Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets

A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 34; pp. 14264 - 14269
Main Authors Yen, Hui-Ling, Liang, Chi-Hui, Wu, Chung-Yi, Forrest, Heather L, Ferguson, Angela, Choy, Ka-Tim, Jones, Jeremy, Wong, Diana Dik-Yan, Cheung, Peter Pak-Hang, Hsu, Che-Hsiung, Li, Olive T, Yuen, Kit M, Chan, Renee W. Y, Poon, Leo L. M, Chan, Michael C. W, Nicholls, John M, Krauss, Scott, Wong, Chi-Huey, Guan, Yi, Webster, Robert G, Webby, Richard J, Peiris, Malik
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.08.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin–neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.
AbstractList A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin–neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.
A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for alpha 2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.
A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility. [PUBLICATION ABSTRACT]
A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.
A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.
Author Chan, Michael C. W
Wong, Diana Dik-Yan
Peiris, Malik
Ferguson, Angela
Nicholls, John M
Guan, Yi
Webster, Robert G
Wu, Chung-Yi
Jones, Jeremy
Yen, Hui-Ling
Hsu, Che-Hsiung
Liang, Chi-Hui
Cheung, Peter Pak-Hang
Yuen, Kit M
Krauss, Scott
Webby, Richard J
Wong, Chi-Huey
Forrest, Heather L
Li, Olive T
Chan, Renee W. Y
Poon, Leo L. M
Choy, Ka-Tim
Author_xml – sequence: 1
  fullname: Yen, Hui-Ling
– sequence: 2
  fullname: Liang, Chi-Hui
– sequence: 3
  fullname: Wu, Chung-Yi
– sequence: 4
  fullname: Forrest, Heather L
– sequence: 5
  fullname: Ferguson, Angela
– sequence: 6
  fullname: Choy, Ka-Tim
– sequence: 7
  fullname: Jones, Jeremy
– sequence: 8
  fullname: Wong, Diana Dik-Yan
– sequence: 9
  fullname: Cheung, Peter Pak-Hang
– sequence: 10
  fullname: Hsu, Che-Hsiung
– sequence: 11
  fullname: Li, Olive T
– sequence: 12
  fullname: Yuen, Kit M
– sequence: 13
  fullname: Chan, Renee W. Y
– sequence: 14
  fullname: Poon, Leo L. M
– sequence: 15
  fullname: Chan, Michael C. W
– sequence: 16
  fullname: Nicholls, John M
– sequence: 17
  fullname: Krauss, Scott
– sequence: 18
  fullname: Wong, Chi-Huey
– sequence: 19
  fullname: Guan, Yi
– sequence: 20
  fullname: Webster, Robert G
– sequence: 21
  fullname: Webby, Richard J
– sequence: 22
  fullname: Peiris, Malik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21825167$$D View this record in MEDLINE/PubMed
https://riip.hal.science/pasteur-00614343$$DView record in HAL
BookMark eNqFks-O0zAQxiO0iP0DZ05AxAUu2fXEdmxfkFYroEgVHGDPlpM4ravUDrZTqZwQr8Ab8iQ4apdCJcAXy5rffDPzec6zE-uszrLHgC4BMXw1WBUuIR2EECB-LzsDJKCoiEAn2RlCJSs4Kclpdh7CKjGCcvQgOy2BlxQqdpZ9m-m1Wiz6MRpr7I-v360evVqnR6uCzmvVK9vovHG20z7kXofBeBWd3xatd0OvYx69smFtQjC16U3c5q7L41Lng7KtXpsmn8F7yI3t-lHbLyrfGD-G9M6TotcxPMzud6oP-tH-vshu37z-dDMr5h_evru5nhdNRUUsgNIGA-mgA1YT6BRAiTkluiSsaxWtW8Y0KN3wFqfpKGtZk6aFGlWgBOP4Inu10x3Geq3bRtvUeS8Hb9bKb6VTRv4ZsWYpF24jMVRASZUEip3A8ihtdj2XgwoxWSdRKkcwwRtI_It9Qe8-jzpEmVxqdJ8s1W4MUiBCOEH4_yTnVABKv5rIl_8koaowLQVDk-jzI3TlRm-TxZNeolA1zfT0d1N-jXW3IQmgO6DxLgSvO9mYqKJxk0eml4DktIly2kR52MSUd3WUdyf994x838oUONBcYiKBlBVJyJMdsgppBQ_NMsEEETTFn-3inXJSLbwJ8vZjiYCkCrwSAuGfYWYAFA
CitedBy_id crossref_primary_10_1128_JVI_02537_14
crossref_primary_10_1099_vir_0_062836_0
crossref_primary_10_1080_22221751_2021_1899769
crossref_primary_10_1007_s00705_016_2815_x
crossref_primary_10_1016_j_vaccine_2016_12_025
crossref_primary_10_1002_anie_202111035
crossref_primary_10_1016_j_cmi_2016_07_007
crossref_primary_10_1128_mbio_01174_22
crossref_primary_10_1128_JVI_02004_13
crossref_primary_10_1371_journal_ppat_1009910
crossref_primary_10_1016_j_eehl_2023_07_004
crossref_primary_10_1093_infdis_jiu353
crossref_primary_10_3390_v14051091
crossref_primary_10_1038_s41579_018_0115_z
crossref_primary_10_1126_science_1219936
crossref_primary_10_7554_eLife_43764
crossref_primary_10_1073_pnas_1205576109
crossref_primary_10_1073_pnas_1716771115
crossref_primary_10_1128_JVI_03607_13
crossref_primary_10_1038_s41598_017_11348_0
crossref_primary_10_1371_journal_ppat_1002443
crossref_primary_10_3201_eid2406_172114
crossref_primary_10_1074_jbc_REV120_013309
crossref_primary_10_1371_journal_pone_0071401
crossref_primary_10_1038_s41564_021_01047_y
crossref_primary_10_1371_journal_pgen_1007718
crossref_primary_10_1038_s41467_024_48475_y
crossref_primary_10_1111_irv_12154
crossref_primary_10_1126_science_1229455
crossref_primary_10_1128_JVI_01444_18
crossref_primary_10_1038_s41598_024_69509_x
crossref_primary_10_1128_JVI_01243_18
crossref_primary_10_1371_journal_pone_0172059
crossref_primary_10_3390_v13050746
crossref_primary_10_1007_s00705_013_1887_0
crossref_primary_10_1038_srep27480
crossref_primary_10_3389_fmicb_2018_01088
crossref_primary_10_1128_JVI_00697_12
crossref_primary_10_1371_journal_ppat_1002791
crossref_primary_10_1128_JVI_02125_16
crossref_primary_10_1371_journal_pone_0041609
crossref_primary_10_1128_JVI_01346_16
crossref_primary_10_3390_ijms18071541
crossref_primary_10_7554_eLife_16777
crossref_primary_10_1371_journal_ppat_1008362
crossref_primary_10_3201_eid2805_211965
crossref_primary_10_5501_wjv_v3_i4_30
crossref_primary_10_1128_JVI_00868_16
crossref_primary_10_1073_pnas_1524384113
crossref_primary_10_1002_anie_201610544
crossref_primary_10_1021_acs_analchem_6b04902
crossref_primary_10_1002_anie_202004832
crossref_primary_10_1016_j_coviro_2012_03_003
crossref_primary_10_1016_j_ssci_2020_104866
crossref_primary_10_1038_s41467_024_49117_z
crossref_primary_10_3389_fvets_2018_00347
crossref_primary_10_1111_irv_12412
crossref_primary_10_1128_JVI_01636_14
crossref_primary_10_3201_eid1810_120357
crossref_primary_10_1128_JVI_01180_19
crossref_primary_10_1016_j_sbi_2016_10_003
crossref_primary_10_1371_journal_pmed_1001646
crossref_primary_10_1002_smll_202007214
crossref_primary_10_1128_JVI_00958_12
crossref_primary_10_1373_clinchem_2012_182626
crossref_primary_10_1038_srep29793
crossref_primary_10_1073_pnas_1522643113
crossref_primary_10_7554_eLife_03883
crossref_primary_10_1099_vir_0_044040_0
crossref_primary_10_1093_cid_cit649
crossref_primary_10_1109_TNB_2015_2406992
crossref_primary_10_1142_S0219525918500091
crossref_primary_10_3390_v10090461
crossref_primary_10_1016_j_cell_2014_02_040
crossref_primary_10_3389_fmicb_2017_01084
crossref_primary_10_1128_JVI_02485_14
crossref_primary_10_1371_journal_pbio_3001024
crossref_primary_10_3201_eid2602_190486
crossref_primary_10_1128_JVI_01333_13
crossref_primary_10_1016_j_virusres_2013_03_003
crossref_primary_10_1128_JVI_00967_13
crossref_primary_10_1128_JVI_01658_12
crossref_primary_10_1016_j_cbpa_2013_11_013
crossref_primary_10_1371_journal_ppat_1003223
crossref_primary_10_1080_07391102_2018_1514326
crossref_primary_10_1093_ve_vez046
crossref_primary_10_1128_JVI_02553_15
crossref_primary_10_3389_fmicb_2022_913551
crossref_primary_10_1002_bip_22314
crossref_primary_10_1128_JVI_01416_19
crossref_primary_10_3390_ani13233680
crossref_primary_10_1016_j_meegid_2013_02_020
crossref_primary_10_1128_JVI_05662_11
crossref_primary_10_1128_JVI_05794_11
crossref_primary_10_7554_eLife_18491
crossref_primary_10_1073_pnas_1211037109
crossref_primary_10_1021_acscentsci_2c00981
crossref_primary_10_2217_fvl_13_83
crossref_primary_10_1099_vir_0_000094
crossref_primary_10_1016_j_coviro_2023_101363
crossref_primary_10_1038_nature15379
crossref_primary_10_1074_jbc_M114_588541
crossref_primary_10_1002_ange_202004832
crossref_primary_10_1371_journal_pone_0159847
crossref_primary_10_1128_JVI_02688_12
crossref_primary_10_1128_JVI_01210_20
crossref_primary_10_1128_jvi_00205_22
crossref_primary_10_1016_j_jaerosci_2017_11_011
crossref_primary_10_1128_JVI_00119_14
crossref_primary_10_1186_s13567_014_0142_3
crossref_primary_10_1101_cshperspect_a038323
crossref_primary_10_1002_ange_201610544
crossref_primary_10_3389_fvets_2022_983304
crossref_primary_10_1128_JVI_02005_14
crossref_primary_10_1128_mBio_00287_21
crossref_primary_10_1002_jmv_24625
crossref_primary_10_1016_j_virol_2015_03_009
crossref_primary_10_1099_vir_0_040535_0
crossref_primary_10_1128_JVI_00013_16
crossref_primary_10_1073_pnas_1415396111
crossref_primary_10_1128_JVI_00878_21
crossref_primary_10_1128_JVI_03355_14
crossref_primary_10_3390_v15091959
crossref_primary_10_1111_irv_12184
crossref_primary_10_3390_vaccines6030058
crossref_primary_10_1128_JVI_01009_20
crossref_primary_10_1016_j_virol_2012_06_002
crossref_primary_10_3389_fchem_2022_937180
crossref_primary_10_1128_jvi_00100_22
crossref_primary_10_3389_fmicb_2020_01615
crossref_primary_10_1007_s00705_014_2009_3
crossref_primary_10_1099_vir_0_000190
crossref_primary_10_1093_infdis_jiab286
crossref_primary_10_1016_j_jconrel_2015_09_047
crossref_primary_10_3390_v15020305
crossref_primary_10_1002_ange_202111035
crossref_primary_10_1371_journal_pone_0133910
crossref_primary_10_1016_j_virol_2018_08_009
crossref_primary_10_1038_srep12828
crossref_primary_10_1021_acsnano_1c00166
crossref_primary_10_1099_vir_0_067694_0
crossref_primary_10_1371_journal_ppat_1008034
crossref_primary_10_1016_j_virol_2014_12_021
crossref_primary_10_1371_journal_ppat_1007860
crossref_primary_10_1016_j_virusres_2013_02_015
crossref_primary_10_1128_mSphere_00552_19
crossref_primary_10_1186_s13567_016_0352_y
crossref_primary_10_1128_mBio_00365_13
crossref_primary_10_1111_febs_15731
crossref_primary_10_1128_JVI_03271_12
crossref_primary_10_3390_vaccines10030395
crossref_primary_10_1016_j_tim_2014_07_002
crossref_primary_10_1016_j_psj_2023_102685
crossref_primary_10_3389_fmicb_2021_655228
crossref_primary_10_3390_v16060883
crossref_primary_10_1007_s00705_012_1577_3
crossref_primary_10_3390_vaccines8030409
crossref_primary_10_1128_JVI_00742_20
crossref_primary_10_1371_journal_pone_0070005
crossref_primary_10_3390_tropicalmed4020072
crossref_primary_10_1038_s41579_021_00535_6
crossref_primary_10_1128_JVI_00301_18
crossref_primary_10_1016_j_ympev_2018_10_042
Cites_doi 10.1128/JVI.73.8.6743-6751.1999
10.1073/pnas.0813172106
10.1016/j.virol.2010.02.024
10.1126/science.1189132
10.1021/ja104657b
10.1038/nbt0909-797
10.1016/j.virol.2011.01.015
10.1038/nature10004
10.1038/440435a
10.1002/jmv.1890340410
10.1126/science.1177127
10.1016/S0168-1702(00)00154-4
10.1056/NEJMoa0903812
10.1128/JVI.02186-10
10.1128/JVI.01639-10
10.1074/jbc.M110.115998
10.1126/science.1176225
10.1017/S1462399410001705
10.3201/eid1206.051336
10.1128/JVI.02634-09
10.1038/nature08182
10.1128/JVI.73.10.8851-8856.1999
10.1126/science.1136212
10.1073/pnas.0911915106
10.1128/JVI.02231-10
10.1086/512813
10.1128/JVI.72.9.7367-7373.1998
10.1016/0042-6822(89)90249-3
10.1016/S0065-3527(08)00403-X
10.1016/0042-6822(83)90194-0
10.1371/journal.pone.0011158
10.1126/science.1177238
10.1371/journal.ppat.1000252
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Aug 23, 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Aug 23, 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
1XC
5PM
DOI 10.1073/pnas.1111000108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts

CrossRef

Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 14269
ExternalDocumentID PMC3161546
oai_HAL_pasteur_00614343v1
2435894821
21825167
10_1073_pnas_1111000108
108_34_14264
27979495
US201400186990
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: PHS HHS
  grantid: HHSN266200700005C
– fundername: NIAID NIH HHS
  grantid: HHSN266200700005C
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
1XC
UMC
5PM
ID FETCH-LOGICAL-c659t-155c314f1f17b41fa1123854e247fda5bd77e1aec8d382557d7c5801b061a9783
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:03 EDT 2025
Fri May 09 12:15:47 EDT 2025
Fri Jul 11 03:00:17 EDT 2025
Fri Jul 11 00:05:16 EDT 2025
Fri Jul 11 08:10:38 EDT 2025
Mon Jun 30 08:27:32 EDT 2025
Thu Apr 03 06:56:13 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Tue Jul 01 00:47:14 EDT 2025
Wed Nov 11 00:29:39 EST 2020
Thu May 29 08:40:44 EDT 2025
Wed Dec 27 19:13:26 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c659t-155c314f1f17b41fa1123854e247fda5bd77e1aec8d382557d7c5801b061a9783
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMCID: PMC3161546
Author contributions: H.-L.Y. and M.P. designed research; H.-L.Y., C.-H.L., C.-Y.W., H.L.F., A.F., K.-T.C., J.J., D.D.-Y.W., P.P.-H.C., C.-H.H., O.T.L., K.M.Y., R.W.Y.C., L.L.M.P., M.C.W.C., J.M.N., and S.K. performed research; C.-Y.W., C.-H.W., and Y.G. contributed new reagents/analytic tools; H.-L.Y., C.-H.L., C.-Y.W., and M.P. analyzed data; and H.-L.Y., C.-Y.W., R.G.W., R.J.W., and M.P. wrote the paper.
Contributed by Robert G. Webster, July 11, 2011 (sent for review April 15, 2011)
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3161546
PMID 21825167
PQID 885352066
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_904484031
fao_agris_US201400186990
jstor_primary_27979495
pubmed_primary_21825167
proquest_journals_885352066
proquest_miscellaneous_885910649
crossref_citationtrail_10_1073_pnas_1111000108
pnas_primary_108_34_14264
proquest_miscellaneous_1663529701
hal_primary_oai_HAL_pasteur_00614343v1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3161546
crossref_primary_10_1073_pnas_1111000108
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-23
PublicationDateYYYYMMDD 2011-08-23
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
21123386 - J Virol. 2011 Feb;85(4):1563-72
20130063 - J Virol. 2010 Apr;84(8):3752-8
20574518 - PLoS One. 2010;5(6):e11158
19741625 - Nat Biotechnol. 2009 Sep;27(9):797-9
9696833 - J Virol. 1998 Sep;72(9):7367-73
17272724 - Science. 2007 Feb 2;315(5812):655-9
19516283 - Nature. 2009 Jun 25;459(7250):1122-5
20303563 - Virology. 2010 May 25;401(1):1-5
21333316 - Virology. 2011 Apr 10;412(2):401-10
20882975 - J Am Chem Soc. 2010 Oct 27;132(42):14849-56
10930664 - Virus Res. 2000 Jun;68(1):71-85
10482643 - J Virol. 1999 Oct;73(10):8851-6
19465683 - Science. 2009 Jul 10;325(5937):197-201
20826688 - J Virol. 2010 Nov;84(22):12069-74
20724471 - J Biol Chem. 2010 Oct 29;285(44):34016-26
19081490 - Adv Virus Res. 2008;72:127-54
2815586 - Virology. 1989 Nov;173(1):317-22
10400772 - J Virol. 1999 Aug;73(8):6743-51
19423871 - N Engl J Med. 2009 Jun 18;360(25):2616-25
1658216 - J Med Virol. 1991 Aug;34(4):248-57
16707041 - Emerg Infect Dis. 2006 Jun;12(6):881-6
19995968 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21312-6
17366454 - Clin Infect Dis. 2007 Apr 15;44(8):1084-8
21144091 - Expert Rev Mol Med. 2010;12:e39
19211790 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71
16554799 - Nature. 2006 Mar 23;440(7083):435-6
19574347 - Science. 2009 Jul 24;325(5939):484-7
20558710 - Science. 2010 Jun 18;328(5985):1529
21084485 - J Virol. 2011 Feb;85(3):1400-2
6623931 - Virology. 1983 Sep;129(2):521-3
19119420 - PLoS Pathog. 2009 Jan;5(1):e1000252
19574348 - Science. 2009 Jul 24;325(5939):481-3
21614079 - Nature. 2011 May 26;473(7348):519-22
References_xml – ident: e_1_3_3_29_2
  doi: 10.1128/JVI.73.8.6743-6751.1999
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0813172106
– ident: e_1_3_3_15_2
  doi: 10.1016/j.virol.2010.02.024
– ident: e_1_3_3_24_2
  doi: 10.1126/science.1189132
– ident: e_1_3_3_16_2
  doi: 10.1021/ja104657b
– ident: e_1_3_3_18_2
  doi: 10.1038/nbt0909-797
– ident: e_1_3_3_17_2
  doi: 10.1016/j.virol.2011.01.015
– ident: e_1_3_3_25_2
  doi: 10.1038/nature10004
– ident: e_1_3_3_28_2
  doi: 10.1038/440435a
– ident: e_1_3_3_5_2
  doi: 10.1002/jmv.1890340410
– ident: e_1_3_3_32_2
  doi: 10.1126/science.1177127
– ident: e_1_3_3_9_2
  doi: 10.1016/S0168-1702(00)00154-4
– ident: e_1_3_3_8_2
  doi: 10.1056/NEJMoa0903812
– ident: e_1_3_3_33_2
  doi: 10.1128/JVI.02186-10
– ident: e_1_3_3_19_2
  doi: 10.1128/JVI.01639-10
– ident: e_1_3_3_22_2
  doi: 10.1074/jbc.M110.115998
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1176225
– ident: e_1_3_3_26_2
  doi: 10.1017/S1462399410001705
– ident: e_1_3_3_27_2
  doi: 10.3201/eid1206.051336
– ident: e_1_3_3_14_2
  doi: 10.1128/JVI.02634-09
– ident: e_1_3_3_2_2
  doi: 10.1038/nature08182
– ident: e_1_3_3_3_2
  doi: 10.1128/JVI.73.10.8851-8856.1999
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1136212
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.0911915106
– ident: e_1_3_3_30_2
  doi: 10.1128/JVI.02231-10
– ident: e_1_3_3_7_2
  doi: 10.1086/512813
– ident: e_1_3_3_20_2
  doi: 10.1128/JVI.72.9.7367-7373.1998
– ident: e_1_3_3_21_2
  doi: 10.1016/0042-6822(89)90249-3
– ident: e_1_3_3_4_2
  doi: 10.1016/S0065-3527(08)00403-X
– ident: e_1_3_3_6_2
  doi: 10.1016/0042-6822(83)90194-0
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.pone.0011158
– ident: e_1_3_3_31_2
  doi: 10.1126/science.1177238
– ident: e_1_3_3_12_2
  doi: 10.1371/journal.ppat.1000252
– reference: 20826688 - J Virol. 2010 Nov;84(22):12069-74
– reference: 19081490 - Adv Virus Res. 2008;72:127-54
– reference: 20882975 - J Am Chem Soc. 2010 Oct 27;132(42):14849-56
– reference: 21123386 - J Virol. 2011 Feb;85(4):1563-72
– reference: 19995968 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21312-6
– reference: 17272724 - Science. 2007 Feb 2;315(5812):655-9
– reference: 16707041 - Emerg Infect Dis. 2006 Jun;12(6):881-6
– reference: 19516283 - Nature. 2009 Jun 25;459(7250):1122-5
– reference: 10930664 - Virus Res. 2000 Jun;68(1):71-85
– reference: 10482643 - J Virol. 1999 Oct;73(10):8851-6
– reference: 20558710 - Science. 2010 Jun 18;328(5985):1529
– reference: 19465683 - Science. 2009 Jul 10;325(5937):197-201
– reference: 1658216 - J Med Virol. 1991 Aug;34(4):248-57
– reference: 19211790 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71
– reference: 6623931 - Virology. 1983 Sep;129(2):521-3
– reference: 21614079 - Nature. 2011 May 26;473(7348):519-22
– reference: 2815586 - Virology. 1989 Nov;173(1):317-22
– reference: 20130063 - J Virol. 2010 Apr;84(8):3752-8
– reference: 21084485 - J Virol. 2011 Feb;85(3):1400-2
– reference: 19574347 - Science. 2009 Jul 24;325(5939):484-7
– reference: 20303563 - Virology. 2010 May 25;401(1):1-5
– reference: 10400772 - J Virol. 1999 Aug;73(8):6743-51
– reference: 19423871 - N Engl J Med. 2009 Jun 18;360(25):2616-25
– reference: 21333316 - Virology. 2011 Apr 10;412(2):401-10
– reference: 16554799 - Nature. 2006 Mar 23;440(7083):435-6
– reference: 19119420 - PLoS Pathog. 2009 Jan;5(1):e1000252
– reference: 19574348 - Science. 2009 Jul 24;325(5939):481-3
– reference: 20574518 - PLoS One. 2010;5(6):e11158
– reference: 20724471 - J Biol Chem. 2010 Oct 29;285(44):34016-26
– reference: 19741625 - Nat Biotechnol. 2009 Sep;27(9):797-9
– reference: 17366454 - Clin Infect Dis. 2007 Apr 15;44(8):1084-8
– reference: 21144091 - Expert Rev Mol Med. 2010;12:e39
– reference: 9696833 - J Virol. 1998 Sep;72(9):7367-73
SSID ssj0009580
Score 2.4509945
Snippet A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14264
SubjectTerms Amino acids
Animals
Biological Sciences
Cells
China
direct contact
Disease transmission
double prime M gene
Enzymatic activity
enzyme activity
Enzymes
Epithelial cells
Exo- alpha -sialidase
ferrets
Ferrets - virology
genes
Genome, Viral - genetics
H1N1 subtype influenza A virus
Hemagglutinin Glycoproteins, Influenza Virus - metabolism
humans
Influenza
Influenza A virus
Influenza A Virus, H1N1 Subtype - enzymology
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - physiology
Influenza virus
Kinetics
Life Sciences
Microbiology and Parasitology
monitoring
Mustela
Neuraminidase - metabolism
nose
Orthomyxoviridae
Orthomyxoviridae Infections - epidemiology
Orthomyxoviridae Infections - transmission
Orthomyxoviridae Infections - virology
pandemic
Pandemics
Polysaccharides
Polysaccharides - metabolism
Protein Binding
Receptors
Receptors, Virus - metabolism
Recombination, Genetic - genetics
Replication
Respiratory System - pathology
Respiratory System - virology
Seasons
sialidase
Substrate Specificity
Swine
Swine flu
Swine influenza
Transmission efficiency
Tropism
Virology
virus replication
Virus Replication - physiology
Viruses
Title Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets
URI https://www.jstor.org/stable/27979495
http://www.pnas.org/content/108/34/14264.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21825167
https://www.proquest.com/docview/885352066
https://www.proquest.com/docview/1663529701
https://www.proquest.com/docview/885910649
https://www.proquest.com/docview/904484031
https://riip.hal.science/pasteur-00614343
https://pubmed.ncbi.nlm.nih.gov/PMC3161546
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF615cIFUaDUFNAiIVRkOcT22l4fqwoUoSiqRCvak7Wx10kk6kRJXImeEK_AG_IKvAAzu-u_KEXAxUocZ73JfJm_zHxDyGuwKimLMukwEUGAkoWBIzhLnZwLnguIAFyhCmRH4eCCfbwMLnd2frWqlsr1uJfebu0r-R-pwjmQK3bJ_oNk60XhBDwG-cIRJAzHv5LxQF6LyQTvUEB8b8oWfKSoFEgZkoGFssdYu5iqmvQcm3WXzX_rTrbE8vE1zokoViBwUyr7tSocWGCGGYvnB-7IxbotnGdyK-yb2bJUdbSw4lJqLqjKwz2rLeKqWmZUJRxPmvYVo1NWtmOfjZphyINy5gwxe3HVtKidTmcOnLeHgORJcxK0lHM1sz-XTTpXebP2sGebmSPtlIbO0equ4zYjuN5VvZ-2FvfAsjLde92TWnGD3-OETI8erTV7n7cgbJKmWlG76AluNSGg83DucSFWypygE6yXaQFqca0Qhez3gavHiXSpvDdMbF34CEslPkvU3XfJPQ9iG09ZkzZTNNd9U-ZDVnxUkf9uY1OKyFrvoONV7eZiDscpVvbqIltk7oX3bouiNouBW97V-UPywIRF9ERjfJ_syOIR2a-EQo8NO_rbx-R7B_Q_v_3owJ0auFMDd7oF7nQT7nSeU0AOreBOEe60hjtVcIfn1MD9Cbn48P78dOCYQSJOGgbx2gGfOfVdlru5G42ZmwsIMnweMOmxKM9EMM6iSLpCpjzz4fsMoixKQQruGJxdgbnRA7JXzAt5SGgUyDEPmcszGTLkyvMkREQ8yDyeyrCfW6RXCSJJDcs-Dnv5kqhqj8hPUBBJI0SLHNdvWGiCmbsvPQTJJmIC5j-5-ORhcqSPI-XivkXegLjrBZAzfnAyTBYCTEW5TDBQwRbyG9ciBwoR9aVeFINJjgOLWOp2zR4apFrkqMJNYtTfKuEcmaEgYrHIq_pVkB3-4SgKOS9h6xjOeHHUh9vSO67hSKAJcVF89yVxnzHOwPuwyFON1Wb3Bv8WiToo7nwT3VeK2VSx6PsY67Lw2R8-9xG536in52RvvSzlC4hB1uOX6jf7Gy2CMOc
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hemagglutinin%E2%80%93neuraminidase+balance+confers+respiratory-droplet+transmissibility+of+the+pandemic+H1N1+influenza+virus+in+ferrets&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hui-Ling+Yen&rft.au=Chi-Hui+Liang&rft.au=Chung-Yi+Wu&rft.au=Heather+L.+Forrest&rft.date=2011-08-23&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=34&rft.spage=14264&rft_id=info:doi/10.1073%2Fpnas.1111000108&rft_id=info%3Apmid%2F21825167&rft.externalDBID=n%2Fa&rft.externalDocID=108_34_14264
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F34.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F34.cover.gif