Mechanism of DNA Methylation-Directed Histone Methylation by KRYPTONITE
In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate...
Saved in:
Published in | Molecular cell Vol. 55; no. 3; pp. 495 - 504 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1–15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation.
[Display omitted]
•Crystal structure of KYP in complex with mCHH DNA, SAH, and H3 peptide•Two-helix segment of KYP mediates relative alignment of SRA and SET domains•mCHH DNA and H3 tail are specifically recognized by SRA and SET domains, respectively•Structural model of KYP and CMT3-controlled DNA and histone methylation feedback loop
Du et al. report on the structural and functional studies of a plant histone H3K9 methyltransferase, KRYPTONITE, in complex with mCHH DNA, H3 peptide, and SAH, revealing how this enzyme links DNA and histone methylation. |
---|---|
AbstractList | In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation. In Arabidopsis , CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights complemented by in vivo functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation. In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1–15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation. [Display omitted] •Crystal structure of KYP in complex with mCHH DNA, SAH, and H3 peptide•Two-helix segment of KYP mediates relative alignment of SRA and SET domains•mCHH DNA and H3 tail are specifically recognized by SRA and SET domains, respectively•Structural model of KYP and CMT3-controlled DNA and histone methylation feedback loop Du et al. report on the structural and functional studies of a plant histone H3K9 methyltransferase, KRYPTONITE, in complex with mCHH DNA, H3 peptide, and SAH, revealing how this enzyme links DNA and histone methylation. In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation.In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation. |
Author | Johnson, Lianna M. Wohlschlegel, James A. Vashisht, Ajay A. Groth, Martin Li, Sisi Jacobsen, Steven E. Patel, Dinshaw J. Du, Jiamu Feng, Suhua Gallego-Bartolome, Javier Hale, Christopher J. |
AuthorAffiliation | 4 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA 5 Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA 3 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA 1 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA 2 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA |
AuthorAffiliation_xml | – name: 2 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA – name: 5 Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA – name: 3 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA – name: 1 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA – name: 4 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA |
Author_xml | – sequence: 1 givenname: Jiamu surname: Du fullname: Du, Jiamu organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA – sequence: 2 givenname: Lianna M. surname: Johnson fullname: Johnson, Lianna M. organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA – sequence: 3 givenname: Martin surname: Groth fullname: Groth, Martin organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA – sequence: 4 givenname: Suhua surname: Feng fullname: Feng, Suhua organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA – sequence: 5 givenname: Christopher J. surname: Hale fullname: Hale, Christopher J. organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA – sequence: 6 givenname: Sisi surname: Li fullname: Li, Sisi organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA – sequence: 7 givenname: Ajay A. surname: Vashisht fullname: Vashisht, Ajay A. organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA – sequence: 8 givenname: Javier surname: Gallego-Bartolome fullname: Gallego-Bartolome, Javier organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA – sequence: 9 givenname: James A. surname: Wohlschlegel fullname: Wohlschlegel, James A. organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA – sequence: 10 givenname: Dinshaw J. surname: Patel fullname: Patel, Dinshaw J. email: pateld@mskcc.org organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA – sequence: 11 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. email: jacobsen@ucla.edu organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25018018$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtr3DAQhUVJaW79B6X4sS92R7IsWX0ohNxpbpR96ZOQ5VFXi20lljew_z5KdhvSPCQgkGDOnBmdb5dsDWFAQr5QKChQ8X1R9KGz2BUMKC9AFADqA9mhoGTOqeBbmzeTotomuzEuIAmrWn0i26wCWqezQ04v0c7N4GOfBZcdXR1klzjNV52ZfBjyIz-inbDNznyc0viXxaxZZb9-_7mZXV-dz473yUdnuoifN_cemZ0czw7P8ovr0_PDg4vcikpNeatUbSuHRmJjjGyEtUitqiSVjUPLeCkslqZuXAmubqVSjePggEsrSu7KPfJzbXu7bHpsLQ7TaDp9O_rejCsdjNf_VwY_13_DveaUScpYMvi2MRjD3RLjpHsfU4qdGTAso2YAkAKtKX1XSquKlRIYgyT9-nKt533-5ZwEfC2wY4hxRPcsoaAfceqFXuPUjzg1CJ1wprYfr9qsn57ST5_z3XvNm6ww8bj3OOpoPQ4W2yequg3-bYMHNGG92w |
CitedBy_id | crossref_primary_10_1073_pnas_1519067112 crossref_primary_10_1126_science_aar7854 crossref_primary_10_1038_s41467_020_14995_6 crossref_primary_10_1186_s13072_019_0299_0 crossref_primary_10_15252_embj_2019103667 crossref_primary_10_1016_j_sbi_2015_09_007 crossref_primary_10_1111_pbi_13946 crossref_primary_10_1093_nar_gkae690 crossref_primary_10_7554_eLife_62682 crossref_primary_10_1146_annurev_arplant_070523_041445 crossref_primary_10_3389_fpls_2021_705249 crossref_primary_10_3389_fpls_2019_01587 crossref_primary_10_1186_s12864_021_07596_0 crossref_primary_10_1111_jipb_13378 crossref_primary_10_1074_jbc_RA119_010160 crossref_primary_10_1038_ncomms12464 crossref_primary_10_1186_s13059_017_1226_y crossref_primary_10_1093_plphys_kiad558 crossref_primary_10_1371_journal_pgen_1010041 crossref_primary_10_3390_plants10122766 crossref_primary_10_1534_g3_115_025668 crossref_primary_10_1093_plphys_kiae113 crossref_primary_10_1073_pnas_1918172117 crossref_primary_10_1186_s13059_022_02768_x crossref_primary_10_1134_S1022795417090083 crossref_primary_10_1016_j_molcel_2018_10_006 crossref_primary_10_1038_s42003_023_04607_6 crossref_primary_10_1093_plphys_kiae072 crossref_primary_10_3389_fpls_2020_595603 crossref_primary_10_1371_journal_pgen_1009326 crossref_primary_10_1038_s41467_021_27690_x crossref_primary_10_1146_annurev_arplant_043014_114633 crossref_primary_10_1101_gr_279379_124 crossref_primary_10_1093_plcell_koac035 crossref_primary_10_1128_JVI_00656_16 crossref_primary_10_1038_s41467_021_27320_6 crossref_primary_10_1093_aob_mcac125 crossref_primary_10_1093_nar_gkw1330 crossref_primary_10_1266_ggs_21_00041 crossref_primary_10_1021_acsomega_1c04917 crossref_primary_10_7554_eLife_89353_3 crossref_primary_10_1016_j_tplants_2015_03_003 crossref_primary_10_1038_s41467_021_22993_5 crossref_primary_10_3389_fpls_2016_00807 crossref_primary_10_3389_fgene_2018_00609 crossref_primary_10_1111_febs_16633 crossref_primary_10_1371_journal_pgen_1011358 crossref_primary_10_1186_s13059_016_1059_0 crossref_primary_10_1146_annurev_arplant_070122_025047 crossref_primary_10_1021_acs_jafc_1c04172 crossref_primary_10_7554_eLife_72676 crossref_primary_10_1002_prot_25399 crossref_primary_10_1101_gr_278409_123 crossref_primary_10_1038_s41477_019_0375_2 crossref_primary_10_3390_ijms22168618 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1073_pnas_1618019113 crossref_primary_10_1073_pnas_1716300115 crossref_primary_10_1038_nrm4043 crossref_primary_10_1016_j_csbj_2023_10_013 crossref_primary_10_1101_sqb_2019_84_040394 crossref_primary_10_1038_s41467_018_06965_w crossref_primary_10_1016_j_jmb_2019_12_043 crossref_primary_10_1371_journal_pgen_1006551 crossref_primary_10_3390_plants12122373 crossref_primary_10_1007_s00497_015_0271_5 crossref_primary_10_3389_fpls_2021_782450 crossref_primary_10_7868_S0016675817090089 crossref_primary_10_1016_j_indcrop_2024_118412 crossref_primary_10_1038_s41467_020_16651_5 crossref_primary_10_1111_jipb_13423 crossref_primary_10_1016_j_molmet_2020_01_015 crossref_primary_10_1016_j_pbi_2016_12_007 crossref_primary_10_3390_genes13060992 crossref_primary_10_7554_eLife_47891 crossref_primary_10_3389_fpls_2021_596236 crossref_primary_10_1093_nar_gky602 crossref_primary_10_3389_fpls_2017_01247 crossref_primary_10_7717_peerj_8432 crossref_primary_10_1101_gr_227116_117 crossref_primary_10_1371_journal_pgen_1011296 crossref_primary_10_1242_dev_201989 crossref_primary_10_7554_eLife_69396 crossref_primary_10_1186_s13068_018_1202_0 crossref_primary_10_1016_j_semcdb_2015_08_008 crossref_primary_10_1093_jxb_eraa346 crossref_primary_10_1042_EBC20190032 crossref_primary_10_1073_pnas_1600672113 crossref_primary_10_1186_s12870_020_2244_6 crossref_primary_10_1017_qpb_2022_14 crossref_primary_10_1073_pnas_1809841115 crossref_primary_10_1016_j_ijbiomac_2020_12_149 crossref_primary_10_1038_srep16476 crossref_primary_10_1073_pnas_2107320118 crossref_primary_10_1093_nar_gkad610 crossref_primary_10_1111_nph_17018 crossref_primary_10_3390_plants13192700 crossref_primary_10_3390_horticulturae8070562 crossref_primary_10_1038_s41580_018_0016_z crossref_primary_10_1093_jxb_erab227 crossref_primary_10_1007_s00497_021_00422_3 crossref_primary_10_1038_cr_2015_145 crossref_primary_10_1038_srep35101 crossref_primary_10_1021_acs_jafc_3c08568 crossref_primary_10_1186_s13059_017_1195_1 crossref_primary_10_1038_s41467_024_55387_4 crossref_primary_10_1371_journal_pgen_1006526 crossref_primary_10_3390_ijms21113783 crossref_primary_10_1038_s41467_019_10026_1 crossref_primary_10_1016_j_bbagrm_2020_194647 crossref_primary_10_1016_j_envexpbot_2021_104479 crossref_primary_10_1038_srep20161 crossref_primary_10_1073_pnas_2211155120 crossref_primary_10_1093_nar_gkae594 crossref_primary_10_1016_j_pbi_2022_102211 crossref_primary_10_1016_j_ygeno_2020_04_005 crossref_primary_10_1016_j_molp_2017_10_002 crossref_primary_10_1038_s41467_022_32709_y crossref_primary_10_3389_fpls_2021_703667 crossref_primary_10_1038_nrg_2016_115 crossref_primary_10_7554_eLife_06671 crossref_primary_10_3390_plants13101400 crossref_primary_10_3389_fpls_2018_01194 crossref_primary_10_1016_j_bbagrm_2016_07_012 crossref_primary_10_1038_s41576_021_00407_y crossref_primary_10_1007_s12374_018_0176_6 crossref_primary_10_1016_j_pbi_2018_05_006 crossref_primary_10_3389_fpls_2020_00452 crossref_primary_10_1042_BCJ20160123 crossref_primary_10_1111_jipb_13103 crossref_primary_10_7554_eLife_89353 crossref_primary_10_1038_s44319_024_00304_5 |
Cites_doi | 10.1038/nrg2540 10.1016/j.cell.2012.07.034 10.1093/emboj/cdf687 10.1038/nature07249 10.1101/gad.905701 10.1016/j.cub.2007.01.009 10.1038/nature12931 10.1126/science.1059745 10.1038/nature09147 10.1016/S1097-2765(03)00224-7 10.1038/nsmb.2735 10.1038/nrg2719 10.1107/S0907444910007493 10.1101/gad.1980311 10.1105/tpc.106.041400 10.1146/annurev.biochem.74.010904.153721 10.1107/S0907444909052925 10.1038/nature07273 10.1007/s00412-004-0275-7 10.1016/j.cell.2012.10.054 10.1038/nature07280 10.1016/S0076-6879(97)76066-X 10.1146/annurev.biophys.34.040204.144452 10.1038/nature731 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. 2014 Elsevier Inc. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: 2014 Elsevier Inc. All rights reserved. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2014.06.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 504 |
ExternalDocumentID | PMC4127122 25018018 10_1016_j_molcel_2014_06_009 S1097276514004912 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM111244 – fundername: NIGMS NIH HHS grantid: R01 GM089778 – fundername: NIGMS NIH HHS grantid: R37 GM060398 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM060398 – fundername: NIGMS NIH HHS grantid: GM60398 – fundername: NCI NIH HHS grantid: P30 CA008748 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G AAHBH AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c659t-d998c5fea7ebaa7b6cce1c95717bfec2436ce3a8bf30f8d799bf40f047c634f3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 13:48:33 EDT 2025 Mon Jul 21 09:40:52 EDT 2025 Fri Jul 11 06:21:39 EDT 2025 Thu Apr 03 07:05:28 EDT 2025 Tue Jul 01 03:40:42 EDT 2025 Thu Apr 24 22:58:27 EDT 2025 Fri Feb 23 02:30:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c659t-d998c5fea7ebaa7b6cce1c95717bfec2436ce3a8bf30f8d799bf40f047c634f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276514004912 |
PMID | 25018018 |
PQID | 1552370220 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4127122 proquest_miscellaneous_2000201811 proquest_miscellaneous_1552370220 pubmed_primary_25018018 crossref_primary_10_1016_j_molcel_2014_06_009 crossref_citationtrail_10_1016_j_molcel_2014_06_009 elsevier_sciencedirect_doi_10_1016_j_molcel_2014_06_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-07 |
PublicationDateYYYYMMDD | 2014-08-07 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Goll, Bestor (bib11) 2005; 74 Stroud, Do, Du, Zhong, Feng, Johnson, Patel, Jacobsen (bib23) 2014; 21 Johnson, Du, Hale, Bischof, Feng, Chodavarapu, Zhong, Marson, Pellegrini, Segal (bib16) 2014; 507 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib1) 2010; 66 Emsley, Lohkamp, Scott, Cowtan (bib10) 2010; 66 Johnson, Bostick, Zhang, Kraft, Henderson, Callis, Jacobsen (bib15) 2007; 17 Zhang, Yang, Khan, Horton, Tamaru, Selker, Cheng (bib24) 2003; 12 Jackson, Lindroth, Cao, Jacobsen (bib13) 2002; 416 Jackson, Johnson, Jasencakova, Zhang, Perez Burgos, Singh, Cheng, Schubert, Jenuwein, Jacobsen (bib14) 2004; 112 Malagnac, Bartee, Bender (bib19) 2002; 21 Rajakumara, Law, Simanshu, Voigt, Johnson, Reinberg, Patel, Jacobsen (bib21) 2011; 25 Cedar, Bergman (bib5) 2009; 10 Cheng, Collins, Zhang (bib6) 2005; 34 Arita, Ariyoshi, Tochio, Nakamura, Shirakawa (bib2) 2008; 455 Chodavarapu, Feng, Bernatavichute, Chen, Stroud, Yu, Hetzel, Kuo, Kim, Cokus (bib7) 2010; 466 Du, Zhong, Bernatavichute, Stroud, Feng, Caro, Vashisht, Terragni, Chin, Tu (bib8) 2012; 151 Avvakumov, Walker, Xue, Li, Duan, Bronner, Arrowsmith, Dhe-Paganon (bib3) 2008; 455 Ebbs, Bender (bib9) 2006; 18 Hashimoto, Horton, Zhang, Bostick, Jacobsen, Cheng (bib12) 2008; 455 Law, Jacobsen (bib17) 2010; 11 Lindroth, Cao, Jackson, Zilberman, McCallum, Henikoff, Jacobsen (bib18) 2001; 292 Otwinowski, Minor (bib20) 1997; 276 Bartee, Malagnac, Bender (bib4) 2001; 15 Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (bib22) 2013; 152 Ebbs (10.1016/j.molcel.2014.06.009_bib9) 2006; 18 Stroud (10.1016/j.molcel.2014.06.009_bib23) 2014; 21 Zhang (10.1016/j.molcel.2014.06.009_bib24) 2003; 12 Du (10.1016/j.molcel.2014.06.009_bib8) 2012; 151 Malagnac (10.1016/j.molcel.2014.06.009_bib19) 2002; 21 Cedar (10.1016/j.molcel.2014.06.009_bib5) 2009; 10 Bartee (10.1016/j.molcel.2014.06.009_bib4) 2001; 15 Emsley (10.1016/j.molcel.2014.06.009_bib10) 2010; 66 Johnson (10.1016/j.molcel.2014.06.009_bib16) 2014; 507 Avvakumov (10.1016/j.molcel.2014.06.009_bib3) 2008; 455 Stroud (10.1016/j.molcel.2014.06.009_bib22) 2013; 152 Hashimoto (10.1016/j.molcel.2014.06.009_bib12) 2008; 455 Chodavarapu (10.1016/j.molcel.2014.06.009_bib7) 2010; 466 Goll (10.1016/j.molcel.2014.06.009_bib11) 2005; 74 Jackson (10.1016/j.molcel.2014.06.009_bib14) 2004; 112 Arita (10.1016/j.molcel.2014.06.009_bib2) 2008; 455 Johnson (10.1016/j.molcel.2014.06.009_bib15) 2007; 17 Law (10.1016/j.molcel.2014.06.009_bib17) 2010; 11 Jackson (10.1016/j.molcel.2014.06.009_bib13) 2002; 416 Adams (10.1016/j.molcel.2014.06.009_bib1) 2010; 66 Rajakumara (10.1016/j.molcel.2014.06.009_bib21) 2011; 25 Otwinowski (10.1016/j.molcel.2014.06.009_bib20) 1997; 276 Cheng (10.1016/j.molcel.2014.06.009_bib6) 2005; 34 Lindroth (10.1016/j.molcel.2014.06.009_bib18) 2001; 292 |
References_xml | – volume: 152 start-page: 352 year: 2013 end-page: 364 ident: bib22 article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome publication-title: Cell – volume: 112 start-page: 308 year: 2004 end-page: 315 ident: bib14 article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana publication-title: Chromosoma – volume: 34 start-page: 267 year: 2005 end-page: 294 ident: bib6 article-title: Structural and sequence motifs of protein (histone) methylation enzymes publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: bib20 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. – volume: 12 start-page: 177 year: 2003 end-page: 185 ident: bib24 article-title: Structural basis for the product specificity of histone lysine methyltransferases publication-title: Mol. Cell – volume: 455 start-page: 822 year: 2008 end-page: 825 ident: bib3 article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 publication-title: Nature – volume: 74 start-page: 481 year: 2005 end-page: 514 ident: bib11 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu. Rev. Biochem. – volume: 416 start-page: 556 year: 2002 end-page: 560 ident: bib13 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib10 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 466 start-page: 388 year: 2010 end-page: 392 ident: bib7 article-title: Relationship between nucleosome positioning and DNA methylation publication-title: Nature – volume: 10 start-page: 295 year: 2009 end-page: 304 ident: bib5 article-title: Linking DNA methylation and histone modification: patterns and paradigms publication-title: Nat. Rev. Genet. – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 151 start-page: 167 year: 2012 end-page: 180 ident: bib8 article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants publication-title: Cell – volume: 18 start-page: 1166 year: 2006 end-page: 1176 ident: bib9 article-title: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase publication-title: Plant Cell – volume: 11 start-page: 204 year: 2010 end-page: 220 ident: bib17 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. – volume: 25 start-page: 137 year: 2011 end-page: 152 ident: bib21 article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo publication-title: Genes Dev. – volume: 21 start-page: 64 year: 2014 end-page: 72 ident: bib23 article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. non- publication-title: Nat. Struct. Mol. Biol. – volume: 292 start-page: 2077 year: 2001 end-page: 2080 ident: bib18 article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation publication-title: Science – volume: 455 start-page: 826 year: 2008 end-page: 829 ident: bib12 article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix publication-title: Nature – volume: 455 start-page: 818 year: 2008 end-page: 821 ident: bib2 article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism publication-title: Nature – volume: 15 start-page: 1753 year: 2001 end-page: 1758 ident: bib4 article-title: Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene publication-title: Genes Dev. – volume: 507 start-page: 124 year: 2014 end-page: 128 ident: bib16 article-title: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation publication-title: Nature – volume: 17 start-page: 379 year: 2007 end-page: 384 ident: bib15 article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation publication-title: Curr. Biol. – volume: 21 start-page: 6842 year: 2002 end-page: 6852 ident: bib19 article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation publication-title: EMBO J. – volume: 10 start-page: 295 year: 2009 ident: 10.1016/j.molcel.2014.06.009_bib5 article-title: Linking DNA methylation and histone modification: patterns and paradigms publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2540 – volume: 151 start-page: 167 year: 2012 ident: 10.1016/j.molcel.2014.06.009_bib8 article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants publication-title: Cell doi: 10.1016/j.cell.2012.07.034 – volume: 21 start-page: 6842 year: 2002 ident: 10.1016/j.molcel.2014.06.009_bib19 article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation publication-title: EMBO J. doi: 10.1093/emboj/cdf687 – volume: 455 start-page: 818 year: 2008 ident: 10.1016/j.molcel.2014.06.009_bib2 article-title: Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism publication-title: Nature doi: 10.1038/nature07249 – volume: 15 start-page: 1753 year: 2001 ident: 10.1016/j.molcel.2014.06.009_bib4 article-title: Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene publication-title: Genes Dev. doi: 10.1101/gad.905701 – volume: 17 start-page: 379 year: 2007 ident: 10.1016/j.molcel.2014.06.009_bib15 article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.01.009 – volume: 507 start-page: 124 year: 2014 ident: 10.1016/j.molcel.2014.06.009_bib16 article-title: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation publication-title: Nature doi: 10.1038/nature12931 – volume: 292 start-page: 2077 year: 2001 ident: 10.1016/j.molcel.2014.06.009_bib18 article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation publication-title: Science doi: 10.1126/science.1059745 – volume: 466 start-page: 388 year: 2010 ident: 10.1016/j.molcel.2014.06.009_bib7 article-title: Relationship between nucleosome positioning and DNA methylation publication-title: Nature doi: 10.1038/nature09147 – volume: 12 start-page: 177 year: 2003 ident: 10.1016/j.molcel.2014.06.009_bib24 article-title: Structural basis for the product specificity of histone lysine methyltransferases publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00224-7 – volume: 21 start-page: 64 year: 2014 ident: 10.1016/j.molcel.2014.06.009_bib23 article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. non- publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2735 – volume: 11 start-page: 204 year: 2010 ident: 10.1016/j.molcel.2014.06.009_bib17 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2719 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.molcel.2014.06.009_bib10 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 25 start-page: 137 year: 2011 ident: 10.1016/j.molcel.2014.06.009_bib21 article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo publication-title: Genes Dev. doi: 10.1101/gad.1980311 – volume: 18 start-page: 1166 year: 2006 ident: 10.1016/j.molcel.2014.06.009_bib9 article-title: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase publication-title: Plant Cell doi: 10.1105/tpc.106.041400 – volume: 74 start-page: 481 year: 2005 ident: 10.1016/j.molcel.2014.06.009_bib11 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.010904.153721 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.molcel.2014.06.009_bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 455 start-page: 822 year: 2008 ident: 10.1016/j.molcel.2014.06.009_bib3 article-title: Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1 publication-title: Nature doi: 10.1038/nature07273 – volume: 112 start-page: 308 year: 2004 ident: 10.1016/j.molcel.2014.06.009_bib14 article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana publication-title: Chromosoma doi: 10.1007/s00412-004-0275-7 – volume: 152 start-page: 352 year: 2013 ident: 10.1016/j.molcel.2014.06.009_bib22 article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome publication-title: Cell doi: 10.1016/j.cell.2012.10.054 – volume: 455 start-page: 826 year: 2008 ident: 10.1016/j.molcel.2014.06.009_bib12 article-title: The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix publication-title: Nature doi: 10.1038/nature07280 – volume: 276 start-page: 307 year: 1997 ident: 10.1016/j.molcel.2014.06.009_bib20 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 34 start-page: 267 year: 2005 ident: 10.1016/j.molcel.2014.06.009_bib6 article-title: Structural and sequence motifs of protein (histone) methylation enzymes publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.34.040204.144452 – volume: 416 start-page: 556 year: 2002 ident: 10.1016/j.molcel.2014.06.009_bib13 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature doi: 10.1038/nature731 |
SSID | ssj0014589 |
Score | 2.5130796 |
Snippet | In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3... In Arabidopsis , CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 495 |
SubjectTerms | Arabidopsis Arabidopsis - chemistry Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - chemistry Arabidopsis Proteins - metabolism Binding Sites - genetics DNA DNA Methylation DNA, Plant - chemistry DNA, Plant - genetics Epigenesis, Genetic Gene Expression Regulation, Plant Genome, Plant Histone-Lysine N-Methyltransferase - chemistry Histone-Lysine N-Methyltransferase - metabolism histones Histones - physiology methyltransferases Models, Molecular mutants S-Adenosylhomocysteine - metabolism X-Ray Diffraction |
Title | Mechanism of DNA Methylation-Directed Histone Methylation by KRYPTONITE |
URI | https://dx.doi.org/10.1016/j.molcel.2014.06.009 https://www.ncbi.nlm.nih.gov/pubmed/25018018 https://www.proquest.com/docview/1552370220 https://www.proquest.com/docview/2000201811 https://pubmed.ncbi.nlm.nih.gov/PMC4127122 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7Et-uLCl7Dbps0aY_rGxdX0RXXU8gTV7Qruh7892bSdnF9IAi9tJnSdJJMJsw33yC0p7MUaMktZoYQTF2qsaLEYROnnMjcpsYGgGyXnd7Qs37an0IHdS4MwCor21_a9GCtqyfNSpvN58GgeQ2x04Qzv-ODmxsqDROahSS-_v44kkDTUAYPhDFI1-lzAeP1NHzUFgIQMQ0sngBL_Hl7-u5-fkVRftqWjhfQfOVPRu2yy4toyhZLaLasMPm-jE7OLaT2Dl6foqGLDrvt6Nz6oSkBcLi0d9ZEgSyksJ8bI_Ueda7uLnsXXW_dVlDv-Kh3cIqr2glYszQfYeOPUQAkk9wqKbliWttY56k_vSlndUIJ05bITDnScpnhea4cbbkW5ZoR6sgqmi78d9dRlMWa5UYaCTm0LUMyQ7l0TJnEZN59Iw1Eao0JXfGKQ3mLR1EDyB5EqWcBehYBR5c3EB6_9Vzyavwhz-vBEBPzQ3jT_8ebu_XYCb90IB4iCzt8exXAPkc4pBr_LpOEWK13g-IGWivHe9zfBMgQ_eX7NjETxgJA3T3ZUgzuA4U3jRMeJ8nGv_9qE83BXYAi8i00PXp5s9vePRqpHTTT7lzddnbCOvgAkCsQhQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEaIXxLvhaSQ4WsnaXnv3wKGllIQ0AUGQwsnyUwS1m4qkQvlb_MJ6vLtRw0OVkCrtae3d9Y7tmbHmm28QemmLHGjJPRGOMcJDbonhLBCX5ZLp0ufOJ4DsWPS_8PfTfLqFfrW5MACrbHR_rdOTtm7udBtpdk9ns-5niJ1SKaLFBzc3ow2ycuhXP-O5bfF6cBAn-RWlh28nb_qkKS1ArMjLJXHxlAE4Ky290VoaYa3PbJnHw40J3lLOhPVMFyawXiicLEsTeC_0uLSC8cDia6-h69H5kKAMBtP9deSC56nsHgyOwOjadL2EKTuZH1sPAY-MJ9ZQgEH-3Rz-6e7-jtq8YAYPb6Nbjf-K92oR3UFbvrqLbtQVLVf30LuRh1Ti2eIEzwM-GO_hkY9LoQbckVq_eocTOUnlLzZis8LDT18_Tj6Moza9jyZXIdAHaLuK391FuMisKJ12GnJ2e44VjksdhHHUFdFdZB3EWokp2_CYQzmNY9UC1r6rWs4K5KwSbq_sILJ-6rTm8bikv2wnQ22sRxVNzSVPvmjnTsWtCvEXXfn52UIB2x2TkNr87z40xYaj25V10MN6vtfjpUC-GK84to2VsO4AVOGbLdXsW6IM5xmVGaWP_vuvnqOb_cnoSB0NxsPHaAdaEgxSPkHbyx9n_ml0zZbmWdoLGKkr3nvnBOZN8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+DNA+methylation-directed+histone+methylation+by+KRYPTONITE&rft.jtitle=Molecular+cell&rft.au=Du%2C+Jiamu&rft.au=Johnson%2C+Lianna+M.&rft.au=Groth%2C+Martin&rft.au=Feng%2C+Suhua&rft.date=2014-08-07&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=55&rft.issue=3&rft.spage=495&rft.epage=504&rft_id=info:doi/10.1016%2Fj.molcel.2014.06.009&rft_id=info%3Apmid%2F25018018&rft.externalDocID=PMC4127122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |