A Review of Traffic Congestion Prediction Using Artificial Intelligence
In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research...
Saved in:
Published in | Journal of advanced transportation Vol. 2021; pp. 1 - 18 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Hindawi
2021
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research area has expanded extensively. Traffic congestion prediction, especially short-term traffic congestion prediction is made by evaluating different traffic parameters. Most of the researches focus on historical data in forecasting traffic congestion. However, a few articles made real-time traffic congestion prediction. This paper systematically summarises the existing research conducted by applying the various methodologies of AI, notably different machine learning models. The paper accumulates the models under respective branches of AI, and the strength and weaknesses of the models are summarised. |
---|---|
AbstractList | In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research area has expanded extensively. Traffic congestion prediction, especially short-term traffic congestion prediction is made by evaluating different traffic parameters. Most of the researches focus on historical data in forecasting traffic congestion. However, a few articles made real-time traffic congestion prediction. This paper systematically summarises the existing research conducted by applying the various methodologies of AI, notably different machine learning models. The paper accumulates the models under respective branches of AI, and the strength and weaknesses of the models are summarised. |
Audience | Academic |
Author | Akhtar, Mahmuda Moridpour, Sara |
Author_xml | – sequence: 1 givenname: Mahmuda orcidid: 0000-0003-4696-8917 surname: Akhtar fullname: Akhtar, Mahmuda organization: Department of Civil and Infrastructure EngineeringRMIT UniversityMelbourneVIC 3000Australiarmit.edu.au – sequence: 2 givenname: Sara orcidid: 0000-0001-9113-7739 surname: Moridpour fullname: Moridpour, Sara organization: Department of Civil and Infrastructure EngineeringRMIT UniversityMelbourneVIC 3000Australiarmit.edu.au |
BookMark | eNqNkt9rHCEQx6Wk0Evat_4BC31sN3F0XfXxONrkINBSkmdxXd14bDTVvYb89_WySXuFtByCDsNnvvPDOUZHIQaL0HvApwCMnRFM4EwILjDAK7QguCE1BcmO0AKD5HXLiXyDjnPeYEwlk80CnS-r7_ant_dVdNVV0s55U61iGGyefAzVt2R7bx7N6-zDUC3T5Avj9Vitw2TH0Q82GPsWvXZ6zPbd03uCrr98vlpd1Jdfz9er5WVtWianumGGENtChzlvwRjRScqdAM6twH3TMdtY4zTuKcPFZI61klJGiOyg701HT9B61u2j3qi75G91elBRe_XoiGlQulRoRqugBe0kdp1ooDGy0wJzjMERhgUDI4rWh1nrLsUf29Kw2sRtCqV8RRrBMQMhoFD1TA26iPrg4pS0KU3bpMcyf-eLe9nKVpSRCn4oLyijhEJb-NMX-HJ6e-vNiwkOC9jL8GkvoNuWf7S5XNkPN1Me9Dbnv_UPwffUyYybFHNO1injJ73bmFKWHxVgtVtOtVtO9bScf3L8Dnr-yn_gH2f8xode3_v_078A0r_vGQ |
CitedBy_id | crossref_primary_10_1016_j_physa_2023_129116 crossref_primary_10_32604_cmes_2023_029509 crossref_primary_10_3390_e26050388 crossref_primary_10_1109_ACCESS_2025_3525952 crossref_primary_10_3233_IDT_240231 crossref_primary_10_1080_19427867_2021_1913304 crossref_primary_10_1155_2022_2286147 crossref_primary_10_3390_smartcities5020038 crossref_primary_10_1109_TITS_2022_3182410 crossref_primary_10_3390_su142114196 crossref_primary_10_2174_0123520965266074231005053838 crossref_primary_10_1016_j_eswa_2024_123446 crossref_primary_10_3390_ijgi14020061 crossref_primary_10_1007_s41062_021_00718_3 crossref_primary_10_1109_ACCESS_2023_3270395 crossref_primary_10_3390_app15020523 crossref_primary_10_37569_DalatUniversity_11_4_879_2021 crossref_primary_10_1051_e3sconf_202450101023 crossref_primary_10_32604_cmc_2023_042675 crossref_primary_10_1016_j_tre_2024_103933 crossref_primary_10_32628_CSEIT217469 crossref_primary_10_1016_j_engappai_2024_108147 crossref_primary_10_3390_sym16050537 crossref_primary_10_1007_s11042_022_13802_2 crossref_primary_10_1016_j_eswa_2024_126108 crossref_primary_10_1080_15568318_2022_2076633 crossref_primary_10_1007_s11518_023_5572_x crossref_primary_10_3390_app14177823 crossref_primary_10_37394_232015_2024_20_94 crossref_primary_10_37199_f40002710 crossref_primary_10_1038_s41598_023_45524_2 crossref_primary_10_3390_su14148809 crossref_primary_10_3103_S0146411624700603 crossref_primary_10_3390_s24227225 crossref_primary_10_1007_s44196_022_00177_3 crossref_primary_10_3390_su16188032 crossref_primary_10_3390_a17090398 crossref_primary_10_1016_j_eswa_2025_127200 crossref_primary_10_1061_JTEPBS_TEENG_7209 crossref_primary_10_3390_app14010412 crossref_primary_10_1016_j_treng_2021_100083 crossref_primary_10_1155_2024_9981657 crossref_primary_10_54097_hset_v70i_12176 crossref_primary_10_1038_s41598_024_81271_8 crossref_primary_10_1016_j_eswa_2023_122449 crossref_primary_10_1155_2022_2265000 crossref_primary_10_3390_drones7020078 crossref_primary_10_3390_app12031337 crossref_primary_10_3390_smartcities8010025 crossref_primary_10_1016_j_trpro_2024_12_158 crossref_primary_10_1016_j_isci_2024_111306 crossref_primary_10_3390_electronics13081555 crossref_primary_10_32604_cmc_2022_027925 crossref_primary_10_3390_drones7060372 crossref_primary_10_4108_ew_4613 crossref_primary_10_1016_j_eswa_2023_123020 crossref_primary_10_1080_10095020_2023_2261768 crossref_primary_10_1111_mice_13131 crossref_primary_10_4236_jtts_2023_131004 crossref_primary_10_1016_j_eij_2024_100582 crossref_primary_10_53608_estudambilisim_1574504 crossref_primary_10_1016_j_engappai_2023_106615 crossref_primary_10_1109_TVCG_2022_3209462 crossref_primary_10_1155_atr_9941856 crossref_primary_10_3390_ijgi13110407 crossref_primary_10_1061_JTEPBS_0000687 crossref_primary_10_1016_j_ssci_2022_105949 crossref_primary_10_2139_ssrn_4642197 crossref_primary_10_1155_2022_1710746 crossref_primary_10_3390_app12189156 crossref_primary_10_3390_app13116850 crossref_primary_10_1002_cpe_7563 crossref_primary_10_1016_j_jum_2025_02_004 crossref_primary_10_1080_13658816_2024_2408293 crossref_primary_10_1109_TITS_2023_3327100 crossref_primary_10_1016_j_phycom_2024_102420 crossref_primary_10_1155_2024_5225558 crossref_primary_10_1007_s44212_025_00067_x crossref_primary_10_3390_app13095512 crossref_primary_10_1007_s00477_024_02837_6 crossref_primary_10_1080_03081060_2024_2367751 crossref_primary_10_1109_TSUSC_2023_3271220 crossref_primary_10_1155_2023_6643412 crossref_primary_10_5897_JPHE2023_1461 crossref_primary_10_2478_ttj_2022_0024 crossref_primary_10_1016_j_trc_2022_103921 crossref_primary_10_1080_21680566_2022_2164529 crossref_primary_10_1007_s11227_024_06186_7 crossref_primary_10_1016_j_bdr_2021_100289 crossref_primary_10_1016_j_cities_2023_104512 crossref_primary_10_1155_2021_9936299 crossref_primary_10_3390_app13063380 crossref_primary_10_1155_2023_2941035 crossref_primary_10_3390_su142416907 crossref_primary_10_37391_ijeer_100454 crossref_primary_10_1109_TITS_2024_3391053 crossref_primary_10_3390_make7010013 crossref_primary_10_1007_s11036_023_02241_4 |
Cites_doi | 10.3390/sym10090386 10.3390/sym9050070 10.1109/tits.2018.2854913 10.1016/j.cie.2019.03.020 10.1016/S0968-090X(99)00026-1 10.1109/TITS.2006.869623 10.1177/1687814018781482 10.1016/j.eswa.2012.05.087 10.1016/j.scitotenv.2019.136134 10.1177/0361198118795010 10.1142/7547 10.1007/s11036-020-01679-0 10.1080/15472450802262281 10.1155/2019/2915369 10.1016/j.trc.2009.12.005 10.3390/s17040818 10.1109/CAC.2017.8243253 10.1016/j.future.2019.10.020 10.1109/ACCESS.2018.2875239 10.1016/j.asej.2019.10.006 10.1016/j.trc.2018.05.008 10.1177/1550147719847440 10.1007/978-3-540-25929-9_70 10.1111/mice.12014 10.1016/j.trc.2019.01.027 10.32890/jict2018.17.3.5 10.1109/ACCESS.2019.2959125 10.1016/j.trc.2014.02.007 10.1109/IVS.2015.7225828 10.1371/journal.pone.0121825 10.1007/978-3-319-28397-5_23 10.1007/978-3-642-22418-8_14 10.1109/TVCG.2019.2922597 10.1109/TITS.2015.2491365 10.1016/j.trc.2020.102807 10.1177/1550147718769784 10.1016/j.trc.2014.02.013 10.1016/j.sbspro.2013.11.170 10.3233/JIFS-169376 10.15676/ijeei.2019.11.1.1 10.1080/23249935.2019.1637966 10.1080/18756891.2011.9727860 10.3390/sym11060730 10.1007/978-3-319-28397-5_18 10.3390/s19102229 10.1007/s11042-016-3474-3 10.4028/www.scientific.net/AMR 10.1016/j.aap.2019.105371 10.1016/j.proeng.2017.04.398 10.3141/2165-08 10.1016/j.neucom.2016.06.044 10.1371/journal.pone.0119044 10.1016/j.trc.2012.08.005 10.1016/j.physa.2019.01.139 10.1016/j.aap.2017.11.038 10.1007/978-3-319-97598-6_13 10.1007/s13369-018-3390-0 10.1177/0361198120911052 10.1109/TITS.2018.2835523 10.1016/j.proeng.2014.07.030 10.1109/ACCESS.2018.2873569 10.1016/j.trc.2019.10.001 10.1016/j.trc.2019.04.023 10.1007/978-3-030-22744-9_24 10.3141/2595-12 10.1002/atr.1392 10.1016/j.trc.2020.01.010 10.1016/j.future.2015.11.013 10.1063/1.5090755 10.1016/j.eswa.2015.02.011 10.1016/j.trc.2014.01.006 10.1260/2046-0430.4.3.337 10.3846/16484142.2013.818057 10.1007/s00500-016-2288-6 10.3390/e21070709 10.1080/21680566.2015.1060582 10.1016/j.trpro.2016.05.368 10.1109/MDM.2019.00-45 10.1080/15472450.2018.1502667 10.1016/j.sbspro.2014.07.259 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Mahmuda Akhtar and Sara Moridpour. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Mahmuda Akhtar and Sara Moridpour. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2021 Mahmuda Akhtar and Sara Moridpour. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Mahmuda Akhtar and Sara Moridpour. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RHU RHW RHX AAYXX CITATION N95 3V. 7ST 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ C1K CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ KR7 L.- L6V M0C M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U SOI DOA |
DOI | 10.1155/2021/8878011 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Gale Business: Insights ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM global Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2042-3195 |
Editor | Bazant, Michael |
Editor_xml | – sequence: 1 givenname: Michael surname: Bazant fullname: Bazant, Michael |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_161af90fb8414c9ba807001f250851c8 A696839587 A683532316 10_1155_2021_8878011 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: RMIT University – fundername: Australian Government Research Training Program (RTP) |
GroupedDBID | -~X ..I 05W 0R~ 1OC 29J 3SF 4.4 52U 5GY 7WY 8-1 8FL AAESR AAFWJ AAJEY AAONW ABDBF ABJCF ABUWG ACIWK ACNCT ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AFRAH AJXKR ALMA_UNASSIGNED_HOLDINGS ARAPS ATUGU AZVAB BAAKF BCNDV BDRZF BENPR BEZIV BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU DU5 DWQXO EBS ESX FRNLG G-S GODZA GROUPED_DOAJ HCIFZ HZ~ I-F IAO ICW IOF ITC LITHE M0C M7S MY~ N95 O9- OK1 P2P PIMPY PQBIZ PQBZA PTHSS RHU RHW RHX TN5 TUS WBKPD WH7 WIH XI7 24P AAYXX ACCMX ACUHS AEUYN CITATION H13 PHGZM PHGZT PMFND 3V. 7ST 7XB 8FD 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K FR3 K60 K6~ KR7 L.- L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U SOI PUEGO |
ID | FETCH-LOGICAL-c659t-45c22e61b07761cc8b937f8177e80d4b5e4ecfa0d350e4e5f569335229b1ddcb3 |
IEDL.DBID | DOA |
ISSN | 0197-6729 |
IngestDate | Wed Aug 27 01:21:36 EDT 2025 Sat Aug 23 12:24:09 EDT 2025 Fri Jun 13 00:05:38 EDT 2025 Fri Jun 13 00:05:37 EDT 2025 Tue Jun 10 21:02:27 EDT 2025 Tue Jun 10 21:02:01 EDT 2025 Fri May 23 02:36:29 EDT 2025 Fri May 23 02:36:25 EDT 2025 Tue Jul 01 00:34:11 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Sun Jun 02 19:17:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c659t-45c22e61b07761cc8b937f8177e80d4b5e4ecfa0d350e4e5f569335229b1ddcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4696-8917 0000-0001-9113-7739 |
OpenAccessLink | https://doaj.org/article/161af90fb8414c9ba807001f250851c8 |
PQID | 2487051881 |
PQPubID | 1006382 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_161af90fb8414c9ba807001f250851c8 proquest_journals_2487051881 gale_infotracgeneralonefile_A696839587 gale_infotracgeneralonefile_A683532316 gale_infotracacademiconefile_A696839587 gale_infotracacademiconefile_A683532316 gale_businessinsightsgauss_A696839587 gale_businessinsightsgauss_A683532316 crossref_citationtrail_10_1155_2021_8878011 crossref_primary_10_1155_2021_8878011 hindawi_primary_10_1155_2021_8878011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of advanced transportation |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 88 89 D. Li (14) 2004 90 93 94 95 Y. Liu (73) 97 10 11 12 13 L. Lin (92) 16 17 18 19 2 3 4 6 7 A. Daissaoui (38) T. Zhang (83) 8 9 T. Ito (60) P. Jiang (26) 20 21 22 24 25 Z. Zhene (86) 28 29 30 31 32 33 34 35 36 37 39 L. Zhu (49) H. Wang (42) 2011 40 41 43 45 46 47 48 J. Zhao (44) 50 51 52 53 54 55 56 57 58 59 P. Mishra (23) R. More (63) 61 62 64 65 66 68 69 Z. Shi (1) 2011 C. Yuan-Yuan (79) Q. Yang (5) Y. Yang (15) 2012; 9 L. Jiwan (27) 70 71 72 74 75 76 77 78 Y.-m. Xing (91) T. Alghamdi (67) 80 81 82 84 85 S. J. Kwon (96) 2011 87 |
References_xml | – ident: 74 doi: 10.3390/sym10090386 – ident: 78 doi: 10.3390/sym9050070 – ident: 76 doi: 10.1109/tits.2018.2854913 – ident: 8 doi: 10.1016/j.cie.2019.03.020 – ident: 40 doi: 10.1016/S0968-090X(99)00026-1 – ident: 53 doi: 10.1109/TITS.2006.869623 – ident: 35 doi: 10.1177/1687814018781482 – ident: 36 doi: 10.1016/j.eswa.2012.05.087 – ident: 66 doi: 10.1016/j.scitotenv.2019.136134 – ident: 18 doi: 10.1177/0361198118795010 – volume-title: Advanced Artificial Intelligence year: 2011 ident: 1 doi: 10.1142/7547 – ident: 90 doi: 10.1007/s11036-020-01679-0 – ident: 44 article-title: Research on prediction of traffic congestion state – ident: 41 doi: 10.1080/15472450802262281 – ident: 92 article-title: Interval prediction of short-term traffic volume based on extreme learning machine and particle swarm optimization – start-page: 1305 ident: 86 article-title: Deep convolutional mesh RNN for urban traffic passenger flows prediction – ident: 31 doi: 10.1155/2019/2915369 – ident: 52 doi: 10.1016/j.trc.2009.12.005 – ident: 80 doi: 10.3390/s17040818 – ident: 72 doi: 10.1109/CAC.2017.8243253 – start-page: 4392 ident: 49 article-title: Early identification of recurrent congestion in heterogeneous urban traffic – start-page: 249 ident: 38 article-title: First specifications of urban traffic-congestion forecasting models – ident: 75 doi: 10.1016/j.future.2019.10.020 – ident: 94 doi: 10.1109/ACCESS.2018.2875239 – ident: 25 doi: 10.1016/j.asej.2019.10.006 – start-page: 361 ident: 73 article-title: Prediction of road traffic congestion based on random forest – ident: 22 doi: 10.1016/j.trc.2018.05.008 – ident: 45 doi: 10.1177/1550147719847440 – start-page: 573 volume-title: Rough Sets and Current Trends in Computing year: 2004 ident: 14 article-title: Towards missing data imputation: a study of fuzzy K-means Clustering method doi: 10.1007/978-3-540-25929-9_70 – ident: 43 doi: 10.1111/mice.12014 – ident: 97 doi: 10.1016/j.trc.2019.01.027 – ident: 11 doi: 10.32890/jict2018.17.3.5 – ident: 16 doi: 10.1109/ACCESS.2019.2959125 – start-page: 1099 ident: 26 article-title: Congestion prediction of urban traffic employing SRBDP – ident: 46 doi: 10.1016/j.trc.2014.02.007 – ident: 47 doi: 10.1109/IVS.2015.7225828 – ident: 9 doi: 10.1371/journal.pone.0121825 – ident: 19 doi: 10.1007/978-3-319-28397-5_23 – volume-title: Traffic Accidents Prediction Model Based on Fuzzy Logic year: 2011 ident: 42 doi: 10.1007/978-3-642-22418-8_14 – ident: 69 doi: 10.1109/TVCG.2019.2922597 – ident: 37 doi: 10.1109/TITS.2015.2491365 – ident: 57 doi: 10.1016/j.trc.2020.102807 – ident: 21 doi: 10.1177/1550147718769784 – start-page: 782 ident: 23 article-title: Adaptive model for traffic congestion prediction – ident: 30 doi: 10.1016/j.trc.2014.02.013 – ident: 61 doi: 10.1016/j.sbspro.2013.11.170 – ident: 77 doi: 10.3233/JIFS-169376 – start-page: 81 ident: 27 article-title: A prediction model of traffic congestion using weather data – start-page: 1227 ident: 67 article-title: Forecasting traffic congestion using arima modeling – ident: 32 doi: 10.15676/ijeei.2019.11.1.1 – ident: 6 doi: 10.1080/23249935.2019.1637966 – ident: 51 doi: 10.1080/18756891.2011.9727860 – ident: 20 doi: 10.3390/sym11060730 – ident: 89 doi: 10.1007/978-3-319-28397-5_18 – start-page: 533 ident: 91 article-title: A short-term traffic flow prediction method based on kernel extreme learning machine – ident: 93 doi: 10.3390/s19102229 – ident: 24 doi: 10.1007/s11042-016-3474-3 – ident: 71 doi: 10.4028/www.scientific.net/AMR – ident: 87 doi: 10.1016/j.aap.2019.105371 – ident: 33 doi: 10.1016/j.proeng.2017.04.398 – ident: 50 doi: 10.3141/2165-08 – ident: 48 doi: 10.1016/j.neucom.2016.06.044 – ident: 85 doi: 10.1371/journal.pone.0119044 – ident: 29 doi: 10.1016/j.trc.2012.08.005 – ident: 17 doi: 10.1016/j.physa.2019.01.139 – ident: 64 doi: 10.1016/j.aap.2017.11.038 – ident: 7 doi: 10.1007/978-3-319-97598-6_13 – ident: 88 doi: 10.1007/s13369-018-3390-0 – ident: 81 doi: 10.1177/0361198120911052 – ident: 68 doi: 10.1109/TITS.2018.2835523 – start-page: 18 ident: 5 article-title: Urban traffic congestion prediction using floating car trajectory data – ident: 2 doi: 10.1016/j.proeng.2014.07.030 – ident: 13 doi: 10.1109/ACCESS.2018.2873569 – ident: 10 doi: 10.1016/j.trc.2019.10.001 – ident: 56 doi: 10.1016/j.trc.2019.04.023 – ident: 60 article-title: Predicting traffic congestion using driver behavior – ident: 83 article-title: Short-term traffic Congestion forecasting using attention-based long short-term memory recurrent neural network doi: 10.1007/978-3-030-22744-9_24 – ident: 34 doi: 10.3141/2595-12 – ident: 55 doi: 10.1002/atr.1392 – ident: 82 doi: 10.1016/j.trc.2020.01.010 – ident: 4 doi: 10.1016/j.future.2015.11.013 – volume: 9 start-page: 2441 issue: 9 year: 2012 ident: 15 article-title: Fuzzy c-means clustering and opposition-based reinforcement learning for traffic congestion identification publication-title: Journal of Information & Computational Science – ident: 3 doi: 10.1063/1.5090755 – ident: 39 doi: 10.1016/j.eswa.2015.02.011 – ident: 65 doi: 10.1016/j.trc.2014.01.006 – ident: 58 doi: 10.1260/2046-0430.4.3.337 – ident: 62 doi: 10.3846/16484142.2013.818057 – start-page: 132 ident: 79 article-title: Long short-term memory model for traffic congestion prediction with online open data – ident: 54 doi: 10.1007/s00500-016-2288-6 – ident: 12 doi: 10.3390/e21070709 – start-page: 52 ident: 63 article-title: Road traffic prediction and congestion control using artificial neural networks – ident: 70 doi: 10.1080/21680566.2015.1060582 – ident: 28 doi: 10.1016/j.trpro.2016.05.368 – ident: 84 doi: 10.1109/MDM.2019.00-45 – ident: 95 doi: 10.1080/15472450.2018.1502667 – volume-title: Artificial Neural Networks year: 2011 ident: 96 – ident: 59 doi: 10.1016/j.sbspro.2014.07.259 |
SSID | ssj0039594 |
Score | 2.5651145 |
SecondaryResourceType | review_article |
Snippet | In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the... |
SourceID | doaj proquest gale crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Analysis Artificial intelligence Big data Cable television broadcasting industry Clustering Computational linguistics Data collection Data mining Datasets Deep learning Energy consumption Fuzzy sets Language processing Learning algorithms Machine learning Natural language interfaces Predictions Principal components analysis Traffic Traffic congestion Traffic control Traffic flow Transportation |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZYJCT2gHgs2vJSDiwcVhFxYzv2sSCgIO1qDyD1ZtmOzSKhFpEi_j4zjlsoD5VL5FTTqfrZnpnPTj4Tsg8ZPRRGmjwY4KpM-iq3pvJ5YWrgI9ILEdc7_vwV_Wt2OeCDJJLUvN_Ch2yH9JwewVyAWAo05xsMMCTl_cEk4JaKq1bCW1W5gGJx8nz7m-_OZJ4o0D8Nw0v_kQA_3b4LyDHLnK2SlVQeZr22P9fIgh-uk--vRAM3yHkvaxf0s1HIINWgBkR2MhriRhGAnP17wL2X2IzPA0RnrU5EdvFKgPMHuT47vTrp5-k4hNwJrsY5467b9YJaVOChzkkLpUWQtKq8LGpmuWfeAeR1yQto8sCFwjequsrSuna23CSLw9HQ_ySZoTV13igflGQlwMOqWioGnoFu0DJ0yO8JVNolrXA8suJOR87AuUZgdQK2Q35Nre9bjYxP7I4R9akNKlvHD6C3dZooGipQE1QRrGSUOWWNLHBrPECpBsWhk_Bj2Gc6ndEJlwZXMZob89g0uiegoiyhZhXz7BRYKi6rDjmMdjif4S86k15LAKBQGWvG4zzLF58HM5Y3rYL4Ry7nGL543E9DdA7CO5Pxq1MsanQXOGmBunt062tetsky3rYLTTtkcfzw6Heh9BrbvTjxngE6hSKz priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBZpQqE9lCZtyTZp8SFpDsXEWkuydCqbkFehIZQEchOSLG0LYZ2uN_TvZ0aWd7P0sRdj7GGMR57RNyP5G0L2YEYPhZEmDwZyVSZ9lVtT-bwwNeQj0gsR6x3fLsX5Dft6y29Twa1N2yr7mBgDdd04rJEfDgFZF8geRr_c_8qxaxSurqYWGs_IBoRgCcnXxtHJ5dX3PhaXiquO3VtVuQAc2W995xyzfnoILgYhmi5NSpG7fx6hn__A3Pj3zz9idZyATl-TVwk5ZqNuqDfJmp9skZdP-ATfkLNR1tX6syZkMAshPUR23ExwDQnsn11NcVkmnsatAlFZRyGRXTzh5nxLbk5Pro_P89QpIXeCq1nOuBsOvaAWyXmoc9IC6giSVpWXRc0s98w7GI265AWc8sCFwp-thsrSuna2fEfWJ83Eb5PM0Jo6b5QPSrISzMOqWioGmiEToWUYkM-9qbRLNOLYzeJOx3SCc42G1cmwA7I_l77v6DP-IXeEVp_LIOl1vNBMxzr5kAZwaoIqgpWMMqeskQWumgdAcYAbnYSH4Zjp1L4TDi0WONqxeWhbPRIANkuAs2KVnAJJxWU1IAdRDl0dXtGZ9McCGApJs5Y0rpJc6Py0JDnuyMX_pnKF4ELjXvpEV1h4t_9-dQpTrV441fv_394hL1BZV3vaJeuz6YP_AGhsZj8ml3sEAJcuXw priority: 102 providerName: ProQuest |
Title | A Review of Traffic Congestion Prediction Using Artificial Intelligence |
URI | https://dx.doi.org/10.1155/2021/8878011 https://www.proquest.com/docview/2487051881 https://doaj.org/article/161af90fb8414c9ba807001f250851c8 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBdbx2A7lH2yrF3wodsOw9SKJVk6pqVpNlgpZYXchCRLbaEko07Zv7_3JCVN2IYvuxhjfjzbT0_vQx8_EXIAET1URpoyGKhVmfRNaU3jy8q0UI9IL0Qc7_h-JqaX7NuMzzaO-sI1YYkeOCnuEDISE1QVrGSUOWWNrHCqNEDohmTBxW2-EPNWxVTywbXiKrF6q6YUkD-ulrxzjtU-PYSuBa6ZbgWjyNm_9sxPr7Em_nXzh4-OgWfyguzmjLEYpy99SR75-SvyfINH8DU5HRdpjL9YhAKiD9JCFMeLOc4dgd6L8zucjom3cYlAFJaoI4qvG5ycb8jl5OTH8bTMJySUTnC1LBl3o5EX1CIpD3VOWsg2gqRN42XVMss98w5aoa15Bbc8cKFwk9VIWdq2ztZvyc58MffvSGFoS503ygclWQ3qYU0rFQPJUIHQOgzIl5WqtMv04XiKxa2OZQTnGhWrs2IH5OMa_TPRZvwDd4RaX2OQ7Do-ABPQ2QR0nwnAy7DNdD62Ey4dDmx0V-a-6_RYQJJZQxor-nAKkIrLZkA-Rxx2cfhFZ_JOBVAUkmVtSexDPsj8tIW8SqTifxPZA3yQeJBNtEfD-yv71dk9dXoEZWqFVHz0_f9ogD3yDF-ZRqb2yc7y7t5_gFxtaYfksZycDsmTo5Oz84th7KRwvZjOfgP-Bjfp |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEQIOiKcIFNhDCwe06nrX3rUPCIVCmtCHOLRSb67Xa4dKVbZkU1X8KX4jM15v0ohHTr1Eq2Q0Scaet_0NIZvg0V2ihY6dhlyVCVvEpS5snOgK8hFh89zXOw4O8-Ex-3rCT9bIr-4uDB6r7GyiN9RVbbBGvp1CZJ0gehj9ePEjxqlR2F3tRmi022LP_ryClK35MPoM67uVpoMvRzvDOEwViE3O5Sxm3KSpzWmJQDbUGFGCh3aCFoUVScVKbpk18MurjCfwyB3PJV5MSmVJq8qUGfC9RW6zLJOoUWKw21n-THLZYonLIs4hau0O2nOONQa6DQoNDoEuuUA_KWDuD-58x0z86uwPz-Dd3eAheRDi1KjfbqxHZM1OHpP719ALn5DdftR2FqLaReDzEIwi2qkn2LGC1Y6-TbEJ5B_9wQTPrAWsiEbXkECfkuMbkeAzsj6pJ_Y5iTStqLFaWicFy0A8rKiEZMAZ8h6auR5534lKmQBajrMzzpVPXjhXKFgVBNsjW3Pqixas4x90n1DqcxqE2PZv1NOxChqrIBTWTiauFIwyI0stEuzRO4gZIUo1Ar4M10yFYaHw0mA5pRnry6ZR_RxC2wyC53wVnQRKyUXRI-88HRoW-ItGh_sRICiE6FriuIpywfPtEuW4hTL_G8sVhAuOm2GLrpDwRrd_VTCKjVqo8Iv_f_yG3B0eHeyr_dHh3ktyDxm3Va8Nsj6bXtpXEAfOytde-SJyetPa_hs1bmm7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxA8ID5FYUAeNnhAUePETuwHhLqPsjKoKsSkvXmOY5dJUzOaThP_Gn8dd4nTruKjT3uJouR0Uc4-35f9O0K2waK7SAsdOg2xKhM2C3Od2TDSBcQjwqZpne_4MkoPj9mnE36yQX61Z2FwW2W7JtYLdVEazJH3YvCsI0QPoz3nt0WM9wcfLn6E2EEKK61tO41mihzZn1cQvlXvh_sw1jtxPDj4tncY-g4DoUm5nIeMmzi2Kc0R1IYaI3Kw1k7QLLMiKljOLbMG_qJIeAS33PFU4iGlWOa0KEyeAN9bZDODqCjqkM3dg9H4a2sHEsllgywuszAFH7bdds85ZhxoD9QbzANdMYh134CFdbj9HePyq7M_7ERt_AYPyH3vtQb9Zpo9JBt2-ojcu4Zl-Jh87AdNnSEoXQAWEKEpgr1yivUrGPtgPMOSUH1bb1OomTXwFcHwGi7oE3J8IzJ8SjrTcmqfkUDTghqrpXVSsATEw7JCSAacIQqiieuSd62olPEQ5thJ41zVoQznCgWrvGC7ZGdBfdFAd_yDbhelvqBBwO36QTmbKK-_Chxj7WTkcsEoMzLXIsKKvQMPEnxWI-BjOGbKtw6FS4XJlWqiL6tK9VNwdBNwpdN1dBIoJRdZl7yt6XCZgV802p-WAEEhYNcKx3WUS55vVignDbD531iuIVxy3PZTdI2Et9r5q_wSWamlQj___-vX5A5ouvo8HB29IHeRb5MC2yKd-ezSvgSncJ6_8toXkNObVvjffyJvTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Traffic+Congestion+Prediction+Using+Artificial+Intelligence&rft.jtitle=Journal+of+advanced+transportation&rft.au=Akhtar%2C+Mahmuda&rft.au=Moridpour%2C+Sara&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0197-6729&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8878011&rft.externalDBID=N95&rft.externalDocID=A683532316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon |