Fueling type III secretion

•The proton motive force (pmf) energizes the rate-limiting step of type III secretion.•The type III secretion system (T3SS) can change the efficiency of pmf utilization to modulate protein export speed.•The ATPase likely renders secreted protein export competent by unfolding them. Type III secretion...

Full description

Saved in:
Bibliographic Details
Published inTrends in microbiology (Regular ed.) Vol. 23; no. 5; pp. 296 - 300
Main Authors Lee, Pei-Chung, Rietsch, Arne
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The proton motive force (pmf) energizes the rate-limiting step of type III secretion.•The type III secretion system (T3SS) can change the efficiency of pmf utilization to modulate protein export speed.•The ATPase likely renders secreted protein export competent by unfolding them. Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic.
AbstractList Type III secretion systems are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism, by which the proton motive force is converted to protein export, remains enigmatic.
Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic.Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic.
Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic.
•The proton motive force (pmf) energizes the rate-limiting step of type III secretion.•The type III secretion system (T3SS) can change the efficiency of pmf utilization to modulate protein export speed.•The ATPase likely renders secreted protein export competent by unfolding them. Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at the core of the machinery used to assemble the bacterial flagellum, and the needle complex many Gram-negative pathogens use to inject effector proteins into host cells and cause disease. Several models have been put forward to explain how this export is energized, and the mechanism has been the subject of considerable debate. Here we present an overview of these models and discuss their relative merits. Recent evidence suggests that the proton motive force (pmf) is the primary energy source for type III secretion, although contribution from refolding of secreted proteins has not been ruled out. The mechanism by which the pmf is converted to protein export remains enigmatic.
Highlights • The proton motive force (pmf) energizes the rate-limiting step of type III secretion. • The type III secretion system (T3SS) can change the efficiency of pmf utilization to modulate protein export speed. • The ATPase likely renders secreted protein export competent by unfolding them.
Author Rietsch, Arne
Lee, Pei-Chung
AuthorAffiliation 1 Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and 23 Human Development, National Institutes of Health, Bethesda, MD 20892
2 Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106-4960
AuthorAffiliation_xml – name: 1 Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and 23 Human Development, National Institutes of Health, Bethesda, MD 20892
– name: 2 Dept. of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106-4960
Author_xml – sequence: 1
  givenname: Pei-Chung
  surname: Lee
  fullname: Lee, Pei-Chung
  organization: Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Arne
  surname: Rietsch
  fullname: Rietsch, Arne
  email: arne.rietsch@case.edu
  organization: Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25701111$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rFDEUDVKx2-oP0AfZR19mzc1MPgahIMXahYIPKvgWMsmdmnU2WZOZwv57M2wttmAbLuQh55x7cs89IUchBiTkNdAVUBDvN6vRb1eMAl9RKMWekQUoqaqmVvSILGgrRKUa9uOYnOS8oZRyzvgLcsy4pFDOgry5mHDw4Xo57ne4XK_Xy4w24ehjeEme92bI-Or2PiXfLz59O7-srr58Xp9_vKqs4O1YsU7UnWqcsB1yIxxDJ4WjnFlTW2Vr6YAL10sDvLOydqq4aqVUNfTG0F7Wp-TsoLubui06i2FMZtC75Lcm7XU0Xt9_Cf6nvo43umlA1qotAu9uBVL8PWEe9dZni8NgAsYpawYgWqBSsSehBchYK2QjCvTtv7bu_PydXQHAAWBTzDlhfwcBqud89EaXfPScj6ZQau4vH3CsH8087fIzPzzK_HBgYonixmPS2XoMFp1PaEfton-UffaAbUvq3prhF-4xb-KUQslYg85MU_113px5cYCXpWFCFYH2_wJPNP8D5rvQmw
CitedBy_id crossref_primary_10_1111_cbdd_13130
crossref_primary_10_3389_fmicb_2018_01468
crossref_primary_10_15252_embj_201797515
crossref_primary_10_3389_fmicb_2022_939406
crossref_primary_10_1016_j_resmic_2018_12_001
crossref_primary_10_3389_fcimb_2020_622202
crossref_primary_10_1098_rstb_2015_0020
crossref_primary_10_3390_ijms22115412
crossref_primary_10_1128_mBio_01911_16
crossref_primary_10_1128_MMBR_00008_20
crossref_primary_10_3390_microorganisms8121933
crossref_primary_10_1128_AEM_00537_16
crossref_primary_10_1371_journal_ppat_1005495
crossref_primary_10_1016_j_bbapap_2019_06_002
crossref_primary_10_1038_s41467_018_04288_4
crossref_primary_10_3389_fcimb_2016_00025
crossref_primary_10_1038_s41467_018_04137_4
crossref_primary_10_3390_biom10111528
crossref_primary_10_3389_fcimb_2016_00129
crossref_primary_10_1016_j_jmb_2020_10_024
crossref_primary_10_1128_ecosalplus_esp_0039_2018
crossref_primary_10_1128_Spectrum_01251_21
crossref_primary_10_7554_eLife_22140
crossref_primary_10_1016_j_ijmm_2018_03_005
crossref_primary_10_1186_s12934_021_01565_8
crossref_primary_10_1016_j_ijbiomac_2020_04_266
crossref_primary_10_1007_s00284_019_01667_y
crossref_primary_10_1016_j_cell_2019_02_022
crossref_primary_10_1128_JB_00372_21
crossref_primary_10_1016_j_tibs_2015_09_005
crossref_primary_10_1093_nar_gkad492
crossref_primary_10_3390_microorganisms9020451
crossref_primary_10_1016_j_plrev_2021_05_007
crossref_primary_10_1002_pro_2917
crossref_primary_10_1016_j_tips_2016_05_011
crossref_primary_10_1074_jbc_RA119_009125
crossref_primary_10_3389_fcimb_2023_1255852
crossref_primary_10_3389_fcimb_2019_00337
crossref_primary_10_3390_ijms22073337
crossref_primary_10_1128_AAC_01690_20
crossref_primary_10_1111_jph_12671
crossref_primary_10_1038_s41467_022_30358_9
crossref_primary_10_1016_j_cell_2018_01_034
crossref_primary_10_1099_mic_0_001193
crossref_primary_10_3389_fmolb_2022_967974
Cites_doi 10.1038/srep06528
10.1016/j.bpj.2009.10.030
10.7554/eLife.00792
10.1128/mBio.00115-12
10.1371/journal.pone.0022417
10.1146/annurev-micro-092412-155725
10.1038/nature03992
10.1038/srep03369
10.1016/j.tim.2006.02.009
10.1074/jbc.M114.578476
10.1016/j.bpj.2013.05.030
10.1128/JB.186.8.2402-2412.2004
10.1128/IAI.72.7.4004-4009.2004
10.1111/mmi.12430
10.1126/science.1201476
10.1038/nsmb.2722
10.1111/j.1365-2958.2008.06237.x
10.1046/j.1365-2443.1998.00219.x
10.1111/j.1365-2958.1994.tb02191.x
10.1038/nsmb.2452
10.1073/pnas.1402658111
10.1128/JB.01711-12
10.1038/nsmb0208-127
10.1128/JB.06735-11
10.1006/jmbi.1995.0282
10.1126/science.278.5340.1140
10.1038/nature06449
10.1128/JB.186.16.5486-5495.2004
10.1038/ncomms5976
10.1099/00221287-56-2-227
10.1073/pnas.1001383107
10.1016/S0966-842X(01)02100-X
10.1016/j.cell.2004.11.027
10.1006/jmbi.1995.0281
10.1016/S1369-5274(02)00002-4
10.1038/nsmb1196
10.1038/nature12682
10.1038/nature06497
10.1038/newbio237238a0
10.1038/ncomms1488
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
2015 Published by Elsevier Ltd. 2015
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: 2015 Published by Elsevier Ltd. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.tim.2015.01.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1878-4380
EndPage 300
ExternalDocumentID PMC4417389
25701111
10_1016_j_tim_2015_01_012
S0966842X15000268
1_s2_0_S0966842X15000268
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI107131
GroupedDBID ---
--K
--M
-DZ
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEJ
HMG
HMK
HMO
HVGLF
HZ~
H~9
IHE
J1W
KOM
LUGTX
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OD-
OO.
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
WUQ
XPP
Y6R
Z5R
ZCA
ZY4
~G-
AACTN
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RCE
RIG
AAIAV
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c659t-2b63b84d6cbe5a6d2ed76d052ca3c8c37d156df7a15bc73d8096977831faa0f73
IEDL.DBID .~1
ISSN 0966-842X
1878-4380
IngestDate Thu Aug 21 18:43:04 EDT 2025
Tue Aug 05 11:25:22 EDT 2025
Fri Jul 11 01:01:25 EDT 2025
Mon Jul 21 05:59:00 EDT 2025
Tue Jul 01 03:03:07 EDT 2025
Thu Apr 24 23:01:45 EDT 2025
Thu Jun 13 11:13:40 EDT 2024
Sun Feb 23 10:19:30 EST 2025
Tue Aug 26 17:00:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords T3SS
flagellum
needle complex
ATPase
proton motive force
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-2b63b84d6cbe5a6d2ed76d052ca3c8c37d156df7a15bc73d8096977831faa0f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4417389
PMID 25701111
PQID 1692296746
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4417389
proquest_miscellaneous_2116910782
proquest_miscellaneous_1692296746
pubmed_primary_25701111
crossref_primary_10_1016_j_tim_2015_01_012
crossref_citationtrail_10_1016_j_tim_2015_01_012
elsevier_sciencedirect_doi_10_1016_j_tim_2015_01_012
elsevier_clinicalkeyesjournals_1_s2_0_S0966842X15000268
elsevier_clinicalkey_doi_10_1016_j_tim_2015_01_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in microbiology (Regular ed.)
PublicationTitleAlternate Trends Microbiol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Akeda, Galan (bib0210) 2005; 437
Kinoshita (bib0225) 2013; 90
Lloyd (bib0280) 2001; 9
Weibezahn (bib0300) 2004; 119
Mimori (bib0345) 1995; 249
Galan (bib0205) 2014; 68
Iino (bib0340) 1972; 237
Anderson, Schneewind (bib0380) 1997; 278
Demers (bib0400) 2014; 5
Lara-Tejero (bib0230) 2011; 331
Wilharm (bib0305) 2004; 72
Radics (bib0260) 2014; 21
Ibuki (bib0335) 2013; 195
Singer (bib0395) 2012; 3
Hara (bib0330) 2011; 6
Parsot (bib0285) 2003; 6
Galan (bib0360) 2008; 15
Bange (bib0220) 2010; 107
Abrusci (bib0235) 2013; 20
Bai (bib0215) 2014; 4
Kawamoto (bib0250) 2013; 3
Stern, Berg (bib0355) 2013; 105
Kudryashev (bib0320) 2013; 2
Turner (bib0365) 2012; 194
Sory, Cornelis (bib0385) 1994; 14
Rathinavelan (bib0275) 2010; 98
Lee (bib0310) 2014; 111
Morgan (bib0350) 1995; 249
Charpentier, Oswald (bib0390) 2004; 186
Desvaux (bib0245) 2006; 14
Mueller (bib0255) 2008; 68
Akeda, Galan (bib0315) 2004; 186
Minamino (bib0325) 2011; 2
Aizawa, Kubori (bib0375) 1998; 3
Paul (bib0270) 2008; 451
Zarivach (bib0295) 2007; 14
Iino (bib0370) 1969; 56
Evans (bib0240) 2013; 504
Allison (bib0290) 2014; 289
Minamino, Namba (bib0265) 2008; 451
Radics (10.1016/j.tim.2015.01.012_bib0260) 2014; 21
Akeda (10.1016/j.tim.2015.01.012_bib0315) 2004; 186
Bange (10.1016/j.tim.2015.01.012_bib0220) 2010; 107
Kinoshita (10.1016/j.tim.2015.01.012_bib0225) 2013; 90
Morgan (10.1016/j.tim.2015.01.012_bib0350) 1995; 249
Anderson (10.1016/j.tim.2015.01.012_bib0380) 1997; 278
Akeda (10.1016/j.tim.2015.01.012_bib0210) 2005; 437
Mueller (10.1016/j.tim.2015.01.012_bib0255) 2008; 68
Aizawa (10.1016/j.tim.2015.01.012_bib0375) 1998; 3
Wilharm (10.1016/j.tim.2015.01.012_bib0305) 2004; 72
Mimori (10.1016/j.tim.2015.01.012_bib0345) 1995; 249
Sory (10.1016/j.tim.2015.01.012_bib0385) 1994; 14
Abrusci (10.1016/j.tim.2015.01.012_bib0235) 2013; 20
Demers (10.1016/j.tim.2015.01.012_bib0400) 2014; 5
Rathinavelan (10.1016/j.tim.2015.01.012_bib0275) 2010; 98
Desvaux (10.1016/j.tim.2015.01.012_bib0245) 2006; 14
Evans (10.1016/j.tim.2015.01.012_bib0240) 2013; 504
Allison (10.1016/j.tim.2015.01.012_bib0290) 2014; 289
Charpentier (10.1016/j.tim.2015.01.012_bib0390) 2004; 186
Singer (10.1016/j.tim.2015.01.012_bib0395) 2012; 3
Galan (10.1016/j.tim.2015.01.012_bib0360) 2008; 15
Ibuki (10.1016/j.tim.2015.01.012_bib0335) 2013; 195
Iino (10.1016/j.tim.2015.01.012_bib0340) 1972; 237
Lara-Tejero (10.1016/j.tim.2015.01.012_bib0230) 2011; 331
Hara (10.1016/j.tim.2015.01.012_bib0330) 2011; 6
Galan (10.1016/j.tim.2015.01.012_bib0205) 2014; 68
Parsot (10.1016/j.tim.2015.01.012_bib0285) 2003; 6
Lloyd (10.1016/j.tim.2015.01.012_bib0280) 2001; 9
Bai (10.1016/j.tim.2015.01.012_bib0215) 2014; 4
Iino (10.1016/j.tim.2015.01.012_bib0370) 1969; 56
Lee (10.1016/j.tim.2015.01.012_bib0310) 2014; 111
Kudryashev (10.1016/j.tim.2015.01.012_bib0320) 2013; 2
Kawamoto (10.1016/j.tim.2015.01.012_bib0250) 2013; 3
Weibezahn (10.1016/j.tim.2015.01.012_bib0300) 2004; 119
Turner (10.1016/j.tim.2015.01.012_bib0365) 2012; 194
Paul (10.1016/j.tim.2015.01.012_bib0270) 2008; 451
Zarivach (10.1016/j.tim.2015.01.012_bib0295) 2007; 14
Minamino (10.1016/j.tim.2015.01.012_bib0325) 2011; 2
Stern (10.1016/j.tim.2015.01.012_bib0355) 2013; 105
Minamino (10.1016/j.tim.2015.01.012_bib0265) 2008; 451
7776378 - J Mol Biol. 1995 May 26;249(1):88-110
18250631 - Nat Struct Mol Biol. 2008 Feb;15(2):127-8
23823237 - Biophys J. 2013 Jul 2;105(1):182-4
4893344 - J Gen Microbiol. 1969 May;56(2):227-39
11514218 - Trends Microbiol. 2001 Aug;9(8):367-71
20534509 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11295-300
23222644 - Nat Struct Mol Biol. 2013 Jan;20(1):99-104
4556644 - Nat New Biol. 1972 Jun 21;237(77):238-40
7885236 - Mol Microbiol. 1994 Nov;14(3):583-94
21934659 - Nat Commun. 2011;2:475
24325251 - Mol Microbiol. 2013 Dec;90(6):1249-61
9353199 - Science. 1997 Nov 7;278(5340):1140-3
24778208 - Proc Natl Acad Sci U S A. 2014 May 13;111(19):E2027-36
12615213 - Curr Opin Microbiol. 2003 Feb;6(1):7-14
17237797 - Nat Struct Mol Biol. 2007 Feb;14(2):131-7
23908767 - Elife. 2013;2:e00792
7776377 - J Mol Biol. 1995 May 26;249(1):69-87
25284201 - Sci Rep. 2014;4:6528
21292939 - Science. 2011 Mar 4;331(6021):1188-91
24317488 - Nat Struct Mol Biol. 2014 Jan;21(1):82-7
15550247 - Cell. 2004 Nov 24;119(5):653-65
23161028 - J Bacteriol. 2013 Feb;195(3):466-73
15292151 - J Bacteriol. 2004 Aug;186(16):5486-95
22647788 - MBio. 2012;3(3). pii: e00115-12. doi: 10.1128/mBio.00115-12
16208377 - Nature. 2005 Oct 6;437(7060):911-5
20141759 - Biophys J. 2010 Feb 3;98(3):452-61
21811603 - PLoS One. 2011;6(7):e22417
24284544 - Sci Rep. 2013;3:3369
16533600 - Trends Microbiol. 2006 Apr;14(4):157-60
18216859 - Nature. 2008 Jan 24;451(7177):489-92
18216858 - Nature. 2008 Jan 24;451(7177):485-8
25035427 - J Biol Chem. 2014 Aug 22;289(34):23734-44
25264107 - Nat Commun. 2014;5:4976
22447900 - J Bacteriol. 2012 May;194(10):2437-42
15060043 - J Bacteriol. 2004 Apr;186(8):2402-12
24213633 - Nature. 2013 Dec 12;504(7479):287-90
18430138 - Mol Microbiol. 2008 Jun;68(5):1085-95
15213145 - Infect Immun. 2004 Jul;72(7):4004-9
9893020 - Genes Cells. 1998 Oct;3(10):625-34
25002086 - Annu Rev Microbiol. 2014;68:415-38
References_xml – volume: 186
  start-page: 5486
  year: 2004
  end-page: 5495
  ident: bib0390
  article-title: Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic
  publication-title: J. Bacteriol.
– volume: 20
  start-page: 99
  year: 2013
  end-page: 104
  ident: bib0235
  article-title: Architecture of the major component of the type III secretion system export apparatus
  publication-title: Nat. Struct. Mol. Biol.
– volume: 451
  start-page: 485
  year: 2008
  end-page: 488
  ident: bib0265
  article-title: Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export
  publication-title: Nature
– volume: 107
  start-page: 11295
  year: 2010
  end-page: 11300
  ident: bib0220
  article-title: FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 2
  start-page: 475
  year: 2011
  ident: bib0325
  article-title: An energy transduction mechanism used in bacterial flagellar type III protein export
  publication-title: Nat. Commun.
– volume: 451
  start-page: 489
  year: 2008
  end-page: 492
  ident: bib0270
  article-title: Energy source of flagellar type III secretion
  publication-title: Nature
– volume: 3
  start-page: 625
  year: 1998
  end-page: 634
  ident: bib0375
  article-title: Bacterial flagellation and cell division
  publication-title: Genes Cells
– volume: 6
  start-page: e22417
  year: 2011
  ident: bib0330
  article-title: Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA
  publication-title: PLoS ONE
– volume: 111
  start-page: E2027
  year: 2014
  end-page: E2036
  ident: bib0310
  article-title: Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 437
  start-page: 911
  year: 2005
  end-page: 915
  ident: bib0210
  article-title: Chaperone release and unfolding of substrates in type III secretion
  publication-title: Nature
– volume: 504
  start-page: 287
  year: 2013
  end-page: 290
  ident: bib0240
  article-title: A chain mechanism for flagellum growth
  publication-title: Nature
– volume: 14
  start-page: 157
  year: 2006
  end-page: 160
  ident: bib0245
  article-title: Type III secretion: what's in a name?
  publication-title: Trends Microbiol.
– volume: 14
  start-page: 131
  year: 2007
  end-page: 137
  ident: bib0295
  article-title: Structural analysis of a prototypical ATPase from the type III secretion system
  publication-title: Nat. Struct. Mol. Biol.
– volume: 249
  start-page: 69
  year: 1995
  end-page: 87
  ident: bib0345
  article-title: The structure of the R-type straight flagellar filament of
  publication-title: J. Mol. Biol.
– volume: 237
  start-page: 238
  year: 1972
  end-page: 240
  ident: bib0340
  article-title: Reconstruction of
  publication-title: Nat. New Biol.
– volume: 9
  start-page: 367
  year: 2001
  end-page: 371
  ident: bib0280
  article-title: Targeting exported substrates to the
  publication-title: Trends Microbiol.
– volume: 6
  start-page: 7
  year: 2003
  end-page: 14
  ident: bib0285
  article-title: The various and varying roles of specific chaperones in type III secretion systems
  publication-title: Curr. Opin. Microbiol.
– volume: 186
  start-page: 2402
  year: 2004
  end-page: 2412
  ident: bib0315
  article-title: Genetic analysis of the
  publication-title: J. Bacteriol.
– volume: 3
  start-page: 3369
  year: 2013
  ident: bib0250
  article-title: Common and distinct structural features of
  publication-title: Sci. Rep.
– volume: 2
  start-page: e00792
  year: 2013
  ident: bib0320
  article-title: structural analysis of the
  publication-title: eLife
– volume: 278
  start-page: 1140
  year: 1997
  end-page: 1143
  ident: bib0380
  article-title: A mRNA signal for the type III secretion of Yop proteins by
  publication-title: Science
– volume: 119
  start-page: 653
  year: 2004
  end-page: 665
  ident: bib0300
  article-title: Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB
  publication-title: Cell
– volume: 68
  start-page: 415
  year: 2014
  end-page: 438
  ident: bib0205
  article-title: Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells
  publication-title: Annu. Rev. Microbiol.
– volume: 68
  start-page: 1085
  year: 2008
  end-page: 1095
  ident: bib0255
  article-title: The type III secretion system tip complex and translocon
  publication-title: Mol. Microbiol.
– volume: 105
  start-page: 182
  year: 2013
  end-page: 184
  ident: bib0355
  article-title: Single-file diffusion of flagellin in flagellar filaments
  publication-title: Biophys. J.
– volume: 5
  start-page: 4976
  year: 2014
  ident: bib0400
  article-title: High-resolution structure of the
  publication-title: Nat. Commun.
– volume: 21
  start-page: 82
  year: 2014
  end-page: 87
  ident: bib0260
  article-title: Structure of a pathogenic type 3 secretion system in action
  publication-title: Nat. Struct. Mol. Biol.
– volume: 98
  start-page: 452
  year: 2010
  end-page: 461
  ident: bib0275
  article-title: A repulsive electrostatic mechanism for protein export through the type III secretion apparatus
  publication-title: Biophys. J.
– volume: 289
  start-page: 23734
  year: 2014
  end-page: 23744
  ident: bib0290
  article-title: Identification of the docking site between a type III secretion system ATPase and a chaperone for effector cargo
  publication-title: J. Biol. Chem.
– volume: 194
  start-page: 2437
  year: 2012
  end-page: 2442
  ident: bib0365
  article-title: Growth of flagellar filaments of
  publication-title: J. Bacteriol.
– volume: 3
  start-page: e00115-12
  year: 2012
  ident: bib0395
  article-title: Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system
  publication-title: MBio
– volume: 72
  start-page: 4004
  year: 2004
  end-page: 4009
  ident: bib0305
  article-title: type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB
  publication-title: Infect. Immun.
– volume: 15
  start-page: 127
  year: 2008
  end-page: 128
  ident: bib0360
  article-title: Energizing type III secretion machines: what is the fuel?
  publication-title: Nat. Struct. Mol. Biol.
– volume: 56
  start-page: 227
  year: 1969
  end-page: 239
  ident: bib0370
  article-title: Polarity of flagellar growth in
  publication-title: J. Gen. Microbiol.
– volume: 4
  start-page: 6528
  year: 2014
  ident: bib0215
  article-title: Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus
  publication-title: Sci. Rep.
– volume: 90
  start-page: 1249
  year: 2013
  end-page: 1261
  ident: bib0225
  article-title: Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament
  publication-title: Mol. Microbiol.
– volume: 195
  start-page: 466
  year: 2013
  end-page: 473
  ident: bib0335
  article-title: Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus
  publication-title: J. Bacteriol.
– volume: 249
  start-page: 88
  year: 1995
  end-page: 110
  ident: bib0350
  article-title: Structure of bacterial flagellar filaments at 11
  publication-title: J. Mol. Biol.
– volume: 331
  start-page: 1188
  year: 2011
  end-page: 1191
  ident: bib0230
  article-title: A sorting platform determines the order of protein secretion in bacterial type III systems
  publication-title: Science
– volume: 14
  start-page: 583
  year: 1994
  end-page: 594
  ident: bib0385
  article-title: Translocation of a hybrid YopE-adenylate cyclase from
  publication-title: Mol. Microbiol.
– volume: 4
  start-page: 6528
  year: 2014
  ident: 10.1016/j.tim.2015.01.012_bib0215
  article-title: Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus
  publication-title: Sci. Rep.
  doi: 10.1038/srep06528
– volume: 98
  start-page: 452
  year: 2010
  ident: 10.1016/j.tim.2015.01.012_bib0275
  article-title: A repulsive electrostatic mechanism for protein export through the type III secretion apparatus
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.10.030
– volume: 2
  start-page: e00792
  year: 2013
  ident: 10.1016/j.tim.2015.01.012_bib0320
  article-title: In situ structural analysis of the Yersinia enterocolitica injectisome
  publication-title: eLife
  doi: 10.7554/eLife.00792
– volume: 3
  start-page: e00115-12
  year: 2012
  ident: 10.1016/j.tim.2015.01.012_bib0395
  article-title: Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system
  publication-title: MBio
  doi: 10.1128/mBio.00115-12
– volume: 6
  start-page: e22417
  year: 2011
  ident: 10.1016/j.tim.2015.01.012_bib0330
  article-title: Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022417
– volume: 68
  start-page: 415
  year: 2014
  ident: 10.1016/j.tim.2015.01.012_bib0205
  article-title: Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-092412-155725
– volume: 437
  start-page: 911
  year: 2005
  ident: 10.1016/j.tim.2015.01.012_bib0210
  article-title: Chaperone release and unfolding of substrates in type III secretion
  publication-title: Nature
  doi: 10.1038/nature03992
– volume: 3
  start-page: 3369
  year: 2013
  ident: 10.1016/j.tim.2015.01.012_bib0250
  article-title: Common and distinct structural features of Salmonella injectisome and flagellar basal body
  publication-title: Sci. Rep.
  doi: 10.1038/srep03369
– volume: 14
  start-page: 157
  year: 2006
  ident: 10.1016/j.tim.2015.01.012_bib0245
  article-title: Type III secretion: what's in a name?
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2006.02.009
– volume: 289
  start-page: 23734
  year: 2014
  ident: 10.1016/j.tim.2015.01.012_bib0290
  article-title: Identification of the docking site between a type III secretion system ATPase and a chaperone for effector cargo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.578476
– volume: 105
  start-page: 182
  year: 2013
  ident: 10.1016/j.tim.2015.01.012_bib0355
  article-title: Single-file diffusion of flagellin in flagellar filaments
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.05.030
– volume: 186
  start-page: 2402
  year: 2004
  ident: 10.1016/j.tim.2015.01.012_bib0315
  article-title: Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.8.2402-2412.2004
– volume: 72
  start-page: 4004
  year: 2004
  ident: 10.1016/j.tim.2015.01.012_bib0305
  article-title: Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.72.7.4004-4009.2004
– volume: 90
  start-page: 1249
  year: 2013
  ident: 10.1016/j.tim.2015.01.012_bib0225
  article-title: Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12430
– volume: 331
  start-page: 1188
  year: 2011
  ident: 10.1016/j.tim.2015.01.012_bib0230
  article-title: A sorting platform determines the order of protein secretion in bacterial type III systems
  publication-title: Science
  doi: 10.1126/science.1201476
– volume: 21
  start-page: 82
  year: 2014
  ident: 10.1016/j.tim.2015.01.012_bib0260
  article-title: Structure of a pathogenic type 3 secretion system in action
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2722
– volume: 68
  start-page: 1085
  year: 2008
  ident: 10.1016/j.tim.2015.01.012_bib0255
  article-title: The type III secretion system tip complex and translocon
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06237.x
– volume: 3
  start-page: 625
  year: 1998
  ident: 10.1016/j.tim.2015.01.012_bib0375
  article-title: Bacterial flagellation and cell division
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1998.00219.x
– volume: 14
  start-page: 583
  year: 1994
  ident: 10.1016/j.tim.2015.01.012_bib0385
  article-title: Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1994.tb02191.x
– volume: 20
  start-page: 99
  year: 2013
  ident: 10.1016/j.tim.2015.01.012_bib0235
  article-title: Architecture of the major component of the type III secretion system export apparatus
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2452
– volume: 111
  start-page: E2027
  year: 2014
  ident: 10.1016/j.tim.2015.01.012_bib0310
  article-title: Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1402658111
– volume: 195
  start-page: 466
  year: 2013
  ident: 10.1016/j.tim.2015.01.012_bib0335
  article-title: Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01711-12
– volume: 15
  start-page: 127
  year: 2008
  ident: 10.1016/j.tim.2015.01.012_bib0360
  article-title: Energizing type III secretion machines: what is the fuel?
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb0208-127
– volume: 194
  start-page: 2437
  year: 2012
  ident: 10.1016/j.tim.2015.01.012_bib0365
  article-title: Growth of flagellar filaments of Escherichia coli is independent of filament length
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.06735-11
– volume: 249
  start-page: 88
  year: 1995
  ident: 10.1016/j.tim.2015.01.012_bib0350
  article-title: Structure of bacterial flagellar filaments at 11Å resolution: packing of the alpha-helices
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0282
– volume: 278
  start-page: 1140
  year: 1997
  ident: 10.1016/j.tim.2015.01.012_bib0380
  article-title: A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica
  publication-title: Science
  doi: 10.1126/science.278.5340.1140
– volume: 451
  start-page: 485
  year: 2008
  ident: 10.1016/j.tim.2015.01.012_bib0265
  article-title: Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export
  publication-title: Nature
  doi: 10.1038/nature06449
– volume: 186
  start-page: 5486
  year: 2004
  ident: 10.1016/j.tim.2015.01.012_bib0390
  article-title: Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.16.5486-5495.2004
– volume: 5
  start-page: 4976
  year: 2014
  ident: 10.1016/j.tim.2015.01.012_bib0400
  article-title: High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5976
– volume: 56
  start-page: 227
  year: 1969
  ident: 10.1016/j.tim.2015.01.012_bib0370
  article-title: Polarity of flagellar growth in Salmonella
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-56-2-227
– volume: 107
  start-page: 11295
  year: 2010
  ident: 10.1016/j.tim.2015.01.012_bib0220
  article-title: FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1001383107
– volume: 9
  start-page: 367
  year: 2001
  ident: 10.1016/j.tim.2015.01.012_bib0280
  article-title: Targeting exported substrates to the Yersinia TTSS: different functions for different signals?
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(01)02100-X
– volume: 119
  start-page: 653
  year: 2004
  ident: 10.1016/j.tim.2015.01.012_bib0300
  article-title: Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.027
– volume: 249
  start-page: 69
  year: 1995
  ident: 10.1016/j.tim.2015.01.012_bib0345
  article-title: The structure of the R-type straight flagellar filament of Salmonella at 9Å resolution by electron cryomicroscopy
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0281
– volume: 6
  start-page: 7
  year: 2003
  ident: 10.1016/j.tim.2015.01.012_bib0285
  article-title: The various and varying roles of specific chaperones in type III secretion systems
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(02)00002-4
– volume: 14
  start-page: 131
  year: 2007
  ident: 10.1016/j.tim.2015.01.012_bib0295
  article-title: Structural analysis of a prototypical ATPase from the type III secretion system
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1196
– volume: 504
  start-page: 287
  year: 2013
  ident: 10.1016/j.tim.2015.01.012_bib0240
  article-title: A chain mechanism for flagellum growth
  publication-title: Nature
  doi: 10.1038/nature12682
– volume: 451
  start-page: 489
  year: 2008
  ident: 10.1016/j.tim.2015.01.012_bib0270
  article-title: Energy source of flagellar type III secretion
  publication-title: Nature
  doi: 10.1038/nature06497
– volume: 237
  start-page: 238
  year: 1972
  ident: 10.1016/j.tim.2015.01.012_bib0340
  article-title: Reconstruction of Salmonella flagella attached to cell bodies
  publication-title: Nat. New Biol.
  doi: 10.1038/newbio237238a0
– volume: 2
  start-page: 475
  year: 2011
  ident: 10.1016/j.tim.2015.01.012_bib0325
  article-title: An energy transduction mechanism used in bacterial flagellar type III protein export
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1488
– reference: 16208377 - Nature. 2005 Oct 6;437(7060):911-5
– reference: 25264107 - Nat Commun. 2014;5:4976
– reference: 21934659 - Nat Commun. 2011;2:475
– reference: 24325251 - Mol Microbiol. 2013 Dec;90(6):1249-61
– reference: 24284544 - Sci Rep. 2013;3:3369
– reference: 23161028 - J Bacteriol. 2013 Feb;195(3):466-73
– reference: 7776377 - J Mol Biol. 1995 May 26;249(1):69-87
– reference: 15550247 - Cell. 2004 Nov 24;119(5):653-65
– reference: 22647788 - MBio. 2012;3(3). pii: e00115-12. doi: 10.1128/mBio.00115-12
– reference: 9353199 - Science. 1997 Nov 7;278(5340):1140-3
– reference: 25002086 - Annu Rev Microbiol. 2014;68:415-38
– reference: 18216859 - Nature. 2008 Jan 24;451(7177):489-92
– reference: 12615213 - Curr Opin Microbiol. 2003 Feb;6(1):7-14
– reference: 20534509 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11295-300
– reference: 24778208 - Proc Natl Acad Sci U S A. 2014 May 13;111(19):E2027-36
– reference: 18216858 - Nature. 2008 Jan 24;451(7177):485-8
– reference: 7776378 - J Mol Biol. 1995 May 26;249(1):88-110
– reference: 25284201 - Sci Rep. 2014;4:6528
– reference: 24213633 - Nature. 2013 Dec 12;504(7479):287-90
– reference: 15213145 - Infect Immun. 2004 Jul;72(7):4004-9
– reference: 4556644 - Nat New Biol. 1972 Jun 21;237(77):238-40
– reference: 24317488 - Nat Struct Mol Biol. 2014 Jan;21(1):82-7
– reference: 16533600 - Trends Microbiol. 2006 Apr;14(4):157-60
– reference: 18430138 - Mol Microbiol. 2008 Jun;68(5):1085-95
– reference: 18250631 - Nat Struct Mol Biol. 2008 Feb;15(2):127-8
– reference: 23823237 - Biophys J. 2013 Jul 2;105(1):182-4
– reference: 17237797 - Nat Struct Mol Biol. 2007 Feb;14(2):131-7
– reference: 25035427 - J Biol Chem. 2014 Aug 22;289(34):23734-44
– reference: 11514218 - Trends Microbiol. 2001 Aug;9(8):367-71
– reference: 9893020 - Genes Cells. 1998 Oct;3(10):625-34
– reference: 21811603 - PLoS One. 2011;6(7):e22417
– reference: 23908767 - Elife. 2013;2:e00792
– reference: 22447900 - J Bacteriol. 2012 May;194(10):2437-42
– reference: 4893344 - J Gen Microbiol. 1969 May;56(2):227-39
– reference: 23222644 - Nat Struct Mol Biol. 2013 Jan;20(1):99-104
– reference: 7885236 - Mol Microbiol. 1994 Nov;14(3):583-94
– reference: 21292939 - Science. 2011 Mar 4;331(6021):1188-91
– reference: 15060043 - J Bacteriol. 2004 Apr;186(8):2402-12
– reference: 20141759 - Biophys J. 2010 Feb 3;98(3):452-61
– reference: 15292151 - J Bacteriol. 2004 Aug;186(16):5486-95
SSID ssj0005525
Score 2.3657548
SecondaryResourceType review_article
Snippet •The proton motive force (pmf) energizes the rate-limiting step of type III secretion.•The type III secretion system (T3SS) can change the efficiency of pmf...
Highlights • The proton motive force (pmf) energizes the rate-limiting step of type III secretion. • The type III secretion system (T3SS) can change the...
Type III secretion systems (T3SSs) are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They...
Type III secretion systems are complex nanomachines that export proteins from the bacterial cytoplasm across the cell envelope in a single step. They are at...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 296
SubjectTerms Adenosine Triphosphatases - metabolism
ATPase
Bacteria - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Cell Membrane - metabolism
cytoplasm
Cytoplasm - metabolism
exports
Flagella - metabolism
Flagella - physiology
Flagella - ultrastructure
flagellum
Gram-negative bacteria
Internal Medicine
Models, Biological
Models, Molecular
Mutation
needle complex
primary energy
protein secretion
Protein Transport
Protein Unfolding
Proton-Motive Force
T3SS
type III secretion system
Type III Secretion Systems - physiology
Title Fueling type III secretion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966842X15000268
https://www.clinicalkey.es/playcontent/1-s2.0-S0966842X15000268
https://dx.doi.org/10.1016/j.tim.2015.01.012
https://www.ncbi.nlm.nih.gov/pubmed/25701111
https://www.proquest.com/docview/1692296746
https://www.proquest.com/docview/2116910782
https://pubmed.ncbi.nlm.nih.gov/PMC4417389
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Kx6AvY2u3Lv0ILvSp4MWW9WE_ltKQNLQPa8vyJiRZZinFKU3ysJf-7b3zR2jWNYOCjbF9Qtb5dPpJug-AY0sx5JSUIUuECTlOr0MTORdmOB6oInKcGVqHvLySg1t-MRbjDThrfWHIrLLR_bVOr7R186TXcLP3MJn0rhF80ybSOKaY_kySwy_niqT8x9MLMw9RJV4l4pCo253NysZrPiFn9LiO3Bmzt8am19jzbxPKF2NS_zN8asBkcFp_7xfY8OU2fKzTS_7Zgb3-ovI2D2idNRgOh8GMQCL9iq9w2z-_ORuETS6E0EmRzUNmZWJTnktnvTAyZz5XMo8EcyZxqUtUjhOxvFAmFtapJE-xwQjt0iQujIkKlXyDzXJa-u8QxIUznmcWT8ETX6QuymwuyAXXpq4wHYhaLmjXBAqnfBX3urUIu9PIOE2M01GMB-vAybLIQx0lYx0xa1mrW_dPVFgadfi6Qupfhfys6XIzHesZ05F-JRYd4MuSK5L1vwqP2r-uscfRNoop_XSBFcmMsUwqLt-mwWm1RCCG8KsDu7WkLBlDeQNpoMImrcjQkoAifq--KSe_q8jflC8OEebe-5q0D1t0V5trHsDm_HHhDxFSzW236jNd-HA6HA2u6Dr6-Wv0DMTmH9g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5B0QouaGFhKctCkDghRU2c2E6OCFE1PHoBpN4s23FEV6sUbdsD_56ZPMoWFlZCSi7xjByP7fFnex4AJ4ZiyEkhfBZx7ce4vfZ1YK2f4nogi8DGTNM55M1QDO7jyxEfrcB56wtDZpWN7q91eqWtmy-9Rpq9x_G4d4vgmy6RRiHF9GciWYU1ik7FO7B2ll0Nhi-WHrzKvUr0PjG0l5uVmddsTP7oYR28M2TvLU9v4edrK8q_lqX-V9hs8KR3Vv_yFqy4chu-1Bkmn77Bfn9eOZx7dNTqZVnmTQknUm_swH3_4u584DfpEHwreDrzmRGRSeJcWOO4FjlzuRR5wJnVkU1sJHPci-WF1CE3VkZ5gg1GdJdEYaF1UMhoFzrlpHR74IWF1S5ODb48jlyR2CA1OScvXJPYQnchaKWgbBMrnFJW_FatUdgvhYJTJDgVhPiwLpwuWB7rQBkfEbNWtKr1AEWdpVCNf8Qk_8Xkps2sm6pQTZkK1JuR0YV4wbk0uP5X4XHb6wonHd2k6NJN5liRSBlLhYzF-zS4sxaIxRCBdeF7PVIWgqHUgbRWYZOWxtCCgIJ-L5eU44cq-DeljEOQuf-5Jh3B-uDu5lpdZ8OrH7BBJbX15gF0Zn_m7icirJk5bGbQM4xjIOY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fueling+type+III+secretion&rft.jtitle=Trends+in+microbiology+%28Regular+ed.%29&rft.au=Lee%2C+Pei-Chung&rft.au=Rietsch%2C+Arne&rft.date=2015-05-01&rft.issn=0966-842X&rft.eissn=1878-4380&rft.volume=23&rft.issue=5&rft.spage=296&rft.epage=300&rft_id=info:doi/10.1016%2Fj.tim.2015.01.012&rft_id=info%3Apmid%2F25701111&rft.externalDocID=PMC4417389
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0966842X%2FS0966842X14X00168%2Fcov150h.gif