Taxon Richness of “Megaviridae” Exceeds those of Bacteria and Archaea in the Ocean
Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emerg...
Saved in:
Published in | Microbes and Environments Vol. 33; no. 2; pp. 162 - 171 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2018
Japan Science and Technology Agency Nakanishi Printing Co the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
Subjects | |
Online Access | Get full text |
ISSN | 1342-6311 1347-4405 |
DOI | 10.1264/jsme2.ME17203 |
Cover
Abstract | Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early “Big-Bang” radiation of the eukaryotic tree of life. |
---|---|
AbstractList | Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family “Megaviridae”, suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early “Big-Bang” radiation of the eukaryotic tree of life. |
Author | Ogata, Hiroyuki Mihara, Tomoko Grimsley, Nigel Koyano, Hitoshi Hingamp, Pascal Goto, Susumu |
AuthorAffiliation | 3 Aix Marseille Université, Université de Toulon CNRS, IRD, MIO UM 110, 13288, Marseille France 5 Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems Wakashiba, Kashiwa, Chiba 277–0871 Japan 2 School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology 2–12–1 Ookayama, Meguro-ku, Tokyo 152–8550 Japan 1 Bioinformatics Center, Institute for Chemical Research, Kyoto University Uji, Kyoto 611–0011 Japan 4 Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities 66650, Banyuls-sur-Mer France |
AuthorAffiliation_xml | – name: 4 Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities 66650, Banyuls-sur-Mer France – name: 5 Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems Wakashiba, Kashiwa, Chiba 277–0871 Japan – name: 3 Aix Marseille Université, Université de Toulon CNRS, IRD, MIO UM 110, 13288, Marseille France – name: 2 School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology 2–12–1 Ookayama, Meguro-ku, Tokyo 152–8550 Japan – name: 1 Bioinformatics Center, Institute for Chemical Research, Kyoto University Uji, Kyoto 611–0011 Japan |
Author_xml | – sequence: 1 fullname: Koyano, Hitoshi organization: School of Life Science and Technology, Laboratory of Genome Informatics, Tokyo Institute of Technology – sequence: 1 fullname: Mihara, Tomoko organization: Bioinformatics Center, Institute for Chemical Research, Kyoto University – sequence: 1 fullname: Goto, Susumu organization: Database Center for Life Science, Joint-Support Center for Data Science Research, Research Organization of Information and Systems – sequence: 1 fullname: Ogata, Hiroyuki organization: Bioinformatics Center, Institute for Chemical Research, Kyoto University – sequence: 1 fullname: Grimsley, Nigel organization: Integrative Marine Biology Laboratory (BIOM), CNRS UMR7232, Sorbonne Universities – sequence: 1 fullname: Hingamp, Pascal organization: Aix Marseille Université, Université de Toulon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29806626$$D View this record in MEDLINE/PubMed https://hal.science/hal-01978927$$DView record in HAL |
BookMark | eNp1kc1qGzEUhUVJaX7aZbdloKsuJtXPWDOzKbjGaQoOgZJ2K-5orjwytpRKY5Pu8iDNy-VJKtsT0wYKQhK63zm60jklR847JOQto-eMy-LjIq6Qn19NWcmpeEFOmCjKvCjo6Gi357kUjB2T0xgXlAoxKvkrcszrikrJ5Qn5cQN33mXfrO4cxph5kz3e_77COWxssC3g4_1DNr3TiG3M-s5H3CKfQfcYLGTg2mwcdAcImXUJwOxaI7jX5KWBZcQ3w3pGvl9MbyaX-ez6y9fJeJZrOar7XBqtq4pSBElZawwTjalkiZpSqLXBEhsjDRSNLsHwtmx5IzWgLDjVVaG5OCOf9r6362aFrUbXB1iq22BXEH4pD1b9W3G2U3O_UZIKJupRMviwN-ieyS7HM7U9o6wuq5qXG5bY98Nlwf9cY-zVwq-DS-9TnBdpiKouEvXu75YOpk9_ngCxB3TwMQY0Stseeuu3HdqlYlRtk1W7ZNWQbFLlz1RPxv_jJ3t-EXuY44GG0Fu9xIEWQu2mQXWopkSDQif-APtfwDQ |
CitedBy_id | crossref_primary_10_3390_microbiolres14020047 crossref_primary_10_1038_s41467_018_07335_2 crossref_primary_10_1093_molbev_msae149 crossref_primary_10_3390_v15081758 crossref_primary_10_3390_v14020191 crossref_primary_10_1264_jsme2_ME3302rh crossref_primary_10_3390_v10090496 crossref_primary_10_1038_s41559_020_01288_w crossref_primary_10_1093_ve_veab081 crossref_primary_10_1128_msystems_00737_21 crossref_primary_10_1038_s41579_022_00754_5 crossref_primary_10_1128_JVI_00854_20 crossref_primary_10_1128_msystems_01260_22 crossref_primary_10_1146_annurev_marine_010419_010706 crossref_primary_10_1111_1758_2229_12716 crossref_primary_10_3390_v11111043 crossref_primary_10_3390_ijms25115878 crossref_primary_10_1264_jsme2_ME19077 crossref_primary_10_1038_s41579_020_0364_5 crossref_primary_10_1264_jsme2_ME19037 crossref_primary_10_1186_s12985_024_02404_z crossref_primary_10_1146_annurev_virology_100520_125832 crossref_primary_10_1128_mSphere_01298_20 crossref_primary_10_1073_pnas_1912006116 crossref_primary_10_1002_lno_12086 crossref_primary_10_1093_ismejo_wrae182 crossref_primary_10_1016_j_watbs_2022_100062 crossref_primary_10_54044_RAMI_2022_04_06 crossref_primary_10_1016_j_chom_2022_06_008 crossref_primary_10_1093_ve_veaa059 crossref_primary_10_1016_j_cmi_2018_09_010 crossref_primary_10_1038_s42003_019_0475_6 crossref_primary_10_1093_ismeco_ycae048 crossref_primary_10_1038_s41467_020_15507_2 crossref_primary_10_1128_Spectrum_00064_21 crossref_primary_10_1128_JVI_01367_21 crossref_primary_10_1038_s41586_023_05962_4 crossref_primary_10_1128_JVI_02130_18 crossref_primary_10_1002_cpz1_455 crossref_primary_10_1038_s41467_023_41910_6 crossref_primary_10_3390_microorganisms8040506 crossref_primary_10_1371_journal_pbio_3001430 crossref_primary_10_1093_femsle_fnab067 crossref_primary_10_1051_medsci_2022165 crossref_primary_10_1128_mbio_00408_23 crossref_primary_10_1016_j_virol_2025_110476 crossref_primary_10_3390_v13020150 crossref_primary_10_1038_d41586_019_00599_8 crossref_primary_10_3390_insects11040239 crossref_primary_10_1093_femsec_fiab167 crossref_primary_10_1093_ismeco_ycae155 crossref_primary_10_1128_jvi_01715_24 crossref_primary_10_3390_v11040312 crossref_primary_10_1128_msystems_00293_21 crossref_primary_10_3390_microorganisms9051087 crossref_primary_10_1128_msystems_00048_20 crossref_primary_10_3390_v10120715 crossref_primary_10_1038_s41586_020_1957_x crossref_primary_10_3390_v10090506 crossref_primary_10_1093_ismejo_wrae162 crossref_primary_10_3390_v11080733 crossref_primary_10_1007_s00705_020_04542_5 crossref_primary_10_1098_rstb_2019_0086 crossref_primary_10_1111_brv_12795 crossref_primary_10_3390_microorganisms11010169 |
Cites_doi | 10.1101/gr.102582.109 10.1007/s00239-015-9690-z 10.1111/2041-210X.12299 10.1101/214536 10.1159/000312919 10.1016/j.shpsc.2016.02.015 10.1016/j.tim.2008.03.008 10.1186/1743-422X-5-12 10.1093/gbe/evx074 10.1371/journal.pone.0024570 10.1038/nrmicro2108-c3 10.1016/S0140-6736(05)62701-8 10.1073/pnas.1510795112 10.3390/v8030066 10.1038/nrmicro2108 10.1080/10635150290069913 10.1264/jsme2.ME16107 10.3389/fmicb.2015.00593 10.1186/1472-6807-3-1 10.1002/ece3.1254 10.1038/srep15131 10.1111/j.1365-2958.2007.05876.x 10.1038/nrmicro2507 10.1093/nar/gku989 10.1016/j.mib.2016.03.011 10.1016/j.jmb.2007.08.066 10.1371/journal.pone.0018935 10.1007/s00705-013-1768-6 10.4161/cib.18624 10.1038/s41467-017-02342-1 10.1093/molbev/msp077 10.1098/rstb.2014.0327 10.1126/science.1239181 10.1093/bioinformatics/13.5.555 10.1186/1743-422X-8-99 10.1038/nrmicro2030 10.1038/ismej.2013.59 10.1093/bioinformatics/btp348 10.3390/v9030047 10.1016/S0959-440X(99)00058-5 10.1016/j.tig.2006.11.002 10.1186/1471-2148-12-156 10.1093/nar/gkt1076 10.1126/science.1081867 10.1073/pnas.1303251110 10.1038/ismej.2017.61 10.1093/bioinformatics/14.9.755 10.1093/nar/gku1223 10.1016/j.virol.2014.12.014 10.1186/1471-2105-11-538 10.1093/bioinformatics/btq461 10.1128/MMBR.00010-17 10.1093/gbe/evu128 10.1126/science.1261605 10.1186/gb-2006-7-6-110 10.3201/eid1706.101282 10.1002/sim.6394 10.1073/pnas.1110889108 10.1126/science.1203163 10.1038/ismej.2012.110 10.1371/journal.pone.0021080 10.1073/pnas.1018221108 10.1126/science.1110820 10.1016/0006-3207(92)91201-3 10.1016/j.virol.2014.06.032 10.1371/journal.pbio.0050077 10.1186/1743-422X-8-427 10.1371/journal.pone.0015530 10.1128/JVI.00230-17 10.1093/bioinformatics/btl158 10.1126/science.1261359 10.1016/j.cell.2016.08.007 10.1186/gb-2008-9-7-r106 10.1016/j.virol.2014.06.031 10.3389/fmicb.2016.00349 10.1016/j.virol.2013.12.032 10.1073/pnas.0911354106 10.1016/j.sbi.2009.09.001 10.1186/1471-2148-8-12 10.1093/nar/gkv1189 10.1093/molbev/mst010 10.1073/pnas.1007615107 10.1126/science.aal4657 10.1093/nar/gkq1102 10.1128/JVI.00940-06 10.1107/S1744309111020847 10.1038/nrmicro1858 10.1101/sqb.2009.74.006 10.1073/pnas.1320670111 10.2307/3545566 10.1126/science.1101485 |
ContentType | Journal Article |
Copyright | 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. Copyright Japan Science and Technology Agency 2018 Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2018 |
Copyright_xml | – notice: 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. – notice: Copyright Japan Science and Technology Agency 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2018 |
DBID | AAYXX CITATION NPM 7QL C1K F1W H95 L.G M7N 1XC VOOES 5PM |
DOI | 10.1264/jsme2.ME17203 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1347-4405 |
EndPage | 171 |
ExternalDocumentID | PMC6031395 oai_HAL_hal_01978927v1 29806626 10_1264_jsme2_ME17203 article_jsme2_33_2_33_ME17203_article_char_en |
Genre | Journal Article |
GroupedDBID | 123 2WC 53G ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z HYE JSF JSH KQ8 M48 OK1 PGMZT RJT RPM RZJ TKC TR2 WBO ~02 AAYXX CITATION NPM 7QL C1K F1W H95 L.G M7N 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c659t-6fcc8800ea601dff13bf867ec00a9cfe7ebf6fa4bc7af2d7d2b6cae6420c84c23 |
IEDL.DBID | M48 |
ISSN | 1342-6311 |
IngestDate | Thu Aug 21 18:15:32 EDT 2025 Sat Jul 05 06:20:28 EDT 2025 Mon Jun 30 08:40:27 EDT 2025 Thu Apr 03 07:11:57 EDT 2025 Tue Jul 01 03:52:12 EDT 2025 Thu Apr 24 22:56:31 EDT 2025 Wed Sep 03 06:09:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | species richness RNA polymerase ocean metagenome Megaviridae Mimiviridae |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c659t-6fcc8800ea601dff13bf867ec00a9cfe7ebf6fa4bc7af2d7d2b6cae6420c84c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6594-377X 0000-0001-9323-417X 0000-0002-7463-2444 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1264/jsme2.me17203 |
PMID | 29806626 |
PQID | 2242243894 |
PQPubID | 1976392 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031395 hal_primary_oai_HAL_hal_01978927v1 proquest_journals_2242243894 pubmed_primary_29806626 crossref_citationtrail_10_1264_jsme2_ME17203 crossref_primary_10_1264_jsme2_ME17203 jstage_primary_article_jsme2_33_2_33_ME17203_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Miyagi |
PublicationTitle | Microbes and Environments |
PublicationTitleAlternate | Microbes Environ. |
PublicationYear | 2018 |
Publisher | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles Japan Science and Technology Agency Nakanishi Printing Co the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
Publisher_xml | – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles – name: Japan Science and Technology Agency – name: Nakanishi Printing Co – name: the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
References | 66. Raoult, D., and P. Forterre. 2008. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol. 6:315-319. 69. Santini, S., S. Jeudy, J. Bartoli, et al. 2013. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci USA. 110:10800-10805. 1. Aherfi, S., P. Colson, B. LaScola, and D. Raoult. 2016. Giant Viruses of Amoebas: An Update. Front Microbiol. 7:349. 51. Monier, A., J.M. Claverie, and H. Ogata. 2008. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9:R106. 3. Baltanás, A. 1992. On the use of some methods for the estimation of species richness. Oikos. 65:484-492. 17. Colson, P., X. De Lamballerie, N. Yutin, et al. 2013. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 158:2517-2521. 80. Werner, F. 2007. Structure and function of archaeal RNA polymerases. Mol Microbiol. 65:1395-1404. 26. Flaviani, F., D.C. Schroeder, C. Balestreri, J.L. Schroeder, K. Moore, K. Paszkiewicz, M.C. Pfaff, and E.P. Rybicki. 2017. A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater. Viruses. 9:47. 71. Schulz, F., N. Yutin, N.N. Ivanova, et al. 2017. Giant viruses with an expanded complement of translation system components. Science. 356:82-85. 48. Matsen, F.A., R.B. Kodner, and E.V. Armbrust. 2010. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 11:538. 57. Moreira, D., and P. Lopez-Garcia. 2015. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philos Trans R Soc Lond, B Biol Sci. 37020140327. 6. Boyer, M., N. Yutin, I. Pagnier, et al. 2009. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA. 106:21848-21853. 23. Filee, J., P. Siguier, and M. Chandler. 2007. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23:10-15. 33. Iyer, L.M., E.V. Koonin, and L. Aravind. 2003. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol. 3:1. 84. Wilson, W.H., I.C. Gilg, M. Moniruzzaman, et al. 2017. Genomic exploration of individual giant ocean viruses. ISME J. 11:1736-1745. 87. Yoon, H.S., D.C. Price, R. Stepanauskas, V.D. Rajah, M.E. Sieracki, W.H. Wilson, E.C. Yang, S. Duffy, and D. Bhattacharya. 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science. 332:714-717. 28. Gallot-Lavallee, L., A. Pagarete, M. Legendre, S. Santini, R.A. Sandaa, H. Himmelbauer, H. Ogata, G. Bratbak, and J.M. Claverie. 2015. The 474-Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting Haptolina (Chrysochromulina) ericina (Prymnesiophyceae). Genome Announc. 3. 42. Legendre, M., S. Audic, O. Poirot, et al. 2010. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res. 20:664-674. 31. Gaze, W.H., G. Morgan, L. Zhang, and E.M. Wellington. 2011. Mimivirus-like particles in acanthamoebae from Sewage Sludge. Emerg Infect Dis. 17:1127-1129. 4. Birtles, R.J., T.J. Rowbotham, C. Storey, T.J. Marrie, and D. Raoult. 1997. Chlamydia-like obligate parasite of free-living amoebae. Lancet. 349:925-926. 2. Arslan, D., M. Legendre, V. Seltzer, C. Abergel, and J.M. Claverie. 2011. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci USA. 108:17486-17491. 75. Sun, S., J. Chen, W. Li, et al. 2011. Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res. 39:D546-551. 68. Rusch, D.B., A.L. Halpern, G. Sutton, et al. 2007. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5:e77. 74. Steitz, T.A. 2009. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr Opin Struct Biol. 19:683-690. 79. UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43:D204-212. 43. Legendre, M., S. Santini, A. Rico, C. Abergel, and J.M. Claverie. 2011. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol J. 8:99. 38. Koonin, E.V., Y.I. Wolf, and P. Puigbo. 2009. The phylogenetic forest and the quest for the elusive tree of life. Cold Spring Harb Symp Quant Biol. 74:205-213. 83. Williams, T.A., T.M. Embley, and E. Heinz. 2011. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS One. 6:e21080. 20. Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics. 14:755-763. 56. Moreira, D., and P. Lopez-Garcia. 2009. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol. 7:306-311. 18. de Vargas, C., S. Audic, N. Henry, et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science. 348:1261605. 7. Boyer, M., M.A. Madoui, G. Gimenez, B. La Scola, and D. Raoult. 2010. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One. 5:e15530. 8. Capella-Gutierrez, S., J.M. Silla-Martinez, and T. Gabaldon. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25:1972-1973. 10. Cheetham, G.M., and T.A. Steitz. 2000. Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr Opin Struct Biol. 10:117-123. 36. Katoh, K., and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772-780. 91. Zhang, W., J. Zhou, T. Liu, Y. Yu, Y. Pan, S. Yan, and Y. Wang. 2015. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci Rep. 5:15131. 5. Blanc-Mathieu, R., and H. Ogata. 2016. DNA repair genes in the Megavirales pangenome. Curr Opin Microbiol. 31:94-100. 11. Chernomor, O., B.Q. Minh, F. Forest, S. Klaere, T. Ingram, M. Henzinger, and A. von Haeseler. 2015. Split diversity in constrained conservation prioritization using integer linear programming. Methods Ecol Evol. 6:83-91. 81. Werner, F. 2008. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16:247-250. 58. Mueller, L., C. Bertelli, T. Pillonel, N. Salamin, and G. Greub. 2017. One year genome evolution of Lausannevirus in allopatric versus sympatric conditions. Genome Biol Evol. 9:1432-1449. 89. Yoshida, T., J.M. Claverie, and H. Ogata. 2011. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids. Virol J. 8:427. 16. Colson, P., G. Gimenez, M. Boyer, G. Fournous, and D. Raoult. 2011. The giant Cafeteria roenbergensis virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of Life. PLoS One. 6:e18935. 82. Werner, F., and D. Grohmann. 2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol. 9:85-98. 25. Fischer, M.G., M.J. Allen, W.H. Wilson, and C.A. Suttle. 2010. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA. 107:19508-19513. 30. Galperin, M.Y., K.S. Makarova, Y.I. Wolf, and E.V. Koonin. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43:D261-D269. 63. Philippe, N., M. Legendre, G. Doutre, et al. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 341:281-286. 59. Nasir, A., K.M. Kim, and G. Caetano-Anolles. 2012. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol. 12:156. 32. Hingamp, P., N. Grimsley, S.G. Acinas, et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7:1678-1695. 92. Zinger, L., L.A. Amaral-Zettler, J.A. Fuhrman, et al. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One. 6:e24570. 76. Sunagawa, S., L.P. Coelho, S. Chaffron, et al. 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science. 348:1261359. 62. Parent, C.E., D. Agashe, and D.I. Bolnick. 2014. Intraspecific competition reduces niche width in experimental populations. Ecol Evol. 4:3978-3990. 45. Legendre, M., J. Bartoli, L. Shmakova, et al. 2014. Thirty-thousandyear-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA. 111:4274-4279. 78. Takemura, M. 2016. Morphological and taxonomic properties of Tokyovirus, the first Marseilleviridae member isolated from Japan. Microbes Environ. 31:442-448. 49. Mihara, T., Y. Nishimura, Y. Shimizu, H. Nishiyama, G. Yoshikawa, H. Uehara, P. Hingamp, S. Goto, and H. Ogata. 2016. Linking virus genomes with host taxonomy. Viruses. 8:66. 12. Ciaccafava, A., A. Lartigue, P. Mansuelle, S. Jeudy, and C. Abergel. 2011. Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene. Acta Crystallogr, Sect F Struct Biol Cryst Commun. 67:922-925. 15. Claverie, J.M., and C. Abergel. 2016. Giant viruses: The difficult breaking of multiple epistemological barriers. Stud Hist Philos Biol Biomed Sci. 59:89-99. 72. Sharma, V., P. Colson, R. Giorgi, P. Pontarotti, and D. Raoult. 2014. DNA-dependent RNA polymerase detects hidden giant viruses in published databanks. Genome Biol Evol. 6:1603-1610. 54. Moreira, D., and P. Lopez-Garcia. 2005. Comment on “The 1.2-megabase genome sequence of Mimivirus”. Science. 308:1114author reply 1114. 86. Yau, S., F.M. Lauro, M.Z. DeMaere, et a 44 88 45 89 46 47 49 90 91 92 F.A. Matsen (48) 2010; 11 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 71 72 73 30 74 31 75 32 76 33 77 34 78 35 79 36 37 38 39 80 81 82 83 40 84 41 85 42 86 43 87 |
References_xml | – reference: 43. Legendre, M., S. Santini, A. Rico, C. Abergel, and J.M. Claverie. 2011. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol J. 8:99. – reference: 40. La Scola, B., S. Audic, C. Robert, L. Jungang, X. de Lamballerie, M. Drancourt, R. Birtles, J.M. Claverie, and D. Raoult. 2003. A giant virus in amoebae. Science. 299:2033. – reference: 38. Koonin, E.V., Y.I. Wolf, and P. Puigbo. 2009. The phylogenetic forest and the quest for the elusive tree of life. Cold Spring Harb Symp Quant Biol. 74:205-213. – reference: 42. Legendre, M., S. Audic, O. Poirot, et al. 2010. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res. 20:664-674. – reference: 8. Capella-Gutierrez, S., J.M. Silla-Martinez, and T. Gabaldon. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25:1972-1973. – reference: 45. Legendre, M., J. Bartoli, L. Shmakova, et al. 2014. Thirty-thousandyear-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA. 111:4274-4279. – reference: 75. Sun, S., J. Chen, W. Li, et al. 2011. Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res. 39:D546-551. – reference: 59. Nasir, A., K.M. Kim, and G. Caetano-Anolles. 2012. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol. 12:156. – reference: 27. Forterre, P. 2013. The virocell concept and environmental microbiology. ISME J. 7:233-236. – reference: 82. Werner, F., and D. Grohmann. 2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol. 9:85-98. – reference: 21. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26:2460-2461. – reference: 31. Gaze, W.H., G. Morgan, L. Zhang, and E.M. Wellington. 2011. Mimivirus-like particles in acanthamoebae from Sewage Sludge. Emerg Infect Dis. 17:1127-1129. – reference: 13. Claverie, J.M. 2006. Viruses take center stage in cellular evolution. Genome Biol. 7:110. – reference: 20. Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics. 14:755-763. – reference: 87. Yoon, H.S., D.C. Price, R. Stepanauskas, V.D. Rajah, M.E. Sieracki, W.H. Wilson, E.C. Yang, S. Duffy, and D. Bhattacharya. 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science. 332:714-717. – reference: 81. Werner, F. 2008. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16:247-250. – reference: 25. Fischer, M.G., M.J. Allen, W.H. Wilson, and C.A. Suttle. 2010. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA. 107:19508-19513. – reference: 32. Hingamp, P., N. Grimsley, S.G. Acinas, et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7:1678-1695. – reference: 50. Mirzakhanyan, Y., and P.D. Gershon. 2017. Multisubunit DNA-dependent RNA polymerases from vaccinia virus and other nucleocytoplasmic large-DNA viruses: Impressions from the age of structure. Microbiol Mol Biol Rev. 81. – reference: 74. Steitz, T.A. 2009. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr Opin Struct Biol. 19:683-690. – reference: 48. Matsen, F.A., R.B. Kodner, and E.V. Armbrust. 2010. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 11:538. – reference: 17. Colson, P., X. De Lamballerie, N. Yutin, et al. 2013. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 158:2517-2521. – reference: 28. Gallot-Lavallee, L., A. Pagarete, M. Legendre, S. Santini, R.A. Sandaa, H. Himmelbauer, H. Ogata, G. Bratbak, and J.M. Claverie. 2015. The 474-Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting Haptolina (Chrysochromulina) ericina (Prymnesiophyceae). Genome Announc. 3. – reference: 34. Johannessen, T.V., G. Bratbak, A. Larsen, H. Ogata, E.S. Egge, B. Edvardsen, W. Eikrem, and R.A. Sandaa. 2015. Characterisation of three novel giant viruses reveals huge diversity among viruses infecting Prymnesiales (Haptophyta). Virology. 476:180-188. – reference: 61. O’Leary, N.A., M.W. Wright, J.R. Brister, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44:D733-745. – reference: 79. UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43:D204-212. – reference: 57. Moreira, D., and P. Lopez-Garcia. 2015. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philos Trans R Soc Lond, B Biol Sci. 37020140327. – reference: 47. Li, W., and A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 22:1658-1659. – reference: 91. Zhang, W., J. Zhou, T. Liu, Y. Yu, Y. Pan, S. Yan, and Y. Wang. 2015. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci Rep. 5:15131. – reference: 53. Moniruzzaman, M., G.R. LeCleir, C.M. Brown, C.J. Gobler, K.D. Bidle, W.H. Wilson, and S.W. Wilhelm. 2014. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution. Virology. 466–467:60-70. – reference: 62. Parent, C.E., D. Agashe, and D.I. Bolnick. 2014. Intraspecific competition reduces niche width in experimental populations. Ecol Evol. 4:3978-3990. – reference: 88. Yoosuf, N., I. Pagnier, G. Fournous, C. Robert, D. Raoult, B. La Scola, and P. Colson. 2014. Draft genome sequences of Terra1 and Terra2 viruses, new members of the family Mimiviridae isolated from soil. Virology. 452–453:125-132. – reference: 36. Katoh, K., and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772-780. – reference: 72. Sharma, V., P. Colson, R. Giorgi, P. Pontarotti, and D. Raoult. 2014. DNA-dependent RNA polymerase detects hidden giant viruses in published databanks. Genome Biol Evol. 6:1603-1610. – reference: 85. Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS, Comput Appl Biosci. 13:555-556. – reference: 64. Price, M.N., P.S. Dehal, and A.P. Arkin. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 26:1641-1650. – reference: 11. Chernomor, O., B.Q. Minh, F. Forest, S. Klaere, T. Ingram, M. Henzinger, and A. von Haeseler. 2015. Split diversity in constrained conservation prioritization using integer linear programming. Methods Ecol Evol. 6:83-91. – reference: 80. Werner, F. 2007. Structure and function of archaeal RNA polymerases. Mol Microbiol. 65:1395-1404. – reference: 24. Filee, J. 2015. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution. Front Microbiol. 6:593. – reference: 58. Mueller, L., C. Bertelli, T. Pillonel, N. Salamin, and G. Greub. 2017. One year genome evolution of Lausannevirus in allopatric versus sympatric conditions. Genome Biol Evol. 9:1432-1449. – reference: 6. Boyer, M., N. Yutin, I. Pagnier, et al. 2009. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA. 106:21848-21853. – reference: 49. Mihara, T., Y. Nishimura, Y. Shimizu, H. Nishiyama, G. Yoshikawa, H. Uehara, P. Hingamp, S. Goto, and H. Ogata. 2016. Linking virus genomes with host taxonomy. Viruses. 8:66. – reference: 22. Faith, D.P. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv. 61:1-10. – reference: 73. Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 51:492-508. – reference: 9. Carradec, Q., E. Pelletier, C. Da Silva, et al. 2018. A global ocean atlas of eukaryotic genes. Nat Commun. 9:373. – reference: 15. Claverie, J.M., and C. Abergel. 2016. Giant viruses: The difficult breaking of multiple epistemological barriers. Stud Hist Philos Biol Biomed Sci. 59:89-99. – reference: 89. Yoshida, T., J.M. Claverie, and H. Ogata. 2011. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids. Virol J. 8:427. – reference: 90. Yutin, N., Y.I. Wolf, and E.V. Koonin. 2014. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology. 466–467:38-52. – reference: 12. Ciaccafava, A., A. Lartigue, P. Mansuelle, S. Jeudy, and C. Abergel. 2011. Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene. Acta Crystallogr, Sect F Struct Biol Cryst Commun. 67:922-925. – reference: 76. Sunagawa, S., L.P. Coelho, S. Chaffron, et al. 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science. 348:1261359. – reference: 2. Arslan, D., M. Legendre, V. Seltzer, C. Abergel, and J.M. Claverie. 2011. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci USA. 108:17486-17491. – reference: 67. Renesto, P., C. Abergel, P. Decloquement, D. Moinier, S. Azza, H. Ogata, P. Fourquet, J.P. Gorvel, and J.M. Claverie. 2006. Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J Virol. 80:11678-11685. – reference: 3. Baltanás, A. 1992. On the use of some methods for the estimation of species richness. Oikos. 65:484-492. – reference: 16. Colson, P., G. Gimenez, M. Boyer, G. Fournous, and D. Raoult. 2011. The giant Cafeteria roenbergensis virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of Life. PLoS One. 6:e18935. – reference: 68. Rusch, D.B., A.L. Halpern, G. Sutton, et al. 2007. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5:e77. – reference: 83. Williams, T.A., T.M. Embley, and E. Heinz. 2011. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS One. 6:e21080. – reference: 41. La Scola, B., A. Campocasso, R. N’Dong, G. Fournous, L. Barrassi, C. Flaudrops, and D. Raoult. 2010. Tentative characterization of new environmental giant viruses by MALDI-TOF mass spectrometry. Intervirology. 53:344-353. – reference: 63. Philippe, N., M. Legendre, G. Doutre, et al. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 341:281-286. – reference: 46. Legendre, M., A. Lartigue, L. Bertaux, et al. 2015. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci USA. 112:E5327-5335. – reference: 71. Schulz, F., N. Yutin, N.N. Ivanova, et al. 2017. Giant viruses with an expanded complement of translation system components. Science. 356:82-85. – reference: 10. Cheetham, G.M., and T.A. Steitz. 2000. Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr Opin Struct Biol. 10:117-123. – reference: 1. Aherfi, S., P. Colson, B. LaScola, and D. Raoult. 2016. Giant Viruses of Amoebas: An Update. Front Microbiol. 7:349. – reference: 4. Birtles, R.J., T.J. Rowbotham, C. Storey, T.J. Marrie, and D. Raoult. 1997. Chlamydia-like obligate parasite of free-living amoebae. Lancet. 349:925-926. – reference: 33. Iyer, L.M., E.V. Koonin, and L. Aravind. 2003. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol. 3:1. – reference: 51. Monier, A., J.M. Claverie, and H. Ogata. 2008. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9:R106. – reference: 84. Wilson, W.H., I.C. Gilg, M. Moniruzzaman, et al. 2017. Genomic exploration of individual giant ocean viruses. ISME J. 11:1736-1745. – reference: 26. Flaviani, F., D.C. Schroeder, C. Balestreri, J.L. Schroeder, K. Moore, K. Paszkiewicz, M.C. Pfaff, and E.P. Rybicki. 2017. A Pelagic Microbiome (Viruses to Protists) from a Small Cup of Seawater. Viruses. 9:47. – reference: 65. Raoult, D., S. Audic, C. Robert, C. Abergel, P. Renesto, H. Ogata, B. La Scola, M. Suzan, and J.M. Claverie. 2004. The 1.2-megabase genome sequence of Mimivirus. Science. 306:1344-1350. – reference: 66. Raoult, D., and P. Forterre. 2008. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol. 6:315-319. – reference: 69. Santini, S., S. Jeudy, J. Bartoli, et al. 2013. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci USA. 110:10800-10805. – reference: 18. de Vargas, C., S. Audic, N. Henry, et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science. 348:1261605. – reference: 37. Koonin, E.V., Y.I. Wolf, K. Nagasaki, and V.V. Dolja. 2008. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol. 6:925-939. – reference: 56. Moreira, D., and P. Lopez-Garcia. 2009. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol. 7:306-311. – reference: 70. Schmidt, R., R. Kwiecien, A. Faldum, F. Berthold, B. Hero, and S. Ligges. 2015. Sample size calculation for the one-sample log-rank test. Stat Med. 34:1031-1040. – reference: 86. Yau, S., F.M. Lauro, M.Z. DeMaere, et al. 2011. Virophage control of antarctic algal host-virus dynamics. Proc Natl Acad Sci USA. 108:6163-6168. – reference: 55. Moreira, D., and C. Brochier-Armanet. 2008. Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol Biol. 8:12. – reference: 19. Deeg, C.M., C.E.T. Chow, and C.A. Suttle. 2017. The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. bioRxiv 214536. – reference: 7. Boyer, M., M.A. Madoui, G. Gimenez, B. La Scola, and D. Raoult. 2010. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One. 5:e15530. – reference: 60. Nayfach, S., and K.S. Pollard. 2016. Toward accurate and quantitative comparative metagenomics. Cell. 166:1103-1116. – reference: 77. Takemura, M., S. Yokobori, and H. Ogata. 2015. Evolution of eukaryotic DNA polymerases via interaction between cells and large DNA viruses. J Mol Evol. 81:24-33. – reference: 14. Claverie, J.M., and H. Ogata. 2009. Ten good reasons not to exclude giruses from the evolutionary picture. Nat Rev Microbiol. 7:615author reply 615. – reference: 23. Filee, J., P. Siguier, and M. Chandler. 2007. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23:10-15. – reference: 92. Zinger, L., L.A. Amaral-Zettler, J.A. Fuhrman, et al. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One. 6:e24570. – reference: 29. Gallot-Lavallee, L., G. Blanc, and J.M. Claverie. 2017. Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family. J Virol. 91. – reference: 52. Monier, A., J.B. Larsen, R.A. Sandaa, G. Bratbak, J.M. Claverie, and H. Ogata. 2008. Marine mimivirus relatives are probably large algal viruses. Virol J. 5:12. – reference: 35. Kanehisa, M., S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42:D199-D205. – reference: 30. Galperin, M.Y., K.S. Makarova, Y.I. Wolf, and E.V. Koonin. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43:D261-D269. – reference: 44. Legendre, M., D. Arslan, C. Abergel, and J.M. Claverie. 2012. Genomics of Megavirus and the elusive fourth domain of Life. Commun Integr Biol. 5:102-106. – reference: 78. Takemura, M. 2016. Morphological and taxonomic properties of Tokyovirus, the first Marseilleviridae member isolated from Japan. Microbes Environ. 31:442-448. – reference: 5. Blanc-Mathieu, R., and H. Ogata. 2016. DNA repair genes in the Megavirales pangenome. Curr Opin Microbiol. 31:94-100. – reference: 39. Kusser, A.G., M.G. Bertero, S. Naji, T. Becker, M. Thomm, R. Beckmann, and P. Cramer. 2008. Structure of an archaeal RNA polymerase. J Mol Biol. 376:303-307. – reference: 54. Moreira, D., and P. Lopez-Garcia. 2005. Comment on “The 1.2-megabase genome sequence of Mimivirus”. Science. 308:1114author reply 1114. – ident: 42 doi: 10.1101/gr.102582.109 – ident: 77 doi: 10.1007/s00239-015-9690-z – ident: 11 doi: 10.1111/2041-210X.12299 – ident: 19 doi: 10.1101/214536 – ident: 41 doi: 10.1159/000312919 – ident: 15 doi: 10.1016/j.shpsc.2016.02.015 – ident: 81 doi: 10.1016/j.tim.2008.03.008 – ident: 52 doi: 10.1186/1743-422X-5-12 – ident: 58 doi: 10.1093/gbe/evx074 – ident: 92 doi: 10.1371/journal.pone.0024570 – ident: 14 doi: 10.1038/nrmicro2108-c3 – ident: 4 doi: 10.1016/S0140-6736(05)62701-8 – ident: 46 doi: 10.1073/pnas.1510795112 – ident: 49 doi: 10.3390/v8030066 – ident: 56 doi: 10.1038/nrmicro2108 – ident: 73 doi: 10.1080/10635150290069913 – ident: 78 doi: 10.1264/jsme2.ME16107 – ident: 24 doi: 10.3389/fmicb.2015.00593 – ident: 33 doi: 10.1186/1472-6807-3-1 – ident: 62 doi: 10.1002/ece3.1254 – ident: 91 doi: 10.1038/srep15131 – ident: 80 doi: 10.1111/j.1365-2958.2007.05876.x – ident: 82 doi: 10.1038/nrmicro2507 – ident: 79 doi: 10.1093/nar/gku989 – ident: 5 doi: 10.1016/j.mib.2016.03.011 – ident: 39 doi: 10.1016/j.jmb.2007.08.066 – ident: 16 doi: 10.1371/journal.pone.0018935 – ident: 17 doi: 10.1007/s00705-013-1768-6 – ident: 44 doi: 10.4161/cib.18624 – ident: 9 doi: 10.1038/s41467-017-02342-1 – ident: 64 doi: 10.1093/molbev/msp077 – ident: 57 doi: 10.1098/rstb.2014.0327 – ident: 63 doi: 10.1126/science.1239181 – ident: 85 doi: 10.1093/bioinformatics/13.5.555 – ident: 43 doi: 10.1186/1743-422X-8-99 – ident: 37 doi: 10.1038/nrmicro2030 – ident: 32 doi: 10.1038/ismej.2013.59 – ident: 8 doi: 10.1093/bioinformatics/btp348 – ident: 26 doi: 10.3390/v9030047 – ident: 10 doi: 10.1016/S0959-440X(99)00058-5 – ident: 23 doi: 10.1016/j.tig.2006.11.002 – ident: 59 doi: 10.1186/1471-2148-12-156 – ident: 35 doi: 10.1093/nar/gkt1076 – ident: 40 doi: 10.1126/science.1081867 – ident: 69 doi: 10.1073/pnas.1303251110 – ident: 84 doi: 10.1038/ismej.2017.61 – ident: 20 doi: 10.1093/bioinformatics/14.9.755 – ident: 30 doi: 10.1093/nar/gku1223 – ident: 34 doi: 10.1016/j.virol.2014.12.014 – volume: 11 start-page: 538 issn: 1471-2105 year: 2010 ident: 48 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-538 – ident: 21 doi: 10.1093/bioinformatics/btq461 – ident: 50 doi: 10.1128/MMBR.00010-17 – ident: 72 doi: 10.1093/gbe/evu128 – ident: 18 doi: 10.1126/science.1261605 – ident: 13 doi: 10.1186/gb-2006-7-6-110 – ident: 31 doi: 10.3201/eid1706.101282 – ident: 70 doi: 10.1002/sim.6394 – ident: 2 doi: 10.1073/pnas.1110889108 – ident: 28 – ident: 87 doi: 10.1126/science.1203163 – ident: 27 doi: 10.1038/ismej.2012.110 – ident: 83 doi: 10.1371/journal.pone.0021080 – ident: 86 doi: 10.1073/pnas.1018221108 – ident: 54 doi: 10.1126/science.1110820 – ident: 22 doi: 10.1016/0006-3207(92)91201-3 – ident: 90 doi: 10.1016/j.virol.2014.06.032 – ident: 68 doi: 10.1371/journal.pbio.0050077 – ident: 89 doi: 10.1186/1743-422X-8-427 – ident: 7 doi: 10.1371/journal.pone.0015530 – ident: 29 doi: 10.1128/JVI.00230-17 – ident: 47 doi: 10.1093/bioinformatics/btl158 – ident: 76 doi: 10.1126/science.1261359 – ident: 60 doi: 10.1016/j.cell.2016.08.007 – ident: 51 doi: 10.1186/gb-2008-9-7-r106 – ident: 53 doi: 10.1016/j.virol.2014.06.031 – ident: 1 doi: 10.3389/fmicb.2016.00349 – ident: 88 doi: 10.1016/j.virol.2013.12.032 – ident: 6 doi: 10.1073/pnas.0911354106 – ident: 74 doi: 10.1016/j.sbi.2009.09.001 – ident: 55 doi: 10.1186/1471-2148-8-12 – ident: 61 doi: 10.1093/nar/gkv1189 – ident: 36 doi: 10.1093/molbev/mst010 – ident: 25 doi: 10.1073/pnas.1007615107 – ident: 71 doi: 10.1126/science.aal4657 – ident: 75 doi: 10.1093/nar/gkq1102 – ident: 67 doi: 10.1128/JVI.00940-06 – ident: 12 doi: 10.1107/S1744309111020847 – ident: 66 doi: 10.1038/nrmicro1858 – ident: 38 doi: 10.1101/sqb.2009.74.006 – ident: 45 doi: 10.1073/pnas.1320670111 – ident: 3 doi: 10.2307/3545566 – ident: 65 doi: 10.1126/science.1101485 |
SSID | ssj0033572 |
Score | 2.3897192 |
Snippet | Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of... |
SourceID | pubmedcentral hal proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 162 |
SubjectTerms | Archaea Bacteria Biodiversity Deoxyribonucleic acid DNA DNA-directed RNA polymerase Domains Evolutionary genetics Genomics Life Sciences Megaviridae Microbiology and Parasitology Microorganisms Mimiviridae Nucleic acids ocean metagenome Phylogenetics Phylogeny Protists RNA RNA polymerase species richness Systematics, Phylogenetics and taxonomy Virology Viruses |
Title | Taxon Richness of “Megaviridae” Exceeds those of Bacteria and Archaea in the Ocean |
URI | https://www.jstage.jst.go.jp/article/jsme2/33/2/33_ME17203/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/29806626 https://www.proquest.com/docview/2242243894 https://hal.science/hal-01978927 https://pubmed.ncbi.nlm.nih.gov/PMC6031395 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Microbes and Environments, 2018, Vol.33(2), pp.162-171 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZoAYlLxT8pbWUhxImUJHacWAKhFm21QqRw6KLeIsced7dqs3R3W21vfRB4uT4JYycbWCgSUuRDPLGS8TjzjX--IeQllxYimckwNzkLObqMsEK3GCqZpbESkEY-x1KxL_oD_vEwPfxFKdQqcHpjaOfySQ0mJ9vzs8v3OODfeW4Ewd8cT08h2T6F2C0prpDb6JSEi8MK3i0oMJb6PE4x40koWBy3dJt_Pb7knlaGbnPknWPEaUdwEwT9cyflb65p7z5ZazEl3WmM4AG5BfVDcrfn-agvH5GvB2o-rqk7Qu_-a3Rs6fXV9wKO1MVoMjIKrq9-0N7c-bEpnQ3HU3Aiuw2Ns6KqNtTx0ypQdFSjANDPGlT9mAz2egcf-mGbTiHUIpWzUFitcbRGoDAIM9bGrLK5yEBHkZLaQgaVFVbxSmfKJiYzSSW0AgxQIp1znbAnZLUe1_CMUKulZtakhlvOTZRUoGwVVwaDI4uQAgLyeqHFUrdc4y7lxUnpYg5UeumVXhY9r_SAvOrEvzUkG_8SfIFd0sk4auz-zqfS3UObynKZZBdxQN42PdbJtYOwbYux0hdtm12tO-aG_4qAbCz6uVyYY4lABy8EdzwgT5su71pPZO5o9EVAsiVjWHrN5Zp6NPRM3i7FN5Pp-v981nNyD8Fa3kz_bJDV2eQcNhEQzaotb-pY7n8ptvx81U-KAQ9U |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taxon+Richness+of+%E2%80%9CMegaviridae%E2%80%9D+Exceeds+those+of+Bacteria+and+Archaea+in+the+Ocean&rft.jtitle=Microbes+and+environments&rft.au=Mihara%2C+Tomoko&rft.au=Koyano%2C+Hitoshi&rft.au=Hingamp%2C+Pascal&rft.au=Grimsley%2C+Nigel&rft.date=2018&rft.pub=Nakanishi+Printing+Co&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=33&rft.issue=2&rft.spage=162&rft.epage=171&rft_id=info:doi/10.1264%2Fjsme2.me17203&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01978927v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon |