A Review of Traffic Congestion Prediction Using Artificial Intelligence

In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced transportation Vol. 2021; pp. 1 - 18
Main Authors Akhtar, Mahmuda, Moridpour, Sara
Format Journal Article
LanguageEnglish
Published London Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research area has expanded extensively. Traffic congestion prediction, especially short-term traffic congestion prediction is made by evaluating different traffic parameters. Most of the researches focus on historical data in forecasting traffic congestion. However, a few articles made real-time traffic congestion prediction. This paper systematically summarises the existing research conducted by applying the various methodologies of AI, notably different machine learning models. The paper accumulates the models under respective branches of AI, and the strength and weaknesses of the models are summarised.
AbstractList In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research area has expanded extensively. Traffic congestion prediction, especially short-term traffic congestion prediction is made by evaluating different traffic parameters. Most of the researches focus on historical data in forecasting traffic congestion. However, a few articles made real-time traffic congestion prediction. This paper systematically summarises the existing research conducted by applying the various methodologies of AI, notably different machine learning models. The paper accumulates the models under respective branches of AI, and the strength and weaknesses of the models are summarised.
Audience Academic
Author Akhtar, Mahmuda
Moridpour, Sara
Author_xml – sequence: 1
  givenname: Mahmuda
  orcidid: 0000-0003-4696-8917
  surname: Akhtar
  fullname: Akhtar, Mahmuda
  organization: Department of Civil and Infrastructure EngineeringRMIT UniversityMelbourneVIC 3000Australiarmit.edu.au
– sequence: 2
  givenname: Sara
  orcidid: 0000-0001-9113-7739
  surname: Moridpour
  fullname: Moridpour, Sara
  organization: Department of Civil and Infrastructure EngineeringRMIT UniversityMelbourneVIC 3000Australiarmit.edu.au
BookMark eNqNkt9rHCEQx6Wk0Evat_4BC31sN3F0XfXxONrkINBSkmdxXd14bDTVvYb89_WySXuFtByCDsNnvvPDOUZHIQaL0HvApwCMnRFM4EwILjDAK7QguCE1BcmO0AKD5HXLiXyDjnPeYEwlk80CnS-r7_ant_dVdNVV0s55U61iGGyefAzVt2R7bx7N6-zDUC3T5Avj9Vitw2TH0Q82GPsWvXZ6zPbd03uCrr98vlpd1Jdfz9er5WVtWianumGGENtChzlvwRjRScqdAM6twH3TMdtY4zTuKcPFZI61klJGiOyg701HT9B61u2j3qi75G91elBRe_XoiGlQulRoRqugBe0kdp1ooDGy0wJzjMERhgUDI4rWh1nrLsUf29Kw2sRtCqV8RRrBMQMhoFD1TA26iPrg4pS0KU3bpMcyf-eLe9nKVpSRCn4oLyijhEJb-NMX-HJ6e-vNiwkOC9jL8GkvoNuWf7S5XNkPN1Me9Dbnv_UPwffUyYybFHNO1injJ73bmFKWHxVgtVtOtVtO9bScf3L8Dnr-yn_gH2f8xode3_v_078A0r_vGQ
CitedBy_id crossref_primary_10_1016_j_physa_2023_129116
crossref_primary_10_32604_cmes_2023_029509
crossref_primary_10_3390_e26050388
crossref_primary_10_1109_ACCESS_2025_3525952
crossref_primary_10_3233_IDT_240231
crossref_primary_10_1080_19427867_2021_1913304
crossref_primary_10_1155_2022_2286147
crossref_primary_10_3390_smartcities5020038
crossref_primary_10_1109_TITS_2022_3182410
crossref_primary_10_3390_su142114196
crossref_primary_10_2174_0123520965266074231005053838
crossref_primary_10_1016_j_eswa_2024_123446
crossref_primary_10_3390_ijgi14020061
crossref_primary_10_1007_s41062_021_00718_3
crossref_primary_10_1109_ACCESS_2023_3270395
crossref_primary_10_3390_app15020523
crossref_primary_10_37569_DalatUniversity_11_4_879_2021
crossref_primary_10_1051_e3sconf_202450101023
crossref_primary_10_32604_cmc_2023_042675
crossref_primary_10_1016_j_tre_2024_103933
crossref_primary_10_32628_CSEIT217469
crossref_primary_10_1016_j_engappai_2024_108147
crossref_primary_10_3390_sym16050537
crossref_primary_10_1007_s11042_022_13802_2
crossref_primary_10_1016_j_eswa_2024_126108
crossref_primary_10_1080_15568318_2022_2076633
crossref_primary_10_1007_s11518_023_5572_x
crossref_primary_10_3390_app14177823
crossref_primary_10_37394_232015_2024_20_94
crossref_primary_10_37199_f40002710
crossref_primary_10_1038_s41598_023_45524_2
crossref_primary_10_3390_su14148809
crossref_primary_10_3103_S0146411624700603
crossref_primary_10_3390_s24227225
crossref_primary_10_1007_s44196_022_00177_3
crossref_primary_10_3390_su16188032
crossref_primary_10_3390_a17090398
crossref_primary_10_1016_j_eswa_2025_127200
crossref_primary_10_1061_JTEPBS_TEENG_7209
crossref_primary_10_3390_app14010412
crossref_primary_10_1016_j_treng_2021_100083
crossref_primary_10_1155_2024_9981657
crossref_primary_10_54097_hset_v70i_12176
crossref_primary_10_1038_s41598_024_81271_8
crossref_primary_10_1016_j_eswa_2023_122449
crossref_primary_10_1155_2022_2265000
crossref_primary_10_3390_drones7020078
crossref_primary_10_3390_app12031337
crossref_primary_10_3390_smartcities8010025
crossref_primary_10_1016_j_trpro_2024_12_158
crossref_primary_10_1016_j_isci_2024_111306
crossref_primary_10_3390_electronics13081555
crossref_primary_10_32604_cmc_2022_027925
crossref_primary_10_3390_drones7060372
crossref_primary_10_4108_ew_4613
crossref_primary_10_1016_j_eswa_2023_123020
crossref_primary_10_1080_10095020_2023_2261768
crossref_primary_10_1111_mice_13131
crossref_primary_10_4236_jtts_2023_131004
crossref_primary_10_1016_j_eij_2024_100582
crossref_primary_10_53608_estudambilisim_1574504
crossref_primary_10_1016_j_engappai_2023_106615
crossref_primary_10_1109_TVCG_2022_3209462
crossref_primary_10_1155_atr_9941856
crossref_primary_10_3390_ijgi13110407
crossref_primary_10_1061_JTEPBS_0000687
crossref_primary_10_1016_j_ssci_2022_105949
crossref_primary_10_2139_ssrn_4642197
crossref_primary_10_1155_2022_1710746
crossref_primary_10_3390_app12189156
crossref_primary_10_3390_app13116850
crossref_primary_10_1002_cpe_7563
crossref_primary_10_1016_j_jum_2025_02_004
crossref_primary_10_1080_13658816_2024_2408293
crossref_primary_10_1109_TITS_2023_3327100
crossref_primary_10_1016_j_phycom_2024_102420
crossref_primary_10_1155_2024_5225558
crossref_primary_10_1007_s44212_025_00067_x
crossref_primary_10_3390_app13095512
crossref_primary_10_1007_s00477_024_02837_6
crossref_primary_10_1080_03081060_2024_2367751
crossref_primary_10_1109_TSUSC_2023_3271220
crossref_primary_10_1155_2023_6643412
crossref_primary_10_5897_JPHE2023_1461
crossref_primary_10_2478_ttj_2022_0024
crossref_primary_10_1016_j_trc_2022_103921
crossref_primary_10_1080_21680566_2022_2164529
crossref_primary_10_1007_s11227_024_06186_7
crossref_primary_10_1016_j_bdr_2021_100289
crossref_primary_10_1016_j_cities_2023_104512
crossref_primary_10_1155_2021_9936299
crossref_primary_10_3390_app13063380
crossref_primary_10_1155_2023_2941035
crossref_primary_10_3390_su142416907
crossref_primary_10_37391_ijeer_100454
crossref_primary_10_1109_TITS_2024_3391053
crossref_primary_10_3390_make7010013
crossref_primary_10_1007_s11036_023_02241_4
Cites_doi 10.3390/sym10090386
10.3390/sym9050070
10.1109/tits.2018.2854913
10.1016/j.cie.2019.03.020
10.1016/S0968-090X(99)00026-1
10.1109/TITS.2006.869623
10.1177/1687814018781482
10.1016/j.eswa.2012.05.087
10.1016/j.scitotenv.2019.136134
10.1177/0361198118795010
10.1142/7547
10.1007/s11036-020-01679-0
10.1080/15472450802262281
10.1155/2019/2915369
10.1016/j.trc.2009.12.005
10.3390/s17040818
10.1109/CAC.2017.8243253
10.1016/j.future.2019.10.020
10.1109/ACCESS.2018.2875239
10.1016/j.asej.2019.10.006
10.1016/j.trc.2018.05.008
10.1177/1550147719847440
10.1007/978-3-540-25929-9_70
10.1111/mice.12014
10.1016/j.trc.2019.01.027
10.32890/jict2018.17.3.5
10.1109/ACCESS.2019.2959125
10.1016/j.trc.2014.02.007
10.1109/IVS.2015.7225828
10.1371/journal.pone.0121825
10.1007/978-3-319-28397-5_23
10.1007/978-3-642-22418-8_14
10.1109/TVCG.2019.2922597
10.1109/TITS.2015.2491365
10.1016/j.trc.2020.102807
10.1177/1550147718769784
10.1016/j.trc.2014.02.013
10.1016/j.sbspro.2013.11.170
10.3233/JIFS-169376
10.15676/ijeei.2019.11.1.1
10.1080/23249935.2019.1637966
10.1080/18756891.2011.9727860
10.3390/sym11060730
10.1007/978-3-319-28397-5_18
10.3390/s19102229
10.1007/s11042-016-3474-3
10.4028/www.scientific.net/AMR
10.1016/j.aap.2019.105371
10.1016/j.proeng.2017.04.398
10.3141/2165-08
10.1016/j.neucom.2016.06.044
10.1371/journal.pone.0119044
10.1016/j.trc.2012.08.005
10.1016/j.physa.2019.01.139
10.1016/j.aap.2017.11.038
10.1007/978-3-319-97598-6_13
10.1007/s13369-018-3390-0
10.1177/0361198120911052
10.1109/TITS.2018.2835523
10.1016/j.proeng.2014.07.030
10.1109/ACCESS.2018.2873569
10.1016/j.trc.2019.10.001
10.1016/j.trc.2019.04.023
10.1007/978-3-030-22744-9_24
10.3141/2595-12
10.1002/atr.1392
10.1016/j.trc.2020.01.010
10.1016/j.future.2015.11.013
10.1063/1.5090755
10.1016/j.eswa.2015.02.011
10.1016/j.trc.2014.01.006
10.1260/2046-0430.4.3.337
10.3846/16484142.2013.818057
10.1007/s00500-016-2288-6
10.3390/e21070709
10.1080/21680566.2015.1060582
10.1016/j.trpro.2016.05.368
10.1109/MDM.2019.00-45
10.1080/15472450.2018.1502667
10.1016/j.sbspro.2014.07.259
ContentType Journal Article
Copyright Copyright © 2021 Mahmuda Akhtar and Sara Moridpour.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Mahmuda Akhtar and Sara Moridpour. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2021 Mahmuda Akhtar and Sara Moridpour.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Mahmuda Akhtar and Sara Moridpour. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
N95
3V.
7ST
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
HCIFZ
K60
K6~
KR7
L.-
L6V
M0C
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
SOI
DOA
DOI 10.1155/2021/8878011
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM global
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2042-3195
Editor Bazant, Michael
Editor_xml – sequence: 1
  givenname: Michael
  surname: Bazant
  fullname: Bazant, Michael
EndPage 18
ExternalDocumentID oai_doaj_org_article_161af90fb8414c9ba807001f250851c8
A696839587
A683532316
10_1155_2021_8878011
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: RMIT University
– fundername: Australian Government Research Training Program (RTP)
GroupedDBID -~X
..I
05W
0R~
1OC
29J
3SF
4.4
52U
5GY
7WY
8-1
8FL
AAESR
AAFWJ
AAJEY
AAONW
ABDBF
ABJCF
ABUWG
ACIWK
ACNCT
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AFRAH
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATUGU
AZVAB
BAAKF
BCNDV
BDRZF
BENPR
BEZIV
BGLVJ
BHBCM
BNHUX
BOGZA
BRXPI
CCPQU
DU5
DWQXO
EBS
ESX
FRNLG
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
I-F
IAO
ICW
IOF
ITC
LITHE
M0C
M7S
MY~
N95
O9-
OK1
P2P
PIMPY
PQBIZ
PQBZA
PTHSS
RHU
RHW
RHX
TN5
TUS
WBKPD
WH7
WIH
XI7
24P
AAYXX
ACCMX
ACUHS
AEUYN
CITATION
H13
PHGZM
PHGZT
PMFND
3V.
7ST
7XB
8FD
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
FR3
K60
K6~
KR7
L.-
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
SOI
PUEGO
ID FETCH-LOGICAL-c659t-45c22e61b07761cc8b937f8177e80d4b5e4ecfa0d350e4e5f569335229b1ddcb3
IEDL.DBID DOA
ISSN 0197-6729
IngestDate Wed Aug 27 01:21:36 EDT 2025
Sat Aug 23 12:24:09 EDT 2025
Fri Jun 13 00:05:38 EDT 2025
Fri Jun 13 00:05:37 EDT 2025
Tue Jun 10 21:02:27 EDT 2025
Tue Jun 10 21:02:01 EDT 2025
Fri May 23 02:36:29 EDT 2025
Fri May 23 02:36:25 EDT 2025
Tue Jul 01 00:34:11 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Sun Jun 02 19:17:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-45c22e61b07761cc8b937f8177e80d4b5e4ecfa0d350e4e5f569335229b1ddcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4696-8917
0000-0001-9113-7739
OpenAccessLink https://doaj.org/article/161af90fb8414c9ba807001f250851c8
PQID 2487051881
PQPubID 1006382
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_161af90fb8414c9ba807001f250851c8
proquest_journals_2487051881
gale_infotracgeneralonefile_A696839587
gale_infotracgeneralonefile_A683532316
gale_infotracacademiconefile_A696839587
gale_infotracacademiconefile_A683532316
gale_businessinsightsgauss_A696839587
gale_businessinsightsgauss_A683532316
crossref_citationtrail_10_1155_2021_8878011
crossref_primary_10_1155_2021_8878011
hindawi_primary_10_1155_2021_8878011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of advanced transportation
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 88
89
D. Li (14) 2004
90
93
94
95
Y. Liu (73)
97
10
11
12
13
L. Lin (92)
16
17
18
19
2
3
4
6
7
A. Daissaoui (38)
T. Zhang (83)
8
9
T. Ito (60)
P. Jiang (26)
20
21
22
24
25
Z. Zhene (86)
28
29
30
31
32
33
34
35
36
37
39
L. Zhu (49)
H. Wang (42) 2011
40
41
43
45
46
47
48
J. Zhao (44)
50
51
52
53
54
55
56
57
58
59
P. Mishra (23)
R. More (63)
61
62
64
65
66
68
69
Z. Shi (1) 2011
C. Yuan-Yuan (79)
Q. Yang (5)
Y. Yang (15) 2012; 9
L. Jiwan (27)
70
71
72
74
75
76
77
78
Y.-m. Xing (91)
T. Alghamdi (67)
80
81
82
84
85
S. J. Kwon (96) 2011
87
References_xml – ident: 74
  doi: 10.3390/sym10090386
– ident: 78
  doi: 10.3390/sym9050070
– ident: 76
  doi: 10.1109/tits.2018.2854913
– ident: 8
  doi: 10.1016/j.cie.2019.03.020
– ident: 40
  doi: 10.1016/S0968-090X(99)00026-1
– ident: 53
  doi: 10.1109/TITS.2006.869623
– ident: 35
  doi: 10.1177/1687814018781482
– ident: 36
  doi: 10.1016/j.eswa.2012.05.087
– ident: 66
  doi: 10.1016/j.scitotenv.2019.136134
– ident: 18
  doi: 10.1177/0361198118795010
– volume-title: Advanced Artificial Intelligence
  year: 2011
  ident: 1
  doi: 10.1142/7547
– ident: 90
  doi: 10.1007/s11036-020-01679-0
– ident: 44
  article-title: Research on prediction of traffic congestion state
– ident: 41
  doi: 10.1080/15472450802262281
– ident: 92
  article-title: Interval prediction of short-term traffic volume based on extreme learning machine and particle swarm optimization
– start-page: 1305
  ident: 86
  article-title: Deep convolutional mesh RNN for urban traffic passenger flows prediction
– ident: 31
  doi: 10.1155/2019/2915369
– ident: 52
  doi: 10.1016/j.trc.2009.12.005
– ident: 80
  doi: 10.3390/s17040818
– ident: 72
  doi: 10.1109/CAC.2017.8243253
– start-page: 4392
  ident: 49
  article-title: Early identification of recurrent congestion in heterogeneous urban traffic
– start-page: 249
  ident: 38
  article-title: First specifications of urban traffic-congestion forecasting models
– ident: 75
  doi: 10.1016/j.future.2019.10.020
– ident: 94
  doi: 10.1109/ACCESS.2018.2875239
– ident: 25
  doi: 10.1016/j.asej.2019.10.006
– start-page: 361
  ident: 73
  article-title: Prediction of road traffic congestion based on random forest
– ident: 22
  doi: 10.1016/j.trc.2018.05.008
– ident: 45
  doi: 10.1177/1550147719847440
– start-page: 573
  volume-title: Rough Sets and Current Trends in Computing
  year: 2004
  ident: 14
  article-title: Towards missing data imputation: a study of fuzzy K-means Clustering method
  doi: 10.1007/978-3-540-25929-9_70
– ident: 43
  doi: 10.1111/mice.12014
– ident: 97
  doi: 10.1016/j.trc.2019.01.027
– ident: 11
  doi: 10.32890/jict2018.17.3.5
– ident: 16
  doi: 10.1109/ACCESS.2019.2959125
– start-page: 1099
  ident: 26
  article-title: Congestion prediction of urban traffic employing SRBDP
– ident: 46
  doi: 10.1016/j.trc.2014.02.007
– ident: 47
  doi: 10.1109/IVS.2015.7225828
– ident: 9
  doi: 10.1371/journal.pone.0121825
– ident: 19
  doi: 10.1007/978-3-319-28397-5_23
– volume-title: Traffic Accidents Prediction Model Based on Fuzzy Logic
  year: 2011
  ident: 42
  doi: 10.1007/978-3-642-22418-8_14
– ident: 69
  doi: 10.1109/TVCG.2019.2922597
– ident: 37
  doi: 10.1109/TITS.2015.2491365
– ident: 57
  doi: 10.1016/j.trc.2020.102807
– ident: 21
  doi: 10.1177/1550147718769784
– start-page: 782
  ident: 23
  article-title: Adaptive model for traffic congestion prediction
– ident: 30
  doi: 10.1016/j.trc.2014.02.013
– ident: 61
  doi: 10.1016/j.sbspro.2013.11.170
– ident: 77
  doi: 10.3233/JIFS-169376
– start-page: 81
  ident: 27
  article-title: A prediction model of traffic congestion using weather data
– start-page: 1227
  ident: 67
  article-title: Forecasting traffic congestion using arima modeling
– ident: 32
  doi: 10.15676/ijeei.2019.11.1.1
– ident: 6
  doi: 10.1080/23249935.2019.1637966
– ident: 51
  doi: 10.1080/18756891.2011.9727860
– ident: 20
  doi: 10.3390/sym11060730
– ident: 89
  doi: 10.1007/978-3-319-28397-5_18
– start-page: 533
  ident: 91
  article-title: A short-term traffic flow prediction method based on kernel extreme learning machine
– ident: 93
  doi: 10.3390/s19102229
– ident: 24
  doi: 10.1007/s11042-016-3474-3
– ident: 71
  doi: 10.4028/www.scientific.net/AMR
– ident: 87
  doi: 10.1016/j.aap.2019.105371
– ident: 33
  doi: 10.1016/j.proeng.2017.04.398
– ident: 50
  doi: 10.3141/2165-08
– ident: 48
  doi: 10.1016/j.neucom.2016.06.044
– ident: 85
  doi: 10.1371/journal.pone.0119044
– ident: 29
  doi: 10.1016/j.trc.2012.08.005
– ident: 17
  doi: 10.1016/j.physa.2019.01.139
– ident: 64
  doi: 10.1016/j.aap.2017.11.038
– ident: 7
  doi: 10.1007/978-3-319-97598-6_13
– ident: 88
  doi: 10.1007/s13369-018-3390-0
– ident: 81
  doi: 10.1177/0361198120911052
– ident: 68
  doi: 10.1109/TITS.2018.2835523
– start-page: 18
  ident: 5
  article-title: Urban traffic congestion prediction using floating car trajectory data
– ident: 2
  doi: 10.1016/j.proeng.2014.07.030
– ident: 13
  doi: 10.1109/ACCESS.2018.2873569
– ident: 10
  doi: 10.1016/j.trc.2019.10.001
– ident: 56
  doi: 10.1016/j.trc.2019.04.023
– ident: 60
  article-title: Predicting traffic congestion using driver behavior
– ident: 83
  article-title: Short-term traffic Congestion forecasting using attention-based long short-term memory recurrent neural network
  doi: 10.1007/978-3-030-22744-9_24
– ident: 34
  doi: 10.3141/2595-12
– ident: 55
  doi: 10.1002/atr.1392
– ident: 82
  doi: 10.1016/j.trc.2020.01.010
– ident: 4
  doi: 10.1016/j.future.2015.11.013
– volume: 9
  start-page: 2441
  issue: 9
  year: 2012
  ident: 15
  article-title: Fuzzy c-means clustering and opposition-based reinforcement learning for traffic congestion identification
  publication-title: Journal of Information & Computational Science
– ident: 3
  doi: 10.1063/1.5090755
– ident: 39
  doi: 10.1016/j.eswa.2015.02.011
– ident: 65
  doi: 10.1016/j.trc.2014.01.006
– ident: 58
  doi: 10.1260/2046-0430.4.3.337
– ident: 62
  doi: 10.3846/16484142.2013.818057
– start-page: 132
  ident: 79
  article-title: Long short-term memory model for traffic congestion prediction with online open data
– ident: 54
  doi: 10.1007/s00500-016-2288-6
– ident: 12
  doi: 10.3390/e21070709
– start-page: 52
  ident: 63
  article-title: Road traffic prediction and congestion control using artificial neural networks
– ident: 70
  doi: 10.1080/21680566.2015.1060582
– ident: 28
  doi: 10.1016/j.trpro.2016.05.368
– ident: 84
  doi: 10.1109/MDM.2019.00-45
– ident: 95
  doi: 10.1080/15472450.2018.1502667
– volume-title: Artificial Neural Networks
  year: 2011
  ident: 96
– ident: 59
  doi: 10.1016/j.sbspro.2014.07.259
SSID ssj0039594
Score 2.5651145
SecondaryResourceType review_article
Snippet In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Artificial intelligence
Big data
Cable television broadcasting industry
Clustering
Computational linguistics
Data collection
Data mining
Datasets
Deep learning
Energy consumption
Fuzzy sets
Language processing
Learning algorithms
Machine learning
Natural language interfaces
Predictions
Principal components analysis
Traffic
Traffic congestion
Traffic control
Traffic flow
Transportation
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZYJCT2gHgs2vJSDiwcVhFxYzv2sSCgIO1qDyD1ZtmOzSKhFpEi_j4zjlsoD5VL5FTTqfrZnpnPTj4Tsg8ZPRRGmjwY4KpM-iq3pvJ5YWrgI9ILEdc7_vwV_Wt2OeCDJJLUvN_Ch2yH9JwewVyAWAo05xsMMCTl_cEk4JaKq1bCW1W5gGJx8nz7m-_OZJ4o0D8Nw0v_kQA_3b4LyDHLnK2SlVQeZr22P9fIgh-uk--vRAM3yHkvaxf0s1HIINWgBkR2MhriRhGAnP17wL2X2IzPA0RnrU5EdvFKgPMHuT47vTrp5-k4hNwJrsY5467b9YJaVOChzkkLpUWQtKq8LGpmuWfeAeR1yQto8sCFwjequsrSuna23CSLw9HQ_ySZoTV13igflGQlwMOqWioGnoFu0DJ0yO8JVNolrXA8suJOR87AuUZgdQK2Q35Nre9bjYxP7I4R9akNKlvHD6C3dZooGipQE1QRrGSUOWWNLHBrPECpBsWhk_Bj2Gc6ndEJlwZXMZob89g0uiegoiyhZhXz7BRYKi6rDjmMdjif4S86k15LAKBQGWvG4zzLF58HM5Y3rYL4Ry7nGL543E9DdA7CO5Pxq1MsanQXOGmBunt062tetsky3rYLTTtkcfzw6Heh9BrbvTjxngE6hSKz
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBZpQqE9lCZtyTZp8SFpDsXEWkuydCqbkFehIZQEchOSLG0LYZ2uN_TvZ0aWd7P0sRdj7GGMR57RNyP5G0L2YEYPhZEmDwZyVSZ9lVtT-bwwNeQj0gsR6x3fLsX5Dft6y29Twa1N2yr7mBgDdd04rJEfDgFZF8geRr_c_8qxaxSurqYWGs_IBoRgCcnXxtHJ5dX3PhaXiquO3VtVuQAc2W995xyzfnoILgYhmi5NSpG7fx6hn__A3Pj3zz9idZyATl-TVwk5ZqNuqDfJmp9skZdP-ATfkLNR1tX6syZkMAshPUR23ExwDQnsn11NcVkmnsatAlFZRyGRXTzh5nxLbk5Pro_P89QpIXeCq1nOuBsOvaAWyXmoc9IC6giSVpWXRc0s98w7GI265AWc8sCFwp-thsrSuna2fEfWJ83Eb5PM0Jo6b5QPSrISzMOqWioGmiEToWUYkM-9qbRLNOLYzeJOx3SCc42G1cmwA7I_l77v6DP-IXeEVp_LIOl1vNBMxzr5kAZwaoIqgpWMMqeskQWumgdAcYAbnYSH4Zjp1L4TDi0WONqxeWhbPRIANkuAs2KVnAJJxWU1IAdRDl0dXtGZ9McCGApJs5Y0rpJc6Py0JDnuyMX_pnKF4ELjXvpEV1h4t_9-dQpTrV441fv_394hL1BZV3vaJeuz6YP_AGhsZj8ml3sEAJcuXw
  priority: 102
  providerName: ProQuest
Title A Review of Traffic Congestion Prediction Using Artificial Intelligence
URI https://dx.doi.org/10.1155/2021/8878011
https://www.proquest.com/docview/2487051881
https://doaj.org/article/161af90fb8414c9ba807001f250851c8
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBdbx2A7lH2yrF3wodsOw9SKJVk6pqVpNlgpZYXchCRLbaEko07Zv7_3JCVN2IYvuxhjfjzbT0_vQx8_EXIAET1URpoyGKhVmfRNaU3jy8q0UI9IL0Qc7_h-JqaX7NuMzzaO-sI1YYkeOCnuEDISE1QVrGSUOWWNrHCqNEDohmTBxW2-EPNWxVTywbXiKrF6q6YUkD-ulrxzjtU-PYSuBa6ZbgWjyNm_9sxPr7Em_nXzh4-OgWfyguzmjLEYpy99SR75-SvyfINH8DU5HRdpjL9YhAKiD9JCFMeLOc4dgd6L8zucjom3cYlAFJaoI4qvG5ycb8jl5OTH8bTMJySUTnC1LBl3o5EX1CIpD3VOWsg2gqRN42XVMss98w5aoa15Bbc8cKFwk9VIWdq2ztZvyc58MffvSGFoS503ygclWQ3qYU0rFQPJUIHQOgzIl5WqtMv04XiKxa2OZQTnGhWrs2IH5OMa_TPRZvwDd4RaX2OQ7Do-ABPQ2QR0nwnAy7DNdD62Ey4dDmx0V-a-6_RYQJJZQxor-nAKkIrLZkA-Rxx2cfhFZ_JOBVAUkmVtSexDPsj8tIW8SqTifxPZA3yQeJBNtEfD-yv71dk9dXoEZWqFVHz0_f9ogD3yDF-ZRqb2yc7y7t5_gFxtaYfksZycDsmTo5Oz84th7KRwvZjOfgP-Bjfp
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEQIOiKcIFNhDCwe06nrX3rUPCIVCmtCHOLRSb67Xa4dKVbZkU1X8KX4jM15v0ohHTr1Eq2Q0Scaet_0NIZvg0V2ihY6dhlyVCVvEpS5snOgK8hFh89zXOw4O8-Ex-3rCT9bIr-4uDB6r7GyiN9RVbbBGvp1CZJ0gehj9ePEjxqlR2F3tRmi022LP_ryClK35MPoM67uVpoMvRzvDOEwViE3O5Sxm3KSpzWmJQDbUGFGCh3aCFoUVScVKbpk18MurjCfwyB3PJV5MSmVJq8qUGfC9RW6zLJOoUWKw21n-THLZYonLIs4hau0O2nOONQa6DQoNDoEuuUA_KWDuD-58x0z86uwPz-Dd3eAheRDi1KjfbqxHZM1OHpP719ALn5DdftR2FqLaReDzEIwi2qkn2LGC1Y6-TbEJ5B_9wQTPrAWsiEbXkECfkuMbkeAzsj6pJ_Y5iTStqLFaWicFy0A8rKiEZMAZ8h6auR5534lKmQBajrMzzpVPXjhXKFgVBNsjW3Pqixas4x90n1DqcxqE2PZv1NOxChqrIBTWTiauFIwyI0stEuzRO4gZIUo1Ar4M10yFYaHw0mA5pRnry6ZR_RxC2wyC53wVnQRKyUXRI-88HRoW-ItGh_sRICiE6FriuIpywfPtEuW4hTL_G8sVhAuOm2GLrpDwRrd_VTCKjVqo8Iv_f_yG3B0eHeyr_dHh3ktyDxm3Va8Nsj6bXtpXEAfOytde-SJyetPa_hs1bmm7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxA8ID5FYUAeNnhAUePETuwHhLqPsjKoKsSkvXmOY5dJUzOaThP_Gn8dd4nTruKjT3uJouR0Uc4-35f9O0K2waK7SAsdOg2xKhM2C3Od2TDSBcQjwqZpne_4MkoPj9mnE36yQX61Z2FwW2W7JtYLdVEazJH3YvCsI0QPoz3nt0WM9wcfLn6E2EEKK61tO41mihzZn1cQvlXvh_sw1jtxPDj4tncY-g4DoUm5nIeMmzi2Kc0R1IYaI3Kw1k7QLLMiKljOLbMG_qJIeAS33PFU4iGlWOa0KEyeAN9bZDODqCjqkM3dg9H4a2sHEsllgywuszAFH7bdds85ZhxoD9QbzANdMYh134CFdbj9HePyq7M_7ERt_AYPyH3vtQb9Zpo9JBt2-ojcu4Zl-Jh87AdNnSEoXQAWEKEpgr1yivUrGPtgPMOSUH1bb1OomTXwFcHwGi7oE3J8IzJ8SjrTcmqfkUDTghqrpXVSsATEw7JCSAacIQqiieuSd62olPEQ5thJ41zVoQznCgWrvGC7ZGdBfdFAd_yDbhelvqBBwO36QTmbKK-_Chxj7WTkcsEoMzLXIsKKvQMPEnxWI-BjOGbKtw6FS4XJlWqiL6tK9VNwdBNwpdN1dBIoJRdZl7yt6XCZgV802p-WAEEhYNcKx3WUS55vVignDbD531iuIVxy3PZTdI2Et9r5q_wSWamlQj___-vX5A5ouvo8HB29IHeRb5MC2yKd-ezSvgSncJ6_8toXkNObVvjffyJvTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Traffic+Congestion+Prediction+Using+Artificial+Intelligence&rft.jtitle=Journal+of+advanced+transportation&rft.au=Akhtar%2C+Mahmuda&rft.au=Moridpour%2C+Sara&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0197-6729&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8878011&rft.externalDBID=N95&rft.externalDocID=A683532316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon