Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets
A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 34; pp. 14264 - 14269 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.08.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin–neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility. |
---|---|
AbstractList | A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin–neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility. A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for alpha 2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility. A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility. [PUBLICATION ABSTRACT] A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility.A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility. A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. To identify molecular determinants that allowed efficient transmission of the pandemic H1N1 virus among humans, we evaluated the direct-contact and respiratory-droplet transmissibility in ferrets of representative swine influenza viruses of different lineages obtained through a 13-y surveillance program in southern China. Whereas all viruses studied were transmitted by direct contact with varying efficiency, respiratory-droplet transmissibility (albeit inefficient) was observed only in the TRsw-like A/swine/Hong Kong/915/04 (sw915) (H1N2) virus. The sw915 virus had acquired the M gene derived from EAsw and differed from the gene constellation of the pandemic H1N1 virus by the neuraminidase (NA) gene alone. Glycan array analysis showed that pandemic H1N1 virus A/HK/415742/09 (HK415742) and sw915 possess similar receptor-binding specificity and affinity for α2,6-linked sialosides. Sw915 titers in differentiated normal human bronchial epithelial cells and in ferret nasal washes were lower than those of HK415742. Introducing the NA from pandemic HK415742 into sw915 did not increase viral replication efficiency but increased respiratory-droplet transmissibility, despite a substantial amino acid difference between the two viruses. The NA of the pandemic HK415742 virus possessed significantly higher enzyme activity than that of sw915 or other swine influenza viruses. Our results suggest that a unique gene constellation and hemagglutinin-neuraminidase balance play a critical role in acquisition of efficient and sustained human-to-human transmissibility. |
Author | Chan, Michael C. W Wong, Diana Dik-Yan Peiris, Malik Ferguson, Angela Nicholls, John M Guan, Yi Webster, Robert G Wu, Chung-Yi Jones, Jeremy Yen, Hui-Ling Hsu, Che-Hsiung Liang, Chi-Hui Cheung, Peter Pak-Hang Yuen, Kit M Krauss, Scott Webby, Richard J Wong, Chi-Huey Forrest, Heather L Li, Olive T Chan, Renee W. Y Poon, Leo L. M Choy, Ka-Tim |
Author_xml | – sequence: 1 fullname: Yen, Hui-Ling – sequence: 2 fullname: Liang, Chi-Hui – sequence: 3 fullname: Wu, Chung-Yi – sequence: 4 fullname: Forrest, Heather L – sequence: 5 fullname: Ferguson, Angela – sequence: 6 fullname: Choy, Ka-Tim – sequence: 7 fullname: Jones, Jeremy – sequence: 8 fullname: Wong, Diana Dik-Yan – sequence: 9 fullname: Cheung, Peter Pak-Hang – sequence: 10 fullname: Hsu, Che-Hsiung – sequence: 11 fullname: Li, Olive T – sequence: 12 fullname: Yuen, Kit M – sequence: 13 fullname: Chan, Renee W. Y – sequence: 14 fullname: Poon, Leo L. M – sequence: 15 fullname: Chan, Michael C. W – sequence: 16 fullname: Nicholls, John M – sequence: 17 fullname: Krauss, Scott – sequence: 18 fullname: Wong, Chi-Huey – sequence: 19 fullname: Guan, Yi – sequence: 20 fullname: Webster, Robert G – sequence: 21 fullname: Webby, Richard J – sequence: 22 fullname: Peiris, Malik |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21825167$$D View this record in MEDLINE/PubMed https://riip.hal.science/pasteur-00614343$$DView record in HAL |
BookMark | eNqFks-O0zAQxiO0iP0DZ05AxAUu2fXEdmxfkFYroEgVHGDPlpM4ravUDrZTqZwQr8Ab8iQ4apdCJcAXy5rffDPzec6zE-uszrLHgC4BMXw1WBUuIR2EECB-LzsDJKCoiEAn2RlCJSs4Kclpdh7CKjGCcvQgOy2BlxQqdpZ9m-m1Wiz6MRpr7I-v360evVqnR6uCzmvVK9vovHG20z7kXofBeBWd3xatd0OvYx69smFtQjC16U3c5q7L41Lng7KtXpsmn8F7yI3t-lHbLyrfGD-G9M6TotcxPMzud6oP-tH-vshu37z-dDMr5h_evru5nhdNRUUsgNIGA-mgA1YT6BRAiTkluiSsaxWtW8Y0KN3wFqfpKGtZk6aFGlWgBOP4Inu10x3Geq3bRtvUeS8Hb9bKb6VTRv4ZsWYpF24jMVRASZUEip3A8ihtdj2XgwoxWSdRKkcwwRtI_It9Qe8-jzpEmVxqdJ8s1W4MUiBCOEH4_yTnVABKv5rIl_8koaowLQVDk-jzI3TlRm-TxZNeolA1zfT0d1N-jXW3IQmgO6DxLgSvO9mYqKJxk0eml4DktIly2kR52MSUd3WUdyf994x838oUONBcYiKBlBVJyJMdsgppBQ_NMsEEETTFn-3inXJSLbwJ8vZjiYCkCrwSAuGfYWYAFA |
CitedBy_id | crossref_primary_10_1128_JVI_02537_14 crossref_primary_10_1099_vir_0_062836_0 crossref_primary_10_1080_22221751_2021_1899769 crossref_primary_10_1007_s00705_016_2815_x crossref_primary_10_1016_j_vaccine_2016_12_025 crossref_primary_10_1002_anie_202111035 crossref_primary_10_1016_j_cmi_2016_07_007 crossref_primary_10_1128_mbio_01174_22 crossref_primary_10_1128_JVI_02004_13 crossref_primary_10_1371_journal_ppat_1009910 crossref_primary_10_1016_j_eehl_2023_07_004 crossref_primary_10_1093_infdis_jiu353 crossref_primary_10_3390_v14051091 crossref_primary_10_1038_s41579_018_0115_z crossref_primary_10_1126_science_1219936 crossref_primary_10_7554_eLife_43764 crossref_primary_10_1073_pnas_1205576109 crossref_primary_10_1073_pnas_1716771115 crossref_primary_10_1128_JVI_03607_13 crossref_primary_10_1038_s41598_017_11348_0 crossref_primary_10_1371_journal_ppat_1002443 crossref_primary_10_3201_eid2406_172114 crossref_primary_10_1074_jbc_REV120_013309 crossref_primary_10_1371_journal_pone_0071401 crossref_primary_10_1038_s41564_021_01047_y crossref_primary_10_1371_journal_pgen_1007718 crossref_primary_10_1038_s41467_024_48475_y crossref_primary_10_1111_irv_12154 crossref_primary_10_1126_science_1229455 crossref_primary_10_1128_JVI_01444_18 crossref_primary_10_1038_s41598_024_69509_x crossref_primary_10_1128_JVI_01243_18 crossref_primary_10_1371_journal_pone_0172059 crossref_primary_10_3390_v13050746 crossref_primary_10_1007_s00705_013_1887_0 crossref_primary_10_1038_srep27480 crossref_primary_10_3389_fmicb_2018_01088 crossref_primary_10_1128_JVI_00697_12 crossref_primary_10_1371_journal_ppat_1002791 crossref_primary_10_1128_JVI_02125_16 crossref_primary_10_1371_journal_pone_0041609 crossref_primary_10_1128_JVI_01346_16 crossref_primary_10_3390_ijms18071541 crossref_primary_10_7554_eLife_16777 crossref_primary_10_1371_journal_ppat_1008362 crossref_primary_10_3201_eid2805_211965 crossref_primary_10_5501_wjv_v3_i4_30 crossref_primary_10_1128_JVI_00868_16 crossref_primary_10_1073_pnas_1524384113 crossref_primary_10_1002_anie_201610544 crossref_primary_10_1021_acs_analchem_6b04902 crossref_primary_10_1002_anie_202004832 crossref_primary_10_1016_j_coviro_2012_03_003 crossref_primary_10_1016_j_ssci_2020_104866 crossref_primary_10_1038_s41467_024_49117_z crossref_primary_10_3389_fvets_2018_00347 crossref_primary_10_1111_irv_12412 crossref_primary_10_1128_JVI_01636_14 crossref_primary_10_3201_eid1810_120357 crossref_primary_10_1128_JVI_01180_19 crossref_primary_10_1016_j_sbi_2016_10_003 crossref_primary_10_1371_journal_pmed_1001646 crossref_primary_10_1002_smll_202007214 crossref_primary_10_1128_JVI_00958_12 crossref_primary_10_1373_clinchem_2012_182626 crossref_primary_10_1038_srep29793 crossref_primary_10_1073_pnas_1522643113 crossref_primary_10_7554_eLife_03883 crossref_primary_10_1099_vir_0_044040_0 crossref_primary_10_1093_cid_cit649 crossref_primary_10_1109_TNB_2015_2406992 crossref_primary_10_1142_S0219525918500091 crossref_primary_10_3390_v10090461 crossref_primary_10_1016_j_cell_2014_02_040 crossref_primary_10_3389_fmicb_2017_01084 crossref_primary_10_1128_JVI_02485_14 crossref_primary_10_1371_journal_pbio_3001024 crossref_primary_10_3201_eid2602_190486 crossref_primary_10_1128_JVI_01333_13 crossref_primary_10_1016_j_virusres_2013_03_003 crossref_primary_10_1128_JVI_00967_13 crossref_primary_10_1128_JVI_01658_12 crossref_primary_10_1016_j_cbpa_2013_11_013 crossref_primary_10_1371_journal_ppat_1003223 crossref_primary_10_1080_07391102_2018_1514326 crossref_primary_10_1093_ve_vez046 crossref_primary_10_1128_JVI_02553_15 crossref_primary_10_3389_fmicb_2022_913551 crossref_primary_10_1002_bip_22314 crossref_primary_10_1128_JVI_01416_19 crossref_primary_10_3390_ani13233680 crossref_primary_10_1016_j_meegid_2013_02_020 crossref_primary_10_1128_JVI_05662_11 crossref_primary_10_1128_JVI_05794_11 crossref_primary_10_7554_eLife_18491 crossref_primary_10_1073_pnas_1211037109 crossref_primary_10_1021_acscentsci_2c00981 crossref_primary_10_2217_fvl_13_83 crossref_primary_10_1099_vir_0_000094 crossref_primary_10_1016_j_coviro_2023_101363 crossref_primary_10_1038_nature15379 crossref_primary_10_1074_jbc_M114_588541 crossref_primary_10_1002_ange_202004832 crossref_primary_10_1371_journal_pone_0159847 crossref_primary_10_1128_JVI_02688_12 crossref_primary_10_1128_JVI_01210_20 crossref_primary_10_1128_jvi_00205_22 crossref_primary_10_1016_j_jaerosci_2017_11_011 crossref_primary_10_1128_JVI_00119_14 crossref_primary_10_1186_s13567_014_0142_3 crossref_primary_10_1101_cshperspect_a038323 crossref_primary_10_1002_ange_201610544 crossref_primary_10_3389_fvets_2022_983304 crossref_primary_10_1128_JVI_02005_14 crossref_primary_10_1128_mBio_00287_21 crossref_primary_10_1002_jmv_24625 crossref_primary_10_1016_j_virol_2015_03_009 crossref_primary_10_1099_vir_0_040535_0 crossref_primary_10_1128_JVI_00013_16 crossref_primary_10_1073_pnas_1415396111 crossref_primary_10_1128_JVI_00878_21 crossref_primary_10_1128_JVI_03355_14 crossref_primary_10_3390_v15091959 crossref_primary_10_1111_irv_12184 crossref_primary_10_3390_vaccines6030058 crossref_primary_10_1128_JVI_01009_20 crossref_primary_10_1016_j_virol_2012_06_002 crossref_primary_10_3389_fchem_2022_937180 crossref_primary_10_1128_jvi_00100_22 crossref_primary_10_3389_fmicb_2020_01615 crossref_primary_10_1007_s00705_014_2009_3 crossref_primary_10_1099_vir_0_000190 crossref_primary_10_1093_infdis_jiab286 crossref_primary_10_1016_j_jconrel_2015_09_047 crossref_primary_10_3390_v15020305 crossref_primary_10_1002_ange_202111035 crossref_primary_10_1371_journal_pone_0133910 crossref_primary_10_1016_j_virol_2018_08_009 crossref_primary_10_1038_srep12828 crossref_primary_10_1021_acsnano_1c00166 crossref_primary_10_1099_vir_0_067694_0 crossref_primary_10_1371_journal_ppat_1008034 crossref_primary_10_1016_j_virol_2014_12_021 crossref_primary_10_1371_journal_ppat_1007860 crossref_primary_10_1016_j_virusres_2013_02_015 crossref_primary_10_1128_mSphere_00552_19 crossref_primary_10_1186_s13567_016_0352_y crossref_primary_10_1128_mBio_00365_13 crossref_primary_10_1111_febs_15731 crossref_primary_10_1128_JVI_03271_12 crossref_primary_10_3390_vaccines10030395 crossref_primary_10_1016_j_tim_2014_07_002 crossref_primary_10_1016_j_psj_2023_102685 crossref_primary_10_3389_fmicb_2021_655228 crossref_primary_10_3390_v16060883 crossref_primary_10_1007_s00705_012_1577_3 crossref_primary_10_3390_vaccines8030409 crossref_primary_10_1128_JVI_00742_20 crossref_primary_10_1371_journal_pone_0070005 crossref_primary_10_3390_tropicalmed4020072 crossref_primary_10_1038_s41579_021_00535_6 crossref_primary_10_1128_JVI_00301_18 crossref_primary_10_1016_j_ympev_2018_10_042 |
Cites_doi | 10.1128/JVI.73.8.6743-6751.1999 10.1073/pnas.0813172106 10.1016/j.virol.2010.02.024 10.1126/science.1189132 10.1021/ja104657b 10.1038/nbt0909-797 10.1016/j.virol.2011.01.015 10.1038/nature10004 10.1038/440435a 10.1002/jmv.1890340410 10.1126/science.1177127 10.1016/S0168-1702(00)00154-4 10.1056/NEJMoa0903812 10.1128/JVI.02186-10 10.1128/JVI.01639-10 10.1074/jbc.M110.115998 10.1126/science.1176225 10.1017/S1462399410001705 10.3201/eid1206.051336 10.1128/JVI.02634-09 10.1038/nature08182 10.1128/JVI.73.10.8851-8856.1999 10.1126/science.1136212 10.1073/pnas.0911915106 10.1128/JVI.02231-10 10.1086/512813 10.1128/JVI.72.9.7367-7373.1998 10.1016/0042-6822(89)90249-3 10.1016/S0065-3527(08)00403-X 10.1016/0042-6822(83)90194-0 10.1371/journal.pone.0011158 10.1126/science.1177238 10.1371/journal.ppat.1000252 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Aug 23, 2011 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Aug 23, 2011 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 1XC 5PM |
DOI | 10.1073/pnas.1111000108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts CrossRef Virology and AIDS Abstracts MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 14269 |
ExternalDocumentID | PMC3161546 oai_HAL_pasteur_00614343v1 2435894821 21825167 10_1073_pnas_1111000108 108_34_14264 27979495 US201400186990 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: PHS HHS grantid: HHSN266200700005C – fundername: NIAID NIH HHS grantid: HHSN266200700005C |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 1XC UMC 5PM |
ID | FETCH-LOGICAL-c659t-155c314f1f17b41fa1123854e247fda5bd77e1aec8d382557d7c5801b061a9783 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:11:03 EDT 2025 Fri May 09 12:15:47 EDT 2025 Fri Jul 11 03:00:17 EDT 2025 Fri Jul 11 00:05:16 EDT 2025 Fri Jul 11 08:10:38 EDT 2025 Mon Jun 30 08:27:32 EDT 2025 Thu Apr 03 06:56:13 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 Tue Jul 01 00:47:14 EDT 2025 Wed Nov 11 00:29:39 EST 2020 Thu May 29 08:40:44 EDT 2025 Wed Dec 27 19:13:26 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c659t-155c314f1f17b41fa1123854e247fda5bd77e1aec8d382557d7c5801b061a9783 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 PMCID: PMC3161546 Author contributions: H.-L.Y. and M.P. designed research; H.-L.Y., C.-H.L., C.-Y.W., H.L.F., A.F., K.-T.C., J.J., D.D.-Y.W., P.P.-H.C., C.-H.H., O.T.L., K.M.Y., R.W.Y.C., L.L.M.P., M.C.W.C., J.M.N., and S.K. performed research; C.-Y.W., C.-H.W., and Y.G. contributed new reagents/analytic tools; H.-L.Y., C.-H.L., C.-Y.W., and M.P. analyzed data; and H.-L.Y., C.-Y.W., R.G.W., R.J.W., and M.P. wrote the paper. Contributed by Robert G. Webster, July 11, 2011 (sent for review April 15, 2011) |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3161546 |
PMID | 21825167 |
PQID | 885352066 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_904484031 fao_agris_US201400186990 jstor_primary_27979495 pubmed_primary_21825167 proquest_journals_885352066 proquest_miscellaneous_885910649 crossref_citationtrail_10_1073_pnas_1111000108 pnas_primary_108_34_14264 proquest_miscellaneous_1663529701 hal_primary_oai_HAL_pasteur_00614343v1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3161546 crossref_primary_10_1073_pnas_1111000108 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-23 |
PublicationDateYYYYMMDD | 2011-08-23 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 21123386 - J Virol. 2011 Feb;85(4):1563-72 20130063 - J Virol. 2010 Apr;84(8):3752-8 20574518 - PLoS One. 2010;5(6):e11158 19741625 - Nat Biotechnol. 2009 Sep;27(9):797-9 9696833 - J Virol. 1998 Sep;72(9):7367-73 17272724 - Science. 2007 Feb 2;315(5812):655-9 19516283 - Nature. 2009 Jun 25;459(7250):1122-5 20303563 - Virology. 2010 May 25;401(1):1-5 21333316 - Virology. 2011 Apr 10;412(2):401-10 20882975 - J Am Chem Soc. 2010 Oct 27;132(42):14849-56 10930664 - Virus Res. 2000 Jun;68(1):71-85 10482643 - J Virol. 1999 Oct;73(10):8851-6 19465683 - Science. 2009 Jul 10;325(5937):197-201 20826688 - J Virol. 2010 Nov;84(22):12069-74 20724471 - J Biol Chem. 2010 Oct 29;285(44):34016-26 19081490 - Adv Virus Res. 2008;72:127-54 2815586 - Virology. 1989 Nov;173(1):317-22 10400772 - J Virol. 1999 Aug;73(8):6743-51 19423871 - N Engl J Med. 2009 Jun 18;360(25):2616-25 1658216 - J Med Virol. 1991 Aug;34(4):248-57 16707041 - Emerg Infect Dis. 2006 Jun;12(6):881-6 19995968 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21312-6 17366454 - Clin Infect Dis. 2007 Apr 15;44(8):1084-8 21144091 - Expert Rev Mol Med. 2010;12:e39 19211790 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71 16554799 - Nature. 2006 Mar 23;440(7083):435-6 19574347 - Science. 2009 Jul 24;325(5939):484-7 20558710 - Science. 2010 Jun 18;328(5985):1529 21084485 - J Virol. 2011 Feb;85(3):1400-2 6623931 - Virology. 1983 Sep;129(2):521-3 19119420 - PLoS Pathog. 2009 Jan;5(1):e1000252 19574348 - Science. 2009 Jul 24;325(5939):481-3 21614079 - Nature. 2011 May 26;473(7348):519-22 |
References_xml | – ident: e_1_3_3_29_2 doi: 10.1128/JVI.73.8.6743-6751.1999 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.0813172106 – ident: e_1_3_3_15_2 doi: 10.1016/j.virol.2010.02.024 – ident: e_1_3_3_24_2 doi: 10.1126/science.1189132 – ident: e_1_3_3_16_2 doi: 10.1021/ja104657b – ident: e_1_3_3_18_2 doi: 10.1038/nbt0909-797 – ident: e_1_3_3_17_2 doi: 10.1016/j.virol.2011.01.015 – ident: e_1_3_3_25_2 doi: 10.1038/nature10004 – ident: e_1_3_3_28_2 doi: 10.1038/440435a – ident: e_1_3_3_5_2 doi: 10.1002/jmv.1890340410 – ident: e_1_3_3_32_2 doi: 10.1126/science.1177127 – ident: e_1_3_3_9_2 doi: 10.1016/S0168-1702(00)00154-4 – ident: e_1_3_3_8_2 doi: 10.1056/NEJMoa0903812 – ident: e_1_3_3_33_2 doi: 10.1128/JVI.02186-10 – ident: e_1_3_3_19_2 doi: 10.1128/JVI.01639-10 – ident: e_1_3_3_22_2 doi: 10.1074/jbc.M110.115998 – ident: e_1_3_3_1_2 doi: 10.1126/science.1176225 – ident: e_1_3_3_26_2 doi: 10.1017/S1462399410001705 – ident: e_1_3_3_27_2 doi: 10.3201/eid1206.051336 – ident: e_1_3_3_14_2 doi: 10.1128/JVI.02634-09 – ident: e_1_3_3_2_2 doi: 10.1038/nature08182 – ident: e_1_3_3_3_2 doi: 10.1128/JVI.73.10.8851-8856.1999 – ident: e_1_3_3_10_2 doi: 10.1126/science.1136212 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0911915106 – ident: e_1_3_3_30_2 doi: 10.1128/JVI.02231-10 – ident: e_1_3_3_7_2 doi: 10.1086/512813 – ident: e_1_3_3_20_2 doi: 10.1128/JVI.72.9.7367-7373.1998 – ident: e_1_3_3_21_2 doi: 10.1016/0042-6822(89)90249-3 – ident: e_1_3_3_4_2 doi: 10.1016/S0065-3527(08)00403-X – ident: e_1_3_3_6_2 doi: 10.1016/0042-6822(83)90194-0 – ident: e_1_3_3_11_2 doi: 10.1371/journal.pone.0011158 – ident: e_1_3_3_31_2 doi: 10.1126/science.1177238 – ident: e_1_3_3_12_2 doi: 10.1371/journal.ppat.1000252 – reference: 20826688 - J Virol. 2010 Nov;84(22):12069-74 – reference: 19081490 - Adv Virus Res. 2008;72:127-54 – reference: 20882975 - J Am Chem Soc. 2010 Oct 27;132(42):14849-56 – reference: 21123386 - J Virol. 2011 Feb;85(4):1563-72 – reference: 19995968 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21312-6 – reference: 17272724 - Science. 2007 Feb 2;315(5812):655-9 – reference: 16707041 - Emerg Infect Dis. 2006 Jun;12(6):881-6 – reference: 19516283 - Nature. 2009 Jun 25;459(7250):1122-5 – reference: 10930664 - Virus Res. 2000 Jun;68(1):71-85 – reference: 10482643 - J Virol. 1999 Oct;73(10):8851-6 – reference: 20558710 - Science. 2010 Jun 18;328(5985):1529 – reference: 19465683 - Science. 2009 Jul 10;325(5937):197-201 – reference: 1658216 - J Med Virol. 1991 Aug;34(4):248-57 – reference: 19211790 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71 – reference: 6623931 - Virology. 1983 Sep;129(2):521-3 – reference: 21614079 - Nature. 2011 May 26;473(7348):519-22 – reference: 2815586 - Virology. 1989 Nov;173(1):317-22 – reference: 20130063 - J Virol. 2010 Apr;84(8):3752-8 – reference: 21084485 - J Virol. 2011 Feb;85(3):1400-2 – reference: 19574347 - Science. 2009 Jul 24;325(5939):484-7 – reference: 20303563 - Virology. 2010 May 25;401(1):1-5 – reference: 10400772 - J Virol. 1999 Aug;73(8):6743-51 – reference: 19423871 - N Engl J Med. 2009 Jun 18;360(25):2616-25 – reference: 21333316 - Virology. 2011 Apr 10;412(2):401-10 – reference: 16554799 - Nature. 2006 Mar 23;440(7083):435-6 – reference: 19119420 - PLoS Pathog. 2009 Jan;5(1):e1000252 – reference: 19574348 - Science. 2009 Jul 24;325(5939):481-3 – reference: 20574518 - PLoS One. 2010;5(6):e11158 – reference: 20724471 - J Biol Chem. 2010 Oct 29;285(44):34016-26 – reference: 19741625 - Nat Biotechnol. 2009 Sep;27(9):797-9 – reference: 17366454 - Clin Infect Dis. 2007 Apr 15;44(8):1084-8 – reference: 21144091 - Expert Rev Mol Med. 2010;12:e39 – reference: 9696833 - J Virol. 1998 Sep;72(9):7367-73 |
SSID | ssj0009580 |
Score | 2.4509945 |
Snippet | A novel reassortant derived from North American triple-reassortant (TRsw) and Eurasian swine (EAsw) influenza viruses acquired sustained human-to-human... |
SourceID | pubmedcentral hal proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14264 |
SubjectTerms | Amino acids Animals Biological Sciences Cells China direct contact Disease transmission double prime M gene Enzymatic activity enzyme activity Enzymes Epithelial cells Exo- alpha -sialidase ferrets Ferrets - virology genes Genome, Viral - genetics H1N1 subtype influenza A virus Hemagglutinin Glycoproteins, Influenza Virus - metabolism humans Influenza Influenza A virus Influenza A Virus, H1N1 Subtype - enzymology Influenza A Virus, H1N1 Subtype - genetics Influenza A Virus, H1N1 Subtype - physiology Influenza virus Kinetics Life Sciences Microbiology and Parasitology monitoring Mustela Neuraminidase - metabolism nose Orthomyxoviridae Orthomyxoviridae Infections - epidemiology Orthomyxoviridae Infections - transmission Orthomyxoviridae Infections - virology pandemic Pandemics Polysaccharides Polysaccharides - metabolism Protein Binding Receptors Receptors, Virus - metabolism Recombination, Genetic - genetics Replication Respiratory System - pathology Respiratory System - virology Seasons sialidase Substrate Specificity Swine Swine flu Swine influenza Transmission efficiency Tropism Virology virus replication Virus Replication - physiology Viruses |
Title | Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets |
URI | https://www.jstor.org/stable/27979495 http://www.pnas.org/content/108/34/14264.abstract https://www.ncbi.nlm.nih.gov/pubmed/21825167 https://www.proquest.com/docview/885352066 https://www.proquest.com/docview/1663529701 https://www.proquest.com/docview/885910649 https://www.proquest.com/docview/904484031 https://riip.hal.science/pasteur-00614343 https://pubmed.ncbi.nlm.nih.gov/PMC3161546 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF615cIFUaDUFNAiIVRkOcT22l4fqwoUoSiqRCvak7Wx10kk6kRJXImeEK_AG_IKvAAzu-u_KEXAxUocZ73JfJm_zHxDyGuwKimLMukwEUGAkoWBIzhLnZwLnguIAFyhCmRH4eCCfbwMLnd2frWqlsr1uJfebu0r-R-pwjmQK3bJ_oNk60XhBDwG-cIRJAzHv5LxQF6LyQTvUEB8b8oWfKSoFEgZkoGFssdYu5iqmvQcm3WXzX_rTrbE8vE1zokoViBwUyr7tSocWGCGGYvnB-7IxbotnGdyK-yb2bJUdbSw4lJqLqjKwz2rLeKqWmZUJRxPmvYVo1NWtmOfjZphyINy5gwxe3HVtKidTmcOnLeHgORJcxK0lHM1sz-XTTpXebP2sGebmSPtlIbO0equ4zYjuN5VvZ-2FvfAsjLde92TWnGD3-OETI8erTV7n7cgbJKmWlG76AluNSGg83DucSFWypygE6yXaQFqca0Qhez3gavHiXSpvDdMbF34CEslPkvU3XfJPQ9iG09ZkzZTNNd9U-ZDVnxUkf9uY1OKyFrvoONV7eZiDscpVvbqIltk7oX3bouiNouBW97V-UPywIRF9ERjfJ_syOIR2a-EQo8NO_rbx-R7B_Q_v_3owJ0auFMDd7oF7nQT7nSeU0AOreBOEe60hjtVcIfn1MD9Cbn48P78dOCYQSJOGgbx2gGfOfVdlru5G42ZmwsIMnweMOmxKM9EMM6iSLpCpjzz4fsMoixKQQruGJxdgbnRA7JXzAt5SGgUyDEPmcszGTLkyvMkREQ8yDyeyrCfW6RXCSJJDcs-Dnv5kqhqj8hPUBBJI0SLHNdvWGiCmbsvPQTJJmIC5j-5-ORhcqSPI-XivkXegLjrBZAzfnAyTBYCTEW5TDBQwRbyG9ciBwoR9aVeFINJjgOLWOp2zR4apFrkqMJNYtTfKuEcmaEgYrHIq_pVkB3-4SgKOS9h6xjOeHHUh9vSO67hSKAJcVF89yVxnzHOwPuwyFON1Wb3Bv8WiToo7nwT3VeK2VSx6PsY67Lw2R8-9xG536in52RvvSzlC4hB1uOX6jf7Gy2CMOc |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hemagglutinin%E2%80%93neuraminidase+balance+confers+respiratory-droplet+transmissibility+of+the+pandemic+H1N1+influenza+virus+in+ferrets&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hui-Ling+Yen&rft.au=Chi-Hui+Liang&rft.au=Chung-Yi+Wu&rft.au=Heather+L.+Forrest&rft.date=2011-08-23&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=34&rft.spage=14264&rft_id=info:doi/10.1073%2Fpnas.1111000108&rft_id=info%3Apmid%2F21825167&rft.externalDBID=n%2Fa&rft.externalDocID=108_34_14264 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F34.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F34.cover.gif |