Taxon Richness of “Megaviridae” Exceeds those of Bacteria and Archaea in the Ocean

Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emerg...

Full description

Saved in:
Bibliographic Details
Published inMicrobes and Environments Vol. 33; no. 2; pp. 162 - 171
Main Authors Koyano, Hitoshi, Mihara, Tomoko, Goto, Susumu, Ogata, Hiroyuki, Grimsley, Nigel, Hingamp, Pascal
Format Journal Article
LanguageEnglish
Published Japan Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2018
Japan Science and Technology Agency
Nakanishi Printing Co
the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI)
Subjects
Online AccessGet full text
ISSN1342-6311
1347-4405
DOI10.1264/jsme2.ME17203

Cover

Abstract Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early “Big-Bang” radiation of the eukaryotic tree of life.
AbstractList Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early “Big-Bang” radiation of the eukaryotic tree of life.
Author Ogata, Hiroyuki
Mihara, Tomoko
Grimsley, Nigel
Koyano, Hitoshi
Hingamp, Pascal
Goto, Susumu
AuthorAffiliation 3 Aix Marseille Université, Université de Toulon CNRS, IRD, MIO UM 110, 13288, Marseille France
5 Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems Wakashiba, Kashiwa, Chiba 277–0871 Japan
2 School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology 2–12–1 Ookayama, Meguro-ku, Tokyo 152–8550 Japan
1 Bioinformatics Center, Institute for Chemical Research, Kyoto University Uji, Kyoto 611–0011 Japan
4 Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities 66650, Banyuls-sur-Mer France
AuthorAffiliation_xml – name: 4 Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities 66650, Banyuls-sur-Mer France
– name: 5 Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems Wakashiba, Kashiwa, Chiba 277–0871 Japan
– name: 3 Aix Marseille Université, Université de Toulon CNRS, IRD, MIO UM 110, 13288, Marseille France
– name: 2 School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology 2–12–1 Ookayama, Meguro-ku, Tokyo 152–8550 Japan
– name: 1 Bioinformatics Center, Institute for Chemical Research, Kyoto University Uji, Kyoto 611–0011 Japan
Author_xml – sequence: 1
  fullname: Koyano, Hitoshi
  organization: School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology
– sequence: 1
  fullname: Mihara, Tomoko
  organization: Bioinformatics Center, Institute for Chemical Research, Kyoto University
– sequence: 1
  fullname: Goto, Susumu
  organization: Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems
– sequence: 1
  fullname: Ogata, Hiroyuki
  organization: Bioinformatics Center, Institute for Chemical Research, Kyoto University
– sequence: 1
  fullname: Grimsley, Nigel
  organization: Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities
– sequence: 1
  fullname: Hingamp, Pascal
  organization: Aix Marseille Université, Université de Toulon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29806626$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01978927$$DView record in HAL
BookMark eNp1kc1qGzEUhUVJaX7aZbdloKsuJtXPWDOzKbjGaQoOgZJ2K-5orjwytpRKY5Pu8iDNy-VJKtsT0wYKQhK63zm60jklR847JOQto-eMy-LjIq6Qn19NWcmpeEFOmCjKvCjo6Gi357kUjB2T0xgXlAoxKvkrcszrikrJ5Qn5cQN33mXfrO4cxph5kz3e_77COWxssC3g4_1DNr3TiG3M-s5H3CKfQfcYLGTg2mwcdAcImXUJwOxaI7jX5KWBZcQ3w3pGvl9MbyaX-ez6y9fJeJZrOar7XBqtq4pSBElZawwTjalkiZpSqLXBEhsjDRSNLsHwtmx5IzWgLDjVVaG5OCOf9r6362aFrUbXB1iq22BXEH4pD1b9W3G2U3O_UZIKJupRMviwN-ieyS7HM7U9o6wuq5qXG5bY98Nlwf9cY-zVwq-DS-9TnBdpiKouEvXu75YOpk9_ngCxB3TwMQY0Stseeuu3HdqlYlRtk1W7ZNWQbFLlz1RPxv_jJ3t-EXuY44GG0Fu9xIEWQu2mQXWopkSDQif-APtfwDQ
CitedBy_id crossref_primary_10_3390_microbiolres14020047
crossref_primary_10_1038_s41467_018_07335_2
crossref_primary_10_1093_molbev_msae149
crossref_primary_10_3390_v15081758
crossref_primary_10_3390_v14020191
crossref_primary_10_1264_jsme2_ME3302rh
crossref_primary_10_3390_v10090496
crossref_primary_10_1038_s41559_020_01288_w
crossref_primary_10_1093_ve_veab081
crossref_primary_10_1128_msystems_00737_21
crossref_primary_10_1038_s41579_022_00754_5
crossref_primary_10_1128_JVI_00854_20
crossref_primary_10_1128_msystems_01260_22
crossref_primary_10_1146_annurev_marine_010419_010706
crossref_primary_10_1111_1758_2229_12716
crossref_primary_10_3390_v11111043
crossref_primary_10_3390_ijms25115878
crossref_primary_10_1264_jsme2_ME19077
crossref_primary_10_1038_s41579_020_0364_5
crossref_primary_10_1264_jsme2_ME19037
crossref_primary_10_1186_s12985_024_02404_z
crossref_primary_10_1146_annurev_virology_100520_125832
crossref_primary_10_1128_mSphere_01298_20
crossref_primary_10_1073_pnas_1912006116
crossref_primary_10_1002_lno_12086
crossref_primary_10_1093_ismejo_wrae182
crossref_primary_10_1016_j_watbs_2022_100062
crossref_primary_10_54044_RAMI_2022_04_06
crossref_primary_10_1016_j_chom_2022_06_008
crossref_primary_10_1093_ve_veaa059
crossref_primary_10_1016_j_cmi_2018_09_010
crossref_primary_10_1038_s42003_019_0475_6
crossref_primary_10_1093_ismeco_ycae048
crossref_primary_10_1038_s41467_020_15507_2
crossref_primary_10_1128_Spectrum_00064_21
crossref_primary_10_1128_JVI_01367_21
crossref_primary_10_1038_s41586_023_05962_4
crossref_primary_10_1128_JVI_02130_18
crossref_primary_10_1002_cpz1_455
crossref_primary_10_1038_s41467_023_41910_6
crossref_primary_10_3390_microorganisms8040506
crossref_primary_10_1371_journal_pbio_3001430
crossref_primary_10_1093_femsle_fnab067
crossref_primary_10_1051_medsci_2022165
crossref_primary_10_1128_mbio_00408_23
crossref_primary_10_1016_j_virol_2025_110476
crossref_primary_10_3390_v13020150
crossref_primary_10_1038_d41586_019_00599_8
crossref_primary_10_3390_insects11040239
crossref_primary_10_1093_femsec_fiab167
crossref_primary_10_1093_ismeco_ycae155
crossref_primary_10_1128_jvi_01715_24
crossref_primary_10_3390_v11040312
crossref_primary_10_1128_msystems_00293_21
crossref_primary_10_3390_microorganisms9051087
crossref_primary_10_1128_msystems_00048_20
crossref_primary_10_3390_v10120715
crossref_primary_10_1038_s41586_020_1957_x
crossref_primary_10_3390_v10090506
crossref_primary_10_1093_ismejo_wrae162
crossref_primary_10_3390_v11080733
crossref_primary_10_1007_s00705_020_04542_5
crossref_primary_10_1098_rstb_2019_0086
crossref_primary_10_1111_brv_12795
crossref_primary_10_3390_microorganisms11010169
Cites_doi 10.1101/gr.102582.109
10.1007/s00239-015-9690-z
10.1111/2041-210X.12299
10.1101/214536
10.1159/000312919
10.1016/j.shpsc.2016.02.015
10.1016/j.tim.2008.03.008
10.1186/1743-422X-5-12
10.1093/gbe/evx074
10.1371/journal.pone.0024570
10.1038/nrmicro2108-c3
10.1016/S0140-6736(05)62701-8
10.1073/pnas.1510795112
10.3390/v8030066
10.1038/nrmicro2108
10.1080/10635150290069913
10.1264/jsme2.ME16107
10.3389/fmicb.2015.00593
10.1186/1472-6807-3-1
10.1002/ece3.1254
10.1038/srep15131
10.1111/j.1365-2958.2007.05876.x
10.1038/nrmicro2507
10.1093/nar/gku989
10.1016/j.mib.2016.03.011
10.1016/j.jmb.2007.08.066
10.1371/journal.pone.0018935
10.1007/s00705-013-1768-6
10.4161/cib.18624
10.1038/s41467-017-02342-1
10.1093/molbev/msp077
10.1098/rstb.2014.0327
10.1126/science.1239181
10.1093/bioinformatics/13.5.555
10.1186/1743-422X-8-99
10.1038/nrmicro2030
10.1038/ismej.2013.59
10.1093/bioinformatics/btp348
10.3390/v9030047
10.1016/S0959-440X(99)00058-5
10.1016/j.tig.2006.11.002
10.1186/1471-2148-12-156
10.1093/nar/gkt1076
10.1126/science.1081867
10.1073/pnas.1303251110
10.1038/ismej.2017.61
10.1093/bioinformatics/14.9.755
10.1093/nar/gku1223
10.1016/j.virol.2014.12.014
10.1186/1471-2105-11-538
10.1093/bioinformatics/btq461
10.1128/MMBR.00010-17
10.1093/gbe/evu128
10.1126/science.1261605
10.1186/gb-2006-7-6-110
10.3201/eid1706.101282
10.1002/sim.6394
10.1073/pnas.1110889108
10.1126/science.1203163
10.1038/ismej.2012.110
10.1371/journal.pone.0021080
10.1073/pnas.1018221108
10.1126/science.1110820
10.1016/0006-3207(92)91201-3
10.1016/j.virol.2014.06.032
10.1371/journal.pbio.0050077
10.1186/1743-422X-8-427
10.1371/journal.pone.0015530
10.1128/JVI.00230-17
10.1093/bioinformatics/btl158
10.1126/science.1261359
10.1016/j.cell.2016.08.007
10.1186/gb-2008-9-7-r106
10.1016/j.virol.2014.06.031
10.3389/fmicb.2016.00349
10.1016/j.virol.2013.12.032
10.1073/pnas.0911354106
10.1016/j.sbi.2009.09.001
10.1186/1471-2148-8-12
10.1093/nar/gkv1189
10.1093/molbev/mst010
10.1073/pnas.1007615107
10.1126/science.aal4657
10.1093/nar/gkq1102
10.1128/JVI.00940-06
10.1107/S1744309111020847
10.1038/nrmicro1858
10.1101/sqb.2009.74.006
10.1073/pnas.1320670111
10.2307/3545566
10.1126/science.1101485
ContentType Journal Article
Copyright 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions.
Copyright Japan Science and Technology Agency 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2018
Copyright_xml – notice: 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions.
– notice: Copyright Japan Science and Technology Agency 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2018
DBID AAYXX
CITATION
NPM
7QL
C1K
F1W
H95
L.G
M7N
1XC
VOOES
5PM
DOI 10.1264/jsme2.ME17203
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional



PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1347-4405
EndPage 171
ExternalDocumentID PMC6031395
oai_HAL_hal_01978927v1
29806626
10_1264_jsme2_ME17203
article_jsme2_33_2_33_ME17203_article_char_en
Genre Journal Article
GroupedDBID 123
2WC
53G
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
HYE
JSF
JSH
KQ8
M48
OK1
PGMZT
RJT
RPM
RZJ
TKC
TR2
WBO
~02
AAYXX
CITATION
NPM
7QL
C1K
F1W
H95
L.G
M7N
1XC
VOOES
5PM
ID FETCH-LOGICAL-c659t-6fcc8800ea601dff13bf867ec00a9cfe7ebf6fa4bc7af2d7d2b6cae6420c84c23
IEDL.DBID M48
ISSN 1342-6311
IngestDate Thu Aug 21 18:15:32 EDT 2025
Sat Jul 05 06:20:28 EDT 2025
Mon Jun 30 08:40:27 EDT 2025
Thu Apr 03 07:11:57 EDT 2025
Tue Jul 01 03:52:12 EDT 2025
Thu Apr 24 22:56:31 EDT 2025
Wed Sep 03 06:09:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords species richness
RNA polymerase
ocean metagenome
Megaviridae
Mimiviridae
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-6fcc8800ea601dff13bf867ec00a9cfe7ebf6fa4bc7af2d7d2b6cae6420c84c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6594-377X
0000-0001-9323-417X
0000-0002-7463-2444
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1264/jsme2.me17203
PMID 29806626
PQID 2242243894
PQPubID 1976392
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031395
hal_primary_oai_HAL_hal_01978927v1
proquest_journals_2242243894
pubmed_primary_29806626
crossref_citationtrail_10_1264_jsme2_ME17203
crossref_primary_10_1264_jsme2_ME17203
jstage_primary_article_jsme2_33_2_33_ME17203_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Miyagi
PublicationTitle Microbes and Environments
PublicationTitleAlternate Microbes Environ.
PublicationYear 2018
Publisher Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
Japan Science and Technology Agency
Nakanishi Printing Co
the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI)
Publisher_xml – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
– name: Japan Science and Technology Agency
– name: Nakanishi Printing Co
– name: the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI)
References 66. Raoult, D., and P. Forterre. 2008. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol. 6:315-319.
69. Santini, S., S. Jeudy, J. Bartoli, et al. 2013. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci USA. 110:10800-10805.
1. Aherfi, S., P. Colson, B. LaScola, and D. Raoult. 2016. Giant Viruses of Amoebas: An Update. Front Microbiol. 7:349.
51. Monier, A., J.M. Claverie, and H. Ogata. 2008. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9:R106.
3. Baltanás, A. 1992. On the use of some methods for the estimation of species richness. Oikos. 65:484-492.
17. Colson, P., X. De Lamballerie, N. Yutin, et al. 2013. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 158:2517-2521.
80. Werner, F. 2007. Structure and function of archaeal RNA polymerases. Mol Microbiol. 65:1395-1404.
26. Flaviani, F., D.C. Schroeder, C. Balestreri, J.L. Schroeder, K. Moore, K. Paszkiewicz, M.C. Pfaff, and E.P. Rybicki. 2017. A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater. Viruses. 9:47.
71. Schulz, F., N. Yutin, N.N. Ivanova, et al. 2017. Giant viruses with an expanded complement of translation system components. Science. 356:82-85.
48. Matsen, F.A., R.B. Kodner, and E.V. Armbrust. 2010. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 11:538.
57. Moreira, D., and P. Lopez-Garcia. 2015. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philos Trans R Soc Lond, B Biol Sci. 37020140327.
6. Boyer, M., N. Yutin, I. Pagnier, et al. 2009. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA. 106:21848-21853.
23. Filee, J., P. Siguier, and M. Chandler. 2007. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23:10-15.
33. Iyer, L.M., E.V. Koonin, and L. Aravind. 2003. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol. 3:1.
84. Wilson, W.H., I.C. Gilg, M. Moniruzzaman, et al. 2017. Genomic exploration of individual giant ocean viruses. ISME J. 11:1736-1745.
87. Yoon, H.S., D.C. Price, R. Stepanauskas, V.D. Rajah, M.E. Sieracki, W.H. Wilson, E.C. Yang, S. Duffy, and D. Bhattacharya. 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science. 332:714-717.
28. Gallot-Lavallee, L., A. Pagarete, M. Legendre, S. Santini, R.A. Sandaa, H. Himmelbauer, H. Ogata, G. Bratbak, and J.M. Claverie. 2015. The 474-Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting Haptolina (Chrysochromulina) ericina (Prymnesiophyceae). Genome Announc. 3.
42. Legendre, M., S. Audic, O. Poirot, et al. 2010. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res. 20:664-674.
31. Gaze, W.H., G. Morgan, L. Zhang, and E.M. Wellington. 2011. Mimivirus-like particles in acanthamoebae from Sewage Sludge. Emerg Infect Dis. 17:1127-1129.
4. Birtles, R.J., T.J. Rowbotham, C. Storey, T.J. Marrie, and D. Raoult. 1997. Chlamydia-like obligate parasite of free-living amoebae. Lancet. 349:925-926.
2. Arslan, D., M. Legendre, V. Seltzer, C. Abergel, and J.M. Claverie. 2011. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci USA. 108:17486-17491.
75. Sun, S., J. Chen, W. Li, et al. 2011. Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res. 39:D546-551.
68. Rusch, D.B., A.L. Halpern, G. Sutton, et al. 2007. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5:e77.
74. Steitz, T.A. 2009. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr Opin Struct Biol. 19:683-690.
79. UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43:D204-212.
43. Legendre, M., S. Santini, A. Rico, C. Abergel, and J.M. Claverie. 2011. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol J. 8:99.
38. Koonin, E.V., Y.I. Wolf, and P. Puigbo. 2009. The phylogenetic forest and the quest for the elusive tree of life. Cold Spring Harb Symp Quant Biol. 74:205-213.
83. Williams, T.A., T.M. Embley, and E. Heinz. 2011. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS One. 6:e21080.
20. Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics. 14:755-763.
56. Moreira, D., and P. Lopez-Garcia. 2009. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol. 7:306-311.
18. de Vargas, C., S. Audic, N. Henry, et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science. 348:1261605.
7. Boyer, M., M.A. Madoui, G. Gimenez, B. La Scola, and D. Raoult. 2010. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One. 5:e15530.
8. Capella-Gutierrez, S., J.M. Silla-Martinez, and T. Gabaldon. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25:1972-1973.
10. Cheetham, G.M., and T.A. Steitz. 2000. Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr Opin Struct Biol. 10:117-123.
36. Katoh, K., and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772-780.
91. Zhang, W., J. Zhou, T. Liu, Y. Yu, Y. Pan, S. Yan, and Y. Wang. 2015. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci Rep. 5:15131.
5. Blanc-Mathieu, R., and H. Ogata. 2016. DNA repair genes in the Megavirales pangenome. Curr Opin Microbiol. 31:94-100.
11. Chernomor, O., B.Q. Minh, F. Forest, S. Klaere, T. Ingram, M. Henzinger, and A. von Haeseler. 2015. Split diversity in constrained conservation prioritization using integer linear programming. Methods Ecol Evol. 6:83-91.
81. Werner, F. 2008. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16:247-250.
58. Mueller, L., C. Bertelli, T. Pillonel, N. Salamin, and G. Greub. 2017. One year genome evolution of Lausannevirus in allopatric versus sympatric conditions. Genome Biol Evol. 9:1432-1449.
89. Yoshida, T., J.M. Claverie, and H. Ogata. 2011. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids. Virol J. 8:427.
16. Colson, P., G. Gimenez, M. Boyer, G. Fournous, and D. Raoult. 2011. The giant Cafeteria roenbergensis virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of Life. PLoS One. 6:e18935.
82. Werner, F., and D. Grohmann. 2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol. 9:85-98.
25. Fischer, M.G., M.J. Allen, W.H. Wilson, and C.A. Suttle. 2010. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA. 107:19508-19513.
30. Galperin, M.Y., K.S. Makarova, Y.I. Wolf, and E.V. Koonin. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43:D261-D269.
63. Philippe, N., M. Legendre, G. Doutre, et al. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 341:281-286.
59. Nasir, A., K.M. Kim, and G. Caetano-Anolles. 2012. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol. 12:156.
32. Hingamp, P., N. Grimsley, S.G. Acinas, et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7:1678-1695.
92. Zinger, L., L.A. Amaral-Zettler, J.A. Fuhrman, et al. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One. 6:e24570.
76. Sunagawa, S., L.P. Coelho, S. Chaffron, et al. 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science. 348:1261359.
62. Parent, C.E., D. Agashe, and D.I. Bolnick. 2014. Intraspecific competition reduces niche width in experimental populations. Ecol Evol. 4:3978-3990.
45. Legendre, M., J. Bartoli, L. Shmakova, et al. 2014. Thirty-thousandyear-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA. 111:4274-4279.
78. Takemura, M. 2016. Morphological and taxonomic properties of Tokyovirus, the first Marseilleviridae member isolated from Japan. Microbes Environ. 31:442-448.
49. Mihara, T., Y. Nishimura, Y. Shimizu, H. Nishiyama, G. Yoshikawa, H. Uehara, P. Hingamp, S. Goto, and H. Ogata. 2016. Linking virus genomes with host taxonomy. Viruses. 8:66.
12. Ciaccafava, A., A. Lartigue, P. Mansuelle, S. Jeudy, and C. Abergel. 2011. Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene. Acta Crystallogr, Sect F Struct Biol Cryst Commun. 67:922-925.
15. Claverie, J.M., and C. Abergel. 2016. Giant viruses: The difficult breaking of multiple epistemological barriers. Stud Hist Philos Biol Biomed Sci. 59:89-99.
72. Sharma, V., P. Colson, R. Giorgi, P. Pontarotti, and D. Raoult. 2014. DNA-dependent RNA polymerase detects hidden giant viruses in published databanks. Genome Biol Evol. 6:1603-1610.
54. Moreira, D., and P. Lopez-Garcia. 2005. Comment on “The 1.2-megabase genome sequence of Mimivirus”. Science. 308:1114author reply 1114.
86. Yau, S., F.M. Lauro, M.Z. DeMaere, et a
44
88
45
89
46
47
49
90
91
92
F.A. Matsen (48) 2010; 11
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
71
72
73
30
74
31
75
32
76
33
77
34
78
35
79
36
37
38
39
80
81
82
83
40
84
41
85
42
86
43
87
References_xml – reference: 43. Legendre, M., S. Santini, A. Rico, C. Abergel, and J.M. Claverie. 2011. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol J. 8:99.
– reference: 40. La Scola, B., S. Audic, C. Robert, L. Jungang, X. de Lamballerie, M. Drancourt, R. Birtles, J.M. Claverie, and D. Raoult. 2003. A giant virus in amoebae. Science. 299:2033.
– reference: 38. Koonin, E.V., Y.I. Wolf, and P. Puigbo. 2009. The phylogenetic forest and the quest for the elusive tree of life. Cold Spring Harb Symp Quant Biol. 74:205-213.
– reference: 42. Legendre, M., S. Audic, O. Poirot, et al. 2010. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res. 20:664-674.
– reference: 8. Capella-Gutierrez, S., J.M. Silla-Martinez, and T. Gabaldon. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25:1972-1973.
– reference: 45. Legendre, M., J. Bartoli, L. Shmakova, et al. 2014. Thirty-thousandyear-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA. 111:4274-4279.
– reference: 75. Sun, S., J. Chen, W. Li, et al. 2011. Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res. 39:D546-551.
– reference: 59. Nasir, A., K.M. Kim, and G. Caetano-Anolles. 2012. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol. 12:156.
– reference: 27. Forterre, P. 2013. The virocell concept and environmental microbiology. ISME J. 7:233-236.
– reference: 82. Werner, F., and D. Grohmann. 2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol. 9:85-98.
– reference: 21. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26:2460-2461.
– reference: 31. Gaze, W.H., G. Morgan, L. Zhang, and E.M. Wellington. 2011. Mimivirus-like particles in acanthamoebae from Sewage Sludge. Emerg Infect Dis. 17:1127-1129.
– reference: 13. Claverie, J.M. 2006. Viruses take center stage in cellular evolution. Genome Biol. 7:110.
– reference: 20. Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics. 14:755-763.
– reference: 87. Yoon, H.S., D.C. Price, R. Stepanauskas, V.D. Rajah, M.E. Sieracki, W.H. Wilson, E.C. Yang, S. Duffy, and D. Bhattacharya. 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science. 332:714-717.
– reference: 81. Werner, F. 2008. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16:247-250.
– reference: 25. Fischer, M.G., M.J. Allen, W.H. Wilson, and C.A. Suttle. 2010. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA. 107:19508-19513.
– reference: 32. Hingamp, P., N. Grimsley, S.G. Acinas, et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7:1678-1695.
– reference: 50. Mirzakhanyan, Y., and P.D. Gershon. 2017. Multisubunit DNA-dependent RNA polymerases from vaccinia virus and other nucleocytoplasmic large-DNA viruses: Impressions from the age of structure. Microbiol Mol Biol Rev. 81.
– reference: 74. Steitz, T.A. 2009. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr Opin Struct Biol. 19:683-690.
– reference: 48. Matsen, F.A., R.B. Kodner, and E.V. Armbrust. 2010. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 11:538.
– reference: 17. Colson, P., X. De Lamballerie, N. Yutin, et al. 2013. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 158:2517-2521.
– reference: 28. Gallot-Lavallee, L., A. Pagarete, M. Legendre, S. Santini, R.A. Sandaa, H. Himmelbauer, H. Ogata, G. Bratbak, and J.M. Claverie. 2015. The 474-Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting Haptolina (Chrysochromulina) ericina (Prymnesiophyceae). Genome Announc. 3.
– reference: 34. Johannessen, T.V., G. Bratbak, A. Larsen, H. Ogata, E.S. Egge, B. Edvardsen, W. Eikrem, and R.A. Sandaa. 2015. Characterisation of three novel giant viruses reveals huge diversity among viruses infecting Prymnesiales (Haptophyta). Virology. 476:180-188.
– reference: 61. O’Leary, N.A., M.W. Wright, J.R. Brister, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44:D733-745.
– reference: 79. UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43:D204-212.
– reference: 57. Moreira, D., and P. Lopez-Garcia. 2015. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philos Trans R Soc Lond, B Biol Sci. 37020140327.
– reference: 47. Li, W., and A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 22:1658-1659.
– reference: 91. Zhang, W., J. Zhou, T. Liu, Y. Yu, Y. Pan, S. Yan, and Y. Wang. 2015. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci Rep. 5:15131.
– reference: 53. Moniruzzaman, M., G.R. LeCleir, C.M. Brown, C.J. Gobler, K.D. Bidle, W.H. Wilson, and S.W. Wilhelm. 2014. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution. Virology. 466–467:60-70.
– reference: 62. Parent, C.E., D. Agashe, and D.I. Bolnick. 2014. Intraspecific competition reduces niche width in experimental populations. Ecol Evol. 4:3978-3990.
– reference: 88. Yoosuf, N., I. Pagnier, G. Fournous, C. Robert, D. Raoult, B. La Scola, and P. Colson. 2014. Draft genome sequences of Terra1 and Terra2 viruses, new members of the family Mimiviridae isolated from soil. Virology. 452–453:125-132.
– reference: 36. Katoh, K., and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772-780.
– reference: 72. Sharma, V., P. Colson, R. Giorgi, P. Pontarotti, and D. Raoult. 2014. DNA-dependent RNA polymerase detects hidden giant viruses in published databanks. Genome Biol Evol. 6:1603-1610.
– reference: 85. Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS, Comput Appl Biosci. 13:555-556.
– reference: 64. Price, M.N., P.S. Dehal, and A.P. Arkin. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 26:1641-1650.
– reference: 11. Chernomor, O., B.Q. Minh, F. Forest, S. Klaere, T. Ingram, M. Henzinger, and A. von Haeseler. 2015. Split diversity in constrained conservation prioritization using integer linear programming. Methods Ecol Evol. 6:83-91.
– reference: 80. Werner, F. 2007. Structure and function of archaeal RNA polymerases. Mol Microbiol. 65:1395-1404.
– reference: 24. Filee, J. 2015. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution. Front Microbiol. 6:593.
– reference: 58. Mueller, L., C. Bertelli, T. Pillonel, N. Salamin, and G. Greub. 2017. One year genome evolution of Lausannevirus in allopatric versus sympatric conditions. Genome Biol Evol. 9:1432-1449.
– reference: 6. Boyer, M., N. Yutin, I. Pagnier, et al. 2009. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA. 106:21848-21853.
– reference: 49. Mihara, T., Y. Nishimura, Y. Shimizu, H. Nishiyama, G. Yoshikawa, H. Uehara, P. Hingamp, S. Goto, and H. Ogata. 2016. Linking virus genomes with host taxonomy. Viruses. 8:66.
– reference: 22. Faith, D.P. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv. 61:1-10.
– reference: 73. Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 51:492-508.
– reference: 9. Carradec, Q., E. Pelletier, C. Da Silva, et al. 2018. A global ocean atlas of eukaryotic genes. Nat Commun. 9:373.
– reference: 15. Claverie, J.M., and C. Abergel. 2016. Giant viruses: The difficult breaking of multiple epistemological barriers. Stud Hist Philos Biol Biomed Sci. 59:89-99.
– reference: 89. Yoshida, T., J.M. Claverie, and H. Ogata. 2011. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids. Virol J. 8:427.
– reference: 90. Yutin, N., Y.I. Wolf, and E.V. Koonin. 2014. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology. 466–467:38-52.
– reference: 12. Ciaccafava, A., A. Lartigue, P. Mansuelle, S. Jeudy, and C. Abergel. 2011. Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene. Acta Crystallogr, Sect F Struct Biol Cryst Commun. 67:922-925.
– reference: 76. Sunagawa, S., L.P. Coelho, S. Chaffron, et al. 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science. 348:1261359.
– reference: 2. Arslan, D., M. Legendre, V. Seltzer, C. Abergel, and J.M. Claverie. 2011. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci USA. 108:17486-17491.
– reference: 67. Renesto, P., C. Abergel, P. Decloquement, D. Moinier, S. Azza, H. Ogata, P. Fourquet, J.P. Gorvel, and J.M. Claverie. 2006. Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J Virol. 80:11678-11685.
– reference: 3. Baltanás, A. 1992. On the use of some methods for the estimation of species richness. Oikos. 65:484-492.
– reference: 16. Colson, P., G. Gimenez, M. Boyer, G. Fournous, and D. Raoult. 2011. The giant Cafeteria roenbergensis virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of Life. PLoS One. 6:e18935.
– reference: 68. Rusch, D.B., A.L. Halpern, G. Sutton, et al. 2007. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5:e77.
– reference: 83. Williams, T.A., T.M. Embley, and E. Heinz. 2011. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS One. 6:e21080.
– reference: 41. La Scola, B., A. Campocasso, R. N’Dong, G. Fournous, L. Barrassi, C. Flaudrops, and D. Raoult. 2010. Tentative characterization of new environmental giant viruses by MALDI-TOF mass spectrometry. Intervirology. 53:344-353.
– reference: 63. Philippe, N., M. Legendre, G. Doutre, et al. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 341:281-286.
– reference: 46. Legendre, M., A. Lartigue, L. Bertaux, et al. 2015. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci USA. 112:E5327-5335.
– reference: 71. Schulz, F., N. Yutin, N.N. Ivanova, et al. 2017. Giant viruses with an expanded complement of translation system components. Science. 356:82-85.
– reference: 10. Cheetham, G.M., and T.A. Steitz. 2000. Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr Opin Struct Biol. 10:117-123.
– reference: 1. Aherfi, S., P. Colson, B. LaScola, and D. Raoult. 2016. Giant Viruses of Amoebas: An Update. Front Microbiol. 7:349.
– reference: 4. Birtles, R.J., T.J. Rowbotham, C. Storey, T.J. Marrie, and D. Raoult. 1997. Chlamydia-like obligate parasite of free-living amoebae. Lancet. 349:925-926.
– reference: 33. Iyer, L.M., E.V. Koonin, and L. Aravind. 2003. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol. 3:1.
– reference: 51. Monier, A., J.M. Claverie, and H. Ogata. 2008. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9:R106.
– reference: 84. Wilson, W.H., I.C. Gilg, M. Moniruzzaman, et al. 2017. Genomic exploration of individual giant ocean viruses. ISME J. 11:1736-1745.
– reference: 26. Flaviani, F., D.C. Schroeder, C. Balestreri, J.L. Schroeder, K. Moore, K. Paszkiewicz, M.C. Pfaff, and E.P. Rybicki. 2017. A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater. Viruses. 9:47.
– reference: 65. Raoult, D., S. Audic, C. Robert, C. Abergel, P. Renesto, H. Ogata, B. La Scola, M. Suzan, and J.M. Claverie. 2004. The 1.2-megabase genome sequence of Mimivirus. Science. 306:1344-1350.
– reference: 66. Raoult, D., and P. Forterre. 2008. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol. 6:315-319.
– reference: 69. Santini, S., S. Jeudy, J. Bartoli, et al. 2013. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci USA. 110:10800-10805.
– reference: 18. de Vargas, C., S. Audic, N. Henry, et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science. 348:1261605.
– reference: 37. Koonin, E.V., Y.I. Wolf, K. Nagasaki, and V.V. Dolja. 2008. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol. 6:925-939.
– reference: 56. Moreira, D., and P. Lopez-Garcia. 2009. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol. 7:306-311.
– reference: 70. Schmidt, R., R. Kwiecien, A. Faldum, F. Berthold, B. Hero, and S. Ligges. 2015. Sample size calculation for the one-sample log-rank test. Stat Med. 34:1031-1040.
– reference: 86. Yau, S., F.M. Lauro, M.Z. DeMaere, et al. 2011. Virophage control of antarctic algal host-virus dynamics. Proc Natl Acad Sci USA. 108:6163-6168.
– reference: 55. Moreira, D., and C. Brochier-Armanet. 2008. Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol Biol. 8:12.
– reference: 19. Deeg, C.M., C.E.T. Chow, and C.A. Suttle. 2017. The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. bioRxiv 214536.
– reference: 7. Boyer, M., M.A. Madoui, G. Gimenez, B. La Scola, and D. Raoult. 2010. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One. 5:e15530.
– reference: 60. Nayfach, S., and K.S. Pollard. 2016. Toward accurate and quantitative comparative metagenomics. Cell. 166:1103-1116.
– reference: 77. Takemura, M., S. Yokobori, and H. Ogata. 2015. Evolution of eukaryotic DNA polymerases via interaction between cells and large DNA viruses. J Mol Evol. 81:24-33.
– reference: 14. Claverie, J.M., and H. Ogata. 2009. Ten good reasons not to exclude giruses from the evolutionary picture. Nat Rev Microbiol. 7:615author reply 615.
– reference: 23. Filee, J., P. Siguier, and M. Chandler. 2007. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23:10-15.
– reference: 92. Zinger, L., L.A. Amaral-Zettler, J.A. Fuhrman, et al. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One. 6:e24570.
– reference: 29. Gallot-Lavallee, L., G. Blanc, and J.M. Claverie. 2017. Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family. J Virol. 91.
– reference: 52. Monier, A., J.B. Larsen, R.A. Sandaa, G. Bratbak, J.M. Claverie, and H. Ogata. 2008. Marine mimivirus relatives are probably large algal viruses. Virol J. 5:12.
– reference: 35. Kanehisa, M., S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42:D199-D205.
– reference: 30. Galperin, M.Y., K.S. Makarova, Y.I. Wolf, and E.V. Koonin. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43:D261-D269.
– reference: 44. Legendre, M., D. Arslan, C. Abergel, and J.M. Claverie. 2012. Genomics of Megavirus and the elusive fourth domain of Life. Commun Integr Biol. 5:102-106.
– reference: 78. Takemura, M. 2016. Morphological and taxonomic properties of Tokyovirus, the first Marseilleviridae member isolated from Japan. Microbes Environ. 31:442-448.
– reference: 5. Blanc-Mathieu, R., and H. Ogata. 2016. DNA repair genes in the Megavirales pangenome. Curr Opin Microbiol. 31:94-100.
– reference: 39. Kusser, A.G., M.G. Bertero, S. Naji, T. Becker, M. Thomm, R. Beckmann, and P. Cramer. 2008. Structure of an archaeal RNA polymerase. J Mol Biol. 376:303-307.
– reference: 54. Moreira, D., and P. Lopez-Garcia. 2005. Comment on “The 1.2-megabase genome sequence of Mimivirus”. Science. 308:1114author reply 1114.
– ident: 42
  doi: 10.1101/gr.102582.109
– ident: 77
  doi: 10.1007/s00239-015-9690-z
– ident: 11
  doi: 10.1111/2041-210X.12299
– ident: 19
  doi: 10.1101/214536
– ident: 41
  doi: 10.1159/000312919
– ident: 15
  doi: 10.1016/j.shpsc.2016.02.015
– ident: 81
  doi: 10.1016/j.tim.2008.03.008
– ident: 52
  doi: 10.1186/1743-422X-5-12
– ident: 58
  doi: 10.1093/gbe/evx074
– ident: 92
  doi: 10.1371/journal.pone.0024570
– ident: 14
  doi: 10.1038/nrmicro2108-c3
– ident: 4
  doi: 10.1016/S0140-6736(05)62701-8
– ident: 46
  doi: 10.1073/pnas.1510795112
– ident: 49
  doi: 10.3390/v8030066
– ident: 56
  doi: 10.1038/nrmicro2108
– ident: 73
  doi: 10.1080/10635150290069913
– ident: 78
  doi: 10.1264/jsme2.ME16107
– ident: 24
  doi: 10.3389/fmicb.2015.00593
– ident: 33
  doi: 10.1186/1472-6807-3-1
– ident: 62
  doi: 10.1002/ece3.1254
– ident: 91
  doi: 10.1038/srep15131
– ident: 80
  doi: 10.1111/j.1365-2958.2007.05876.x
– ident: 82
  doi: 10.1038/nrmicro2507
– ident: 79
  doi: 10.1093/nar/gku989
– ident: 5
  doi: 10.1016/j.mib.2016.03.011
– ident: 39
  doi: 10.1016/j.jmb.2007.08.066
– ident: 16
  doi: 10.1371/journal.pone.0018935
– ident: 17
  doi: 10.1007/s00705-013-1768-6
– ident: 44
  doi: 10.4161/cib.18624
– ident: 9
  doi: 10.1038/s41467-017-02342-1
– ident: 64
  doi: 10.1093/molbev/msp077
– ident: 57
  doi: 10.1098/rstb.2014.0327
– ident: 63
  doi: 10.1126/science.1239181
– ident: 85
  doi: 10.1093/bioinformatics/13.5.555
– ident: 43
  doi: 10.1186/1743-422X-8-99
– ident: 37
  doi: 10.1038/nrmicro2030
– ident: 32
  doi: 10.1038/ismej.2013.59
– ident: 8
  doi: 10.1093/bioinformatics/btp348
– ident: 26
  doi: 10.3390/v9030047
– ident: 10
  doi: 10.1016/S0959-440X(99)00058-5
– ident: 23
  doi: 10.1016/j.tig.2006.11.002
– ident: 59
  doi: 10.1186/1471-2148-12-156
– ident: 35
  doi: 10.1093/nar/gkt1076
– ident: 40
  doi: 10.1126/science.1081867
– ident: 69
  doi: 10.1073/pnas.1303251110
– ident: 84
  doi: 10.1038/ismej.2017.61
– ident: 20
  doi: 10.1093/bioinformatics/14.9.755
– ident: 30
  doi: 10.1093/nar/gku1223
– ident: 34
  doi: 10.1016/j.virol.2014.12.014
– volume: 11
  start-page: 538
  issn: 1471-2105
  year: 2010
  ident: 48
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-538
– ident: 21
  doi: 10.1093/bioinformatics/btq461
– ident: 50
  doi: 10.1128/MMBR.00010-17
– ident: 72
  doi: 10.1093/gbe/evu128
– ident: 18
  doi: 10.1126/science.1261605
– ident: 13
  doi: 10.1186/gb-2006-7-6-110
– ident: 31
  doi: 10.3201/eid1706.101282
– ident: 70
  doi: 10.1002/sim.6394
– ident: 2
  doi: 10.1073/pnas.1110889108
– ident: 28
– ident: 87
  doi: 10.1126/science.1203163
– ident: 27
  doi: 10.1038/ismej.2012.110
– ident: 83
  doi: 10.1371/journal.pone.0021080
– ident: 86
  doi: 10.1073/pnas.1018221108
– ident: 54
  doi: 10.1126/science.1110820
– ident: 22
  doi: 10.1016/0006-3207(92)91201-3
– ident: 90
  doi: 10.1016/j.virol.2014.06.032
– ident: 68
  doi: 10.1371/journal.pbio.0050077
– ident: 89
  doi: 10.1186/1743-422X-8-427
– ident: 7
  doi: 10.1371/journal.pone.0015530
– ident: 29
  doi: 10.1128/JVI.00230-17
– ident: 47
  doi: 10.1093/bioinformatics/btl158
– ident: 76
  doi: 10.1126/science.1261359
– ident: 60
  doi: 10.1016/j.cell.2016.08.007
– ident: 51
  doi: 10.1186/gb-2008-9-7-r106
– ident: 53
  doi: 10.1016/j.virol.2014.06.031
– ident: 1
  doi: 10.3389/fmicb.2016.00349
– ident: 88
  doi: 10.1016/j.virol.2013.12.032
– ident: 6
  doi: 10.1073/pnas.0911354106
– ident: 74
  doi: 10.1016/j.sbi.2009.09.001
– ident: 55
  doi: 10.1186/1471-2148-8-12
– ident: 61
  doi: 10.1093/nar/gkv1189
– ident: 36
  doi: 10.1093/molbev/mst010
– ident: 25
  doi: 10.1073/pnas.1007615107
– ident: 71
  doi: 10.1126/science.aal4657
– ident: 75
  doi: 10.1093/nar/gkq1102
– ident: 67
  doi: 10.1128/JVI.00940-06
– ident: 12
  doi: 10.1107/S1744309111020847
– ident: 66
  doi: 10.1038/nrmicro1858
– ident: 38
  doi: 10.1101/sqb.2009.74.006
– ident: 45
  doi: 10.1073/pnas.1320670111
– ident: 3
  doi: 10.2307/3545566
– ident: 65
  doi: 10.1126/science.1101485
SSID ssj0033572
Score 2.3897192
Snippet Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 162
SubjectTerms Archaea
Bacteria
Biodiversity
Deoxyribonucleic acid
DNA
DNA-directed RNA polymerase
Domains
Evolutionary genetics
Genomics
Life Sciences
Megaviridae
Microbiology and Parasitology
Microorganisms
Mimiviridae
Nucleic acids
ocean metagenome
Phylogenetics
Phylogeny
Protists
RNA
RNA polymerase
species richness
Systematics, Phylogenetics and taxonomy
Virology
Viruses
Title Taxon Richness of “Megaviridae” Exceeds those of Bacteria and Archaea in the Ocean
URI https://www.jstage.jst.go.jp/article/jsme2/33/2/33_ME17203/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29806626
https://www.proquest.com/docview/2242243894
https://hal.science/hal-01978927
https://pubmed.ncbi.nlm.nih.gov/PMC6031395
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Microbes and Environments, 2018, Vol.33(2), pp.162-171
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZoAYlLxT8pbWUhxImUJHacWAKhFm21QqRw6KLeIsced7dqs3R3W21vfRB4uT4JYycbWCgSUuRDPLGS8TjzjX--IeQllxYimckwNzkLObqMsEK3GCqZpbESkEY-x1KxL_oD_vEwPfxFKdQqcHpjaOfySQ0mJ9vzs8v3OODfeW4Ewd8cT08h2T6F2C0prpDb6JSEi8MK3i0oMJb6PE4x40koWBy3dJt_Pb7knlaGbnPknWPEaUdwEwT9cyflb65p7z5ZazEl3WmM4AG5BfVDcrfn-agvH5GvB2o-rqk7Qu_-a3Rs6fXV9wKO1MVoMjIKrq9-0N7c-bEpnQ3HU3Aiuw2Ns6KqNtTx0ypQdFSjANDPGlT9mAz2egcf-mGbTiHUIpWzUFitcbRGoDAIM9bGrLK5yEBHkZLaQgaVFVbxSmfKJiYzSSW0AgxQIp1znbAnZLUe1_CMUKulZtakhlvOTZRUoGwVVwaDI4uQAgLyeqHFUrdc4y7lxUnpYg5UeumVXhY9r_SAvOrEvzUkG_8SfIFd0sk4auz-zqfS3UObynKZZBdxQN42PdbJtYOwbYux0hdtm12tO-aG_4qAbCz6uVyYY4lABy8EdzwgT5su71pPZO5o9EVAsiVjWHrN5Zp6NPRM3i7FN5Pp-v981nNyD8Fa3kz_bJDV2eQcNhEQzaotb-pY7n8ptvx81U-KAQ9U
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taxon+Richness+of+%E2%80%9CMegaviridae%E2%80%9D+Exceeds+those+of+Bacteria+and+Archaea+in+the+Ocean&rft.jtitle=Microbes+and+environments&rft.au=Mihara%2C+Tomoko&rft.au=Koyano%2C+Hitoshi&rft.au=Hingamp%2C+Pascal&rft.au=Grimsley%2C+Nigel&rft.date=2018&rft.pub=Nakanishi+Printing+Co&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=33&rft.issue=2&rft.spage=162&rft.epage=171&rft_id=info:doi/10.1264%2Fjsme2.me17203&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01978927v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon