Evidence for a new phase of dense hydrogen above 325 gigapascals

Raman spectroscopy of three isotopes of hydrogen under very high compression yields evidence of a new phase of hydrogen—phase V—which could potentially be a precursor to the long-sought non-molecular phase. A non-molecular phase of hydrogen? Under extremely high pressures, hydrogen molecules are pre...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 529; no. 7584; pp. 63 - 67
Main Authors Dalladay-Simpson, Philip, Howie, Ross T., Gregoryanz, Eugene
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.01.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Raman spectroscopy of three isotopes of hydrogen under very high compression yields evidence of a new phase of hydrogen—phase V—which could potentially be a precursor to the long-sought non-molecular phase. A non-molecular phase of hydrogen? Under extremely high pressures, hydrogen molecules are predicted to break down and form a metallic atomic state. Such a state has yet to be realized, but new results from a team at the University of Edinburgh could be getting us closer to this goal. They have now managed to squeeze hydrogen molecules (and their deuterated equivalents) to pressures in excess of 3.5 million atmospheres, and see tantalizing hints of a new phase — possibly a precursor to the long-sought non-molecular phase. Almost 80 years ago it was predicted that, under sufficient compression, the H–H bond in molecular hydrogen (H 2 ) would break, forming a new, atomic, metallic, solid state of hydrogen 1 . Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H 2 and hydrogen deuteride (HD) transform to a new phase—phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure–temperature space of the suggested phase V in H 2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D 2 ). However, we show that the transformation to phase IV′ in D 2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H 2 and D 2 phases, which implies that the appearance of phase V of D 2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.
AbstractList Raman spectroscopy of three isotopes of hydrogen under very high compression yields evidence of a new phase of hydrogen—phase V—which could potentially be a precursor to the long-sought non-molecular phase. A non-molecular phase of hydrogen? Under extremely high pressures, hydrogen molecules are predicted to break down and form a metallic atomic state. Such a state has yet to be realized, but new results from a team at the University of Edinburgh could be getting us closer to this goal. They have now managed to squeeze hydrogen molecules (and their deuterated equivalents) to pressures in excess of 3.5 million atmospheres, and see tantalizing hints of a new phase — possibly a precursor to the long-sought non-molecular phase. Almost 80 years ago it was predicted that, under sufficient compression, the H–H bond in molecular hydrogen (H 2 ) would break, forming a new, atomic, metallic, solid state of hydrogen 1 . Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H 2 and hydrogen deuteride (HD) transform to a new phase—phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure–temperature space of the suggested phase V in H 2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D 2 ). However, we show that the transformation to phase IV′ in D 2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H 2 and D 2 phases, which implies that the appearance of phase V of D 2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.
Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic, solid state of hydrogen. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H2 and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D2). However, we show that the transformation to phase IV' in D2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H2 and D2 phases, which implies that the appearance of phase V of D2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.
Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H^sub 2^) would break, forming a new, atomic, metallic, solid state of hydrogen1. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H^sub 2^ and hydrogen deuteride (HD) transform to a new phase-phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H^sub 2^ and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D^sub 2^). However, we show that the transformation to phase IV' in D^sub 2^ occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H^sub 2^ and D^sub 2^ phases, which implies that the appearance of phase V of D^sub 2^ must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.
Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen ([H.sub.2]) would break, forming a new, atomic, metallic, solid state of hydrogen (1). Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, [H.sub.2] and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in [H.sub.2] and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium ([D.sub.2]). However, we show that the transformation to phase IV' in [D.sub.2] occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the [H.sub.2] and [D.sub.2] phases, which implies that the appearance of phase V of [D.sub.2] must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.
Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic, solid state of hydrogen. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H2 and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D2). However, we show that the transformation to phase IV' in D2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H2 and D2 phases, which implies that the appearance of phase V of D2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic, solid state of hydrogen. Reaching this predicted state experimentally has been one of the principal goals in high-pressure research for the past 30 years. Here, using in situ high-pressure Raman spectroscopy, we present evidence that at pressures greater than 325 gigapascals at 300 kelvin, H2 and hydrogen deuteride (HD) transform to a new phase--phase V. This new phase of hydrogen is characterized by substantial weakening of the vibrational Raman activity, a change in pressure dependence of the fundamental vibrational frequency and partial loss of the low-frequency excitations. We map out the domain in pressure-temperature space of the suggested phase V in H2 and HD up to 388 gigapascals at 300 kelvin, and up to 465 kelvin at 350 gigapascals; we do not observe phase V in deuterium (D2). However, we show that the transformation to phase IV' in D2 occurs above 310 gigapascals and 300 kelvin. These values represent the largest known isotropic shift in pressure, and hence the largest possible pressure difference between the H2 and D2 phases, which implies that the appearance of phase V of D2 must occur at a pressure of above 380 gigapascals. These experimental data provide a glimpse of the physical properties of dense hydrogen above 325 gigapascals and constrain the pressure and temperature conditions at which the new phase exists. We speculate that phase V may be the precursor to the non-molecular (atomic and metallic) state of hydrogen that was predicted 80 years ago.
Audience Academic
Author Dalladay-Simpson, Philip
Gregoryanz, Eugene
Howie, Ross T.
Author_xml – sequence: 1
  givenname: Philip
  surname: Dalladay-Simpson
  fullname: Dalladay-Simpson, Philip
  organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh
– sequence: 2
  givenname: Ross T.
  surname: Howie
  fullname: Howie, Ross T.
  organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, † Present address: Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China
– sequence: 3
  givenname: Eugene
  surname: Gregoryanz
  fullname: Gregoryanz, Eugene
  email: e.gregoryanz@ed.ac.uk
  organization: School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26738591$$D View this record in MEDLINE/PubMed
BookMark eNp10tFv1CAcB3BiZtxt-uS7adyLRjuhFErfvFy2uWTRRGd8JJT-6Fh60EE73X8vy216Z2p4gMCHb36B3wHac94BQi8JPiaYig9OjVMAwgkvn6AFKSuel1xUe2iBcSFyLCjfRwcxXmOMGanKZ2i_4BUVrCYL9PHk1rbgNGTGh0xlDn5mw5WKkHmTpYO0uLprg-_AZarxt5DRgmWd7dSgolZ9fI6emjTBi4f5EH0_Pblcfcovvpydr5YXueasHnOhGSkYJ7okWgCpTUsMCEYZGILrVqsmnamCphpbigVh0AJtmxJjzZuKAT1Ebza5Q_A3E8RRrm3U0PfKgZ-iJBXHQhSY1Yke_UOv_RRcqi4pxiomKNlSnepBWmf8GJS-D5XLktaMFrygSeUzKr0GBNWnfzA2be_41zNeD_ZGbqPjGZRGC2urZ1Pf7lxIZoRfY6emGOX5t6-79t3_7fLyx-rzrn718FZTs4ZWDsGuVbiTjx2SANkAHXyMAYzUdlSjTalB2V4SLO-7UG514d8S_tx5jJ3X7zc6JuU6CFvfNcN_A1tV5g4
CODEN NATUAS
CitedBy_id crossref_primary_10_1063_5_0060977
crossref_primary_10_1103_PhysRevB_96_064517
crossref_primary_10_1103_PhysRevB_95_115116
crossref_primary_10_1126_sciadv_aao5242
crossref_primary_10_1038_s41598_019_44326_9
crossref_primary_10_1073_pnas_2122691119
crossref_primary_10_1103_PhysRevB_100_134109
crossref_primary_10_1016_j_physleta_2023_129040
crossref_primary_10_1103_PhysRevB_111_014110
crossref_primary_10_1039_C8CC01850B
crossref_primary_10_1103_PhysRevB_103_174520
crossref_primary_10_1103_PhysRevB_109_054512
crossref_primary_10_1016_j_physrep_2020_02_003
crossref_primary_10_2139_ssrn_4200049
crossref_primary_10_1063_1_5001387
crossref_primary_10_1103_PhysRevB_96_085101
crossref_primary_10_1103_PhysRevB_104_214111
crossref_primary_10_1039_D2NR00587E
crossref_primary_10_1038_s41467_018_05011_z
crossref_primary_10_1088_1361_648X_ac7a82
crossref_primary_10_1038_srep36745
crossref_primary_10_1039_C7CP03729E
crossref_primary_10_1103_PhysRevB_102_174109
crossref_primary_10_1103_PhysRevB_97_075142
crossref_primary_10_1063_5_0069425
crossref_primary_10_1039_C6NR03888C
crossref_primary_10_1021_acsomega_0c05794
crossref_primary_10_1103_PhysRevB_98_085112
crossref_primary_10_1038_s41563_023_01477_5
crossref_primary_10_1103_PhysRevB_97_024111
crossref_primary_10_1002_pssr_202300417
crossref_primary_10_3390_sym15071308
crossref_primary_10_1039_D2CP00997H
crossref_primary_10_1103_PhysRevLett_117_115901
crossref_primary_10_1103_PhysRevMaterials_1_024802
crossref_primary_10_1021_acs_chemmater_3c02797
crossref_primary_10_1103_PhysRevB_93_174308
crossref_primary_10_1126_science_aan2286
crossref_primary_10_1021_acsnano_7b06640
crossref_primary_10_1080_0144235X_2019_1558623
crossref_primary_10_1103_PhysRevB_107_L020504
crossref_primary_10_1016_j_enmf_2023_09_005
crossref_primary_10_1088_1361_648X_ab0db2
crossref_primary_10_1103_PhysRevB_98_144301
crossref_primary_10_1088_1361_648X_acd15e
crossref_primary_10_1103_PhysRevB_110_144310
crossref_primary_10_1063_5_0077748
crossref_primary_10_1021_acs_jpclett_9b03415
crossref_primary_10_1038_natrevmats_2017_5
crossref_primary_10_1016_j_physleta_2021_127876
crossref_primary_10_1103_PhysRevLett_128_045301
crossref_primary_10_1103_PhysRevLett_120_057402
crossref_primary_10_1063_1_5078446
crossref_primary_10_1038_s41567_020_1009_3
crossref_primary_10_1103_PhysRevLett_126_225701
crossref_primary_10_1016_j_ceramint_2019_06_137
crossref_primary_10_1103_PhysRevB_95_035142
crossref_primary_10_1038_s41586_020_2677_y
crossref_primary_10_1063_1_5144288
crossref_primary_10_1103_PhysRevB_101_224511
crossref_primary_10_1063_5_0091102
crossref_primary_10_1002_adfm_202411463
crossref_primary_10_1103_PhysRevB_98_024514
crossref_primary_10_1021_acscentsci_9b00083
crossref_primary_10_1103_PhysRevLett_118_145701
crossref_primary_10_1038_s41467_019_12326_y
crossref_primary_10_1088_1361_648X_ad7217
crossref_primary_10_1063_1_5026535
crossref_primary_10_1088_0256_307X_37_1_016102
crossref_primary_10_1021_acs_nanolett_4c03761
crossref_primary_10_1103_PhysRevB_98_134110
crossref_primary_10_1142_S0129183124501523
crossref_primary_10_1063_5_0158742
crossref_primary_10_1103_PhysRevB_99_100505
crossref_primary_10_1016_j_fmre_2022_11_010
crossref_primary_10_1126_science_aam9736
crossref_primary_10_1063_1_4949361
crossref_primary_10_1088_1361_648X_acc376
crossref_primary_10_1103_PhysRevB_98_140101
crossref_primary_10_1103_PhysRevB_100_184112
crossref_primary_10_1103_PhysRevLett_122_135501
crossref_primary_10_1016_j_mtphys_2022_100873
crossref_primary_10_1021_acs_nanolett_6b03785
crossref_primary_10_1016_j_jmmm_2017_07_068
crossref_primary_10_1140_epjb_s10051_024_00860_8
crossref_primary_10_1021_acs_jpcc_2c06650
crossref_primary_10_1063_5_0107043
crossref_primary_10_1103_PhysRevB_100_184109
crossref_primary_10_1016_j_ssc_2021_114260
crossref_primary_10_1002_adom_201700740
crossref_primary_10_1016_j_mtphys_2023_101233
crossref_primary_10_1016_j_eng_2019_03_001
crossref_primary_10_1134_S0021364017070098
crossref_primary_10_1021_acs_jpclett_9b00070
crossref_primary_10_1063_5_0003288
crossref_primary_10_1103_PhysRevB_106_115128
crossref_primary_10_1038_s41586_019_1565_9
crossref_primary_10_1103_PhysRevB_106_014514
crossref_primary_10_1103_PhysRevX_8_011004
crossref_primary_10_1088_1361_651X_ab9994
crossref_primary_10_1002_pssr_202300469
crossref_primary_10_1063_1_5089823
crossref_primary_10_1002_jrs_5237
crossref_primary_10_1088_1361_648X_ad1ca7
crossref_primary_10_1103_PhysRevLett_128_047001
crossref_primary_10_1038_s42254_022_00423_9
crossref_primary_10_1063_1_5049720
crossref_primary_10_1103_PhysRevB_111_024109
crossref_primary_10_1073_pnas_2001128117
crossref_primary_10_1103_PhysRevB_109_174516
crossref_primary_10_1134_S0021364016170069
crossref_primary_10_1063_1_5079225
crossref_primary_10_1063_1_5053650
crossref_primary_10_1063_5_0215212
crossref_primary_10_1016_j_jnucmat_2019_07_012
crossref_primary_10_1103_PhysRevB_105_174111
crossref_primary_10_1007_s00339_021_04802_4
crossref_primary_10_1063_5_0160060
crossref_primary_10_3103_S002713491803013X
crossref_primary_10_1103_PhysRevA_106_032812
crossref_primary_10_1080_23746149_2021_1961607
crossref_primary_10_1021_acs_jpcc_8b05046
crossref_primary_10_1088_0256_307X_38_10_107401
crossref_primary_10_1038_s41467_025_57523_0
crossref_primary_10_1103_PhysRevB_106_235203
crossref_primary_10_1016_j_physleta_2020_126571
crossref_primary_10_1021_acs_chemmater_6b01639
crossref_primary_10_1038_s41586_019_1927_3
crossref_primary_10_1103_PhysRevB_96_144105
crossref_primary_10_7498_aps_66_036201
crossref_primary_10_1063_5_0002104
crossref_primary_10_3390_ma12233999
crossref_primary_10_1103_PhysRevB_96_134305
crossref_primary_10_1103_PhysRevB_101_094104
crossref_primary_10_1039_D4CP03740E
crossref_primary_10_1103_PhysRevResearch_5_033100
crossref_primary_10_1103_PhysRevB_101_014103
crossref_primary_10_1016_j_physb_2024_415706
crossref_primary_10_1103_PhysRevLett_119_107001
crossref_primary_10_1016_j_mtphys_2021_100546
crossref_primary_10_1088_1361_648X_ab9a7b
crossref_primary_10_3367_UFNe_2017_02_038077
crossref_primary_10_1021_acs_inorgchem_4c05085
crossref_primary_10_1002_jcc_25104
crossref_primary_10_1021_acs_jpclett_0c00688
crossref_primary_10_1063_1_4954781
crossref_primary_10_1073_pnas_1609030113
crossref_primary_10_1088_1361_648X_ad1e08
crossref_primary_10_3367_UFNr_2017_02_038077
crossref_primary_10_1103_PhysRevB_100_155103
crossref_primary_10_1039_D0RA03295F
crossref_primary_10_1103_PhysRevLett_120_255701
crossref_primary_10_1103_RevModPhys_89_035003
crossref_primary_10_1103_PhysRevB_105_155136
crossref_primary_10_1088_0953_8984_28_49_494001
crossref_primary_10_1038_s41524_024_01214_9
crossref_primary_10_1073_pnas_1700049114
crossref_primary_10_1088_1361_648X_aac401
crossref_primary_10_1103_PhysRevLett_128_215702
crossref_primary_10_1038_s41467_023_36429_9
crossref_primary_10_1063_1_5004242
crossref_primary_10_1016_j_physleta_2017_05_039
crossref_primary_10_7498_aps_66_036102
crossref_primary_10_1063_1_5070113
crossref_primary_10_1021_acs_jpclett_2c02157
crossref_primary_10_1093_nsr_nww029
crossref_primary_10_3389_fphy_2023_1270602
crossref_primary_10_1021_acs_jpcc_6b05907
crossref_primary_10_1103_PhysRevB_100_144101
crossref_primary_10_1126_sciadv_1700240
crossref_primary_10_1016_j_mtphys_2023_101299
crossref_primary_10_1016_j_eng_2020_07_010
crossref_primary_10_1103_PhysRevLett_129_035501
crossref_primary_10_1016_j_cjph_2024_10_021
crossref_primary_10_1063_5_0198080
crossref_primary_10_1103_PhysRevB_101_195129
crossref_primary_10_1016_j_carbon_2018_03_012
crossref_primary_10_1038_s41598_024_66493_0
crossref_primary_10_1103_PhysRevB_94_060502
crossref_primary_10_1063_1_5012882
crossref_primary_10_1126_sciadv_1600341
crossref_primary_10_1016_j_mtcomm_2024_109516
crossref_primary_10_1103_PhysRevB_94_134101
crossref_primary_10_1038_s41467_019_11330_6
crossref_primary_10_1103_PhysRevB_95_214104
crossref_primary_10_1038_s41467_019_09108_x
crossref_primary_10_1063_1_5130583
crossref_primary_10_1021_acs_jpca_2c02132
crossref_primary_10_1021_acs_jpcc_1c05831
crossref_primary_10_1063_5_0195828
crossref_primary_10_1063_10_0000526
crossref_primary_10_1073_pnas_1721425115
crossref_primary_10_3389_fphy_2018_00101
crossref_primary_10_1063_5_0219405
crossref_primary_10_1103_PhysRevB_95_094107
crossref_primary_10_1038_s41578_019_0101_8
crossref_primary_10_1007_s10909_017_1748_4
crossref_primary_10_1021_acs_jpcc_3c04969
crossref_primary_10_1103_PhysRevResearch_3_043107
crossref_primary_10_1103_PhysRevB_101_174102
crossref_primary_10_1016_j_chemphys_2021_111430
crossref_primary_10_1021_acs_jpclett_0c01736
crossref_primary_10_1134_S0021364016190061
crossref_primary_10_1038_s42254_020_0223_3
crossref_primary_10_1007_s40509_017_0128_8
crossref_primary_10_1103_PhysRevE_107_024140
crossref_primary_10_1146_annurev_matsci_091019_011049
crossref_primary_10_1021_acs_jpcc_7b02877
crossref_primary_10_1103_PhysRevB_96_094513
crossref_primary_10_1038_s41567_023_01960_5
crossref_primary_10_1063_5_0205013
crossref_primary_10_1103_PhysRevB_96_157102
crossref_primary_10_1002_pssb_202200452
crossref_primary_10_1021_acs_jpcc_6b05001
crossref_primary_10_1103_RevModPhys_90_015007
crossref_primary_10_1103_PhysRevMaterials_2_103804
crossref_primary_10_1088_0256_307X_36_8_086201
crossref_primary_10_1103_PhysRevLett_119_065301
Cites_doi 10.1038/416613a
10.1103/PhysRevLett.112.165501
10.1063/1.4818606
10.1103/PhysRevLett.106.165302
10.1103/PhysRevLett.104.065702
10.1073/pnas.1102760108
10.1073/pnas.1007309107
10.1103/PhysRevLett.108.125501
10.1103/PhysRevLett.90.175701
10.1038/nmat4213
10.1038/nphys625
10.1088/1742-6596/215/1/012195
10.1073/pnas.1402737111
10.1073/pnas.201528198
10.1063/1.2335683
10.1063/1.1749590
10.1088/1742-6596/215/1/012056
10.1103/PhysRevB.82.060101
10.1103/PhysRevLett.113.175501
10.1134/S0021364009040031
10.1126/science.aaa7471
10.1021/ja02168a002
10.1103/PhysRevLett.108.146402
10.1063/1.1778482
10.1038/nmat3175
10.1021/ja02185a011
10.1103/PhysRevB.86.214104
10.1007/978-1-4684-4301-1
ContentType Journal Article
Copyright Springer Nature Limited 2016
COPYRIGHT 2016 Nature Publishing Group
Copyright Nature Publishing Group Jan 7, 2016
Copyright_xml – notice: Springer Nature Limited 2016
– notice: COPYRIGHT 2016 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 7, 2016
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature16164
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Collection
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 67
ExternalDocumentID 3917386201
A439532623
26738591
10_1038_nature16164
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c659t-8c512561c41c8e19fd1fe8535ef109dcab61ca23000d30815ede3db400c6b75e3
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 11:58:44 EDT 2025
Fri Jul 25 08:56:19 EDT 2025
Thu Aug 07 07:14:14 EDT 2025
Thu Jun 12 23:53:55 EDT 2025
Tue Jun 10 15:32:17 EDT 2025
Tue Jun 10 20:45:11 EDT 2025
Fri Jun 27 04:42:30 EDT 2025
Fri Jun 27 05:06:45 EDT 2025
Mon Jul 21 05:57:24 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Tue Jul 01 03:21:42 EDT 2025
Fri Feb 21 02:37:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7584
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-8c512561c41c8e19fd1fe8535ef109dcab61ca23000d30815ede3db400c6b75e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26738591
PQID 1755758319
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_1760882059
proquest_journals_1755758319
gale_infotracmisc_A439532623
gale_infotracgeneralonefile_A439532623
gale_infotraccpiq_439532623
gale_infotracacademiconefile_A439532623
gale_incontextgauss_ISR_A439532623
gale_incontextgauss_ATWCN_A439532623
pubmed_primary_26738591
crossref_citationtrail_10_1038_nature16164
crossref_primary_10_1038_nature16164
springer_journals_10_1038_nature16164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-07
PublicationDateYYYYMMDD 2016-01-07
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Loubeyre, Occelli, LeToullec (CR7) 2002; 416
Gregoryanz, Goncharov, Matsuishi, Mao, Hemley (CR8) 2003; 90
Azadi, Monserrat, Foulkes, Needs (CR23) 2014; 112
Goncharov, Gregoryanz, Hemley, Mao (CR6) 2001; 98
Morales, Pierleoni, Schwegler, Ceperley (CR25) 2010; 107
Zha, Liu, Hemley (CR13) 2012; 108
Howie, Guillaume, Scheler, Goncharov, Gregoryanz (CR16) 2012; 108
Zha, Cohen, Mao, Hemley (CR21) 2014; 111
Akahama, Kawamura (CR28) 2006; 100
Pickard, Needs (CR17) 2007; 3
CR2
Subramanian, Goncharov, Struzhkin, Somayazulu, Hemley (CR10) 2011; 108
Howie, Gregoryanz, Goncharov (CR19) 2013; 114
CR3
Tamblyn, Bonev (CR24) 2010; 104
McMahon, Ceperley (CR22) 2011; 106
Howie, Dalladay-Simpson, Gregoryanz (CR14) 2015; 14
Akahama, Kawamura (CR29) 2010; 215
Langmuir, Mackay (CR4) 1914; 36
Howie, Scheler, Guillaume, Gregoryanz (CR18) 2012; 86
Eremets, Trojan (CR9) 2009; 89
Langmuir (CR5) 1915; 37
Akahama, Kawamura, Hirao, Ohishi, Takemura (CR12) 2010; 215
Eremets, Troyan (CR15) 2011; 10
Akahama (CR11) 2010; 82
Wigner, Huntington (CR1) 1935; 3
Knudson (CR26) 2015; 348
Howie, Magda˘ u, Goncharov, Ackland, Gregoryanz (CR20) 2014; 113
Akahama, Kawamura (CR27) 2004; 96
P Loubeyre (BFnature16164_CR7) 2002; 416
Y Akahama (BFnature16164_CR27) 2004; 96
AF Goncharov (BFnature16164_CR6) 2001; 98
JM McMahon (BFnature16164_CR22) 2011; 106
RT Howie (BFnature16164_CR16) 2012; 108
E Wigner (BFnature16164_CR1) 1935; 3
E Gregoryanz (BFnature16164_CR8) 2003; 90
M Morales (BFnature16164_CR25) 2010; 107
I Langmuir (BFnature16164_CR4) 1914; 36
I Tamblyn (BFnature16164_CR24) 2010; 104
RT Howie (BFnature16164_CR20) 2014; 113
Y Akahama (BFnature16164_CR29) 2010; 215
Y Akahama (BFnature16164_CR11) 2010; 82
N Subramanian (BFnature16164_CR10) 2011; 108
C-s Zha (BFnature16164_CR21) 2014; 111
MD Knudson (BFnature16164_CR26) 2015; 348
I Langmuir (BFnature16164_CR5) 1915; 37
Y Akahama (BFnature16164_CR12) 2010; 215
C-S Zha (BFnature16164_CR13) 2012; 108
RT Howie (BFnature16164_CR19) 2013; 114
S Azadi (BFnature16164_CR23) 2014; 112
RT Howie (BFnature16164_CR18) 2012; 86
BFnature16164_CR2
MI Eremets (BFnature16164_CR9) 2009; 89
BFnature16164_CR3
RT Howie (BFnature16164_CR14) 2015; 14
CJ Pickard (BFnature16164_CR17) 2007; 3
MI Eremets (BFnature16164_CR15) 2011; 10
Y Akahama (BFnature16164_CR28) 2006; 100
24815656 - Phys Rev Lett. 2014 Apr 25;112(16):165501
21599379 - Phys Rev Lett. 2011 Apr 22;106(16):165302
20366831 - Phys Rev Lett. 2010 Feb 12;104(6):065702
20566888 - Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12799-803
21447715 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6014-9
25379921 - Phys Rev Lett. 2014 Oct 24;113(17):175501
26113719 - Science. 2015 Jun 26;348(6242):1455-60
12786081 - Phys Rev Lett. 2003 May 2;90(17):175701
22540596 - Phys Rev Lett. 2012 Mar 23;108(12):125501
22540811 - Phys Rev Lett. 2012 Apr 6;108(14):146402
24639543 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4792-7
11948345 - Nature. 2002 Apr 11;416(6881):613-7
22081083 - Nat Mater. 2011 Nov 13;10(12):927-31
25707019 - Nat Mater. 2015 May;14(5):495-9
11717391 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14234-7
References_xml – volume: 416
  start-page: 613
  year: 2002
  end-page: 617
  ident: CR7
  article-title: Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen
  publication-title: Nature
  doi: 10.1038/416613a
– volume: 112
  start-page: 165501
  year: 2014
  ident: CR23
  article-title: Dissociation of high-pressure solid molecular hydrogen: a quantum Monte Carlo and anharmonic vibrational study
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.165501
– volume: 114
  start-page: 073505
  year: 2013
  ident: CR19
  article-title: Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4818606
– ident: CR2
– volume: 106
  start-page: 165302
  year: 2011
  ident: CR22
  article-title: Ground-state structures of atomic metallic hydrogen
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.165302
– volume: 104
  start-page: 065702
  year: 2010
  ident: CR24
  article-title: Structure and phase boundaries of compressed liquid hydrogen
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.065702
– volume: 108
  start-page: 6014
  year: 2011
  end-page: 6019
  ident: CR10
  article-title: Bonding changes in hot fluid hydrogen at megabar pressures
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1102760108
– volume: 107
  start-page: 12799
  year: 2010
  end-page: 12803
  ident: CR25
  article-title: Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1007309107
– volume: 108
  start-page: 125501
  year: 2012
  ident: CR16
  article-title: Mixed molecular and atomic phase of dense hydrogen
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.125501
– volume: 90
  start-page: 175701
  year: 2003
  ident: CR8
  article-title: Raman spectroscopy of hot dense hydrogen
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.175701
– volume: 14
  start-page: 495
  year: 2015
  end-page: 499
  ident: CR14
  article-title: Raman spectroscopy of hot hydrogen above 200 GPa
  publication-title: Nature Mater.
  doi: 10.1038/nmat4213
– volume: 3
  start-page: 473
  year: 2007
  end-page: 476
  ident: CR17
  article-title: Structure of phase III of solid hydrogen
  publication-title: Nature Phys.
  doi: 10.1038/nphys625
– volume: 215
  start-page: 012195
  year: 2010
  ident: CR29
  article-title: Pressure calibration of diamond anvil Raman gauge to 410 GPa
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/215/1/012195
– volume: 111
  start-page: 4793
  year: 2014
  end-page: 4797
  ident: CR21
  article-title: Raman measurements of phase transitions in dense solid hydrogen and deuterium to 325 GPa
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1402737111
– volume: 98
  start-page: 14234
  year: 2001
  end-page: 14237
  ident: CR6
  article-title: Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.201528198
– volume: 100
  start-page: 043516
  year: 2006
  ident: CR28
  article-title: Pressure calibration of diamond anvil Raman gauge to 310 GPa
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2335683
– volume: 3
  start-page: 764
  year: 1935
  end-page: 770
  ident: CR1
  article-title: On the possibility of a metallic modification of hydrogen
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1749590
– ident: CR3
– volume: 215
  start-page: 012056
  year: 2010
  ident: CR12
  article-title: Raman scattering and x-ray diffraction experiments for phase III of solid hydrogen
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/215/1/012056
– volume: 82
  start-page: 060101
  year: 2010
  ident: CR11
  article-title: Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.060101
– volume: 113
  start-page: 175501
  year: 2014
  ident: CR20
  article-title: Phonon localization by mass disorder in dense hydrogen-deuterium binary alloy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.175501
– volume: 89
  start-page: 174
  year: 2009
  end-page: 179
  ident: CR9
  article-title: Evidence of maximum in the melting curve of hydrogen at megabar pressures
  publication-title: JETP Lett.
  doi: 10.1134/S0021364009040031
– volume: 348
  start-page: 1455
  year: 2015
  end-page: 1460
  ident: CR26
  article-title: Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium
  publication-title: Science
  doi: 10.1126/science.aaa7471
– volume: 37
  start-page: 417
  year: 1915
  end-page: 458
  ident: CR5
  article-title: The dissociation of hydrogen into atoms. [Part II.] Calculation of the degree of dissociation and the heat of formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02168a002
– volume: 108
  start-page: 146402
  year: 2012
  ident: CR13
  article-title: Synchrotron infrared measurements of dense hydrogen to 360 GPa
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.146402
– volume: 96
  start-page: 3748
  year: 2004
  end-page: 3751
  ident: CR27
  article-title: High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1778482
– volume: 10
  start-page: 927
  year: 2011
  end-page: 931
  ident: CR15
  article-title: Conductive dense hydrogen
  publication-title: Nature Mater.
  doi: 10.1038/nmat3175
– volume: 36
  start-page: 1708
  year: 1914
  end-page: 1722
  ident: CR4
  article-title: The dissociation of hydrogen into atoms. Part I. Experimental
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02185a011
– volume: 86
  start-page: 214104
  year: 2012
  ident: CR18
  article-title: Proton tunneling in phase IV of hydrogen and deuterium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.214104
– volume: 104
  start-page: 065702
  year: 2010
  ident: BFnature16164_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.065702
– volume: 215
  start-page: 012056
  year: 2010
  ident: BFnature16164_CR12
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/215/1/012056
– volume: 3
  start-page: 473
  year: 2007
  ident: BFnature16164_CR17
  publication-title: Nature Phys.
  doi: 10.1038/nphys625
– volume: 90
  start-page: 175701
  year: 2003
  ident: BFnature16164_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.175701
– volume: 108
  start-page: 146402
  year: 2012
  ident: BFnature16164_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.146402
– volume: 37
  start-page: 417
  year: 1915
  ident: BFnature16164_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02168a002
– volume: 106
  start-page: 165302
  year: 2011
  ident: BFnature16164_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.165302
– volume: 96
  start-page: 3748
  year: 2004
  ident: BFnature16164_CR27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1778482
– volume: 111
  start-page: 4793
  year: 2014
  ident: BFnature16164_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1402737111
– volume: 113
  start-page: 175501
  year: 2014
  ident: BFnature16164_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.175501
– volume: 98
  start-page: 14234
  year: 2001
  ident: BFnature16164_CR6
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.201528198
– volume: 416
  start-page: 613
  year: 2002
  ident: BFnature16164_CR7
  publication-title: Nature
  doi: 10.1038/416613a
– volume: 86
  start-page: 214104
  year: 2012
  ident: BFnature16164_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.214104
– volume: 114
  start-page: 073505
  year: 2013
  ident: BFnature16164_CR19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4818606
– volume: 14
  start-page: 495
  year: 2015
  ident: BFnature16164_CR14
  publication-title: Nature Mater.
  doi: 10.1038/nmat4213
– volume: 348
  start-page: 1455
  year: 2015
  ident: BFnature16164_CR26
  publication-title: Science
  doi: 10.1126/science.aaa7471
– volume: 82
  start-page: 060101
  year: 2010
  ident: BFnature16164_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.060101
– volume: 3
  start-page: 764
  year: 1935
  ident: BFnature16164_CR1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1749590
– volume: 89
  start-page: 174
  year: 2009
  ident: BFnature16164_CR9
  publication-title: JETP Lett.
  doi: 10.1134/S0021364009040031
– volume: 107
  start-page: 12799
  year: 2010
  ident: BFnature16164_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1007309107
– volume: 108
  start-page: 125501
  year: 2012
  ident: BFnature16164_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.125501
– volume: 108
  start-page: 6014
  year: 2011
  ident: BFnature16164_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1102760108
– ident: BFnature16164_CR2
  doi: 10.1007/978-1-4684-4301-1
– volume: 10
  start-page: 927
  year: 2011
  ident: BFnature16164_CR15
  publication-title: Nature Mater.
  doi: 10.1038/nmat3175
– volume: 215
  start-page: 012195
  year: 2010
  ident: BFnature16164_CR29
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/215/1/012195
– volume: 112
  start-page: 165501
  year: 2014
  ident: BFnature16164_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.165501
– ident: BFnature16164_CR3
– volume: 36
  start-page: 1708
  year: 1914
  ident: BFnature16164_CR4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02185a011
– volume: 100
  start-page: 043516
  year: 2006
  ident: BFnature16164_CR28
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2335683
– reference: 22540811 - Phys Rev Lett. 2012 Apr 6;108(14):146402
– reference: 21447715 - Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6014-9
– reference: 12786081 - Phys Rev Lett. 2003 May 2;90(17):175701
– reference: 20366831 - Phys Rev Lett. 2010 Feb 12;104(6):065702
– reference: 11948345 - Nature. 2002 Apr 11;416(6881):613-7
– reference: 26113719 - Science. 2015 Jun 26;348(6242):1455-60
– reference: 25707019 - Nat Mater. 2015 May;14(5):495-9
– reference: 22540596 - Phys Rev Lett. 2012 Mar 23;108(12):125501
– reference: 11717391 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14234-7
– reference: 21599379 - Phys Rev Lett. 2011 Apr 22;106(16):165302
– reference: 25379921 - Phys Rev Lett. 2014 Oct 24;113(17):175501
– reference: 22081083 - Nat Mater. 2011 Nov 13;10(12):927-31
– reference: 24815656 - Phys Rev Lett. 2014 Apr 25;112(16):165501
– reference: 20566888 - Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12799-803
– reference: 24639543 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4792-7
SSID ssj0005174
Score 2.5884347
Snippet Raman spectroscopy of three isotopes of hydrogen under very high compression yields evidence of a new phase of hydrogen—phase V—which could potentially be a...
Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H2) would break, forming a new, atomic, metallic,...
Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen ([H.sub.2]) would break, forming a new, atomic,...
Almost 80 years ago it was predicted that, under sufficient compression, the H-H bond in molecular hydrogen (H^sub 2^) would break, forming a new, atomic,...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms 639/301/119/1002
639/766/119/2795
Chemical properties
Deuterium
Humanities and Social Sciences
Hydrogen
Identification and classification
letter
Materials at high pressures
multidisciplinary
Observations
Phase transitions
Physical properties
Physics
Science
Title Evidence for a new phase of dense hydrogen above 325 gigapascals
URI https://link.springer.com/article/10.1038/nature16164
https://www.ncbi.nlm.nih.gov/pubmed/26738591
https://www.proquest.com/docview/1755758319
https://www.proquest.com/docview/1760882059
Volume 529
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rT9swED8N0KR9QcAeBFjlTeyFFJE0L_vTVio6NmnVxEDrNyt-pCChpJAWif-ec-KUprB9qVLdxUrss3-_sy93APuIGOgdd303CYRyQ-15Lgtl4rKYCfynMiGMo_hrGJ-chz9H0chuuJU2rLJZE6uFWhXS7JEfIswhs6BoMV8n166pGmVOV20JjRVY8xFpTEgXHXx_CPFYysJsv8_zAnpYp81EuhOHLURaXpcXgGnppLQCoMEGrFvmSHr1UG_CM51vwfMqglOWW7BpZ2lJPttU0l9ewremaChBbkpSghyaTC4QuEiRERTgxcWduinQighaw60mQTci48sxQmiJo1e-gvPB8Vn_xLU1E1wZR2zqUokIjpxIhr6k2meZ8jONkBzpzPeYkqlAWYp-h-epAOlApJUOlMCZLGORRDp4Dat5kettIJlJZUNjpkLjuWpsjuK1lySMhRkTsQMHTb9xaROKm7oWV7w62A4oX-hkB_bnypM6j8Y_1MwAcJOZIjehL-N0Vpa8d_a3P-Q9JE8R0s1u4MD7p9R-_DltKX2ySlmBzyVT-8EBvp3JedXS3G1pysnlNV-QfmxJx_UgPtXMXksRJ6psixur4nahKPmDWTvwbi42d5rgt1wXM6MTG0cIibADb2prnPdh11RtjZjvwIfGPBcaf9zBO_9_iF14gYyw3mNK9mB1ejPTb5F1TUUHVpJRgr-073eqadaBtaPj4e_Te1zdKX0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQX1JZXaAGDWqBIUZM4Lx8QrArLLm33AFu1NxM_sq2Ekm2zW9Q_xW9knMd2sxRuvSWaiZXY4_k-x-MZgE1EDFwde64dUaFsXzuOzXwZ2SxkAu9UKoRZKB4Mwt6h__U4OF6C381ZGBNW2fjE0lGrXJp_5DsIc8gsYrSYD-Mz21SNMrurTQmNyiz29OUvXLIV7_ufcHy3PK_7ebjbs-uqArYMAzaxY4kYh6xB-q6MtctS5aYaQSvQqeswJROBsgSZueMoioAZaKWpEmjrMhRRoCm2ewtu-xSR3JxM7365CilZyPpcnwd0aLxTpelEehX6LQRcxIE5IFzYmS0Br7sC92umSjqVaa3Cks7W4E4ZMSqLNVitvUJB3tapq7cfwMemSClBLkwSgpydjE8QKEmeEhTgxcmlOs_Ragla34Um1AvI6HSEkF2gtRQP4fBGevMRLGd5pp8ASU3qnDhkyjcrZY3NxXjtRBFjfspEaMG7pt-4rBOYmzoaP3m5kU5jPtfJFmzOlMdV3o5_qJkB4CYTRmZCbUbJtCh4Z3i0O-AdJGsB0luPWvDqOrX-928tpTe1Uprje8mkPuCAX2dybLU011uacnx6xuekr1vSUTWI1zWz0VJExyDb4saqeO2YCn41jSx4ORObJ02wXabzqdEJzcILibcFjytrnPWhZ6rEBsy1YKsxz7nG_-7gp_9_iRdwtzc82Of7_cHeOtxDNlr934o2YHlyPtXPkPFNxPNymhH4cdPz-g_1dmMP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEBuXhQ0waOMmRc099gOCqqNaGVQINrE3L7GdbhJKuqUF7a_x6zhOnJKUwdveEp0TK7E_-_sc2-cAbCNj4OzYc-3YT6UdKMexWSBim0UsxTuZpameKH4aR3uHwYej8GgFfjVnYfS2ymZMrAZqWQj9j7yHNIfKgiJiepnZFvF5d_h2embrDFJ6pbVJp1FDZF9d_MTpW_lmtIttveN5w_cHgz3bZBiwRRSymU0F8h0qCBG4giqXZdLNFBJYqDLXYVIkKdoSVOmOI30kz1BJ5csUcS-iNA6Vj-Veg-uxH1Pdx-igtb1kKQK0ORvo-LRXh-xEqRUFHTZc5oQWKS6t0lbkN7wDt41qJf0aZmuwovJ1uFHtHhXlOqyZEaIkL00Y61d34V2TsJSgLiYJQf1OpidImqTICBrw4uRCnheIYIJI_KGI74VkcjpB-i4ROeU9OLyS2rwPq3mRqw0gmQ6jQyMmAz1rVlgcxWsnjhkLMpZGFrxu6o0LE8xc59T4zqtFdZ_yViVbsL1wntYxPP7hphuA66gYucbXJJmXJe8ffBuMeR-FW4hS1_MteHaZ2-jrl47TC-OUFfheIjGHHfDrdLytjudmx1NMT894y_q8Y53UjXhZMVsdRxwkRNfcoIqbQarkf7qUBU8XZv2k3niXq2KufSI9CUMRbsGDGo2LOvR0xtiQuRbsNPBsFf53BT_8_0s8gZvYo_nH0Xh_E26hMK1_dcVbsDo7n6tHKP5m6eOqlxE4vupu_Rta12cQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+a+new+phase+of+dense+hydrogen+above+325+gigapascals&rft.jtitle=Nature+%28London%29&rft.au=Dalladay-Simpson%2C+Philip&rft.au=Howie%2C+Ross+T&rft.au=Gregoryanz%2C+Eugene&rft.date=2016-01-07&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.spage=63&rft_id=info:doi/10.1038%2Fnature16164&rft.externalDocID=A439532623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon