Fueling type III secretion
•The proton motive force (pmf) energizes the rate-limiting step of type III secretion.•The type III secretion system (T3SS) can change the efficiency of pmf utilization to modulate protein export speed.•The ATPase likely renders secreted protein export competent by unfolding them. Type III secretion...
Saved in:
Published in | Trends in microbiology (Regular ed.) Vol. 23; no. 5; pp. 296 - 300 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The proton motive force (pmf) energizes the rate-limiting step of type III secretion.•The type III secretion system (T3SS) can change the efficiency of pmf utilization to modulate protein export speed.•The ATPase likely renders secreted protein export competent by unfolding them.
Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic. |
---|---|
AbstractList | Type III secretion systems are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism, by which the proton motive force is converted to protein export, remains enigmatic. Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic.Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic. Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic. •The proton motive force (pmf) energizes the rate-limiting step of type III secretion.•The type III secretion system (T3SS) can change the efficiency of pmf utilization to modulate protein export speed.•The ATPase likely renders secreted protein export competent by unfolding them. Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic. Highlights • The proton motive force (pmf) energizes the rate-limiting step of type III secretion. • The type III secretion system (T3SS) can change the efficiency of pmf utilization to modulate protein export speed. • The ATPase likely renders secreted protein export competent by unfolding them. |
Author | Rietsch, Arne Lee, Pei-Chung |
AuthorAffiliation | 1 Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and 23 Human Development, National Institutes of Health, Bethesda, MD 20892 2 Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106-4960 |
AuthorAffiliation_xml | – name: 1 Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and 23 Human Development, National Institutes of Health, Bethesda, MD 20892 – name: 2 Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106-4960 |
Author_xml | – sequence: 1 givenname: Pei-Chung surname: Lee fullname: Lee, Pei-Chung organization: Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA – sequence: 2 givenname: Arne surname: Rietsch fullname: Rietsch, Arne email: arne.rietsch@case.edu organization: Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25701111$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1rFDEUDVKx2-oP0AfZR19mzc1MPgahIMXahYIPKvgWMsmdmnU2WZOZwv57M2wttmAbLuQh55x7cs89IUchBiTkNdAVUBDvN6vRb1eMAl9RKMWekQUoqaqmVvSILGgrRKUa9uOYnOS8oZRyzvgLcsy4pFDOgry5mHDw4Xo57ne4XK_Xy4w24ehjeEme92bI-Or2PiXfLz59O7-srr58Xp9_vKqs4O1YsU7UnWqcsB1yIxxDJ4WjnFlTW2Vr6YAL10sDvLOydqq4aqVUNfTG0F7Wp-TsoLubui06i2FMZtC75Lcm7XU0Xt9_Cf6nvo43umlA1qotAu9uBVL8PWEe9dZni8NgAsYpawYgWqBSsSehBchYK2QjCvTtv7bu_PydXQHAAWBTzDlhfwcBqud89EaXfPScj6ZQau4vH3CsH8087fIzPzzK_HBgYonixmPS2XoMFp1PaEfton-UffaAbUvq3prhF-4xb-KUQslYg85MU_113px5cYCXpWFCFYH2_wJPNP8D5rvQmw |
CitedBy_id | crossref_primary_10_1111_cbdd_13130 crossref_primary_10_3389_fmicb_2018_01468 crossref_primary_10_15252_embj_201797515 crossref_primary_10_3389_fmicb_2022_939406 crossref_primary_10_1016_j_resmic_2018_12_001 crossref_primary_10_3389_fcimb_2020_622202 crossref_primary_10_1098_rstb_2015_0020 crossref_primary_10_3390_ijms22115412 crossref_primary_10_1128_mBio_01911_16 crossref_primary_10_1128_MMBR_00008_20 crossref_primary_10_3390_microorganisms8121933 crossref_primary_10_1128_AEM_00537_16 crossref_primary_10_1371_journal_ppat_1005495 crossref_primary_10_1016_j_bbapap_2019_06_002 crossref_primary_10_1038_s41467_018_04288_4 crossref_primary_10_3389_fcimb_2016_00025 crossref_primary_10_1038_s41467_018_04137_4 crossref_primary_10_3390_biom10111528 crossref_primary_10_3389_fcimb_2016_00129 crossref_primary_10_1016_j_jmb_2020_10_024 crossref_primary_10_1128_ecosalplus_esp_0039_2018 crossref_primary_10_1128_Spectrum_01251_21 crossref_primary_10_7554_eLife_22140 crossref_primary_10_1016_j_ijmm_2018_03_005 crossref_primary_10_1186_s12934_021_01565_8 crossref_primary_10_1016_j_ijbiomac_2020_04_266 crossref_primary_10_1007_s00284_019_01667_y crossref_primary_10_1016_j_cell_2019_02_022 crossref_primary_10_1128_JB_00372_21 crossref_primary_10_1016_j_tibs_2015_09_005 crossref_primary_10_1093_nar_gkad492 crossref_primary_10_3390_microorganisms9020451 crossref_primary_10_1016_j_plrev_2021_05_007 crossref_primary_10_1002_pro_2917 crossref_primary_10_1016_j_tips_2016_05_011 crossref_primary_10_1074_jbc_RA119_009125 crossref_primary_10_3389_fcimb_2023_1255852 crossref_primary_10_3389_fcimb_2019_00337 crossref_primary_10_3390_ijms22073337 crossref_primary_10_1128_AAC_01690_20 crossref_primary_10_1111_jph_12671 crossref_primary_10_1038_s41467_022_30358_9 crossref_primary_10_1016_j_cell_2018_01_034 crossref_primary_10_1099_mic_0_001193 crossref_primary_10_3389_fmolb_2022_967974 |
Cites_doi | 10.1038/srep06528 10.1016/j.bpj.2009.10.030 10.7554/eLife.00792 10.1128/mBio.00115-12 10.1371/journal.pone.0022417 10.1146/annurev-micro-092412-155725 10.1038/nature03992 10.1038/srep03369 10.1016/j.tim.2006.02.009 10.1074/jbc.M114.578476 10.1016/j.bpj.2013.05.030 10.1128/JB.186.8.2402-2412.2004 10.1128/IAI.72.7.4004-4009.2004 10.1111/mmi.12430 10.1126/science.1201476 10.1038/nsmb.2722 10.1111/j.1365-2958.2008.06237.x 10.1046/j.1365-2443.1998.00219.x 10.1111/j.1365-2958.1994.tb02191.x 10.1038/nsmb.2452 10.1073/pnas.1402658111 10.1128/JB.01711-12 10.1038/nsmb0208-127 10.1128/JB.06735-11 10.1006/jmbi.1995.0282 10.1126/science.278.5340.1140 10.1038/nature06449 10.1128/JB.186.16.5486-5495.2004 10.1038/ncomms5976 10.1099/00221287-56-2-227 10.1073/pnas.1001383107 10.1016/S0966-842X(01)02100-X 10.1016/j.cell.2004.11.027 10.1006/jmbi.1995.0281 10.1016/S1369-5274(02)00002-4 10.1038/nsmb1196 10.1038/nature12682 10.1038/nature06497 10.1038/newbio237238a0 10.1038/ncomms1488 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. 2015 Published by Elsevier Ltd. 2015 |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: 2015 Published by Elsevier Ltd. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.tim.2015.01.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-4380 |
EndPage | 300 |
ExternalDocumentID | PMC4417389 25701111 10_1016_j_tim_2015_01_012 S0966842X15000268 1_s2_0_S0966842X15000268 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI107131 |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEJ HMG HMK HMO HVGLF HZ~ H~9 IHE J1W KOM LUGTX M29 M41 MO0 N9A O-L O9- OAUVE OD- OO. OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K WUQ XPP Y6R Z5R ZCA ZY4 ~G- AACTN ABTAH AFCTW AFKWA AJOXV AMFUW RCE RIG AAIAV ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c659t-2b63b84d6cbe5a6d2ed76d052ca3c8c37d156df7a15bc73d8096977831faa0f73 |
IEDL.DBID | .~1 |
ISSN | 0966-842X 1878-4380 |
IngestDate | Thu Aug 21 18:43:04 EDT 2025 Tue Aug 05 11:25:22 EDT 2025 Fri Jul 11 01:01:25 EDT 2025 Mon Jul 21 05:59:00 EDT 2025 Tue Jul 01 03:03:07 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 Thu Jun 13 11:13:40 EDT 2024 Sun Feb 23 10:19:30 EST 2025 Tue Aug 26 17:00:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | T3SS flagellum needle complex ATPase proton motive force |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c659t-2b63b84d6cbe5a6d2ed76d052ca3c8c37d156df7a15bc73d8096977831faa0f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4417389 |
PMID | 25701111 |
PQID | 1692296746 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4417389 proquest_miscellaneous_2116910782 proquest_miscellaneous_1692296746 pubmed_primary_25701111 crossref_primary_10_1016_j_tim_2015_01_012 crossref_citationtrail_10_1016_j_tim_2015_01_012 elsevier_sciencedirect_doi_10_1016_j_tim_2015_01_012 elsevier_clinicalkeyesjournals_1_s2_0_S0966842X15000268 elsevier_clinicalkey_doi_10_1016_j_tim_2015_01_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in microbiology (Regular ed.) |
PublicationTitleAlternate | Trends Microbiol |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Akeda, Galan (bib0210) 2005; 437 Kinoshita (bib0225) 2013; 90 Lloyd (bib0280) 2001; 9 Weibezahn (bib0300) 2004; 119 Mimori (bib0345) 1995; 249 Galan (bib0205) 2014; 68 Iino (bib0340) 1972; 237 Anderson, Schneewind (bib0380) 1997; 278 Demers (bib0400) 2014; 5 Lara-Tejero (bib0230) 2011; 331 Wilharm (bib0305) 2004; 72 Radics (bib0260) 2014; 21 Ibuki (bib0335) 2013; 195 Singer (bib0395) 2012; 3 Hara (bib0330) 2011; 6 Parsot (bib0285) 2003; 6 Galan (bib0360) 2008; 15 Bange (bib0220) 2010; 107 Abrusci (bib0235) 2013; 20 Bai (bib0215) 2014; 4 Kawamoto (bib0250) 2013; 3 Stern, Berg (bib0355) 2013; 105 Kudryashev (bib0320) 2013; 2 Turner (bib0365) 2012; 194 Sory, Cornelis (bib0385) 1994; 14 Rathinavelan (bib0275) 2010; 98 Lee (bib0310) 2014; 111 Morgan (bib0350) 1995; 249 Charpentier, Oswald (bib0390) 2004; 186 Desvaux (bib0245) 2006; 14 Mueller (bib0255) 2008; 68 Akeda, Galan (bib0315) 2004; 186 Minamino (bib0325) 2011; 2 Aizawa, Kubori (bib0375) 1998; 3 Paul (bib0270) 2008; 451 Zarivach (bib0295) 2007; 14 Iino (bib0370) 1969; 56 Evans (bib0240) 2013; 504 Allison (bib0290) 2014; 289 Minamino, Namba (bib0265) 2008; 451 Radics (10.1016/j.tim.2015.01.012_bib0260) 2014; 21 Akeda (10.1016/j.tim.2015.01.012_bib0315) 2004; 186 Bange (10.1016/j.tim.2015.01.012_bib0220) 2010; 107 Kinoshita (10.1016/j.tim.2015.01.012_bib0225) 2013; 90 Morgan (10.1016/j.tim.2015.01.012_bib0350) 1995; 249 Anderson (10.1016/j.tim.2015.01.012_bib0380) 1997; 278 Akeda (10.1016/j.tim.2015.01.012_bib0210) 2005; 437 Mueller (10.1016/j.tim.2015.01.012_bib0255) 2008; 68 Aizawa (10.1016/j.tim.2015.01.012_bib0375) 1998; 3 Wilharm (10.1016/j.tim.2015.01.012_bib0305) 2004; 72 Mimori (10.1016/j.tim.2015.01.012_bib0345) 1995; 249 Sory (10.1016/j.tim.2015.01.012_bib0385) 1994; 14 Abrusci (10.1016/j.tim.2015.01.012_bib0235) 2013; 20 Demers (10.1016/j.tim.2015.01.012_bib0400) 2014; 5 Rathinavelan (10.1016/j.tim.2015.01.012_bib0275) 2010; 98 Desvaux (10.1016/j.tim.2015.01.012_bib0245) 2006; 14 Evans (10.1016/j.tim.2015.01.012_bib0240) 2013; 504 Allison (10.1016/j.tim.2015.01.012_bib0290) 2014; 289 Charpentier (10.1016/j.tim.2015.01.012_bib0390) 2004; 186 Singer (10.1016/j.tim.2015.01.012_bib0395) 2012; 3 Galan (10.1016/j.tim.2015.01.012_bib0360) 2008; 15 Ibuki (10.1016/j.tim.2015.01.012_bib0335) 2013; 195 Iino (10.1016/j.tim.2015.01.012_bib0340) 1972; 237 Lara-Tejero (10.1016/j.tim.2015.01.012_bib0230) 2011; 331 Hara (10.1016/j.tim.2015.01.012_bib0330) 2011; 6 Galan (10.1016/j.tim.2015.01.012_bib0205) 2014; 68 Parsot (10.1016/j.tim.2015.01.012_bib0285) 2003; 6 Lloyd (10.1016/j.tim.2015.01.012_bib0280) 2001; 9 Bai (10.1016/j.tim.2015.01.012_bib0215) 2014; 4 Iino (10.1016/j.tim.2015.01.012_bib0370) 1969; 56 Lee (10.1016/j.tim.2015.01.012_bib0310) 2014; 111 Kudryashev (10.1016/j.tim.2015.01.012_bib0320) 2013; 2 Kawamoto (10.1016/j.tim.2015.01.012_bib0250) 2013; 3 Weibezahn (10.1016/j.tim.2015.01.012_bib0300) 2004; 119 Turner (10.1016/j.tim.2015.01.012_bib0365) 2012; 194 Paul (10.1016/j.tim.2015.01.012_bib0270) 2008; 451 Zarivach (10.1016/j.tim.2015.01.012_bib0295) 2007; 14 Minamino (10.1016/j.tim.2015.01.012_bib0325) 2011; 2 Stern (10.1016/j.tim.2015.01.012_bib0355) 2013; 105 Minamino (10.1016/j.tim.2015.01.012_bib0265) 2008; 451 7776378 - J Mol Biol. 1995 May 26;249(1):88-110 18250631 - Nat Struct Mol Biol. 2008 Feb;15(2):127-8 23823237 - Biophys J. 2013 Jul 2;105(1):182-4 4893344 - J Gen Microbiol. 1969 May;56(2):227-39 11514218 - Trends Microbiol. 2001 Aug;9(8):367-71 20534509 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11295-300 23222644 - Nat Struct Mol Biol. 2013 Jan;20(1):99-104 4556644 - Nat New Biol. 1972 Jun 21;237(77):238-40 7885236 - Mol Microbiol. 1994 Nov;14(3):583-94 21934659 - Nat Commun. 2011;2:475 24325251 - Mol Microbiol. 2013 Dec;90(6):1249-61 9353199 - Science. 1997 Nov 7;278(5340):1140-3 24778208 - Proc Natl Acad Sci U S A. 2014 May 13;111(19):E2027-36 12615213 - Curr Opin Microbiol. 2003 Feb;6(1):7-14 17237797 - Nat Struct Mol Biol. 2007 Feb;14(2):131-7 23908767 - Elife. 2013;2:e00792 7776377 - J Mol Biol. 1995 May 26;249(1):69-87 25284201 - Sci Rep. 2014;4:6528 21292939 - Science. 2011 Mar 4;331(6021):1188-91 24317488 - Nat Struct Mol Biol. 2014 Jan;21(1):82-7 15550247 - Cell. 2004 Nov 24;119(5):653-65 23161028 - J Bacteriol. 2013 Feb;195(3):466-73 15292151 - J Bacteriol. 2004 Aug;186(16):5486-95 22647788 - MBio. 2012;3(3). pii: e00115-12. doi: 10.1128/mBio.00115-12 16208377 - Nature. 2005 Oct 6;437(7060):911-5 20141759 - Biophys J. 2010 Feb 3;98(3):452-61 21811603 - PLoS One. 2011;6(7):e22417 24284544 - Sci Rep. 2013;3:3369 16533600 - Trends Microbiol. 2006 Apr;14(4):157-60 18216859 - Nature. 2008 Jan 24;451(7177):489-92 18216858 - Nature. 2008 Jan 24;451(7177):485-8 25035427 - J Biol Chem. 2014 Aug 22;289(34):23734-44 25264107 - Nat Commun. 2014;5:4976 22447900 - J Bacteriol. 2012 May;194(10):2437-42 15060043 - J Bacteriol. 2004 Apr;186(8):2402-12 24213633 - Nature. 2013 Dec 12;504(7479):287-90 18430138 - Mol Microbiol. 2008 Jun;68(5):1085-95 15213145 - Infect Immun. 2004 Jul;72(7):4004-9 9893020 - Genes Cells. 1998 Oct;3(10):625-34 25002086 - Annu Rev Microbiol. 2014;68:415-38 |
References_xml | – volume: 186 start-page: 5486 year: 2004 end-page: 5495 ident: bib0390 article-title: Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic publication-title: J. Bacteriol. – volume: 20 start-page: 99 year: 2013 end-page: 104 ident: bib0235 article-title: Architecture of the major component of the type III secretion system export apparatus publication-title: Nat. Struct. Mol. Biol. – volume: 451 start-page: 485 year: 2008 end-page: 488 ident: bib0265 article-title: Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export publication-title: Nature – volume: 107 start-page: 11295 year: 2010 end-page: 11300 ident: bib0220 article-title: FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 2 start-page: 475 year: 2011 ident: bib0325 article-title: An energy transduction mechanism used in bacterial flagellar type III protein export publication-title: Nat. Commun. – volume: 451 start-page: 489 year: 2008 end-page: 492 ident: bib0270 article-title: Energy source of flagellar type III secretion publication-title: Nature – volume: 3 start-page: 625 year: 1998 end-page: 634 ident: bib0375 article-title: Bacterial flagellation and cell division publication-title: Genes Cells – volume: 6 start-page: e22417 year: 2011 ident: bib0330 article-title: Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA publication-title: PLoS ONE – volume: 111 start-page: E2027 year: 2014 end-page: E2036 ident: bib0310 article-title: Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 437 start-page: 911 year: 2005 end-page: 915 ident: bib0210 article-title: Chaperone release and unfolding of substrates in type III secretion publication-title: Nature – volume: 504 start-page: 287 year: 2013 end-page: 290 ident: bib0240 article-title: A chain mechanism for flagellum growth publication-title: Nature – volume: 14 start-page: 157 year: 2006 end-page: 160 ident: bib0245 article-title: Type III secretion: what's in a name? publication-title: Trends Microbiol. – volume: 14 start-page: 131 year: 2007 end-page: 137 ident: bib0295 article-title: Structural analysis of a prototypical ATPase from the type III secretion system publication-title: Nat. Struct. Mol. Biol. – volume: 249 start-page: 69 year: 1995 end-page: 87 ident: bib0345 article-title: The structure of the R-type straight flagellar filament of publication-title: J. Mol. Biol. – volume: 237 start-page: 238 year: 1972 end-page: 240 ident: bib0340 article-title: Reconstruction of publication-title: Nat. New Biol. – volume: 9 start-page: 367 year: 2001 end-page: 371 ident: bib0280 article-title: Targeting exported substrates to the publication-title: Trends Microbiol. – volume: 6 start-page: 7 year: 2003 end-page: 14 ident: bib0285 article-title: The various and varying roles of specific chaperones in type III secretion systems publication-title: Curr. Opin. Microbiol. – volume: 186 start-page: 2402 year: 2004 end-page: 2412 ident: bib0315 article-title: Genetic analysis of the publication-title: J. Bacteriol. – volume: 3 start-page: 3369 year: 2013 ident: bib0250 article-title: Common and distinct structural features of publication-title: Sci. Rep. – volume: 2 start-page: e00792 year: 2013 ident: bib0320 article-title: structural analysis of the publication-title: eLife – volume: 278 start-page: 1140 year: 1997 end-page: 1143 ident: bib0380 article-title: A mRNA signal for the type III secretion of Yop proteins by publication-title: Science – volume: 119 start-page: 653 year: 2004 end-page: 665 ident: bib0300 article-title: Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB publication-title: Cell – volume: 68 start-page: 415 year: 2014 end-page: 438 ident: bib0205 article-title: Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells publication-title: Annu. Rev. Microbiol. – volume: 68 start-page: 1085 year: 2008 end-page: 1095 ident: bib0255 article-title: The type III secretion system tip complex and translocon publication-title: Mol. Microbiol. – volume: 105 start-page: 182 year: 2013 end-page: 184 ident: bib0355 article-title: Single-file diffusion of flagellin in flagellar filaments publication-title: Biophys. J. – volume: 5 start-page: 4976 year: 2014 ident: bib0400 article-title: High-resolution structure of the publication-title: Nat. Commun. – volume: 21 start-page: 82 year: 2014 end-page: 87 ident: bib0260 article-title: Structure of a pathogenic type 3 secretion system in action publication-title: Nat. Struct. Mol. Biol. – volume: 98 start-page: 452 year: 2010 end-page: 461 ident: bib0275 article-title: A repulsive electrostatic mechanism for protein export through the type III secretion apparatus publication-title: Biophys. J. – volume: 289 start-page: 23734 year: 2014 end-page: 23744 ident: bib0290 article-title: Identification of the docking site between a type III secretion system ATPase and a chaperone for effector cargo publication-title: J. Biol. Chem. – volume: 194 start-page: 2437 year: 2012 end-page: 2442 ident: bib0365 article-title: Growth of flagellar filaments of publication-title: J. Bacteriol. – volume: 3 start-page: e00115-12 year: 2012 ident: bib0395 article-title: Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system publication-title: MBio – volume: 72 start-page: 4004 year: 2004 end-page: 4009 ident: bib0305 article-title: type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB publication-title: Infect. Immun. – volume: 15 start-page: 127 year: 2008 end-page: 128 ident: bib0360 article-title: Energizing type III secretion machines: what is the fuel? publication-title: Nat. Struct. Mol. Biol. – volume: 56 start-page: 227 year: 1969 end-page: 239 ident: bib0370 article-title: Polarity of flagellar growth in publication-title: J. Gen. Microbiol. – volume: 4 start-page: 6528 year: 2014 ident: bib0215 article-title: Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus publication-title: Sci. Rep. – volume: 90 start-page: 1249 year: 2013 end-page: 1261 ident: bib0225 article-title: Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament publication-title: Mol. Microbiol. – volume: 195 start-page: 466 year: 2013 end-page: 473 ident: bib0335 article-title: Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus publication-title: J. Bacteriol. – volume: 249 start-page: 88 year: 1995 end-page: 110 ident: bib0350 article-title: Structure of bacterial flagellar filaments at 11 publication-title: J. Mol. Biol. – volume: 331 start-page: 1188 year: 2011 end-page: 1191 ident: bib0230 article-title: A sorting platform determines the order of protein secretion in bacterial type III systems publication-title: Science – volume: 14 start-page: 583 year: 1994 end-page: 594 ident: bib0385 article-title: Translocation of a hybrid YopE-adenylate cyclase from publication-title: Mol. Microbiol. – volume: 4 start-page: 6528 year: 2014 ident: 10.1016/j.tim.2015.01.012_bib0215 article-title: Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus publication-title: Sci. Rep. doi: 10.1038/srep06528 – volume: 98 start-page: 452 year: 2010 ident: 10.1016/j.tim.2015.01.012_bib0275 article-title: A repulsive electrostatic mechanism for protein export through the type III secretion apparatus publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.10.030 – volume: 2 start-page: e00792 year: 2013 ident: 10.1016/j.tim.2015.01.012_bib0320 article-title: In situ structural analysis of the Yersinia enterocolitica injectisome publication-title: eLife doi: 10.7554/eLife.00792 – volume: 3 start-page: e00115-12 year: 2012 ident: 10.1016/j.tim.2015.01.012_bib0395 article-title: Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system publication-title: MBio doi: 10.1128/mBio.00115-12 – volume: 6 start-page: e22417 year: 2011 ident: 10.1016/j.tim.2015.01.012_bib0330 article-title: Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA publication-title: PLoS ONE doi: 10.1371/journal.pone.0022417 – volume: 68 start-page: 415 year: 2014 ident: 10.1016/j.tim.2015.01.012_bib0205 article-title: Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-092412-155725 – volume: 437 start-page: 911 year: 2005 ident: 10.1016/j.tim.2015.01.012_bib0210 article-title: Chaperone release and unfolding of substrates in type III secretion publication-title: Nature doi: 10.1038/nature03992 – volume: 3 start-page: 3369 year: 2013 ident: 10.1016/j.tim.2015.01.012_bib0250 article-title: Common and distinct structural features of Salmonella injectisome and flagellar basal body publication-title: Sci. Rep. doi: 10.1038/srep03369 – volume: 14 start-page: 157 year: 2006 ident: 10.1016/j.tim.2015.01.012_bib0245 article-title: Type III secretion: what's in a name? publication-title: Trends Microbiol. doi: 10.1016/j.tim.2006.02.009 – volume: 289 start-page: 23734 year: 2014 ident: 10.1016/j.tim.2015.01.012_bib0290 article-title: Identification of the docking site between a type III secretion system ATPase and a chaperone for effector cargo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.578476 – volume: 105 start-page: 182 year: 2013 ident: 10.1016/j.tim.2015.01.012_bib0355 article-title: Single-file diffusion of flagellin in flagellar filaments publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.05.030 – volume: 186 start-page: 2402 year: 2004 ident: 10.1016/j.tim.2015.01.012_bib0315 article-title: Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains publication-title: J. Bacteriol. doi: 10.1128/JB.186.8.2402-2412.2004 – volume: 72 start-page: 4004 year: 2004 ident: 10.1016/j.tim.2015.01.012_bib0305 article-title: Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB publication-title: Infect. Immun. doi: 10.1128/IAI.72.7.4004-4009.2004 – volume: 90 start-page: 1249 year: 2013 ident: 10.1016/j.tim.2015.01.012_bib0225 article-title: Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament publication-title: Mol. Microbiol. doi: 10.1111/mmi.12430 – volume: 331 start-page: 1188 year: 2011 ident: 10.1016/j.tim.2015.01.012_bib0230 article-title: A sorting platform determines the order of protein secretion in bacterial type III systems publication-title: Science doi: 10.1126/science.1201476 – volume: 21 start-page: 82 year: 2014 ident: 10.1016/j.tim.2015.01.012_bib0260 article-title: Structure of a pathogenic type 3 secretion system in action publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2722 – volume: 68 start-page: 1085 year: 2008 ident: 10.1016/j.tim.2015.01.012_bib0255 article-title: The type III secretion system tip complex and translocon publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06237.x – volume: 3 start-page: 625 year: 1998 ident: 10.1016/j.tim.2015.01.012_bib0375 article-title: Bacterial flagellation and cell division publication-title: Genes Cells doi: 10.1046/j.1365-2443.1998.00219.x – volume: 14 start-page: 583 year: 1994 ident: 10.1016/j.tim.2015.01.012_bib0385 article-title: Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1994.tb02191.x – volume: 20 start-page: 99 year: 2013 ident: 10.1016/j.tim.2015.01.012_bib0235 article-title: Architecture of the major component of the type III secretion system export apparatus publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2452 – volume: 111 start-page: E2027 year: 2014 ident: 10.1016/j.tim.2015.01.012_bib0310 article-title: Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1402658111 – volume: 195 start-page: 466 year: 2013 ident: 10.1016/j.tim.2015.01.012_bib0335 article-title: Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus publication-title: J. Bacteriol. doi: 10.1128/JB.01711-12 – volume: 15 start-page: 127 year: 2008 ident: 10.1016/j.tim.2015.01.012_bib0360 article-title: Energizing type III secretion machines: what is the fuel? publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb0208-127 – volume: 194 start-page: 2437 year: 2012 ident: 10.1016/j.tim.2015.01.012_bib0365 article-title: Growth of flagellar filaments of Escherichia coli is independent of filament length publication-title: J. Bacteriol. doi: 10.1128/JB.06735-11 – volume: 249 start-page: 88 year: 1995 ident: 10.1016/j.tim.2015.01.012_bib0350 article-title: Structure of bacterial flagellar filaments at 11Å resolution: packing of the alpha-helices publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0282 – volume: 278 start-page: 1140 year: 1997 ident: 10.1016/j.tim.2015.01.012_bib0380 article-title: A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica publication-title: Science doi: 10.1126/science.278.5340.1140 – volume: 451 start-page: 485 year: 2008 ident: 10.1016/j.tim.2015.01.012_bib0265 article-title: Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export publication-title: Nature doi: 10.1038/nature06449 – volume: 186 start-page: 5486 year: 2004 ident: 10.1016/j.tim.2015.01.012_bib0390 article-title: Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter publication-title: J. Bacteriol. doi: 10.1128/JB.186.16.5486-5495.2004 – volume: 5 start-page: 4976 year: 2014 ident: 10.1016/j.tim.2015.01.012_bib0400 article-title: High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy publication-title: Nat. Commun. doi: 10.1038/ncomms5976 – volume: 56 start-page: 227 year: 1969 ident: 10.1016/j.tim.2015.01.012_bib0370 article-title: Polarity of flagellar growth in Salmonella publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-56-2-227 – volume: 107 start-page: 11295 year: 2010 ident: 10.1016/j.tim.2015.01.012_bib0220 article-title: FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1001383107 – volume: 9 start-page: 367 year: 2001 ident: 10.1016/j.tim.2015.01.012_bib0280 article-title: Targeting exported substrates to the Yersinia TTSS: different functions for different signals? publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(01)02100-X – volume: 119 start-page: 653 year: 2004 ident: 10.1016/j.tim.2015.01.012_bib0300 article-title: Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB publication-title: Cell doi: 10.1016/j.cell.2004.11.027 – volume: 249 start-page: 69 year: 1995 ident: 10.1016/j.tim.2015.01.012_bib0345 article-title: The structure of the R-type straight flagellar filament of Salmonella at 9Å resolution by electron cryomicroscopy publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0281 – volume: 6 start-page: 7 year: 2003 ident: 10.1016/j.tim.2015.01.012_bib0285 article-title: The various and varying roles of specific chaperones in type III secretion systems publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(02)00002-4 – volume: 14 start-page: 131 year: 2007 ident: 10.1016/j.tim.2015.01.012_bib0295 article-title: Structural analysis of a prototypical ATPase from the type III secretion system publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1196 – volume: 504 start-page: 287 year: 2013 ident: 10.1016/j.tim.2015.01.012_bib0240 article-title: A chain mechanism for flagellum growth publication-title: Nature doi: 10.1038/nature12682 – volume: 451 start-page: 489 year: 2008 ident: 10.1016/j.tim.2015.01.012_bib0270 article-title: Energy source of flagellar type III secretion publication-title: Nature doi: 10.1038/nature06497 – volume: 237 start-page: 238 year: 1972 ident: 10.1016/j.tim.2015.01.012_bib0340 article-title: Reconstruction of Salmonella flagella attached to cell bodies publication-title: Nat. New Biol. doi: 10.1038/newbio237238a0 – volume: 2 start-page: 475 year: 2011 ident: 10.1016/j.tim.2015.01.012_bib0325 article-title: An energy transduction mechanism used in bacterial flagellar type III protein export publication-title: Nat. Commun. doi: 10.1038/ncomms1488 – reference: 16208377 - Nature. 2005 Oct 6;437(7060):911-5 – reference: 25264107 - Nat Commun. 2014;5:4976 – reference: 21934659 - Nat Commun. 2011;2:475 – reference: 24325251 - Mol Microbiol. 2013 Dec;90(6):1249-61 – reference: 24284544 - Sci Rep. 2013;3:3369 – reference: 23161028 - J Bacteriol. 2013 Feb;195(3):466-73 – reference: 7776377 - J Mol Biol. 1995 May 26;249(1):69-87 – reference: 15550247 - Cell. 2004 Nov 24;119(5):653-65 – reference: 22647788 - MBio. 2012;3(3). pii: e00115-12. doi: 10.1128/mBio.00115-12 – reference: 9353199 - Science. 1997 Nov 7;278(5340):1140-3 – reference: 25002086 - Annu Rev Microbiol. 2014;68:415-38 – reference: 18216859 - Nature. 2008 Jan 24;451(7177):489-92 – reference: 12615213 - Curr Opin Microbiol. 2003 Feb;6(1):7-14 – reference: 20534509 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11295-300 – reference: 24778208 - Proc Natl Acad Sci U S A. 2014 May 13;111(19):E2027-36 – reference: 18216858 - Nature. 2008 Jan 24;451(7177):485-8 – reference: 7776378 - J Mol Biol. 1995 May 26;249(1):88-110 – reference: 25284201 - Sci Rep. 2014;4:6528 – reference: 24213633 - Nature. 2013 Dec 12;504(7479):287-90 – reference: 15213145 - Infect Immun. 2004 Jul;72(7):4004-9 – reference: 4556644 - Nat New Biol. 1972 Jun 21;237(77):238-40 – reference: 24317488 - Nat Struct Mol Biol. 2014 Jan;21(1):82-7 – reference: 16533600 - Trends Microbiol. 2006 Apr;14(4):157-60 – reference: 18430138 - Mol Microbiol. 2008 Jun;68(5):1085-95 – reference: 18250631 - Nat Struct Mol Biol. 2008 Feb;15(2):127-8 – reference: 23823237 - Biophys J. 2013 Jul 2;105(1):182-4 – reference: 17237797 - Nat Struct Mol Biol. 2007 Feb;14(2):131-7 – reference: 25035427 - J Biol Chem. 2014 Aug 22;289(34):23734-44 – reference: 11514218 - Trends Microbiol. 2001 Aug;9(8):367-71 – reference: 9893020 - Genes Cells. 1998 Oct;3(10):625-34 – reference: 21811603 - PLoS One. 2011;6(7):e22417 – reference: 23908767 - Elife. 2013;2:e00792 – reference: 22447900 - J Bacteriol. 2012 May;194(10):2437-42 – reference: 4893344 - J Gen Microbiol. 1969 May;56(2):227-39 – reference: 23222644 - Nat Struct Mol Biol. 2013 Jan;20(1):99-104 – reference: 7885236 - Mol Microbiol. 1994 Nov;14(3):583-94 – reference: 21292939 - Science. 2011 Mar 4;331(6021):1188-91 – reference: 15060043 - J Bacteriol. 2004 Apr;186(8):2402-12 – reference: 20141759 - Biophys J. 2010 Feb 3;98(3):452-61 – reference: 15292151 - J Bacteriol. 2004 Aug;186(16):5486-95 |
SSID | ssj0005525 |
Score | 2.3657548 |
SecondaryResourceType | review_article |
Snippet | •The proton motive force (pmf) energizes the rate-limiting step of type III secretion.•The type III secretion system (T3SS) can change the efficiency of pmf... Highlights • The proton motive force (pmf) energizes the rate-limiting step of type III secretion. • The type III secretion system (T3SS) can change the... Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They... Type III secretion systems are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 296 |
SubjectTerms | Adenosine Triphosphatases - metabolism ATPase Bacteria - metabolism Bacterial Proteins - chemistry Bacterial Proteins - metabolism Cell Membrane - metabolism cytoplasm Cytoplasm - metabolism exports Flagella - metabolism Flagella - physiology Flagella - ultrastructure flagellum Gram-negative bacteria Internal Medicine Models, Biological Models, Molecular Mutation needle complex primary energy protein secretion Protein Transport Protein Unfolding Proton-Motive Force T3SS type III secretion system Type III Secretion Systems - physiology |
Title | Fueling type III secretion |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966842X15000268 https://www.clinicalkey.es/playcontent/1-s2.0-S0966842X15000268 https://dx.doi.org/10.1016/j.tim.2015.01.012 https://www.ncbi.nlm.nih.gov/pubmed/25701111 https://www.proquest.com/docview/1692296746 https://www.proquest.com/docview/2116910782 https://pubmed.ncbi.nlm.nih.gov/PMC4417389 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Kx6AvY2u3Lv0ILvSp4MWW9WE_ltKQNLQPa8vyJiRZZinFKU3ysJf-7b3zR2jWNYOCjbF9Qtb5dPpJug-AY0sx5JSUIUuECTlOr0MTORdmOB6oInKcGVqHvLySg1t-MRbjDThrfWHIrLLR_bVOr7R186TXcLP3MJn0rhF80ybSOKaY_kySwy_niqT8x9MLMw9RJV4l4pCo253NysZrPiFn9LiO3Bmzt8am19jzbxPKF2NS_zN8asBkcFp_7xfY8OU2fKzTS_7Zgb3-ovI2D2idNRgOh8GMQCL9iq9w2z-_ORuETS6E0EmRzUNmZWJTnktnvTAyZz5XMo8EcyZxqUtUjhOxvFAmFtapJE-xwQjt0iQujIkKlXyDzXJa-u8QxIUznmcWT8ETX6QuymwuyAXXpq4wHYhaLmjXBAqnfBX3urUIu9PIOE2M01GMB-vAybLIQx0lYx0xa1mrW_dPVFgadfi6Qupfhfys6XIzHesZ05F-JRYd4MuSK5L1vwqP2r-uscfRNoop_XSBFcmMsUwqLt-mwWm1RCCG8KsDu7WkLBlDeQNpoMImrcjQkoAifq--KSe_q8jflC8OEebe-5q0D1t0V5trHsDm_HHhDxFSzW236jNd-HA6HA2u6Dr6-Wv0DMTmH9g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5B0QouaGFhKctCkDghRU2c2E6OCFE1PHoBpN4s23FEV6sUbdsD_56ZPMoWFlZCSi7xjByP7fFnex4AJ4ZiyEkhfBZx7ce4vfZ1YK2f4nogi8DGTNM55M1QDO7jyxEfrcB56wtDZpWN7q91eqWtmy-9Rpq9x_G4d4vgmy6RRiHF9GciWYU1ik7FO7B2ll0Nhi-WHrzKvUr0PjG0l5uVmddsTP7oYR28M2TvLU9v4edrK8q_lqX-V9hs8KR3Vv_yFqy4chu-1Bkmn77Bfn9eOZx7dNTqZVnmTQknUm_swH3_4u584DfpEHwreDrzmRGRSeJcWOO4FjlzuRR5wJnVkU1sJHPci-WF1CE3VkZ5gg1GdJdEYaF1UMhoFzrlpHR74IWF1S5ODb48jlyR2CA1OScvXJPYQnchaKWgbBMrnFJW_FatUdgvhYJTJDgVhPiwLpwuWB7rQBkfEbNWtKr1AEWdpVCNf8Qk_8Xkps2sm6pQTZkK1JuR0YV4wbk0uP5X4XHb6wonHd2k6NJN5liRSBlLhYzF-zS4sxaIxRCBdeF7PVIWgqHUgbRWYZOWxtCCgIJ-L5eU44cq-DeljEOQuf-5Jh3B-uDu5lpdZ8OrH7BBJbX15gF0Zn_m7icirJk5bGbQM4xjIOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fueling+type+III+secretion&rft.jtitle=Trends+in+microbiology+%28Regular+ed.%29&rft.au=Lee%2C+Pei-Chung&rft.au=Rietsch%2C+Arne&rft.date=2015-05-01&rft.issn=0966-842X&rft.eissn=1878-4380&rft.volume=23&rft.issue=5&rft.spage=296&rft.epage=300&rft_id=info:doi/10.1016%2Fj.tim.2015.01.012&rft_id=info%3Apmid%2F25701111&rft.externalDocID=PMC4417389 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0966842X%2FS0966842X14X00168%2Fcov150h.gif |