Evidence for a new phase of dense hydrogen above 325 gigapascals
Raman spectroscopy of three isotopes of hydrogen under very high compression yields evidence of a new phase of hydrogen—phase V—which could potentially be a precursor to the long-sought non-molecular phase. A non-molecular phase of hydrogen? Under extremely high pressures, hydrogen molecules are pre...
Saved in:
Published in | Nature (London) Vol. 529; no. 7584; pp. 63 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.01.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Raman spectroscopy of three isotopes of hydrogen under very high compression yields evidence of a new phase of hydrogen—phase V—which could potentially be a precursor to the long-sought non-molecular phase.
A non-molecular phase of hydrogen?
Under extremely high pressures, hydrogen molecules are predicted to break down and form a metallic atomic state. Such a state has yet to be realized, but new results from a team at the University of Edinburgh could be getting us closer to this goal. They have now managed to squeeze hydrogen molecules (and their deuterated equivalents) to pressures in excess of 3.5 million atmospheres, and see tantalizing hints of a new phase — possibly a precursor to the long-sought non-molecular phase.
Almost 80 years ago it was predicted that, under sufficient compression, the H–H bond in molecular hydrogen (H
2
) would break, forming a new, atomic, metallic, solid state of hydrogen
1
. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using
in situ
high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H
2
and hydrogen deuteride (HD) transform to a new phase—phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure–temperature space of the suggested phase V in H
2
and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D
2
). However, we show that the transformation to phase IV′ in D
2
occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H
2
and D
2
phases, which implies that the appearance of phase V of D
2
must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago. |
---|---|
AbstractList | Raman spectroscopy of three isotopes of hydrogen under very high compression yields evidence of a new phase of hydrogen—phase V—which could potentially be a precursor to the long-sought non-molecular phase.
A non-molecular phase of hydrogen?
Under extremely high pressures, hydrogen molecules are predicted to break down and form a metallic atomic state. Such a state has yet to be realized, but new results from a team at the University of Edinburgh could be getting us closer to this goal. They have now managed to squeeze hydrogen molecules (and their deuterated equivalents) to pressures in excess of 3.5 million atmospheres, and see tantalizing hints of a new phase — possibly a precursor to the long-sought non-molecular phase.
Almost 80 years ago it was predicted that, under sufficient compression, the H–H bond in molecular hydrogen (H
2
) would break, forming a new, atomic, metallic, solid state of hydrogen
1
. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using
in situ
high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H
2
and hydrogen deuteride (HD) transform to a new phase—phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure–temperature space of the suggested phase V in H
2
and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D
2
). However, we show that the transformation to phase IV′ in D
2
occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H
2
and D
2
phases, which implies that the appearance of phase V of D
2
must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago. Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic, solid state of hydrogen. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H2 and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D2). However, we show that the transformation to phase IV' in D2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H2 and D2 phases, which implies that the appearance of phase V of D2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago. Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H^sub 2^) would break, forming a new, atomic, metallic, solid state of hydrogen1. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H^sub 2^ and hydrogen deuteride (HD) transform to a new phase-phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H^sub 2^ and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D^sub 2^). However, we show that the transformation to phase IV' in D^sub 2^ occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H^sub 2^ and D^sub 2^ phases, which implies that the appearance of phase V of D^sub 2^ must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago. Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen ([H.sub.2]) would break, forming a new, atomic, metallic, solid state of hydrogen (1). Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, [H.sub.2] and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in [H.sub.2] and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium ([D.sub.2]). However, we show that the transformation to phase IV' in [D.sub.2] occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the [H.sub.2] and [D.sub.2] phases, which implies that the appearance of phase V of [D.sub.2] must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago. Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic, solid state of hydrogen. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H2 and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D2). However, we show that the transformation to phase IV' in D2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H2 and D2 phases, which implies that the appearance of phase V of D2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic, solid state of hydrogen. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H2 and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D2). However, we show that the transformation to phase IV' in D2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H2 and D2 phases, which implies that the appearance of phase V of D2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago. |
Audience | Academic |
Author | Dalladay-Simpson, Philip Gregoryanz, Eugene Howie, Ross T. |
Author_xml | – sequence: 1 givenname: Philip surname: Dalladay-Simpson fullname: Dalladay-Simpson, Philip organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh – sequence: 2 givenname: Ross T. surname: Howie fullname: Howie, Ross T. organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, † Present address: Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China – sequence: 3 givenname: Eugene surname: Gregoryanz fullname: Gregoryanz, Eugene email: e.gregoryanz@ed.ac.uk organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26738591$$D View this record in MEDLINE/PubMed |
BookMark | eNp10tFv1CAcB3BiZtxt-uS7adyLRjuhFErfvFy2uWTRRGd8JJT-6Fh60EE73X8vy216Z2p4gMCHb36B3wHac94BQi8JPiaYig9OjVMAwgkvn6AFKSuel1xUe2iBcSFyLCjfRwcxXmOMGanKZ2i_4BUVrCYL9PHk1rbgNGTGh0xlDn5mw5WKkHmTpYO0uLprg-_AZarxt5DRgmWd7dSgolZ9fI6emjTBi4f5EH0_Pblcfcovvpydr5YXueasHnOhGSkYJ7okWgCpTUsMCEYZGILrVqsmnamCphpbigVh0AJtmxJjzZuKAT1Ebza5Q_A3E8RRrm3U0PfKgZ-iJBXHQhSY1Yke_UOv_RRcqi4pxiomKNlSnepBWmf8GJS-D5XLktaMFrygSeUzKr0GBNWnfzA2be_41zNeD_ZGbqPjGZRGC2urZ1Pf7lxIZoRfY6emGOX5t6-79t3_7fLyx-rzrn718FZTs4ZWDsGuVbiTjx2SANkAHXyMAYzUdlSjTalB2V4SLO-7UG514d8S_tx5jJ3X7zc6JuU6CFvfNcN_A1tV5g4 |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1063_5_0060977 crossref_primary_10_1103_PhysRevB_96_064517 crossref_primary_10_1103_PhysRevB_95_115116 crossref_primary_10_1126_sciadv_aao5242 crossref_primary_10_1038_s41598_019_44326_9 crossref_primary_10_1073_pnas_2122691119 crossref_primary_10_1103_PhysRevB_100_134109 crossref_primary_10_1016_j_physleta_2023_129040 crossref_primary_10_1103_PhysRevB_111_014110 crossref_primary_10_1039_C8CC01850B crossref_primary_10_1103_PhysRevB_103_174520 crossref_primary_10_1103_PhysRevB_109_054512 crossref_primary_10_1016_j_physrep_2020_02_003 crossref_primary_10_2139_ssrn_4200049 crossref_primary_10_1063_1_5001387 crossref_primary_10_1103_PhysRevB_96_085101 crossref_primary_10_1103_PhysRevB_104_214111 crossref_primary_10_1039_D2NR00587E crossref_primary_10_1038_s41467_018_05011_z crossref_primary_10_1088_1361_648X_ac7a82 crossref_primary_10_1038_srep36745 crossref_primary_10_1039_C7CP03729E crossref_primary_10_1103_PhysRevB_102_174109 crossref_primary_10_1103_PhysRevB_97_075142 crossref_primary_10_1063_5_0069425 crossref_primary_10_1039_C6NR03888C crossref_primary_10_1021_acsomega_0c05794 crossref_primary_10_1103_PhysRevB_98_085112 crossref_primary_10_1038_s41563_023_01477_5 crossref_primary_10_1103_PhysRevB_97_024111 crossref_primary_10_1002_pssr_202300417 crossref_primary_10_3390_sym15071308 crossref_primary_10_1039_D2CP00997H crossref_primary_10_1103_PhysRevLett_117_115901 crossref_primary_10_1103_PhysRevMaterials_1_024802 crossref_primary_10_1021_acs_chemmater_3c02797 crossref_primary_10_1103_PhysRevB_93_174308 crossref_primary_10_1126_science_aan2286 crossref_primary_10_1021_acsnano_7b06640 crossref_primary_10_1080_0144235X_2019_1558623 crossref_primary_10_1103_PhysRevB_107_L020504 crossref_primary_10_1016_j_enmf_2023_09_005 crossref_primary_10_1088_1361_648X_ab0db2 crossref_primary_10_1103_PhysRevB_98_144301 crossref_primary_10_1088_1361_648X_acd15e crossref_primary_10_1103_PhysRevB_110_144310 crossref_primary_10_1063_5_0077748 crossref_primary_10_1021_acs_jpclett_9b03415 crossref_primary_10_1038_natrevmats_2017_5 crossref_primary_10_1016_j_physleta_2021_127876 crossref_primary_10_1103_PhysRevLett_128_045301 crossref_primary_10_1103_PhysRevLett_120_057402 crossref_primary_10_1063_1_5078446 crossref_primary_10_1038_s41567_020_1009_3 crossref_primary_10_1103_PhysRevLett_126_225701 crossref_primary_10_1016_j_ceramint_2019_06_137 crossref_primary_10_1103_PhysRevB_95_035142 crossref_primary_10_1038_s41586_020_2677_y crossref_primary_10_1063_1_5144288 crossref_primary_10_1103_PhysRevB_101_224511 crossref_primary_10_1063_5_0091102 crossref_primary_10_1002_adfm_202411463 crossref_primary_10_1103_PhysRevB_98_024514 crossref_primary_10_1021_acscentsci_9b00083 crossref_primary_10_1103_PhysRevLett_118_145701 crossref_primary_10_1038_s41467_019_12326_y crossref_primary_10_1088_1361_648X_ad7217 crossref_primary_10_1063_1_5026535 crossref_primary_10_1088_0256_307X_37_1_016102 crossref_primary_10_1021_acs_nanolett_4c03761 crossref_primary_10_1103_PhysRevB_98_134110 crossref_primary_10_1142_S0129183124501523 crossref_primary_10_1063_5_0158742 crossref_primary_10_1103_PhysRevB_99_100505 crossref_primary_10_1016_j_fmre_2022_11_010 crossref_primary_10_1126_science_aam9736 crossref_primary_10_1063_1_4949361 crossref_primary_10_1088_1361_648X_acc376 crossref_primary_10_1103_PhysRevB_98_140101 crossref_primary_10_1103_PhysRevB_100_184112 crossref_primary_10_1103_PhysRevLett_122_135501 crossref_primary_10_1016_j_mtphys_2022_100873 crossref_primary_10_1021_acs_nanolett_6b03785 crossref_primary_10_1016_j_jmmm_2017_07_068 crossref_primary_10_1140_epjb_s10051_024_00860_8 crossref_primary_10_1021_acs_jpcc_2c06650 crossref_primary_10_1063_5_0107043 crossref_primary_10_1103_PhysRevB_100_184109 crossref_primary_10_1016_j_ssc_2021_114260 crossref_primary_10_1002_adom_201700740 crossref_primary_10_1016_j_mtphys_2023_101233 crossref_primary_10_1016_j_eng_2019_03_001 crossref_primary_10_1134_S0021364017070098 crossref_primary_10_1021_acs_jpclett_9b00070 crossref_primary_10_1063_5_0003288 crossref_primary_10_1103_PhysRevB_106_115128 crossref_primary_10_1038_s41586_019_1565_9 crossref_primary_10_1103_PhysRevB_106_014514 crossref_primary_10_1103_PhysRevX_8_011004 crossref_primary_10_1088_1361_651X_ab9994 crossref_primary_10_1002_pssr_202300469 crossref_primary_10_1063_1_5089823 crossref_primary_10_1002_jrs_5237 crossref_primary_10_1088_1361_648X_ad1ca7 crossref_primary_10_1103_PhysRevLett_128_047001 crossref_primary_10_1038_s42254_022_00423_9 crossref_primary_10_1063_1_5049720 crossref_primary_10_1103_PhysRevB_111_024109 crossref_primary_10_1073_pnas_2001128117 crossref_primary_10_1103_PhysRevB_109_174516 crossref_primary_10_1134_S0021364016170069 crossref_primary_10_1063_1_5079225 crossref_primary_10_1063_1_5053650 crossref_primary_10_1063_5_0215212 crossref_primary_10_1016_j_jnucmat_2019_07_012 crossref_primary_10_1103_PhysRevB_105_174111 crossref_primary_10_1007_s00339_021_04802_4 crossref_primary_10_1063_5_0160060 crossref_primary_10_3103_S002713491803013X crossref_primary_10_1103_PhysRevA_106_032812 crossref_primary_10_1080_23746149_2021_1961607 crossref_primary_10_1021_acs_jpcc_8b05046 crossref_primary_10_1088_0256_307X_38_10_107401 crossref_primary_10_1038_s41467_025_57523_0 crossref_primary_10_1103_PhysRevB_106_235203 crossref_primary_10_1016_j_physleta_2020_126571 crossref_primary_10_1021_acs_chemmater_6b01639 crossref_primary_10_1038_s41586_019_1927_3 crossref_primary_10_1103_PhysRevB_96_144105 crossref_primary_10_7498_aps_66_036201 crossref_primary_10_1063_5_0002104 crossref_primary_10_3390_ma12233999 crossref_primary_10_1103_PhysRevB_96_134305 crossref_primary_10_1103_PhysRevB_101_094104 crossref_primary_10_1039_D4CP03740E crossref_primary_10_1103_PhysRevResearch_5_033100 crossref_primary_10_1103_PhysRevB_101_014103 crossref_primary_10_1016_j_physb_2024_415706 crossref_primary_10_1103_PhysRevLett_119_107001 crossref_primary_10_1016_j_mtphys_2021_100546 crossref_primary_10_1088_1361_648X_ab9a7b crossref_primary_10_3367_UFNe_2017_02_038077 crossref_primary_10_1021_acs_inorgchem_4c05085 crossref_primary_10_1002_jcc_25104 crossref_primary_10_1021_acs_jpclett_0c00688 crossref_primary_10_1063_1_4954781 crossref_primary_10_1073_pnas_1609030113 crossref_primary_10_1088_1361_648X_ad1e08 crossref_primary_10_3367_UFNr_2017_02_038077 crossref_primary_10_1103_PhysRevB_100_155103 crossref_primary_10_1039_D0RA03295F crossref_primary_10_1103_PhysRevLett_120_255701 crossref_primary_10_1103_RevModPhys_89_035003 crossref_primary_10_1103_PhysRevB_105_155136 crossref_primary_10_1088_0953_8984_28_49_494001 crossref_primary_10_1038_s41524_024_01214_9 crossref_primary_10_1073_pnas_1700049114 crossref_primary_10_1088_1361_648X_aac401 crossref_primary_10_1103_PhysRevLett_128_215702 crossref_primary_10_1038_s41467_023_36429_9 crossref_primary_10_1063_1_5004242 crossref_primary_10_1016_j_physleta_2017_05_039 crossref_primary_10_7498_aps_66_036102 crossref_primary_10_1063_1_5070113 crossref_primary_10_1021_acs_jpclett_2c02157 crossref_primary_10_1093_nsr_nww029 crossref_primary_10_3389_fphy_2023_1270602 crossref_primary_10_1021_acs_jpcc_6b05907 crossref_primary_10_1103_PhysRevB_100_144101 crossref_primary_10_1126_sciadv_1700240 crossref_primary_10_1016_j_mtphys_2023_101299 crossref_primary_10_1016_j_eng_2020_07_010 crossref_primary_10_1103_PhysRevLett_129_035501 crossref_primary_10_1016_j_cjph_2024_10_021 crossref_primary_10_1063_5_0198080 crossref_primary_10_1103_PhysRevB_101_195129 crossref_primary_10_1016_j_carbon_2018_03_012 crossref_primary_10_1038_s41598_024_66493_0 crossref_primary_10_1103_PhysRevB_94_060502 crossref_primary_10_1063_1_5012882 crossref_primary_10_1126_sciadv_1600341 crossref_primary_10_1016_j_mtcomm_2024_109516 crossref_primary_10_1103_PhysRevB_94_134101 crossref_primary_10_1038_s41467_019_11330_6 crossref_primary_10_1103_PhysRevB_95_214104 crossref_primary_10_1038_s41467_019_09108_x crossref_primary_10_1063_1_5130583 crossref_primary_10_1021_acs_jpca_2c02132 crossref_primary_10_1021_acs_jpcc_1c05831 crossref_primary_10_1063_5_0195828 crossref_primary_10_1063_10_0000526 crossref_primary_10_1073_pnas_1721425115 crossref_primary_10_3389_fphy_2018_00101 crossref_primary_10_1063_5_0219405 crossref_primary_10_1103_PhysRevB_95_094107 crossref_primary_10_1038_s41578_019_0101_8 crossref_primary_10_1007_s10909_017_1748_4 crossref_primary_10_1021_acs_jpcc_3c04969 crossref_primary_10_1103_PhysRevResearch_3_043107 crossref_primary_10_1103_PhysRevB_101_174102 crossref_primary_10_1016_j_chemphys_2021_111430 crossref_primary_10_1021_acs_jpclett_0c01736 crossref_primary_10_1134_S0021364016190061 crossref_primary_10_1038_s42254_020_0223_3 crossref_primary_10_1007_s40509_017_0128_8 crossref_primary_10_1103_PhysRevE_107_024140 crossref_primary_10_1146_annurev_matsci_091019_011049 crossref_primary_10_1021_acs_jpcc_7b02877 crossref_primary_10_1103_PhysRevB_96_094513 crossref_primary_10_1038_s41567_023_01960_5 crossref_primary_10_1063_5_0205013 crossref_primary_10_1103_PhysRevB_96_157102 crossref_primary_10_1002_pssb_202200452 crossref_primary_10_1021_acs_jpcc_6b05001 crossref_primary_10_1103_RevModPhys_90_015007 crossref_primary_10_1103_PhysRevMaterials_2_103804 crossref_primary_10_1088_0256_307X_36_8_086201 crossref_primary_10_1103_PhysRevLett_119_065301 |
Cites_doi | 10.1038/416613a 10.1103/PhysRevLett.112.165501 10.1063/1.4818606 10.1103/PhysRevLett.106.165302 10.1103/PhysRevLett.104.065702 10.1073/pnas.1102760108 10.1073/pnas.1007309107 10.1103/PhysRevLett.108.125501 10.1103/PhysRevLett.90.175701 10.1038/nmat4213 10.1038/nphys625 10.1088/1742-6596/215/1/012195 10.1073/pnas.1402737111 10.1073/pnas.201528198 10.1063/1.2335683 10.1063/1.1749590 10.1088/1742-6596/215/1/012056 10.1103/PhysRevB.82.060101 10.1103/PhysRevLett.113.175501 10.1134/S0021364009040031 10.1126/science.aaa7471 10.1021/ja02168a002 10.1103/PhysRevLett.108.146402 10.1063/1.1778482 10.1038/nmat3175 10.1021/ja02185a011 10.1103/PhysRevB.86.214104 10.1007/978-1-4684-4301-1 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2016 COPYRIGHT 2016 Nature Publishing Group Copyright Nature Publishing Group Jan 7, 2016 |
Copyright_xml | – notice: Springer Nature Limited 2016 – notice: COPYRIGHT 2016 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 7, 2016 |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/nature16164 |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Collection Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 67 |
ExternalDocumentID | 3917386201 A439532623 26738591 10_1038_nature16164 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c659t-8c512561c41c8e19fd1fe8535ef109dcab61ca23000d30815ede3db400c6b75e3 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 11:58:44 EDT 2025 Fri Jul 25 08:56:19 EDT 2025 Thu Aug 07 07:14:14 EDT 2025 Thu Jun 12 23:53:55 EDT 2025 Tue Jun 10 15:32:17 EDT 2025 Tue Jun 10 20:45:11 EDT 2025 Fri Jun 27 04:42:30 EDT 2025 Fri Jun 27 05:06:45 EDT 2025 Mon Jul 21 05:57:24 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Tue Jul 01 03:21:42 EDT 2025 Fri Feb 21 02:37:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7584 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c659t-8c512561c41c8e19fd1fe8535ef109dcab61ca23000d30815ede3db400c6b75e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26738591 |
PQID | 1755758319 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1760882059 proquest_journals_1755758319 gale_infotracmisc_A439532623 gale_infotracgeneralonefile_A439532623 gale_infotraccpiq_439532623 gale_infotracacademiconefile_A439532623 gale_incontextgauss_ISR_A439532623 gale_incontextgauss_ATWCN_A439532623 pubmed_primary_26738591 crossref_citationtrail_10_1038_nature16164 crossref_primary_10_1038_nature16164 springer_journals_10_1038_nature16164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-07 |
PublicationDateYYYYMMDD | 2016-01-07 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Loubeyre, Occelli, LeToullec (CR7) 2002; 416 Gregoryanz, Goncharov, Matsuishi, Mao, Hemley (CR8) 2003; 90 Azadi, Monserrat, Foulkes, Needs (CR23) 2014; 112 Goncharov, Gregoryanz, Hemley, Mao (CR6) 2001; 98 Morales, Pierleoni, Schwegler, Ceperley (CR25) 2010; 107 Zha, Liu, Hemley (CR13) 2012; 108 Howie, Guillaume, Scheler, Goncharov, Gregoryanz (CR16) 2012; 108 Zha, Cohen, Mao, Hemley (CR21) 2014; 111 Akahama, Kawamura (CR28) 2006; 100 Pickard, Needs (CR17) 2007; 3 CR2 Subramanian, Goncharov, Struzhkin, Somayazulu, Hemley (CR10) 2011; 108 Howie, Gregoryanz, Goncharov (CR19) 2013; 114 CR3 Tamblyn, Bonev (CR24) 2010; 104 McMahon, Ceperley (CR22) 2011; 106 Howie, Dalladay-Simpson, Gregoryanz (CR14) 2015; 14 Akahama, Kawamura (CR29) 2010; 215 Langmuir, Mackay (CR4) 1914; 36 Howie, Scheler, Guillaume, Gregoryanz (CR18) 2012; 86 Eremets, Trojan (CR9) 2009; 89 Langmuir (CR5) 1915; 37 Akahama, Kawamura, Hirao, Ohishi, Takemura (CR12) 2010; 215 Eremets, Troyan (CR15) 2011; 10 Akahama (CR11) 2010; 82 Wigner, Huntington (CR1) 1935; 3 Knudson (CR26) 2015; 348 Howie, Magda˘ u, Goncharov, Ackland, Gregoryanz (CR20) 2014; 113 Akahama, Kawamura (CR27) 2004; 96 P Loubeyre (BFnature16164_CR7) 2002; 416 Y Akahama (BFnature16164_CR27) 2004; 96 AF Goncharov (BFnature16164_CR6) 2001; 98 JM McMahon (BFnature16164_CR22) 2011; 106 RT Howie (BFnature16164_CR16) 2012; 108 E Wigner (BFnature16164_CR1) 1935; 3 E Gregoryanz (BFnature16164_CR8) 2003; 90 M Morales (BFnature16164_CR25) 2010; 107 I Langmuir (BFnature16164_CR4) 1914; 36 I Tamblyn (BFnature16164_CR24) 2010; 104 RT Howie (BFnature16164_CR20) 2014; 113 Y Akahama (BFnature16164_CR29) 2010; 215 Y Akahama (BFnature16164_CR11) 2010; 82 N Subramanian (BFnature16164_CR10) 2011; 108 C-s Zha (BFnature16164_CR21) 2014; 111 MD Knudson (BFnature16164_CR26) 2015; 348 I Langmuir (BFnature16164_CR5) 1915; 37 Y Akahama (BFnature16164_CR12) 2010; 215 C-S Zha (BFnature16164_CR13) 2012; 108 RT Howie (BFnature16164_CR19) 2013; 114 S Azadi (BFnature16164_CR23) 2014; 112 RT Howie (BFnature16164_CR18) 2012; 86 BFnature16164_CR2 MI Eremets (BFnature16164_CR9) 2009; 89 BFnature16164_CR3 RT Howie (BFnature16164_CR14) 2015; 14 CJ Pickard (BFnature16164_CR17) 2007; 3 MI Eremets (BFnature16164_CR15) 2011; 10 Y Akahama (BFnature16164_CR28) 2006; 100 24815656 - Phys Rev Lett. 2014 Apr 25;112(16):165501 21599379 - Phys Rev Lett. 2011 Apr 22;106(16):165302 20366831 - Phys Rev Lett. 2010 Feb 12;104(6):065702 20566888 - Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12799-803 21447715 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6014-9 25379921 - Phys Rev Lett. 2014 Oct 24;113(17):175501 26113719 - Science. 2015 Jun 26;348(6242):1455-60 12786081 - Phys Rev Lett. 2003 May 2;90(17):175701 22540596 - Phys Rev Lett. 2012 Mar 23;108(12):125501 22540811 - Phys Rev Lett. 2012 Apr 6;108(14):146402 24639543 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4792-7 11948345 - Nature. 2002 Apr 11;416(6881):613-7 22081083 - Nat Mater. 2011 Nov 13;10(12):927-31 25707019 - Nat Mater. 2015 May;14(5):495-9 11717391 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14234-7 |
References_xml | – volume: 416 start-page: 613 year: 2002 end-page: 617 ident: CR7 article-title: Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen publication-title: Nature doi: 10.1038/416613a – volume: 112 start-page: 165501 year: 2014 ident: CR23 article-title: Dissociation of high-pressure solid molecular hydrogen: a quantum Monte Carlo and anharmonic vibrational study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.165501 – volume: 114 start-page: 073505 year: 2013 ident: CR19 article-title: Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures publication-title: J. Appl. Phys. doi: 10.1063/1.4818606 – ident: CR2 – volume: 106 start-page: 165302 year: 2011 ident: CR22 article-title: Ground-state structures of atomic metallic hydrogen publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.165302 – volume: 104 start-page: 065702 year: 2010 ident: CR24 article-title: Structure and phase boundaries of compressed liquid hydrogen publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.065702 – volume: 108 start-page: 6014 year: 2011 end-page: 6019 ident: CR10 article-title: Bonding changes in hot fluid hydrogen at megabar pressures publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1102760108 – volume: 107 start-page: 12799 year: 2010 end-page: 12803 ident: CR25 article-title: Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1007309107 – volume: 108 start-page: 125501 year: 2012 ident: CR16 article-title: Mixed molecular and atomic phase of dense hydrogen publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.125501 – volume: 90 start-page: 175701 year: 2003 ident: CR8 article-title: Raman spectroscopy of hot dense hydrogen publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.175701 – volume: 14 start-page: 495 year: 2015 end-page: 499 ident: CR14 article-title: Raman spectroscopy of hot hydrogen above 200 GPa publication-title: Nature Mater. doi: 10.1038/nmat4213 – volume: 3 start-page: 473 year: 2007 end-page: 476 ident: CR17 article-title: Structure of phase III of solid hydrogen publication-title: Nature Phys. doi: 10.1038/nphys625 – volume: 215 start-page: 012195 year: 2010 ident: CR29 article-title: Pressure calibration of diamond anvil Raman gauge to 410 GPa publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/215/1/012195 – volume: 111 start-page: 4793 year: 2014 end-page: 4797 ident: CR21 article-title: Raman measurements of phase transitions in dense solid hydrogen and deuterium to 325 GPa publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1402737111 – volume: 98 start-page: 14234 year: 2001 end-page: 14237 ident: CR6 article-title: Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.201528198 – volume: 100 start-page: 043516 year: 2006 ident: CR28 article-title: Pressure calibration of diamond anvil Raman gauge to 310 GPa publication-title: J. Appl. Phys. doi: 10.1063/1.2335683 – volume: 3 start-page: 764 year: 1935 end-page: 770 ident: CR1 article-title: On the possibility of a metallic modification of hydrogen publication-title: J. Chem. Phys. doi: 10.1063/1.1749590 – ident: CR3 – volume: 215 start-page: 012056 year: 2010 ident: CR12 article-title: Raman scattering and x-ray diffraction experiments for phase III of solid hydrogen publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/215/1/012056 – volume: 82 start-page: 060101 year: 2010 ident: CR11 article-title: Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.060101 – volume: 113 start-page: 175501 year: 2014 ident: CR20 article-title: Phonon localization by mass disorder in dense hydrogen-deuterium binary alloy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.175501 – volume: 89 start-page: 174 year: 2009 end-page: 179 ident: CR9 article-title: Evidence of maximum in the melting curve of hydrogen at megabar pressures publication-title: JETP Lett. doi: 10.1134/S0021364009040031 – volume: 348 start-page: 1455 year: 2015 end-page: 1460 ident: CR26 article-title: Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium publication-title: Science doi: 10.1126/science.aaa7471 – volume: 37 start-page: 417 year: 1915 end-page: 458 ident: CR5 article-title: The dissociation of hydrogen into atoms. [Part II.] Calculation of the degree of dissociation and the heat of formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02168a002 – volume: 108 start-page: 146402 year: 2012 ident: CR13 article-title: Synchrotron infrared measurements of dense hydrogen to 360 GPa publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.146402 – volume: 96 start-page: 3748 year: 2004 end-page: 3751 ident: CR27 article-title: High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range publication-title: J. Appl. Phys. doi: 10.1063/1.1778482 – volume: 10 start-page: 927 year: 2011 end-page: 931 ident: CR15 article-title: Conductive dense hydrogen publication-title: Nature Mater. doi: 10.1038/nmat3175 – volume: 36 start-page: 1708 year: 1914 end-page: 1722 ident: CR4 article-title: The dissociation of hydrogen into atoms. Part I. Experimental publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02185a011 – volume: 86 start-page: 214104 year: 2012 ident: CR18 article-title: Proton tunneling in phase IV of hydrogen and deuterium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.214104 – volume: 104 start-page: 065702 year: 2010 ident: BFnature16164_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.065702 – volume: 215 start-page: 012056 year: 2010 ident: BFnature16164_CR12 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/215/1/012056 – volume: 3 start-page: 473 year: 2007 ident: BFnature16164_CR17 publication-title: Nature Phys. doi: 10.1038/nphys625 – volume: 90 start-page: 175701 year: 2003 ident: BFnature16164_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.175701 – volume: 108 start-page: 146402 year: 2012 ident: BFnature16164_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.146402 – volume: 37 start-page: 417 year: 1915 ident: BFnature16164_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02168a002 – volume: 106 start-page: 165302 year: 2011 ident: BFnature16164_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.165302 – volume: 96 start-page: 3748 year: 2004 ident: BFnature16164_CR27 publication-title: J. Appl. Phys. doi: 10.1063/1.1778482 – volume: 111 start-page: 4793 year: 2014 ident: BFnature16164_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1402737111 – volume: 113 start-page: 175501 year: 2014 ident: BFnature16164_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.175501 – volume: 98 start-page: 14234 year: 2001 ident: BFnature16164_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.201528198 – volume: 416 start-page: 613 year: 2002 ident: BFnature16164_CR7 publication-title: Nature doi: 10.1038/416613a – volume: 86 start-page: 214104 year: 2012 ident: BFnature16164_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.214104 – volume: 114 start-page: 073505 year: 2013 ident: BFnature16164_CR19 publication-title: J. Appl. Phys. doi: 10.1063/1.4818606 – volume: 14 start-page: 495 year: 2015 ident: BFnature16164_CR14 publication-title: Nature Mater. doi: 10.1038/nmat4213 – volume: 348 start-page: 1455 year: 2015 ident: BFnature16164_CR26 publication-title: Science doi: 10.1126/science.aaa7471 – volume: 82 start-page: 060101 year: 2010 ident: BFnature16164_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.060101 – volume: 3 start-page: 764 year: 1935 ident: BFnature16164_CR1 publication-title: J. Chem. Phys. doi: 10.1063/1.1749590 – volume: 89 start-page: 174 year: 2009 ident: BFnature16164_CR9 publication-title: JETP Lett. doi: 10.1134/S0021364009040031 – volume: 107 start-page: 12799 year: 2010 ident: BFnature16164_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1007309107 – volume: 108 start-page: 125501 year: 2012 ident: BFnature16164_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.125501 – volume: 108 start-page: 6014 year: 2011 ident: BFnature16164_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1102760108 – ident: BFnature16164_CR2 doi: 10.1007/978-1-4684-4301-1 – volume: 10 start-page: 927 year: 2011 ident: BFnature16164_CR15 publication-title: Nature Mater. doi: 10.1038/nmat3175 – volume: 215 start-page: 012195 year: 2010 ident: BFnature16164_CR29 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/215/1/012195 – volume: 112 start-page: 165501 year: 2014 ident: BFnature16164_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.165501 – ident: BFnature16164_CR3 – volume: 36 start-page: 1708 year: 1914 ident: BFnature16164_CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02185a011 – volume: 100 start-page: 043516 year: 2006 ident: BFnature16164_CR28 publication-title: J. Appl. Phys. doi: 10.1063/1.2335683 – reference: 22540811 - Phys Rev Lett. 2012 Apr 6;108(14):146402 – reference: 21447715 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6014-9 – reference: 12786081 - Phys Rev Lett. 2003 May 2;90(17):175701 – reference: 20366831 - Phys Rev Lett. 2010 Feb 12;104(6):065702 – reference: 11948345 - Nature. 2002 Apr 11;416(6881):613-7 – reference: 26113719 - Science. 2015 Jun 26;348(6242):1455-60 – reference: 25707019 - Nat Mater. 2015 May;14(5):495-9 – reference: 22540596 - Phys Rev Lett. 2012 Mar 23;108(12):125501 – reference: 11717391 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14234-7 – reference: 21599379 - Phys Rev Lett. 2011 Apr 22;106(16):165302 – reference: 25379921 - Phys Rev Lett. 2014 Oct 24;113(17):175501 – reference: 22081083 - Nat Mater. 2011 Nov 13;10(12):927-31 – reference: 24815656 - Phys Rev Lett. 2014 Apr 25;112(16):165501 – reference: 20566888 - Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12799-803 – reference: 24639543 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4792-7 |
SSID | ssj0005174 |
Score | 2.5884347 |
Snippet | Raman spectroscopy of three isotopes of hydrogen under very high compression yields evidence of a new phase of hydrogen—phase V—which could potentially be a... Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic,... Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen ([H.sub.2]) would break, forming a new, atomic,... Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H^sub 2^) would break, forming a new, atomic,... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | 639/301/119/1002 639/766/119/2795 Chemical properties Deuterium Humanities and Social Sciences Hydrogen Identification and classification letter Materials at high pressures multidisciplinary Observations Phase transitions Physical properties Physics Science |
Title | Evidence for a new phase of dense hydrogen above 325 gigapascals |
URI | https://link.springer.com/article/10.1038/nature16164 https://www.ncbi.nlm.nih.gov/pubmed/26738591 https://www.proquest.com/docview/1755758319 https://www.proquest.com/docview/1760882059 |
Volume | 529 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rT9swED8N0KR9QcAeBFjlTeyFFJE0L_vTVio6NmnVxEDrNyt-pCChpJAWif-ec-KUprB9qVLdxUrss3-_sy93APuIGOgdd303CYRyQ-15Lgtl4rKYCfynMiGMo_hrGJ-chz9H0chuuJU2rLJZE6uFWhXS7JEfIswhs6BoMV8n166pGmVOV20JjRVY8xFpTEgXHXx_CPFYysJsv8_zAnpYp81EuhOHLURaXpcXgGnppLQCoMEGrFvmSHr1UG_CM51vwfMqglOWW7BpZ2lJPttU0l9ewremaChBbkpSghyaTC4QuEiRERTgxcWduinQighaw60mQTci48sxQmiJo1e-gvPB8Vn_xLU1E1wZR2zqUokIjpxIhr6k2meZ8jONkBzpzPeYkqlAWYp-h-epAOlApJUOlMCZLGORRDp4Dat5kettIJlJZUNjpkLjuWpsjuK1lySMhRkTsQMHTb9xaROKm7oWV7w62A4oX-hkB_bnypM6j8Y_1MwAcJOZIjehL-N0Vpa8d_a3P-Q9JE8R0s1u4MD7p9R-_DltKX2ySlmBzyVT-8EBvp3JedXS3G1pysnlNV-QfmxJx_UgPtXMXksRJ6psixur4nahKPmDWTvwbi42d5rgt1wXM6MTG0cIibADb2prnPdh11RtjZjvwIfGPBcaf9zBO_9_iF14gYyw3mNK9mB1ejPTb5F1TUUHVpJRgr-073eqadaBtaPj4e_Te1zdKX0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQX1JZXaAGDWqBIUZM4Lx8QrArLLm33AFu1NxM_sq2Ekm2zW9Q_xW9knMd2sxRuvSWaiZXY4_k-x-MZgE1EDFwde64dUaFsXzuOzXwZ2SxkAu9UKoRZKB4Mwt6h__U4OF6C381ZGBNW2fjE0lGrXJp_5DsIc8gsYrSYD-Mz21SNMrurTQmNyiz29OUvXLIV7_ufcHy3PK_7ebjbs-uqArYMAzaxY4kYh6xB-q6MtctS5aYaQSvQqeswJROBsgSZueMoioAZaKWpEmjrMhRRoCm2ewtu-xSR3JxM7365CilZyPpcnwd0aLxTpelEehX6LQRcxIE5IFzYmS0Br7sC92umSjqVaa3Cks7W4E4ZMSqLNVitvUJB3tapq7cfwMemSClBLkwSgpydjE8QKEmeEhTgxcmlOs_Ragla34Um1AvI6HSEkF2gtRQP4fBGevMRLGd5pp8ASU3qnDhkyjcrZY3NxXjtRBFjfspEaMG7pt-4rBOYmzoaP3m5kU5jPtfJFmzOlMdV3o5_qJkB4CYTRmZCbUbJtCh4Z3i0O-AdJGsB0luPWvDqOrX-928tpTe1Uprje8mkPuCAX2dybLU011uacnx6xuekr1vSUTWI1zWz0VJExyDb4saqeO2YCn41jSx4ORObJ02wXabzqdEJzcILibcFjytrnPWhZ6rEBsy1YKsxz7nG_-7gp_9_iRdwtzc82Of7_cHeOtxDNlr934o2YHlyPtXPkPFNxPNymhH4cdPz-g_1dmMP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEBuXhQ0waOMmRc099gOCqqNaGVQINrE3L7GdbhJKuqUF7a_x6zhOnJKUwdveEp0TK7E_-_sc2-cAbCNj4OzYc-3YT6UdKMexWSBim0UsxTuZpameKH4aR3uHwYej8GgFfjVnYfS2ymZMrAZqWQj9j7yHNIfKgiJiepnZFvF5d_h2embrDFJ6pbVJp1FDZF9d_MTpW_lmtIttveN5w_cHgz3bZBiwRRSymU0F8h0qCBG4giqXZdLNFBJYqDLXYVIkKdoSVOmOI30kz1BJ5csUcS-iNA6Vj-Veg-uxH1Pdx-igtb1kKQK0ORvo-LRXh-xEqRUFHTZc5oQWKS6t0lbkN7wDt41qJf0aZmuwovJ1uFHtHhXlOqyZEaIkL00Y61d34V2TsJSgLiYJQf1OpidImqTICBrw4uRCnheIYIJI_KGI74VkcjpB-i4ROeU9OLyS2rwPq3mRqw0gmQ6jQyMmAz1rVlgcxWsnjhkLMpZGFrxu6o0LE8xc59T4zqtFdZ_yViVbsL1wntYxPP7hphuA66gYucbXJJmXJe8ffBuMeR-FW4hS1_MteHaZ2-jrl47TC-OUFfheIjGHHfDrdLytjudmx1NMT894y_q8Y53UjXhZMVsdRxwkRNfcoIqbQarkf7qUBU8XZv2k3niXq2KufSI9CUMRbsGDGo2LOvR0xtiQuRbsNPBsFf53BT_8_0s8gZvYo_nH0Xh_E26hMK1_dcVbsDo7n6tHKP5m6eOqlxE4vupu_Rta12cQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+a+new+phase+of+dense+hydrogen+above+325+gigapascals&rft.jtitle=Nature+%28London%29&rft.au=Dalladay-Simpson%2C+Philip&rft.au=Howie%2C+Ross+T&rft.au=Gregoryanz%2C+Eugene&rft.date=2016-01-07&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.spage=63&rft_id=info:doi/10.1038%2Fnature16164&rft.externalDocID=A439532623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |