 9252
  year: 1993
  end-page: 9256
  ident: bib32
  article-title: Modulation of cell proliferation and gene expression by a p53-estrogen receptor hybrid protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 2581
  year: 2007
  end-page: 2590
  ident: bib6
  article-title: Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells
  publication-title: Eur. J. Neurosci.
– volume: 11
  start-page: 831
  year: 2006
  end-page: 844
  ident: bib12
  article-title: Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif
  publication-title: Dev. Cell
– volume: 8
  start-page: e1000565
  year: 2010
  ident: bib20
  article-title: Prox1 regulates the notch1-mediated inhibition of neurogenesis
  publication-title: PLoS Biol.
– volume: 23
  start-page: 6922
  year: 2003
  end-page: 6935
  ident: bib18
  article-title: Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms
  publication-title: Mol. Cell. Biol.
– volume: 117
  start-page: 2769
  year: 2004
  end-page: 2775
  ident: bib16
  article-title: Role of the cytoskeleton in signaling networks
  publication-title: J. Cell Sci.
– volume: 8
  start-page: 412
  year: 2014
  ident: bib37
  article-title: Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1
  publication-title: Front. Cell. Neurosci.
– volume: 3
  start-page: 1567
  year: 2013
  end-page: 1579
  ident: bib31
  article-title: An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma
  publication-title: Cell Rep.
– volume: 155
  start-page: 621
  year: 2013
  end-page: 635
  ident: bib39
  article-title: Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons
  publication-title: Cell
– volume: 27
  start-page: 8654
  year: 2007
  end-page: 8664
  ident: bib5
  article-title: Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia
  publication-title: The Journal of neuroscience,
– volume: 117
  start-page: 2769
  year: 2004
  ident: 10.1016/j.celrep.2015.02.025_bib16
  article-title: Role of the cytoskeleton in signaling networks
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01122
– volume: 21
  start-page: 1757
  year: 2011
  ident: 10.1016/j.celrep.2015.02.025_bib35
  article-title: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity
  publication-title: Genome Res.
  doi: 10.1101/gr.121541.111
– volume: 16
  start-page: i112
  issue: Suppl 1
  year: 2006
  ident: 10.1016/j.celrep.2015.02.025_bib30
  article-title: Adherent neural stem (NS) cells from fetal and adult forebrain
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj167
– volume: 489
  start-page: 75
  year: 2012
  ident: 10.1016/j.celrep.2015.02.025_bib36
  article-title: The accessible chromatin landscape of the human genome
  publication-title: Nature
  doi: 10.1038/nature11232
– volume: 126
  start-page: 525
  year: 1999
  ident: 10.1016/j.celrep.2015.02.025_bib11
  article-title: Mash1 regulates neurogenesis in the ventral telencephalon
  publication-title: Development
  doi: 10.1242/dev.126.3.525
– volume: 9
  start-page: 587
  year: 2002
  ident: 10.1016/j.celrep.2015.02.025_bib4
  article-title: Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00481-1
– volume: 3
  start-page: 1567
  year: 2013
  ident: 10.1016/j.celrep.2015.02.025_bib31
  article-title: An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.04.021
– volume: 342
  start-page: 1203
  year: 2013
  ident: 10.1016/j.celrep.2015.02.025_bib19
  article-title: Oscillatory control of factors determining multipotency and fate in mouse neural progenitors
  publication-title: Science
  doi: 10.1126/science.1242366
– volume: 90
  start-page: 9252
  year: 1993
  ident: 10.1016/j.celrep.2015.02.025_bib32
  article-title: Modulation of cell proliferation and gene expression by a p53-estrogen receptor hybrid protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.20.9252
– volume: 8
  start-page: e1000565
  year: 2010
  ident: 10.1016/j.celrep.2015.02.025_bib20
  article-title: Prox1 regulates the notch1-mediated inhibition of neurogenesis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000565
– volume: 3
  start-page: 517
  year: 2002
  ident: 10.1016/j.celrep.2015.02.025_bib7
  article-title: Proneural genes and the specification of neural cell types
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn874
– volume: 9
  start-page: 215
  year: 2012
  ident: 10.1016/j.celrep.2015.02.025_bib15
  article-title: ChromHMM: automating chromatin-state discovery and characterization
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1906
– volume: 23
  start-page: 6922
  year: 2003
  ident: 10.1016/j.celrep.2015.02.025_bib18
  article-title: Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.19.6922-6935.2003
– volume: 87
  start-page: 1191
  year: 1996
  ident: 10.1016/j.celrep.2015.02.025_bib3
  article-title: X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81815-2
– volume: 253
  start-page: 256
  year: 2013
  ident: 10.1016/j.celrep.2015.02.025_bib40
  article-title: Proneural genes in neocortical development
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.08.029
– volume: 27
  start-page: 847
  year: 2009
  ident: 10.1016/j.celrep.2015.02.025_bib17
  article-title: Engineering of dominant active basic helix-loop-helix proteins that are resistant to negative regulation by postnatal central nervous system antineurogenic cues
  publication-title: Stem Cells
  doi: 10.1002/stem.17
– volume: 41
  start-page: e201
  year: 2013
  ident: 10.1016/j.celrep.2015.02.025_bib29
  article-title: Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt850
– volume: 9
  start-page: R137
  year: 2008
  ident: 10.1016/j.celrep.2015.02.025_bib42
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 25
  start-page: 930
  year: 2011
  ident: 10.1016/j.celrep.2015.02.025_bib13
  article-title: A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets
  publication-title: Genes Dev.
  doi: 10.1101/gad.627811
– volume: 25
  start-page: 2581
  year: 2007
  ident: 10.1016/j.celrep.2015.02.025_bib6
  article-title: Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05509.x
– volume: 474
  start-page: 46
  year: 2010
  ident: 10.1016/j.celrep.2015.02.025_bib1
  article-title: Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.03.004
– volume: 463
  start-page: 1035
  year: 2010
  ident: 10.1016/j.celrep.2015.02.025_bib38
  article-title: Direct conversion of fibroblasts to functional neurons by defined factors
  publication-title: Nature
  doi: 10.1038/nature08797
– volume: 122
  start-page: 595
  year: 2009
  ident: 10.1016/j.celrep.2015.02.025_bib2
  article-title: Expression of the proneural gene encoding Mash1 suppresses MYCN mitotic activity
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.037556
– volume: 22
  start-page: 1711
  year: 2012
  ident: 10.1016/j.celrep.2015.02.025_bib26
  article-title: Predicting cell-type-specific gene expression from regions of open chromatin
  publication-title: Genome Res.
  doi: 10.1101/gr.135129.111
– volume: 2010
  year: 2010
  ident: 10.1016/j.celrep.2015.02.025_bib34
  article-title: DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells
  publication-title: Cold Spring Harbor Protoc.
  doi: 10.1101/pdb.prot5384
– volume: 11
  start-page: 471
  year: 2012
  ident: 10.1016/j.celrep.2015.02.025_bib21
  article-title: Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.07.007
– volume: 23
  start-page: 1686
  year: 1995
  ident: 10.1016/j.celrep.2015.02.025_bib24
  article-title: A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.10.1686
– volume: 6
  start-page: 238
  year: 2010
  ident: 10.1016/j.celrep.2015.02.025_bib25
  article-title: Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.01.004
– volume: 3
  start-page: e283
  year: 2005
  ident: 10.1016/j.celrep.2015.02.025_bib14
  article-title: Niche-independent symmetrical self-renewal of a mammalian tissue stem cell
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030283
– volume: 25
  start-page: 2227
  year: 2011
  ident: 10.1016/j.celrep.2015.02.025_bib41
  article-title: Pioneer transcription factors: establishing competence for gene expression
  publication-title: Genes Dev.
  doi: 10.1101/gad.176826.111
– volume: 141
  start-page: 2803
  year: 2014
  ident: 10.1016/j.celrep.2015.02.025_bib8
  article-title: A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord
  publication-title: Development
  doi: 10.1242/dev.105866
– volume: 11
  start-page: 831
  year: 2006
  ident: 10.1016/j.celrep.2015.02.025_bib12
  article-title: Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.10.006
– volume: 25
  start-page: 5857
  year: 2005
  ident: 10.1016/j.celrep.2015.02.025_bib27
  article-title: Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4621-04.2005
– volume: 27
  start-page: 8654
  issue: 32
  year: 2007
  ident: 10.1016/j.celrep.2015.02.025_bib5
  article-title: Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia
  publication-title: The Journal of neuroscience,
  doi: 10.1523/JNEUROSCI.1615-07.2007
– volume: 32
  start-page: 149
  year: 2009
  ident: 10.1016/j.celrep.2015.02.025_bib22
  article-title: The glial nature of embryonic and adult neural stem cells
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.051508.135600
– volume: 132
  start-page: 311
  year: 2008
  ident: 10.1016/j.celrep.2015.02.025_bib9
  article-title: High-resolution mapping and characterization of open chromatin across the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.014
– volume: 10
  start-page: R25
  year: 2009
  ident: 10.1016/j.celrep.2015.02.025_bib23
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 13
  start-page: 410
  year: 2003
  ident: 10.1016/j.celrep.2015.02.025_bib33
  article-title: Id proteins in development, cell cycle and cancer
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(03)00147-8
– volume: 10
  start-page: 669
  year: 2009
  ident: 10.1016/j.celrep.2015.02.025_bib28
  article-title: ChIP-seq: advantages and challenges of a maturing technology
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2641
– volume: 8
  start-page: 412
  year: 2014
  ident: 10.1016/j.celrep.2015.02.025_bib37
  article-title: Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2014.00412
– volume: 10
  start-page: 3713
  year: 1991
  ident: 10.1016/j.celrep.2015.02.025_bib10
  article-title: Estrogen-dependent alterations in differentiation state of myeloid cells caused by a v-myb/estrogen receptor fusion protein
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb04939.x
– volume: 155
  start-page: 621
  year: 2013
  ident: 10.1016/j.celrep.2015.02.025_bib39
  article-title: Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.028
SSID ssj0000601194
Score 2.4809523
Snippet The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1544
SubjectTerms Biochemistry, Molecular Biology
Life Sciences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIAtqITEBUF5LZTKIK4WjmM7yXFbtVqhigOiUg9Ill9LF628VXeL6L9nxk5WGzjsBSmnxLGT8cQzo4y_IeRj23TCNy1n3knHpG08a63vmHIuKmchCImZ9vlFzy7l5yt1tVPqC3PCCh64CO6TrGVXa-6tDWDspXbech-FiEHHRodMAgWbtxNMlTUYWWb4S1kIzNkSshn2zeXkLh-XtxFxlZXKyE6slL1jlzK-f2SeHl5jnuS_TujfuZQ7xun8KXnSe5V0Wt7mGXkQ0yF5VOpM3j8n36drv6zo6QoizUUC73J5T7-WIvRxTZE8Tc9-9xmxidoUKLiFFLm56M8meoH7gTFTipZdjTQjPX7gMrlYvyCX52ffTmesL6vAvFbdhkWQAQiv5q4Kdh4tGKhW-dgF3yIpoOZWRMGdjQLE27QgayFDDsTCnIvg6pfkIK1SfE2orueBO6xzA20aW3c2SHAZtEIMoK7chNSDUI3vmeNY-mJphuSyn6ZMhcGpMFzAoSaEbe-6KcyNPe1PcL62bZGYnU-AHplej8w-PZqQZpht0zsfxamArhZ7hv8AyjEafTa9MHguA_NaJX9VE_J-0B0DHzD-lbEpru7WBgM8ZN630NGrokvbvmA9VbUUHB5upGWjwcZX0uI6Q8LBkCHr8M3_kM1b8hjfl-U0xiNysLm9i-_AF9u44_zZ_QHr4zBf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA67K4Iv4t3xRhRfK2ma9PIgMi67DLL6IA7sgxBym92RktHprOz8e89J2tF6YUHoS9s0aZJzcr5DTr5DyMu6aritapZZI0wmdGWzWtsmk8Z4aTQ4IT6yfX4oZ3Px7lSe7pEhZ2s_gN1fXTvMJzVft68uv23fgMK__hmrZX279sg-mcvIwMnlPrkGtqlCVX3fA_60NiPHGW41c46xXFxUw3m6f1Q0sleR1n9ktvbPMX7yT3D6e4zlL0br-Ba52aNNOk3icZvs-XCHXE_5J7d3yedpZ9ucHq7AA10GQJ3tln5Myel9R5GRmh5d9pGygergKMBFiny6iHMDPcFzwhhBRdNpRxqpPs5w-Vx298j8-OjT4Szr0y1ktpTNJvMwBq70BTO50wuvwXDV0vrG2RoZBAqmuefMaM9LJ6raA7IQLjpobsG4M8V9chBWwT8ktCwWjhnMfwNlKl002gmAEqVEesAyNxNSDIOqbM9FjikxWjUEnX1RaSoUToViHC45Idnuq6-Ji-OK8m9xvnZlkUk7Plitz1SvmEoUoilKZrV2ACZFaaxmFvrmYSgq6OiEVMNsqx6UJLABVS2vaP4FCMeo9dn0ROGzSKRXS_E9n5Dng-woUGzcrdHBry46hY4fcuHXUNGDJEu7umCdlYXgDH5uJGWjxsZvwvI8koeDgUMOxEf_3a3H5AbeZTGm8Qk52Kwv_FMAZhvzLOraD1BfNaw
  priority: 102
  providerName: Scholars Portal
Title Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis
URI https://dx.doi.org/10.1016/j.celrep.2015.02.025
https://www.ncbi.nlm.nih.gov/pubmed/25753420
https://www.proquest.com/docview/1826610985
https://hal.sorbonne-universite.fr/hal-01213854
https://pubmed.ncbi.nlm.nih.gov/PMC5383937
https://doaj.org/article/4349360caad54546bca0ce22ed6e76d4
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddYbCXse9lH0UbexWRLcmWH9PQEkrbh22FPAyEvtK6BKck6Vj_-93Jdqi3h0IhBKLIUiSd737n3P2OkG-6rHJfas68k45JW3qmra-Yci4qZ8EJiYnt87yYXciTuZrvkWmfC4NhlZ3ub3V60tZdy7jbzfFNXY9_5OC7gHUqAdIg6Qv67ULqlMQ3P9w9Z0G-kSzVQ8T-DC_oM-hSmJePy3VE4spMJfJOrJl9z0IlIv-BoXpyhRGT_8PRf6Mq75mp4xfkeYcv6aRdwkuyF5tX5GlbcfLuNfk12fhlRqcr8DnrBnDm8o5-b8vRxw1FDmp69KeLjW2obQIFgEiRQReRbUNPMTMYY6Zom99IE7nHJSrMevOGXBwf_ZzOWFdggflCVVsWYQ9CEQV3WbCLaMFUaeVjFbxGzgDBbR5z7mzMiyBLHQFLyJBcsrDgeXDiLdlvVk18T2ghFoE7rHgDfUorKhskgIdCISFgkbkREf2mGt-xj2MRjKXpw8yuTXsUBo_C8BxeakTY7qqbln3jgf6HeF67vsidnRpW60vTCY-RQlai4N7aAPBRFs5b7mFtEbaihIWOSNmfthmIIgxVPzD9VxCOweyzyanBtkSdp5X8nY3Il152DNzK-P-MbeLqdmPQ1UP2ew0DvWtlaTcWaFYlZM7hxw2kbDDZ8Jumvkp04WDSkPXww6OX9ZE8w08sRTF-Ivvb9W38DFBs6w7SI4yDdMfB-5nUfwHtlzLn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s0CBYO4Wuskdh7H7arVFpYeoJX2gGT5tW3QylvtbhH998w4yappD5Uq5eT4EduTmW-S8TeEfC2LKrVFyZk1wjChC8tKbSsmjfHSaHBCfGT7PM4np-LbTM52yLg7C4Nhla3ub3R61NZtybBdzeFFXQ9_peC7gHUqANIg6Qv47Q8BDRSYv-Fotr_90IKEI0lMiIgNGLbojtDFOC_rFyuPzJWJjOydmDT7momKTP49S_XgHEMmb-PRm2GV1-zU4TPytAWYdNTM4TnZ8eEFedSknLx6SX6P1naR0PESnM46ANBcXNGfTT56v6ZIQk0P_rXBsYHq4CggRIoUughtA53i0WAMmqLNAUca2T3OUGPW61fk9PDgZDxhbYYFZnNZbZiHNXC5z7hJnJ57DbaqlNZXzpZIGpBxnfqUG-3T3Imi9AAmhIs-mZvz1JnsNdkNy-DfEppnc8cNpryBOoXOKu0EoIdcIiNgnpgBybpFVbalH8csGAvVxZn9Uc1WKNwKxVO45ICwbauLhn7jjvr7uF_bukieHQuWqzPVSo8SmaiynFutHeBHkRuruYW5eViKAiY6IEW326oni9BVfcfwX0A4eqNPRlOFZZE7r5TibzIgnzvZUfAu4w8aHfzycq3Q10P6-xI6etPI0rYvUK0yEymHh-tJWW-w_p1Qn0e-cLBpSHv47t7T-kQeT05-TNX06Pj7e_IE77AY0viB7G5Wl34PcNnGfIzv3X_h3TQ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ascl1+Coordinately+Regulates+Gene+Expression+and+the+Chromatin+Landscape+during+Neurogenesis&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Raposo%2C+Alexandre%C2%A0A.S.F.&rft.au=Vasconcelos%2C+Francisca%C2%A0F.&rft.au=Drechsel%2C+Daniela&rft.au=Marie%2C+Corentine&rft.date=2015-03-10&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=10&rft.issue=9&rft.spage=1544&rft.epage=1556&rft_id=info:doi/10.1016%2Fj.celrep.2015.02.025&rft.externalDocID=S2211124715001710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon