Mechanism of DNA Methylation-Directed Histone Methylation by KRYPTONITE

In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 55; no. 3; pp. 495 - 504
Main Authors Du, Jiamu, Johnson, Lianna M., Groth, Martin, Feng, Suhua, Hale, Christopher J., Li, Sisi, Vashisht, Ajay A., Gallego-Bartolome, Javier, Wohlschlegel, James A., Patel, Dinshaw J., Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1–15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation. [Display omitted] •Crystal structure of KYP in complex with mCHH DNA, SAH, and H3 peptide•Two-helix segment of KYP mediates relative alignment of SRA and SET domains•mCHH DNA and H3 tail are specifically recognized by SRA and SET domains, respectively•Structural model of KYP and CMT3-controlled DNA and histone methylation feedback loop Du et al. report on the structural and functional studies of a plant histone H3K9 methyltransferase, KRYPTONITE, in complex with mCHH DNA, H3 peptide, and SAH, revealing how this enzyme links DNA and histone methylation.
AbstractList In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation.
In Arabidopsis , CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights complemented by in vivo functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation.
In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1–15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation. [Display omitted] •Crystal structure of KYP in complex with mCHH DNA, SAH, and H3 peptide•Two-helix segment of KYP mediates relative alignment of SRA and SET domains•mCHH DNA and H3 tail are specifically recognized by SRA and SET domains, respectively•Structural model of KYP and CMT3-controlled DNA and histone methylation feedback loop Du et al. report on the structural and functional studies of a plant histone H3K9 methyltransferase, KRYPTONITE, in complex with mCHH DNA, H3 peptide, and SAH, revealing how this enzyme links DNA and histone methylation.
In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation.In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation.
Author Johnson, Lianna M.
Wohlschlegel, James A.
Vashisht, Ajay A.
Groth, Martin
Li, Sisi
Jacobsen, Steven E.
Patel, Dinshaw J.
Du, Jiamu
Feng, Suhua
Gallego-Bartolome, Javier
Hale, Christopher J.
AuthorAffiliation 4 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
5 Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
3 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
1 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
2 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
AuthorAffiliation_xml – name: 2 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– name: 5 Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
– name: 3 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
– name: 1 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
– name: 4 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
Author_xml – sequence: 1
  givenname: Jiamu
  surname: Du
  fullname: Du, Jiamu
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
– sequence: 2
  givenname: Lianna M.
  surname: Johnson
  fullname: Johnson, Lianna M.
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Martin
  surname: Groth
  fullname: Groth, Martin
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Christopher J.
  surname: Hale
  fullname: Hale, Christopher J.
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Sisi
  surname: Li
  fullname: Li, Sisi
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
– sequence: 7
  givenname: Ajay A.
  surname: Vashisht
  fullname: Vashisht, Ajay A.
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 8
  givenname: Javier
  surname: Gallego-Bartolome
  fullname: Gallego-Bartolome, Javier
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 9
  givenname: James A.
  surname: Wohlschlegel
  fullname: Wohlschlegel, James A.
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 10
  givenname: Dinshaw J.
  surname: Patel
  fullname: Patel, Dinshaw J.
  email: pateld@mskcc.org
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
– sequence: 11
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25018018$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtr3DAQhUVJaW79B6X4sS92R7IsWX0ohNxpbpR96ZOQ5VFXi20lljew_z5KdhvSPCQgkGDOnBmdb5dsDWFAQr5QKChQ8X1R9KGz2BUMKC9AFADqA9mhoGTOqeBbmzeTotomuzEuIAmrWn0i26wCWqezQ04v0c7N4GOfBZcdXR1klzjNV52ZfBjyIz-inbDNznyc0viXxaxZZb9-_7mZXV-dz473yUdnuoifN_cemZ0czw7P8ovr0_PDg4vcikpNeatUbSuHRmJjjGyEtUitqiSVjUPLeCkslqZuXAmubqVSjePggEsrSu7KPfJzbXu7bHpsLQ7TaDp9O_rejCsdjNf_VwY_13_DveaUScpYMvi2MRjD3RLjpHsfU4qdGTAso2YAkAKtKX1XSquKlRIYgyT9-nKt533-5ZwEfC2wY4hxRPcsoaAfceqFXuPUjzg1CJ1wprYfr9qsn57ST5_z3XvNm6ww8bj3OOpoPQ4W2yequg3-bYMHNGG92w
CitedBy_id crossref_primary_10_1073_pnas_1519067112
crossref_primary_10_1126_science_aar7854
crossref_primary_10_1038_s41467_020_14995_6
crossref_primary_10_1186_s13072_019_0299_0
crossref_primary_10_15252_embj_2019103667
crossref_primary_10_1016_j_sbi_2015_09_007
crossref_primary_10_1111_pbi_13946
crossref_primary_10_1093_nar_gkae690
crossref_primary_10_7554_eLife_62682
crossref_primary_10_1146_annurev_arplant_070523_041445
crossref_primary_10_3389_fpls_2021_705249
crossref_primary_10_3389_fpls_2019_01587
crossref_primary_10_1186_s12864_021_07596_0
crossref_primary_10_1111_jipb_13378
crossref_primary_10_1074_jbc_RA119_010160
crossref_primary_10_1038_ncomms12464
crossref_primary_10_1186_s13059_017_1226_y
crossref_primary_10_1093_plphys_kiad558
crossref_primary_10_1371_journal_pgen_1010041
crossref_primary_10_3390_plants10122766
crossref_primary_10_1534_g3_115_025668
crossref_primary_10_1093_plphys_kiae113
crossref_primary_10_1073_pnas_1918172117
crossref_primary_10_1186_s13059_022_02768_x
crossref_primary_10_1134_S1022795417090083
crossref_primary_10_1016_j_molcel_2018_10_006
crossref_primary_10_1038_s42003_023_04607_6
crossref_primary_10_1093_plphys_kiae072
crossref_primary_10_3389_fpls_2020_595603
crossref_primary_10_1371_journal_pgen_1009326
crossref_primary_10_1038_s41467_021_27690_x
crossref_primary_10_1146_annurev_arplant_043014_114633
crossref_primary_10_1101_gr_279379_124
crossref_primary_10_1093_plcell_koac035
crossref_primary_10_1128_JVI_00656_16
crossref_primary_10_1038_s41467_021_27320_6
crossref_primary_10_1093_aob_mcac125
crossref_primary_10_1093_nar_gkw1330
crossref_primary_10_1266_ggs_21_00041
crossref_primary_10_1021_acsomega_1c04917
crossref_primary_10_7554_eLife_89353_3
crossref_primary_10_1016_j_tplants_2015_03_003
crossref_primary_10_1038_s41467_021_22993_5
crossref_primary_10_3389_fpls_2016_00807
crossref_primary_10_3389_fgene_2018_00609
crossref_primary_10_1111_febs_16633
crossref_primary_10_1371_journal_pgen_1011358
crossref_primary_10_1186_s13059_016_1059_0
crossref_primary_10_1146_annurev_arplant_070122_025047
crossref_primary_10_1021_acs_jafc_1c04172
crossref_primary_10_7554_eLife_72676
crossref_primary_10_1002_prot_25399
crossref_primary_10_1101_gr_278409_123
crossref_primary_10_1038_s41477_019_0375_2
crossref_primary_10_3390_ijms22168618
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1073_pnas_1618019113
crossref_primary_10_1073_pnas_1716300115
crossref_primary_10_1038_nrm4043
crossref_primary_10_1016_j_csbj_2023_10_013
crossref_primary_10_1101_sqb_2019_84_040394
crossref_primary_10_1038_s41467_018_06965_w
crossref_primary_10_1016_j_jmb_2019_12_043
crossref_primary_10_1371_journal_pgen_1006551
crossref_primary_10_3390_plants12122373
crossref_primary_10_1007_s00497_015_0271_5
crossref_primary_10_3389_fpls_2021_782450
crossref_primary_10_7868_S0016675817090089
crossref_primary_10_1016_j_indcrop_2024_118412
crossref_primary_10_1038_s41467_020_16651_5
crossref_primary_10_1111_jipb_13423
crossref_primary_10_1016_j_molmet_2020_01_015
crossref_primary_10_1016_j_pbi_2016_12_007
crossref_primary_10_3390_genes13060992
crossref_primary_10_7554_eLife_47891
crossref_primary_10_3389_fpls_2021_596236
crossref_primary_10_1093_nar_gky602
crossref_primary_10_3389_fpls_2017_01247
crossref_primary_10_7717_peerj_8432
crossref_primary_10_1101_gr_227116_117
crossref_primary_10_1371_journal_pgen_1011296
crossref_primary_10_1242_dev_201989
crossref_primary_10_7554_eLife_69396
crossref_primary_10_1186_s13068_018_1202_0
crossref_primary_10_1016_j_semcdb_2015_08_008
crossref_primary_10_1093_jxb_eraa346
crossref_primary_10_1042_EBC20190032
crossref_primary_10_1073_pnas_1600672113
crossref_primary_10_1186_s12870_020_2244_6
crossref_primary_10_1017_qpb_2022_14
crossref_primary_10_1073_pnas_1809841115
crossref_primary_10_1016_j_ijbiomac_2020_12_149
crossref_primary_10_1038_srep16476
crossref_primary_10_1073_pnas_2107320118
crossref_primary_10_1093_nar_gkad610
crossref_primary_10_1111_nph_17018
crossref_primary_10_3390_plants13192700
crossref_primary_10_3390_horticulturae8070562
crossref_primary_10_1038_s41580_018_0016_z
crossref_primary_10_1093_jxb_erab227
crossref_primary_10_1007_s00497_021_00422_3
crossref_primary_10_1038_cr_2015_145
crossref_primary_10_1038_srep35101
crossref_primary_10_1021_acs_jafc_3c08568
crossref_primary_10_1186_s13059_017_1195_1
crossref_primary_10_1038_s41467_024_55387_4
crossref_primary_10_1371_journal_pgen_1006526
crossref_primary_10_3390_ijms21113783
crossref_primary_10_1038_s41467_019_10026_1
crossref_primary_10_1016_j_bbagrm_2020_194647
crossref_primary_10_1016_j_envexpbot_2021_104479
crossref_primary_10_1038_srep20161
crossref_primary_10_1073_pnas_2211155120
crossref_primary_10_1093_nar_gkae594
crossref_primary_10_1016_j_pbi_2022_102211
crossref_primary_10_1016_j_ygeno_2020_04_005
crossref_primary_10_1016_j_molp_2017_10_002
crossref_primary_10_1038_s41467_022_32709_y
crossref_primary_10_3389_fpls_2021_703667
crossref_primary_10_1038_nrg_2016_115
crossref_primary_10_7554_eLife_06671
crossref_primary_10_3390_plants13101400
crossref_primary_10_3389_fpls_2018_01194
crossref_primary_10_1016_j_bbagrm_2016_07_012
crossref_primary_10_1038_s41576_021_00407_y
crossref_primary_10_1007_s12374_018_0176_6
crossref_primary_10_1016_j_pbi_2018_05_006
crossref_primary_10_3389_fpls_2020_00452
crossref_primary_10_1042_BCJ20160123
crossref_primary_10_1111_jipb_13103
crossref_primary_10_7554_eLife_89353
crossref_primary_10_1038_s44319_024_00304_5
Cites_doi 10.1038/nrg2540
10.1016/j.cell.2012.07.034
10.1093/emboj/cdf687
10.1038/nature07249
10.1101/gad.905701
10.1016/j.cub.2007.01.009
10.1038/nature12931
10.1126/science.1059745
10.1038/nature09147
10.1016/S1097-2765(03)00224-7
10.1038/nsmb.2735
10.1038/nrg2719
10.1107/S0907444910007493
10.1101/gad.1980311
10.1105/tpc.106.041400
10.1146/annurev.biochem.74.010904.153721
10.1107/S0907444909052925
10.1038/nature07273
10.1007/s00412-004-0275-7
10.1016/j.cell.2012.10.054
10.1038/nature07280
10.1016/S0076-6879(97)76066-X
10.1146/annurev.biophys.34.040204.144452
10.1038/nature731
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
2014 Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: 2014 Elsevier Inc. All rights reserved. 2014
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2014.06.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 504
ExternalDocumentID PMC4127122
25018018
10_1016_j_molcel_2014_06_009
S1097276514004912
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM111244
– fundername: NIGMS NIH HHS
  grantid: R01 GM089778
– fundername: NIGMS NIH HHS
  grantid: R37 GM060398
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM060398
– fundername: NIGMS NIH HHS
  grantid: GM60398
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
AAHBH
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c659t-d998c5fea7ebaa7b6cce1c95717bfec2436ce3a8bf30f8d799bf40f047c634f3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 13:48:33 EDT 2025
Mon Jul 21 09:40:52 EDT 2025
Fri Jul 11 06:21:39 EDT 2025
Thu Apr 03 07:05:28 EDT 2025
Tue Jul 01 03:40:42 EDT 2025
Thu Apr 24 22:58:27 EDT 2025
Fri Feb 23 02:30:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-d998c5fea7ebaa7b6cce1c95717bfec2436ce3a8bf30f8d799bf40f047c634f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276514004912
PMID 25018018
PQID 1552370220
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4127122
proquest_miscellaneous_2000201811
proquest_miscellaneous_1552370220
pubmed_primary_25018018
crossref_primary_10_1016_j_molcel_2014_06_009
crossref_citationtrail_10_1016_j_molcel_2014_06_009
elsevier_sciencedirect_doi_10_1016_j_molcel_2014_06_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-07
PublicationDateYYYYMMDD 2014-08-07
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Goll, Bestor (bib11) 2005; 74
Stroud, Do, Du, Zhong, Feng, Johnson, Patel, Jacobsen (bib23) 2014; 21
Johnson, Du, Hale, Bischof, Feng, Chodavarapu, Zhong, Marson, Pellegrini, Segal (bib16) 2014; 507
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib1) 2010; 66
Emsley, Lohkamp, Scott, Cowtan (bib10) 2010; 66
Johnson, Bostick, Zhang, Kraft, Henderson, Callis, Jacobsen (bib15) 2007; 17
Zhang, Yang, Khan, Horton, Tamaru, Selker, Cheng (bib24) 2003; 12
Jackson, Lindroth, Cao, Jacobsen (bib13) 2002; 416
Jackson, Johnson, Jasencakova, Zhang, Perez Burgos, Singh, Cheng, Schubert, Jenuwein, Jacobsen (bib14) 2004; 112
Malagnac, Bartee, Bender (bib19) 2002; 21
Rajakumara, Law, Simanshu, Voigt, Johnson, Reinberg, Patel, Jacobsen (bib21) 2011; 25
Cedar, Bergman (bib5) 2009; 10
Cheng, Collins, Zhang (bib6) 2005; 34
Arita, Ariyoshi, Tochio, Nakamura, Shirakawa (bib2) 2008; 455
Chodavarapu, Feng, Bernatavichute, Chen, Stroud, Yu, Hetzel, Kuo, Kim, Cokus (bib7) 2010; 466
Du, Zhong, Bernatavichute, Stroud, Feng, Caro, Vashisht, Terragni, Chin, Tu (bib8) 2012; 151
Avvakumov, Walker, Xue, Li, Duan, Bronner, Arrowsmith, Dhe-Paganon (bib3) 2008; 455
Ebbs, Bender (bib9) 2006; 18
Hashimoto, Horton, Zhang, Bostick, Jacobsen, Cheng (bib12) 2008; 455
Law, Jacobsen (bib17) 2010; 11
Lindroth, Cao, Jackson, Zilberman, McCallum, Henikoff, Jacobsen (bib18) 2001; 292
Otwinowski, Minor (bib20) 1997; 276
Bartee, Malagnac, Bender (bib4) 2001; 15
Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (bib22) 2013; 152
Ebbs (10.1016/j.molcel.2014.06.009_bib9) 2006; 18
Stroud (10.1016/j.molcel.2014.06.009_bib23) 2014; 21
Zhang (10.1016/j.molcel.2014.06.009_bib24) 2003; 12
Du (10.1016/j.molcel.2014.06.009_bib8) 2012; 151
Malagnac (10.1016/j.molcel.2014.06.009_bib19) 2002; 21
Cedar (10.1016/j.molcel.2014.06.009_bib5) 2009; 10
Bartee (10.1016/j.molcel.2014.06.009_bib4) 2001; 15
Emsley (10.1016/j.molcel.2014.06.009_bib10) 2010; 66
Johnson (10.1016/j.molcel.2014.06.009_bib16) 2014; 507
Avvakumov (10.1016/j.molcel.2014.06.009_bib3) 2008; 455
Stroud (10.1016/j.molcel.2014.06.009_bib22) 2013; 152
Hashimoto (10.1016/j.molcel.2014.06.009_bib12) 2008; 455
Chodavarapu (10.1016/j.molcel.2014.06.009_bib7) 2010; 466
Goll (10.1016/j.molcel.2014.06.009_bib11) 2005; 74
Jackson (10.1016/j.molcel.2014.06.009_bib14) 2004; 112
Arita (10.1016/j.molcel.2014.06.009_bib2) 2008; 455
Johnson (10.1016/j.molcel.2014.06.009_bib15) 2007; 17
Law (10.1016/j.molcel.2014.06.009_bib17) 2010; 11
Jackson (10.1016/j.molcel.2014.06.009_bib13) 2002; 416
Adams (10.1016/j.molcel.2014.06.009_bib1) 2010; 66
Rajakumara (10.1016/j.molcel.2014.06.009_bib21) 2011; 25
Otwinowski (10.1016/j.molcel.2014.06.009_bib20) 1997; 276
Cheng (10.1016/j.molcel.2014.06.009_bib6) 2005; 34
Lindroth (10.1016/j.molcel.2014.06.009_bib18) 2001; 292
References_xml – volume: 152
  start-page: 352
  year: 2013
  end-page: 364
  ident: bib22
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome
  publication-title: Cell
– volume: 112
  start-page: 308
  year: 2004
  end-page: 315
  ident: bib14
  article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana
  publication-title: Chromosoma
– volume: 34
  start-page: 267
  year: 2005
  end-page: 294
  ident: bib6
  article-title: Structural and sequence motifs of protein (histone) methylation enzymes
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: bib20
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
– volume: 12
  start-page: 177
  year: 2003
  end-page: 185
  ident: bib24
  article-title: Structural basis for the product specificity of histone lysine methyltransferases
  publication-title: Mol. Cell
– volume: 455
  start-page: 822
  year: 2008
  end-page: 825
  ident: bib3
  article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
  publication-title: Nature
– volume: 74
  start-page: 481
  year: 2005
  end-page: 514
  ident: bib11
  article-title: Eukaryotic cytosine methyltransferases
  publication-title: Annu. Rev. Biochem.
– volume: 416
  start-page: 556
  year: 2002
  end-page: 560
  ident: bib13
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bib10
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 466
  start-page: 388
  year: 2010
  end-page: 392
  ident: bib7
  article-title: Relationship between nucleosome positioning and DNA methylation
  publication-title: Nature
– volume: 10
  start-page: 295
  year: 2009
  end-page: 304
  ident: bib5
  article-title: Linking DNA methylation and histone modification: patterns and paradigms
  publication-title: Nat. Rev. Genet.
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib1
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 151
  start-page: 167
  year: 2012
  end-page: 180
  ident: bib8
  article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants
  publication-title: Cell
– volume: 18
  start-page: 1166
  year: 2006
  end-page: 1176
  ident: bib9
  article-title: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase
  publication-title: Plant Cell
– volume: 11
  start-page: 204
  year: 2010
  end-page: 220
  ident: bib17
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
– volume: 25
  start-page: 137
  year: 2011
  end-page: 152
  ident: bib21
  article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo
  publication-title: Genes Dev.
– volume: 21
  start-page: 64
  year: 2014
  end-page: 72
  ident: bib23
  article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. non-
  publication-title: Nat. Struct. Mol. Biol.
– volume: 292
  start-page: 2077
  year: 2001
  end-page: 2080
  ident: bib18
  article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation
  publication-title: Science
– volume: 455
  start-page: 826
  year: 2008
  end-page: 829
  ident: bib12
  article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
  publication-title: Nature
– volume: 455
  start-page: 818
  year: 2008
  end-page: 821
  ident: bib2
  article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism
  publication-title: Nature
– volume: 15
  start-page: 1753
  year: 2001
  end-page: 1758
  ident: bib4
  article-title: Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene
  publication-title: Genes Dev.
– volume: 507
  start-page: 124
  year: 2014
  end-page: 128
  ident: bib16
  article-title: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation
  publication-title: Nature
– volume: 17
  start-page: 379
  year: 2007
  end-page: 384
  ident: bib15
  article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation
  publication-title: Curr. Biol.
– volume: 21
  start-page: 6842
  year: 2002
  end-page: 6852
  ident: bib19
  article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation
  publication-title: EMBO J.
– volume: 10
  start-page: 295
  year: 2009
  ident: 10.1016/j.molcel.2014.06.009_bib5
  article-title: Linking DNA methylation and histone modification: patterns and paradigms
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2540
– volume: 151
  start-page: 167
  year: 2012
  ident: 10.1016/j.molcel.2014.06.009_bib8
  article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.034
– volume: 21
  start-page: 6842
  year: 2002
  ident: 10.1016/j.molcel.2014.06.009_bib19
  article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf687
– volume: 455
  start-page: 818
  year: 2008
  ident: 10.1016/j.molcel.2014.06.009_bib2
  article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism
  publication-title: Nature
  doi: 10.1038/nature07249
– volume: 15
  start-page: 1753
  year: 2001
  ident: 10.1016/j.molcel.2014.06.009_bib4
  article-title: Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene
  publication-title: Genes Dev.
  doi: 10.1101/gad.905701
– volume: 17
  start-page: 379
  year: 2007
  ident: 10.1016/j.molcel.2014.06.009_bib15
  article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.01.009
– volume: 507
  start-page: 124
  year: 2014
  ident: 10.1016/j.molcel.2014.06.009_bib16
  article-title: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation
  publication-title: Nature
  doi: 10.1038/nature12931
– volume: 292
  start-page: 2077
  year: 2001
  ident: 10.1016/j.molcel.2014.06.009_bib18
  article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation
  publication-title: Science
  doi: 10.1126/science.1059745
– volume: 466
  start-page: 388
  year: 2010
  ident: 10.1016/j.molcel.2014.06.009_bib7
  article-title: Relationship between nucleosome positioning and DNA methylation
  publication-title: Nature
  doi: 10.1038/nature09147
– volume: 12
  start-page: 177
  year: 2003
  ident: 10.1016/j.molcel.2014.06.009_bib24
  article-title: Structural basis for the product specificity of histone lysine methyltransferases
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00224-7
– volume: 21
  start-page: 64
  year: 2014
  ident: 10.1016/j.molcel.2014.06.009_bib23
  article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. non-
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2735
– volume: 11
  start-page: 204
  year: 2010
  ident: 10.1016/j.molcel.2014.06.009_bib17
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.molcel.2014.06.009_bib10
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 25
  start-page: 137
  year: 2011
  ident: 10.1016/j.molcel.2014.06.009_bib21
  article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo
  publication-title: Genes Dev.
  doi: 10.1101/gad.1980311
– volume: 18
  start-page: 1166
  year: 2006
  ident: 10.1016/j.molcel.2014.06.009_bib9
  article-title: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041400
– volume: 74
  start-page: 481
  year: 2005
  ident: 10.1016/j.molcel.2014.06.009_bib11
  article-title: Eukaryotic cytosine methyltransferases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.010904.153721
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.molcel.2014.06.009_bib1
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 455
  start-page: 822
  year: 2008
  ident: 10.1016/j.molcel.2014.06.009_bib3
  article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
  publication-title: Nature
  doi: 10.1038/nature07273
– volume: 112
  start-page: 308
  year: 2004
  ident: 10.1016/j.molcel.2014.06.009_bib14
  article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana
  publication-title: Chromosoma
  doi: 10.1007/s00412-004-0275-7
– volume: 152
  start-page: 352
  year: 2013
  ident: 10.1016/j.molcel.2014.06.009_bib22
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.054
– volume: 455
  start-page: 826
  year: 2008
  ident: 10.1016/j.molcel.2014.06.009_bib12
  article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
  publication-title: Nature
  doi: 10.1038/nature07280
– volume: 276
  start-page: 307
  year: 1997
  ident: 10.1016/j.molcel.2014.06.009_bib20
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 34
  start-page: 267
  year: 2005
  ident: 10.1016/j.molcel.2014.06.009_bib6
  article-title: Structural and sequence motifs of protein (histone) methylation enzymes
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.34.040204.144452
– volume: 416
  start-page: 556
  year: 2002
  ident: 10.1016/j.molcel.2014.06.009_bib13
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
  doi: 10.1038/nature731
SSID ssj0014589
Score 2.5130796
Snippet In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3...
In Arabidopsis , CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 495
SubjectTerms Arabidopsis
Arabidopsis - chemistry
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - metabolism
Binding Sites - genetics
DNA
DNA Methylation
DNA, Plant - chemistry
DNA, Plant - genetics
Epigenesis, Genetic
Gene Expression Regulation, Plant
Genome, Plant
Histone-Lysine N-Methyltransferase - chemistry
Histone-Lysine N-Methyltransferase - metabolism
histones
Histones - physiology
methyltransferases
Models, Molecular
mutants
S-Adenosylhomocysteine - metabolism
X-Ray Diffraction
Title Mechanism of DNA Methylation-Directed Histone Methylation by KRYPTONITE
URI https://dx.doi.org/10.1016/j.molcel.2014.06.009
https://www.ncbi.nlm.nih.gov/pubmed/25018018
https://www.proquest.com/docview/1552370220
https://www.proquest.com/docview/2000201811
https://pubmed.ncbi.nlm.nih.gov/PMC4127122
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7Et-uLCl7Dbps0aY_rGxdX0RXXU8gTV7Qruh7892bSdnF9IAi9tJnSdJJMJsw33yC0p7MUaMktZoYQTF2qsaLEYROnnMjcpsYGgGyXnd7Qs37an0IHdS4MwCor21_a9GCtqyfNSpvN58GgeQ2x04Qzv-ODmxsqDROahSS-_v44kkDTUAYPhDFI1-lzAeP1NHzUFgIQMQ0sngBL_Hl7-u5-fkVRftqWjhfQfOVPRu2yy4toyhZLaLasMPm-jE7OLaT2Dl6foqGLDrvt6Nz6oSkBcLi0d9ZEgSyksJ8bI_Ueda7uLnsXXW_dVlDv-Kh3cIqr2glYszQfYeOPUQAkk9wqKbliWttY56k_vSlndUIJ05bITDnScpnhea4cbbkW5ZoR6sgqmi78d9dRlMWa5UYaCTm0LUMyQ7l0TJnEZN59Iw1Eao0JXfGKQ3mLR1EDyB5EqWcBehYBR5c3EB6_9Vzyavwhz-vBEBPzQ3jT_8ebu_XYCb90IB4iCzt8exXAPkc4pBr_LpOEWK13g-IGWivHe9zfBMgQ_eX7NjETxgJA3T3ZUgzuA4U3jRMeJ8nGv_9qE83BXYAi8i00PXp5s9vePRqpHTTT7lzddnbCOvgAkCsQhQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEaIXxLvhaSQ4WsnaXnv3wKGllIQ0AUGQwsnyUwS1m4qkQvlb_MJ6vLtRw0OVkCrtae3d9Y7tmbHmm28QemmLHGjJPRGOMcJDbonhLBCX5ZLp0ufOJ4DsWPS_8PfTfLqFfrW5MACrbHR_rdOTtm7udBtpdk9ns-5niJ1SKaLFBzc3ow2ycuhXP-O5bfF6cBAn-RWlh28nb_qkKS1ArMjLJXHxlAE4Ky290VoaYa3PbJnHw40J3lLOhPVMFyawXiicLEsTeC_0uLSC8cDia6-h69H5kKAMBtP9deSC56nsHgyOwOjadL2EKTuZH1sPAY-MJ9ZQgEH-3Rz-6e7-jtq8YAYPb6Nbjf-K92oR3UFbvrqLbtQVLVf30LuRh1Ti2eIEzwM-GO_hkY9LoQbckVq_eocTOUnlLzZis8LDT18_Tj6Moza9jyZXIdAHaLuK391FuMisKJ12GnJ2e44VjksdhHHUFdFdZB3EWokp2_CYQzmNY9UC1r6rWs4K5KwSbq_sILJ-6rTm8bikv2wnQ22sRxVNzSVPvmjnTsWtCvEXXfn52UIB2x2TkNr87z40xYaj25V10MN6vtfjpUC-GK84to2VsO4AVOGbLdXsW6IM5xmVGaWP_vuvnqOb_cnoSB0NxsPHaAdaEgxSPkHbyx9n_ml0zZbmWdoLGKkr3nvnBOZN8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+DNA+methylation-directed+histone+methylation+by+KRYPTONITE&rft.jtitle=Molecular+cell&rft.au=Du%2C+Jiamu&rft.au=Johnson%2C+Lianna+M.&rft.au=Groth%2C+Martin&rft.au=Feng%2C+Suhua&rft.date=2014-08-07&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=55&rft.issue=3&rft.spage=495&rft.epage=504&rft_id=info:doi/10.1016%2Fj.molcel.2014.06.009&rft_id=info%3Apmid%2F25018018&rft.externalDocID=PMC4127122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon