Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis
The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promo...
Saved in:
Published in | Cell reports (Cambridge) Vol. 10; no. 9; pp. 1544 - 1556 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
10.03.2015
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2015.02.025 |
Cover
Loading…
Abstract | The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.
[Display omitted]
•Genome-wide binding of Ascl1 correlates with transcription activation•Ascl1 can bind to both open and closed chromatin in proliferating cells•Ascl1 promotes local chromatin accessibility at its target sites•Chromatin dynamics at Ascl1 sites regulates temporal progression of its program
The proneural transcription factor Ascl1 sequentially activates target genes in proliferating and differentiating progenitors during neurogenesis. Here Raposo et al. show that Ascl1 binds closed and open chromatin in proliferating cells. Binding to closed chromatin promotes accessibility and activation of differentiation specific genes. Thus, dynamics of chromatin landscape at Ascl1 target regions regulate the temporal onset of Ascl1 targets. |
---|---|
AbstractList | The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program. The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program. • Genome-wide binding of Ascl1 correlates with transcription activation • Ascl1 can bind to both open and closed chromatin in proliferating cells • Ascl1 promotes local chromatin accessibility at its target sites • Chromatin dynamics at Ascl1 sites regulates temporal progression of its program The proneural transcription factor Ascl1 sequentially activates target genes in proliferating and differentiating progenitors during neurogenesis. Here Raposo et al. show that Ascl1 binds closed and open chromatin in proliferating cells. Binding to closed chromatin promotes accessibility and activation of differentiation specific genes. Thus, dynamics of chromatin landscape at Ascl1 target regions regulate the temporal onset of Ascl1 targets. The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program. The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program. [Display omitted] •Genome-wide binding of Ascl1 correlates with transcription activation•Ascl1 can bind to both open and closed chromatin in proliferating cells•Ascl1 promotes local chromatin accessibility at its target sites•Chromatin dynamics at Ascl1 sites regulates temporal progression of its program The proneural transcription factor Ascl1 sequentially activates target genes in proliferating and differentiating progenitors during neurogenesis. Here Raposo et al. show that Ascl1 binds closed and open chromatin in proliferating cells. Binding to closed chromatin promotes accessibility and activation of differentiation specific genes. Thus, dynamics of chromatin landscape at Ascl1 target regions regulate the temporal onset of Ascl1 targets. |
Author | Vasconcelos, Francisca F. van den Berg, Debbie L.C. Ettwiller, Laurence Marie, Corentine Buckley, Noel J. Parras, Carlos M. Drechsel, Daniela Gillotin, Sébastien Berninger, Benedikt Guillemot, François Dolle, Dirk Crawford, Gregory E. Bithell, Angela Castro, Diogo S. Johnston, Caroline Flicek, Paul Raposo, Alexandre A.S.F. |
AuthorAffiliation | 10 Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany 5 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK 2 MRC National Institute for Medical Research, London NW7 1AA, UK 4 Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King’s College London, London SE5 9NU, UK 6 Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Cambridge CB10 1SA, UK 8 Centre for Organismal Studies (COS), Ruprecht-Karls-University, 69120 Heidelberg, Germany 9 Institute of Genome Sciences & Policy, Duke University, Durham, NC 27708, USA 1 Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal 7 University of Reading, School of Pharmacy, Hopkins Life Sciences Building, Reading RG6 6AP, UK 11 Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, 80336 Munich, Germany 3 Inserm U1127, CNRS UMR 7 |
AuthorAffiliation_xml | – name: 3 Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR-S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, 75013 Paris, France – name: 12 Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK – name: 4 Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King’s College London, London SE5 9NU, UK – name: 9 Institute of Genome Sciences & Policy, Duke University, Durham, NC 27708, USA – name: 7 University of Reading, School of Pharmacy, Hopkins Life Sciences Building, Reading RG6 6AP, UK – name: 6 Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Cambridge CB10 1SA, UK – name: 1 Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal – name: 2 MRC National Institute for Medical Research, London NW7 1AA, UK – name: 10 Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany – name: 11 Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, 80336 Munich, Germany – name: 5 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK – name: 8 Centre for Organismal Studies (COS), Ruprecht-Karls-University, 69120 Heidelberg, Germany |
Author_xml | – sequence: 1 givenname: Alexandre A.S.F. surname: Raposo fullname: Raposo, Alexandre A.S.F. organization: Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal – sequence: 2 givenname: Francisca F. surname: Vasconcelos fullname: Vasconcelos, Francisca F. organization: Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal – sequence: 3 givenname: Daniela surname: Drechsel fullname: Drechsel, Daniela organization: MRC National Institute for Medical Research, London NW7 1AA, UK – sequence: 4 givenname: Corentine surname: Marie fullname: Marie, Corentine organization: Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR-S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, 75013 Paris, France – sequence: 5 givenname: Caroline surname: Johnston fullname: Johnston, Caroline organization: Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King’s College London, London SE5 9NU, UK – sequence: 6 givenname: Dirk surname: Dolle fullname: Dolle, Dirk organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK – sequence: 7 givenname: Angela surname: Bithell fullname: Bithell, Angela organization: University of Reading, School of Pharmacy, Hopkins Life Sciences Building, Reading RG6 6AP, UK – sequence: 8 givenname: Sébastien surname: Gillotin fullname: Gillotin, Sébastien organization: MRC National Institute for Medical Research, London NW7 1AA, UK – sequence: 9 givenname: Debbie L.C. surname: van den Berg fullname: van den Berg, Debbie L.C. organization: MRC National Institute for Medical Research, London NW7 1AA, UK – sequence: 10 givenname: Laurence surname: Ettwiller fullname: Ettwiller, Laurence organization: Centre for Organismal Studies (COS), Ruprecht-Karls-University, 69120 Heidelberg, Germany – sequence: 11 givenname: Paul surname: Flicek fullname: Flicek, Paul organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK – sequence: 12 givenname: Gregory E. surname: Crawford fullname: Crawford, Gregory E. organization: Institute of Genome Sciences & Policy, Duke University, Durham, NC 27708, USA – sequence: 13 givenname: Carlos M. surname: Parras fullname: Parras, Carlos M. organization: Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR-S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, 75013 Paris, France – sequence: 14 givenname: Benedikt surname: Berninger fullname: Berninger, Benedikt organization: Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany – sequence: 15 givenname: Noel J. surname: Buckley fullname: Buckley, Noel J. organization: Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK – sequence: 16 givenname: François surname: Guillemot fullname: Guillemot, François organization: MRC National Institute for Medical Research, London NW7 1AA, UK – sequence: 17 givenname: Diogo S. surname: Castro fullname: Castro, Diogo S. email: dscastro@igc.gulbenkian.pt organization: Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25753420$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-01213854$$DView record in HAL |
BookMark | eNqFkl1rFDEUhgep2A_7D0RyqRe7JplkPrwQlqW2hUVB9E4ImeTsbJbZZExmFvvvPdtZS9sLDYEcTt73ycc559mJDx6y7A2jc0ZZ8WE7N9BF6OecMjmnHKd8kZ1xztiMcVGePIpPs8uUthRHQRmrxavslMtS5oLTs-znIpmOkWUI0TqvB-juyDdoxw7DRK7BA7n63UdIyQVPtLdk2ABZbmLY6cF5ssJUMroHYsfofEu-wBhDi77k0uvs5Vp3CS6P60X24_PV9-XNbPX1-na5WM1MIethBvgkW0BOG2b1GjSvRCUN1NbgYqucag6cNhp4YUVZAedcWMoEutaU2ya_yG4nrg16q_rodjreqaCduk-E2CodB2c6UCIXdV5Qo7WVQoqiMZoaJAJeoEQ8sj5NrH5sdmAN-CHq7gn06Y53G9WGvZJ5ldd5iYD3E2DzzHazWKlDjjLO8kqKPUPtu-NhMfwaIQ1q5xJWttMewpgUq3hRMFpXEqVvH9_rgfy3lCgQk8DEkFKE9YOEUXVoGrVVU9OoQ9MoynEeuB-f2YwbsLTh8DrX_c98_CzA6u4dRJWMA2_AughmwO93_wb8AQ7y37g |
CitedBy_id | crossref_primary_10_3389_fcell_2022_1016367 crossref_primary_10_3389_fcell_2017_00009 crossref_primary_10_1016_j_molmet_2023_101811 crossref_primary_10_3389_fimmu_2024_1458581 crossref_primary_10_1016_j_arr_2021_101447 crossref_primary_10_3390_cells6030026 crossref_primary_10_1073_pnas_2116091119 crossref_primary_10_1073_pnas_1510595112 crossref_primary_10_1177_15353702211024948 crossref_primary_10_18632_oncotarget_8709 crossref_primary_10_3389_fcell_2022_942579 crossref_primary_10_1371_journal_pone_0135830 crossref_primary_10_1038_mp_2017_173 crossref_primary_10_1038_s41593_019_0399_y crossref_primary_10_3390_cancers13040692 crossref_primary_10_1038_celldisc_2015_45 crossref_primary_10_1016_j_gde_2015_07_004 crossref_primary_10_1038_s41598_025_94400_8 crossref_primary_10_3389_fncel_2023_1237641 crossref_primary_10_1073_pnas_2211690119 crossref_primary_10_1093_nar_gky093 crossref_primary_10_1242_dev_126292 crossref_primary_10_1016_j_stem_2021_01_003 crossref_primary_10_1016_j_jtho_2018_07_096 crossref_primary_10_1016_j_stem_2021_02_009 crossref_primary_10_1073_pnas_2023784119 crossref_primary_10_1021_acssynbio_7b00467 crossref_primary_10_1093_bib_bbab547 crossref_primary_10_1016_j_gep_2021_119198 crossref_primary_10_1016_j_isci_2021_103132 crossref_primary_10_1007_s12264_021_00640_9 crossref_primary_10_1038_s41593_018_0168_3 crossref_primary_10_7554_eLife_40197 crossref_primary_10_1093_abbs_gmw092 crossref_primary_10_1016_j_celrep_2019_07_087 crossref_primary_10_1038_s41467_017_00690_6 crossref_primary_10_3389_fncel_2018_00410 crossref_primary_10_1002_glia_24457 crossref_primary_10_3389_fnmol_2021_642016 crossref_primary_10_1016_j_devcel_2023_08_017 crossref_primary_10_1093_nar_gky1270 crossref_primary_10_3390_cells11111741 crossref_primary_10_1038_s41598_022_06248_x crossref_primary_10_3389_fnins_2022_903881 crossref_primary_10_1038_s41598_018_23056_4 crossref_primary_10_3389_fnins_2022_917071 crossref_primary_10_1523_ENEURO_0106_15_2015 crossref_primary_10_1534_g3_120_401458 crossref_primary_10_1371_journal_pone_0180337 crossref_primary_10_3389_fgeed_2020_00007 crossref_primary_10_1134_S1062360422040026 crossref_primary_10_1073_pnas_1802620115 crossref_primary_10_1002_glia_23873 crossref_primary_10_1016_j_neuron_2021_07_007 crossref_primary_10_1080_23262133_2017_1329683 crossref_primary_10_1007_s00441_017_2693_x crossref_primary_10_1038_s41592_022_01595_z crossref_primary_10_7554_eLife_22631 crossref_primary_10_1038_s41467_019_11477_2 crossref_primary_10_1186_s13059_022_02690_2 crossref_primary_10_1186_s12864_022_08495_8 crossref_primary_10_1038_s41598_019_55665_y crossref_primary_10_1016_j_chemosphere_2023_139829 crossref_primary_10_1016_j_semcancer_2022_04_001 crossref_primary_10_3389_fnins_2022_919462 crossref_primary_10_1038_srep42895 crossref_primary_10_2337_db16_1355 crossref_primary_10_1007_s11033_025_10367_9 crossref_primary_10_1016_j_brainres_2018_03_013 crossref_primary_10_1038_s41467_018_05379_y crossref_primary_10_1242_dev_162693 crossref_primary_10_1016_j_bcp_2017_06_129 crossref_primary_10_1016_j_ydbio_2015_10_009 crossref_primary_10_3390_cells13121016 crossref_primary_10_1038_s41467_019_11153_5 crossref_primary_10_1016_j_stem_2015_05_014 crossref_primary_10_1101_gad_350269_122 crossref_primary_10_3389_fnmol_2016_00156 crossref_primary_10_1016_j_gde_2019_06_006 crossref_primary_10_1371_journal_pbio_3001563 crossref_primary_10_3389_fcell_2024_1324584 crossref_primary_10_1242_dev_144113 crossref_primary_10_1016_j_stem_2017_06_004 crossref_primary_10_1038_s41580_022_00464_z crossref_primary_10_1039_C6MB00851H crossref_primary_10_1016_j_stem_2024_04_015 crossref_primary_10_1186_s13046_022_02255_y crossref_primary_10_1098_rsob_220062 crossref_primary_10_1016_j_celrep_2016_09_024 crossref_primary_10_1016_j_celrep_2023_113541 crossref_primary_10_3389_fcell_2022_838431 crossref_primary_10_1016_j_conb_2016_11_011 crossref_primary_10_3389_fncel_2020_00035 crossref_primary_10_1186_s12915_022_01300_8 crossref_primary_10_3389_fncel_2017_00231 crossref_primary_10_1016_j_ceb_2020_08_006 crossref_primary_10_1016_j_stemcr_2021_01_006 crossref_primary_10_1007_s12035_022_03145_2 crossref_primary_10_1016_j_ymeth_2019_02_002 crossref_primary_10_1038_s41598_017_00952_9 crossref_primary_10_1038_s41598_021_01366_4 crossref_primary_10_1016_j_freeradbiomed_2021_05_016 crossref_primary_10_1016_j_gde_2023_102128 crossref_primary_10_1186_s13039_018_0355_7 crossref_primary_10_1371_journal_pone_0313534 crossref_primary_10_1016_j_molmed_2019_01_008 crossref_primary_10_1093_nar_gkx693 crossref_primary_10_1007_s11515_016_1405_3 crossref_primary_10_3389_fgene_2019_00907 crossref_primary_10_1089_cmb_2020_0225 crossref_primary_10_3389_fbioe_2018_00173 crossref_primary_10_1007_s12264_016_0032_y crossref_primary_10_1093_braincomms_fcaa165 crossref_primary_10_1101_gad_348174_120 crossref_primary_10_3389_fnins_2019_00092 crossref_primary_10_1111_acel_14165 crossref_primary_10_3390_ijms20215306 crossref_primary_10_1007_s12264_021_00751_3 crossref_primary_10_3390_cells12162086 crossref_primary_10_1016_j_semcdb_2016_10_003 crossref_primary_10_1242_dev_133975 crossref_primary_10_1016_j_molcel_2019_06_009 crossref_primary_10_3389_fcvm_2022_972591 crossref_primary_10_1002_glia_23837 crossref_primary_10_1126_sciadv_adl5935 crossref_primary_10_1146_annurev_genet_071719_020653 crossref_primary_10_7554_eLife_32785 crossref_primary_10_1101_gr_203513_115 crossref_primary_10_3390_ijms22179150 crossref_primary_10_1016_j_jgg_2019_10_003 |
Cites_doi | 10.1242/jcs.01122 10.1101/gr.121541.111 10.1093/cercor/bhj167 10.1038/nature11232 10.1242/dev.126.3.525 10.1016/S1097-2765(02)00481-1 10.1016/j.celrep.2013.04.021 10.1126/science.1242366 10.1073/pnas.90.20.9252 10.1371/journal.pbio.1000565 10.1038/nrn874 10.1038/nmeth.1906 10.1128/MCB.23.19.6922-6935.2003 10.1016/S0092-8674(00)81815-2 10.1016/j.neuroscience.2013.08.029 10.1002/stem.17 10.1093/nar/gkt850 10.1186/gb-2008-9-9-r137 10.1101/gad.627811 10.1111/j.1460-9568.2007.05509.x 10.1016/j.neulet.2010.03.004 10.1038/nature08797 10.1242/jcs.037556 10.1101/gr.135129.111 10.1101/pdb.prot5384 10.1016/j.stem.2012.07.007 10.1093/nar/23.10.1686 10.1016/j.stem.2010.01.004 10.1371/journal.pbio.0030283 10.1101/gad.176826.111 10.1242/dev.105866 10.1016/j.devcel.2006.10.006 10.1523/JNEUROSCI.4621-04.2005 10.1523/JNEUROSCI.1615-07.2007 10.1146/annurev.neuro.051508.135600 10.1016/j.cell.2007.12.014 10.1186/gb-2009-10-3-r25 10.1016/S0962-8924(03)00147-8 10.1038/nrg2641 10.3389/fncel.2014.00412 10.1002/j.1460-2075.1991.tb04939.x 10.1016/j.cell.2013.09.028 |
ContentType | Journal Article |
Copyright | 2015 The Authors Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. Attribution - NonCommercial - NoDerivatives 2015 The Authors 2015 |
Copyright_xml | – notice: 2015 The Authors – notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Attribution - NonCommercial - NoDerivatives – notice: 2015 The Authors 2015 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.celrep.2015.02.025 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 1556 |
ExternalDocumentID | oai_doaj_org_article_4349360caad54546bca0ce22ed6e76d4 PMC5383937 oai_HAL_hal_01213854v1 25753420 10_1016_j_celrep_2015_02_025 S2211124715001710 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U117570528 – fundername: Wellcome Trust grantid: 098051 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c659t-e101d6e30b1dafea28485ce9dc85cd830a2e20bae26d478e2224d01401df02db3 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:31:44 EDT 2025 Thu Aug 21 18:15:58 EDT 2025 Fri Jul 04 06:38:01 EDT 2025 Thu Jul 10 22:03:08 EDT 2025 Mon Jul 21 05:57:07 EDT 2025 Tue Jul 01 03:07:24 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Wed May 17 01:06:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c659t-e101d6e30b1dafea28485ce9dc85cd830a2e20bae26d478e2224d01401df02db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first author |
ORCID | 0000-0003-2652-2782 0000-0002-3897-7955 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124715001710 |
PMID | 25753420 |
PQID | 1826610985 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4349360caad54546bca0ce22ed6e76d4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5383937 hal_primary_oai_HAL_hal_01213854v1 proquest_miscellaneous_1826610985 pubmed_primary_25753420 crossref_primary_10_1016_j_celrep_2015_02_025 crossref_citationtrail_10_1016_j_celrep_2015_02_025 elsevier_sciencedirect_doi_10_1016_j_celrep_2015_02_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-10 |
PublicationDateYYYYMMDD | 2015-03-10 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2015 |
Publisher | Elsevier Inc Cell Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Cell Press – name: Elsevier |
References | Kriegstein, Alvarez-Buylla (bib22) 2009; 32 Zaret, Carroll (bib41) 2011; 25 Borromeo, Meredith, Castro, Chang, Tung, Guillemot, Johnson (bib8) 2014; 141 Park (bib28) 2009; 10 Geoffroy, Critchley, Castro, Ramelli, Barraclough, Descombes, Guillemot, Raineteau (bib17) 2009; 27 Boyle, Davis, Shulha, Meltzer, Margulies, Weng, Furey, Crawford (bib9) 2008; 132 Ernst, Kellis (bib15) 2012; 9 Martínez-Cerdeño, Noctor, Espinosa, Ariza, Parker, Orasji, Daadi, Bankiewicz, Alvarez-Buylla, Kriegstein (bib25) 2010; 6 Alvarez-Rodríguez, Pons (bib2) 2009; 122 Wapinski, Vierbuchen, Qu, Lee, Chanda, Fuentes, Giresi, Ng, Marro, Neff (bib39) 2013; 155 Kaltezioti, Kouroupi, Oikonomaki, Mantouvalou, Stergiopoulos, Charonis, Rohrer, Matsas, Politis (bib20) 2010; 8 Song, Zhang, Grasfeder, Boyle, Giresi, Lee, Sheffield, Gräf, Huss, Keefe (bib35) 2011; 21 Bergstrom, Penn, Strand, Perry, Rudnicki, Tapscott (bib4) 2002; 9 Roemer, Friedmann (bib32) 1993; 90 Wilkinson, Dennis, Schuurmans (bib40) 2013; 253 Karow, Sánchez, Schichor, Masserdotti, Ortega, Heinrich, Gascón, Khan, Lie, Dellavalle (bib21) 2012; 11 Ohsawa, Ohtsuka, Kageyama (bib27) 2005; 25 Vierbuchen, Ostermeier, Pang, Kokubu, Südhof, Wernig (bib38) 2010; 463 Forgacs, Yook, Janmey, Jeong, Burd (bib16) 2004; 117 Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li, Liu (bib42) 2008; 9 Thurman, Rynes, Humbert, Vierstra, Maurano, Haugen, Sheffield, Stergachis, Wang, Vernot (bib36) 2012; 489 Imayoshi, Isomura, Harima, Kawaguchi, Kori, Miyachi, Fujiwara, Ishidate, Kageyama (bib19) 2013; 342 Rheinbay, Suvà, Gillespie, Wakimoto, Patel, Shahid, Oksuz, Rabkin, Martuza, Rivera (bib31) 2013; 3 Casarosa, Fode, Guillemot (bib11) 1999; 126 Aaker, Patineau, Yang, Ewart, Nakagawa, McLoon, Koyano-Nakagawa (bib1) 2010; 474 Natarajan, Yardimci, Sheffield, Crawford, Ohler (bib26) 2012; 22 Berninger, Costa, Koch, Schroeder, Sutor, Grothe, Götz (bib5) 2007; 27 Burk, Klempnauer (bib10) 1991; 10 Vasconcelos, Castro (bib37) 2014; 8 Ruzinova, Benezra (bib33) 2003; 13 Bellefroid, Bourguignon, Hollemann, Ma, Anderson, Kintner, Pieler (bib3) 1996; 87 Conti, Pollard, Gorba, Reitano, Toselli, Biella, Sun, Sanzone, Ying, Cattaneo, Smith (bib14) 2005; 3 Langmead, Trapnell, Pop, Salzberg (bib23) 2009; 10 Castro, Martynoga, Parras, Ramesh, Pacary, Johnston, Drechsel, Lebel-Potter, Garcia, Hunt (bib13) 2011; 25 Gratton, Torban, Jasmin, Theriault, German, Stifani, Stifani (bib18) 2003; 23 Piper, Elze, Cauchy, Cockerill, Bonifer, Ott (bib29) 2013; 41 Song, Crawford (bib34) 2010; 2010 Berninger, Guillemot, Götz (bib6) 2007; 25 Littlewood, Hancock, Danielian, Parker, Evan (bib24) 1995; 23 Castro, Skowronska-Krawczyk, Armant, Donaldson, Parras, Hunt, Critchley, Nguyen, Gossler, Göttgens (bib12) 2006; 11 Bertrand, Castro, Guillemot (bib7) 2002; 3 Pollard, Conti, Sun, Goffredo, Smith (bib30) 2006; 16 Burk (10.1016/j.celrep.2015.02.025_bib10) 1991; 10 Thurman (10.1016/j.celrep.2015.02.025_bib36) 2012; 489 Ruzinova (10.1016/j.celrep.2015.02.025_bib33) 2003; 13 Langmead (10.1016/j.celrep.2015.02.025_bib23) 2009; 10 Zaret (10.1016/j.celrep.2015.02.025_bib41) 2011; 25 Castro (10.1016/j.celrep.2015.02.025_bib12) 2006; 11 Berninger (10.1016/j.celrep.2015.02.025_bib5) 2007; 27 Conti (10.1016/j.celrep.2015.02.025_bib14) 2005; 3 Piper (10.1016/j.celrep.2015.02.025_bib29) 2013; 41 Imayoshi (10.1016/j.celrep.2015.02.025_bib19) 2013; 342 Littlewood (10.1016/j.celrep.2015.02.025_bib24) 1995; 23 Natarajan (10.1016/j.celrep.2015.02.025_bib26) 2012; 22 Bergstrom (10.1016/j.celrep.2015.02.025_bib4) 2002; 9 Borromeo (10.1016/j.celrep.2015.02.025_bib8) 2014; 141 Geoffroy (10.1016/j.celrep.2015.02.025_bib17) 2009; 27 Rheinbay (10.1016/j.celrep.2015.02.025_bib31) 2013; 3 Wapinski (10.1016/j.celrep.2015.02.025_bib39) 2013; 155 Alvarez-Rodríguez (10.1016/j.celrep.2015.02.025_bib2) 2009; 122 Bertrand (10.1016/j.celrep.2015.02.025_bib7) 2002; 3 Gratton (10.1016/j.celrep.2015.02.025_bib18) 2003; 23 Kriegstein (10.1016/j.celrep.2015.02.025_bib22) 2009; 32 Wilkinson (10.1016/j.celrep.2015.02.025_bib40) 2013; 253 Berninger (10.1016/j.celrep.2015.02.025_bib6) 2007; 25 Aaker (10.1016/j.celrep.2015.02.025_bib1) 2010; 474 Boyle (10.1016/j.celrep.2015.02.025_bib9) 2008; 132 Vasconcelos (10.1016/j.celrep.2015.02.025_bib37) 2014; 8 Castro (10.1016/j.celrep.2015.02.025_bib13) 2011; 25 Zhang (10.1016/j.celrep.2015.02.025_bib42) 2008; 9 Kaltezioti (10.1016/j.celrep.2015.02.025_bib20) 2010; 8 Song (10.1016/j.celrep.2015.02.025_bib34) 2010; 2010 Karow (10.1016/j.celrep.2015.02.025_bib21) 2012; 11 Ohsawa (10.1016/j.celrep.2015.02.025_bib27) 2005; 25 Vierbuchen (10.1016/j.celrep.2015.02.025_bib38) 2010; 463 Martínez-Cerdeño (10.1016/j.celrep.2015.02.025_bib25) 2010; 6 Park (10.1016/j.celrep.2015.02.025_bib28) 2009; 10 Roemer (10.1016/j.celrep.2015.02.025_bib32) 1993; 90 Bellefroid (10.1016/j.celrep.2015.02.025_bib3) 1996; 87 Pollard (10.1016/j.celrep.2015.02.025_bib30) 2006; 16 Ernst (10.1016/j.celrep.2015.02.025_bib15) 2012; 9 Song (10.1016/j.celrep.2015.02.025_bib35) 2011; 21 Casarosa (10.1016/j.celrep.2015.02.025_bib11) 1999; 126 Forgacs (10.1016/j.celrep.2015.02.025_bib16) 2004; 117 |
References_xml | – volume: 13 start-page: 410 year: 2003 end-page: 418 ident: bib33 article-title: Id proteins in development, cell cycle and cancer publication-title: Trends Cell Biol. – volume: 21 start-page: 1757 year: 2011 end-page: 1767 ident: bib35 article-title: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity publication-title: Genome Res. – volume: 41 start-page: e201 year: 2013 ident: bib29 article-title: Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data publication-title: Nucleic Acids Res. – volume: 25 start-page: 930 year: 2011 end-page: 945 ident: bib13 article-title: A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets publication-title: Genes Dev. – volume: 489 start-page: 75 year: 2012 end-page: 82 ident: bib36 article-title: The accessible chromatin landscape of the human genome publication-title: Nature – volume: 10 start-page: R25 year: 2009 ident: bib23 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. – volume: 9 start-page: 215 year: 2012 end-page: 216 ident: bib15 article-title: ChromHMM: automating chromatin-state discovery and characterization publication-title: Nat. Methods – volume: 23 start-page: 1686 year: 1995 end-page: 1690 ident: bib24 article-title: A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins publication-title: Nucleic Acids Res. – volume: 27 start-page: 847 year: 2009 end-page: 856 ident: bib17 article-title: Engineering of dominant active basic helix-loop-helix proteins that are resistant to negative regulation by postnatal central nervous system antineurogenic cues publication-title: Stem Cells – volume: 3 start-page: e283 year: 2005 ident: bib14 article-title: Niche-independent symmetrical self-renewal of a mammalian tissue stem cell publication-title: PLoS Biol. – volume: 87 start-page: 1191 year: 1996 end-page: 1202 ident: bib3 article-title: X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation publication-title: Cell – volume: 10 start-page: 3713 year: 1991 end-page: 3719 ident: bib10 article-title: Estrogen-dependent alterations in differentiation state of myeloid cells caused by a v-myb/estrogen receptor fusion protein publication-title: EMBO J. – volume: 253 start-page: 256 year: 2013 end-page: 273 ident: bib40 article-title: Proneural genes in neocortical development publication-title: Neuroscience – volume: 126 start-page: 525 year: 1999 end-page: 534 ident: bib11 article-title: Mash1 regulates neurogenesis in the ventral telencephalon publication-title: Development – volume: 11 start-page: 471 year: 2012 end-page: 476 ident: bib21 article-title: Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells publication-title: Cell Stem Cell – volume: 25 start-page: 5857 year: 2005 end-page: 5865 ident: bib27 article-title: Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors publication-title: J. Neurosci. – volume: 342 start-page: 1203 year: 2013 end-page: 1208 ident: bib19 article-title: Oscillatory control of factors determining multipotency and fate in mouse neural progenitors publication-title: Science – volume: 2010 year: 2010 ident: bib34 article-title: DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells publication-title: Cold Spring Harbor Protoc. – volume: 132 start-page: 311 year: 2008 end-page: 322 ident: bib9 article-title: High-resolution mapping and characterization of open chromatin across the genome publication-title: Cell – volume: 141 start-page: 2803 year: 2014 end-page: 2812 ident: bib8 article-title: A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord publication-title: Development – volume: 22 start-page: 1711 year: 2012 end-page: 1722 ident: bib26 article-title: Predicting cell-type-specific gene expression from regions of open chromatin publication-title: Genome Res. – volume: 474 start-page: 46 year: 2010 end-page: 51 ident: bib1 article-title: Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system publication-title: Neurosci. Lett. – volume: 9 start-page: R137 year: 2008 ident: bib42 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. – volume: 32 start-page: 149 year: 2009 end-page: 184 ident: bib22 article-title: The glial nature of embryonic and adult neural stem cells publication-title: Annu. Rev. Neurosci. – volume: 10 start-page: 669 year: 2009 end-page: 680 ident: bib28 article-title: ChIP-seq: advantages and challenges of a maturing technology publication-title: Nat. Rev. Genet. – volume: 3 start-page: 517 year: 2002 end-page: 530 ident: bib7 article-title: Proneural genes and the specification of neural cell types publication-title: Nat. Rev. Neurosci. – volume: 25 start-page: 2227 year: 2011 end-page: 2241 ident: bib41 article-title: Pioneer transcription factors: establishing competence for gene expression publication-title: Genes Dev. – volume: 122 start-page: 595 year: 2009 end-page: 599 ident: bib2 article-title: Expression of the proneural gene encoding Mash1 suppresses MYCN mitotic activity publication-title: J. Cell Sci. – volume: 6 start-page: 238 year: 2010 end-page: 250 ident: bib25 article-title: Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats publication-title: Cell Stem Cell – volume: 463 start-page: 1035 year: 2010 end-page: 1041 ident: bib38 article-title: Direct conversion of fibroblasts to functional neurons by defined factors publication-title: Nature – volume: 9 start-page: 587 year: 2002 end-page: 600 ident: bib4 article-title: Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression publication-title: Mol. Cell – volume: 16 start-page: i112 year: 2006 end-page: i120 ident: bib30 article-title: Adherent neural stem (NS) cells from fetal and adult forebrain publication-title: Cereb. Cortex – volume: 90 start-page: 9252 year: 1993 end-page: 9256 ident: bib32 article-title: Modulation of cell proliferation and gene expression by a p53-estrogen receptor hybrid protein publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 2581 year: 2007 end-page: 2590 ident: bib6 article-title: Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells publication-title: Eur. J. Neurosci. – volume: 11 start-page: 831 year: 2006 end-page: 844 ident: bib12 article-title: Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif publication-title: Dev. Cell – volume: 8 start-page: e1000565 year: 2010 ident: bib20 article-title: Prox1 regulates the notch1-mediated inhibition of neurogenesis publication-title: PLoS Biol. – volume: 23 start-page: 6922 year: 2003 end-page: 6935 ident: bib18 article-title: Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms publication-title: Mol. Cell. Biol. – volume: 117 start-page: 2769 year: 2004 end-page: 2775 ident: bib16 article-title: Role of the cytoskeleton in signaling networks publication-title: J. Cell Sci. – volume: 8 start-page: 412 year: 2014 ident: bib37 article-title: Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1 publication-title: Front. Cell. Neurosci. – volume: 3 start-page: 1567 year: 2013 end-page: 1579 ident: bib31 article-title: An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma publication-title: Cell Rep. – volume: 155 start-page: 621 year: 2013 end-page: 635 ident: bib39 article-title: Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons publication-title: Cell – volume: 27 start-page: 8654 year: 2007 end-page: 8664 ident: bib5 article-title: Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia publication-title: The Journal of neuroscience, – volume: 117 start-page: 2769 year: 2004 ident: 10.1016/j.celrep.2015.02.025_bib16 article-title: Role of the cytoskeleton in signaling networks publication-title: J. Cell Sci. doi: 10.1242/jcs.01122 – volume: 21 start-page: 1757 year: 2011 ident: 10.1016/j.celrep.2015.02.025_bib35 article-title: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity publication-title: Genome Res. doi: 10.1101/gr.121541.111 – volume: 16 start-page: i112 issue: Suppl 1 year: 2006 ident: 10.1016/j.celrep.2015.02.025_bib30 article-title: Adherent neural stem (NS) cells from fetal and adult forebrain publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj167 – volume: 489 start-page: 75 year: 2012 ident: 10.1016/j.celrep.2015.02.025_bib36 article-title: The accessible chromatin landscape of the human genome publication-title: Nature doi: 10.1038/nature11232 – volume: 126 start-page: 525 year: 1999 ident: 10.1016/j.celrep.2015.02.025_bib11 article-title: Mash1 regulates neurogenesis in the ventral telencephalon publication-title: Development doi: 10.1242/dev.126.3.525 – volume: 9 start-page: 587 year: 2002 ident: 10.1016/j.celrep.2015.02.025_bib4 article-title: Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00481-1 – volume: 3 start-page: 1567 year: 2013 ident: 10.1016/j.celrep.2015.02.025_bib31 article-title: An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.04.021 – volume: 342 start-page: 1203 year: 2013 ident: 10.1016/j.celrep.2015.02.025_bib19 article-title: Oscillatory control of factors determining multipotency and fate in mouse neural progenitors publication-title: Science doi: 10.1126/science.1242366 – volume: 90 start-page: 9252 year: 1993 ident: 10.1016/j.celrep.2015.02.025_bib32 article-title: Modulation of cell proliferation and gene expression by a p53-estrogen receptor hybrid protein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.20.9252 – volume: 8 start-page: e1000565 year: 2010 ident: 10.1016/j.celrep.2015.02.025_bib20 article-title: Prox1 regulates the notch1-mediated inhibition of neurogenesis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000565 – volume: 3 start-page: 517 year: 2002 ident: 10.1016/j.celrep.2015.02.025_bib7 article-title: Proneural genes and the specification of neural cell types publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn874 – volume: 9 start-page: 215 year: 2012 ident: 10.1016/j.celrep.2015.02.025_bib15 article-title: ChromHMM: automating chromatin-state discovery and characterization publication-title: Nat. Methods doi: 10.1038/nmeth.1906 – volume: 23 start-page: 6922 year: 2003 ident: 10.1016/j.celrep.2015.02.025_bib18 article-title: Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.19.6922-6935.2003 – volume: 87 start-page: 1191 year: 1996 ident: 10.1016/j.celrep.2015.02.025_bib3 article-title: X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation publication-title: Cell doi: 10.1016/S0092-8674(00)81815-2 – volume: 253 start-page: 256 year: 2013 ident: 10.1016/j.celrep.2015.02.025_bib40 article-title: Proneural genes in neocortical development publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.08.029 – volume: 27 start-page: 847 year: 2009 ident: 10.1016/j.celrep.2015.02.025_bib17 article-title: Engineering of dominant active basic helix-loop-helix proteins that are resistant to negative regulation by postnatal central nervous system antineurogenic cues publication-title: Stem Cells doi: 10.1002/stem.17 – volume: 41 start-page: e201 year: 2013 ident: 10.1016/j.celrep.2015.02.025_bib29 article-title: Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt850 – volume: 9 start-page: R137 year: 2008 ident: 10.1016/j.celrep.2015.02.025_bib42 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 25 start-page: 930 year: 2011 ident: 10.1016/j.celrep.2015.02.025_bib13 article-title: A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets publication-title: Genes Dev. doi: 10.1101/gad.627811 – volume: 25 start-page: 2581 year: 2007 ident: 10.1016/j.celrep.2015.02.025_bib6 article-title: Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05509.x – volume: 474 start-page: 46 year: 2010 ident: 10.1016/j.celrep.2015.02.025_bib1 article-title: Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.03.004 – volume: 463 start-page: 1035 year: 2010 ident: 10.1016/j.celrep.2015.02.025_bib38 article-title: Direct conversion of fibroblasts to functional neurons by defined factors publication-title: Nature doi: 10.1038/nature08797 – volume: 122 start-page: 595 year: 2009 ident: 10.1016/j.celrep.2015.02.025_bib2 article-title: Expression of the proneural gene encoding Mash1 suppresses MYCN mitotic activity publication-title: J. Cell Sci. doi: 10.1242/jcs.037556 – volume: 22 start-page: 1711 year: 2012 ident: 10.1016/j.celrep.2015.02.025_bib26 article-title: Predicting cell-type-specific gene expression from regions of open chromatin publication-title: Genome Res. doi: 10.1101/gr.135129.111 – volume: 2010 year: 2010 ident: 10.1016/j.celrep.2015.02.025_bib34 article-title: DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells publication-title: Cold Spring Harbor Protoc. doi: 10.1101/pdb.prot5384 – volume: 11 start-page: 471 year: 2012 ident: 10.1016/j.celrep.2015.02.025_bib21 article-title: Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.07.007 – volume: 23 start-page: 1686 year: 1995 ident: 10.1016/j.celrep.2015.02.025_bib24 article-title: A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.10.1686 – volume: 6 start-page: 238 year: 2010 ident: 10.1016/j.celrep.2015.02.025_bib25 article-title: Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.01.004 – volume: 3 start-page: e283 year: 2005 ident: 10.1016/j.celrep.2015.02.025_bib14 article-title: Niche-independent symmetrical self-renewal of a mammalian tissue stem cell publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030283 – volume: 25 start-page: 2227 year: 2011 ident: 10.1016/j.celrep.2015.02.025_bib41 article-title: Pioneer transcription factors: establishing competence for gene expression publication-title: Genes Dev. doi: 10.1101/gad.176826.111 – volume: 141 start-page: 2803 year: 2014 ident: 10.1016/j.celrep.2015.02.025_bib8 article-title: A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord publication-title: Development doi: 10.1242/dev.105866 – volume: 11 start-page: 831 year: 2006 ident: 10.1016/j.celrep.2015.02.025_bib12 article-title: Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.10.006 – volume: 25 start-page: 5857 year: 2005 ident: 10.1016/j.celrep.2015.02.025_bib27 article-title: Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4621-04.2005 – volume: 27 start-page: 8654 issue: 32 year: 2007 ident: 10.1016/j.celrep.2015.02.025_bib5 article-title: Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia publication-title: The Journal of neuroscience, doi: 10.1523/JNEUROSCI.1615-07.2007 – volume: 32 start-page: 149 year: 2009 ident: 10.1016/j.celrep.2015.02.025_bib22 article-title: The glial nature of embryonic and adult neural stem cells publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.051508.135600 – volume: 132 start-page: 311 year: 2008 ident: 10.1016/j.celrep.2015.02.025_bib9 article-title: High-resolution mapping and characterization of open chromatin across the genome publication-title: Cell doi: 10.1016/j.cell.2007.12.014 – volume: 10 start-page: R25 year: 2009 ident: 10.1016/j.celrep.2015.02.025_bib23 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 13 start-page: 410 year: 2003 ident: 10.1016/j.celrep.2015.02.025_bib33 article-title: Id proteins in development, cell cycle and cancer publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(03)00147-8 – volume: 10 start-page: 669 year: 2009 ident: 10.1016/j.celrep.2015.02.025_bib28 article-title: ChIP-seq: advantages and challenges of a maturing technology publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2641 – volume: 8 start-page: 412 year: 2014 ident: 10.1016/j.celrep.2015.02.025_bib37 article-title: Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1 publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2014.00412 – volume: 10 start-page: 3713 year: 1991 ident: 10.1016/j.celrep.2015.02.025_bib10 article-title: Estrogen-dependent alterations in differentiation state of myeloid cells caused by a v-myb/estrogen receptor fusion protein publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb04939.x – volume: 155 start-page: 621 year: 2013 ident: 10.1016/j.celrep.2015.02.025_bib39 article-title: Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons publication-title: Cell doi: 10.1016/j.cell.2013.09.028 |
SSID | ssj0000601194 |
Score | 2.4809523 |
Snippet | The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1544 |
SubjectTerms | Biochemistry, Molecular Biology Life Sciences |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIAtqITEBUF5LZTKIK4WjmM7yXFbtVqhigOiUg9Ill9LF628VXeL6L9nxk5WGzjsBSmnxLGT8cQzo4y_IeRj23TCNy1n3knHpG08a63vmHIuKmchCImZ9vlFzy7l5yt1tVPqC3PCCh64CO6TrGVXa-6tDWDspXbech-FiEHHRodMAgWbtxNMlTUYWWb4S1kIzNkSshn2zeXkLh-XtxFxlZXKyE6slL1jlzK-f2SeHl5jnuS_TujfuZQ7xun8KXnSe5V0Wt7mGXkQ0yF5VOpM3j8n36drv6zo6QoizUUC73J5T7-WIvRxTZE8Tc9-9xmxidoUKLiFFLm56M8meoH7gTFTipZdjTQjPX7gMrlYvyCX52ffTmesL6vAvFbdhkWQAQiv5q4Kdh4tGKhW-dgF3yIpoOZWRMGdjQLE27QgayFDDsTCnIvg6pfkIK1SfE2orueBO6xzA20aW3c2SHAZtEIMoK7chNSDUI3vmeNY-mJphuSyn6ZMhcGpMFzAoSaEbe-6KcyNPe1PcL62bZGYnU-AHplej8w-PZqQZpht0zsfxamArhZ7hv8AyjEafTa9MHguA_NaJX9VE_J-0B0DHzD-lbEpru7WBgM8ZN630NGrokvbvmA9VbUUHB5upGWjwcZX0uI6Q8LBkCHr8M3_kM1b8hjfl-U0xiNysLm9i-_AF9u44_zZ_QHr4zBf priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA67K4Iv4t3xRhRfK2ma9PIgMi67DLL6IA7sgxBym92RktHprOz8e89J2tF6YUHoS9s0aZJzcr5DTr5DyMu6aritapZZI0wmdGWzWtsmk8Z4aTQ4IT6yfX4oZ3Px7lSe7pEhZ2s_gN1fXTvMJzVft68uv23fgMK__hmrZX279sg-mcvIwMnlPrkGtqlCVX3fA_60NiPHGW41c46xXFxUw3m6f1Q0sleR1n9ktvbPMX7yT3D6e4zlL0br-Ba52aNNOk3icZvs-XCHXE_5J7d3yedpZ9ucHq7AA10GQJ3tln5Myel9R5GRmh5d9pGygergKMBFiny6iHMDPcFzwhhBRdNpRxqpPs5w-Vx298j8-OjT4Szr0y1ktpTNJvMwBq70BTO50wuvwXDV0vrG2RoZBAqmuefMaM9LJ6raA7IQLjpobsG4M8V9chBWwT8ktCwWjhnMfwNlKl002gmAEqVEesAyNxNSDIOqbM9FjikxWjUEnX1RaSoUToViHC45Idnuq6-Ji-OK8m9xvnZlkUk7Plitz1SvmEoUoilKZrV2ACZFaaxmFvrmYSgq6OiEVMNsqx6UJLABVS2vaP4FCMeo9dn0ROGzSKRXS_E9n5Dng-woUGzcrdHBry46hY4fcuHXUNGDJEu7umCdlYXgDH5uJGWjxsZvwvI8koeDgUMOxEf_3a3H5AbeZTGm8Qk52Kwv_FMAZhvzLOraD1BfNaw priority: 102 providerName: Scholars Portal |
Title | Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis |
URI | https://dx.doi.org/10.1016/j.celrep.2015.02.025 https://www.ncbi.nlm.nih.gov/pubmed/25753420 https://www.proquest.com/docview/1826610985 https://hal.sorbonne-universite.fr/hal-01213854 https://pubmed.ncbi.nlm.nih.gov/PMC5383937 https://doaj.org/article/4349360caad54546bca0ce22ed6e76d4 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddYbCXse9lH0UbexWRLcmWH9PQEkrbh22FPAyEvtK6BKck6Vj_-93Jdqi3h0IhBKLIUiSd737n3P2OkG-6rHJfas68k45JW3qmra-Yci4qZ8EJiYnt87yYXciTuZrvkWmfC4NhlZ3ub3V60tZdy7jbzfFNXY9_5OC7gHUqAdIg6Qv67ULqlMQ3P9w9Z0G-kSzVQ8T-DC_oM-hSmJePy3VE4spMJfJOrJl9z0IlIv-BoXpyhRGT_8PRf6Mq75mp4xfkeYcv6aRdwkuyF5tX5GlbcfLuNfk12fhlRqcr8DnrBnDm8o5-b8vRxw1FDmp69KeLjW2obQIFgEiRQReRbUNPMTMYY6Zom99IE7nHJSrMevOGXBwf_ZzOWFdggflCVVsWYQ9CEQV3WbCLaMFUaeVjFbxGzgDBbR5z7mzMiyBLHQFLyJBcsrDgeXDiLdlvVk18T2ghFoE7rHgDfUorKhskgIdCISFgkbkREf2mGt-xj2MRjKXpw8yuTXsUBo_C8BxeakTY7qqbln3jgf6HeF67vsidnRpW60vTCY-RQlai4N7aAPBRFs5b7mFtEbaihIWOSNmfthmIIgxVPzD9VxCOweyzyanBtkSdp5X8nY3Il152DNzK-P-MbeLqdmPQ1UP2ew0DvWtlaTcWaFYlZM7hxw2kbDDZ8Jumvkp04WDSkPXww6OX9ZE8w08sRTF-Ivvb9W38DFBs6w7SI4yDdMfB-5nUfwHtlzLn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s0CBYO4Wuskdh7H7arVFpYeoJX2gGT5tW3QylvtbhH998w4yappD5Uq5eT4EduTmW-S8TeEfC2LKrVFyZk1wjChC8tKbSsmjfHSaHBCfGT7PM4np-LbTM52yLg7C4Nhla3ub3R61NZtybBdzeFFXQ9_peC7gHUqANIg6Qv47Q8BDRSYv-Fotr_90IKEI0lMiIgNGLbojtDFOC_rFyuPzJWJjOydmDT7momKTP49S_XgHEMmb-PRm2GV1-zU4TPytAWYdNTM4TnZ8eEFedSknLx6SX6P1naR0PESnM46ANBcXNGfTT56v6ZIQk0P_rXBsYHq4CggRIoUughtA53i0WAMmqLNAUca2T3OUGPW61fk9PDgZDxhbYYFZnNZbZiHNXC5z7hJnJ57DbaqlNZXzpZIGpBxnfqUG-3T3Imi9AAmhIs-mZvz1JnsNdkNy-DfEppnc8cNpryBOoXOKu0EoIdcIiNgnpgBybpFVbalH8csGAvVxZn9Uc1WKNwKxVO45ICwbauLhn7jjvr7uF_bukieHQuWqzPVSo8SmaiynFutHeBHkRuruYW5eViKAiY6IEW326oni9BVfcfwX0A4eqNPRlOFZZE7r5TibzIgnzvZUfAu4w8aHfzycq3Q10P6-xI6etPI0rYvUK0yEymHh-tJWW-w_p1Qn0e-cLBpSHv47t7T-kQeT05-TNX06Pj7e_IE77AY0viB7G5Wl34PcNnGfIzv3X_h3TQ3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ascl1+Coordinately+Regulates+Gene+Expression+and+the+Chromatin+Landscape+during+Neurogenesis&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Raposo%2C+Alexandre%C2%A0A.S.F.&rft.au=Vasconcelos%2C+Francisca%C2%A0F.&rft.au=Drechsel%2C+Daniela&rft.au=Marie%2C+Corentine&rft.date=2015-03-10&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=10&rft.issue=9&rft.spage=1544&rft.epage=1556&rft_id=info:doi/10.1016%2Fj.celrep.2015.02.025&rft.externalDocID=S2211124715001710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |