Metal-Organic Framework-Derived Honeycomb-Like Open Porous Nanostructures as Precious-Metal-Free Catalysts for Highly Efficient Oxygen Electroreduction
Honeycomb‐like porous carbon nanostructures are rationally constructed from a metal–organic framework composite. The unique architecture with uniformly distributed high‐density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancin...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 28; no. 30; pp. 6391 - 6398 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Honeycomb‐like porous carbon nanostructures are rationally constructed from a metal–organic framework composite. The unique architecture with uniformly distributed high‐density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction. |
---|---|
AbstractList | Honeycomb-like porous carbon nanostructures are rationally constructed from a metal-organic framework composite. The unique architecture with uniformly distributed high-density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction.Honeycomb-like porous carbon nanostructures are rationally constructed from a metal-organic framework composite. The unique architecture with uniformly distributed high-density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction. Honeycomb‐like porous carbon nanostructures are rationally constructed from a metal–organic framework composite. The unique architecture with uniformly distributed high‐density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction. |
Author | Xia, Wei Akita, Tomoki Xu, Qiang Zhu, Qi-Long Zou, Ruqiang |
Author_xml | – sequence: 1 givenname: Qi-Long surname: Zhu fullname: Zhu, Qi-Long organization: National Institute of Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Ikeda, Japan – sequence: 2 givenname: Wei surname: Xia fullname: Xia, Wei organization: Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Material Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China – sequence: 3 givenname: Tomoki surname: Akita fullname: Akita, Tomoki organization: National Institute of Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Ikeda, Japan – sequence: 4 givenname: Ruqiang surname: Zou fullname: Zou, Ruqiang email: rzou@pku.edu.cn organization: Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Material Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China – sequence: 5 givenname: Qiang surname: Xu fullname: Xu, Qiang email: rzou@pku.edu.cn organization: National Institute of Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Ikeda, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27166878$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv0zAUxy00xLrBlSPykUuK7cROcqy6dgV16yRAcLMc56WYJnGxHbZ8Er4urjoqhITg5Cf59_s_vfcu0Flve0DoJSVTSgh7o-pOTRmhgpAyL5-gCeWMJhkp-RmakDLlSSmy4hxdeP-VREYQ8Qyds5wKUeTFBP24gaDaZOO2qjcaL53q4N66XXIFznyHGq9iv1HbrkrWZgd4s4ce31lnB49vVW99cIMOgwOPlcd3DrSJX8kxdekA8FzFcvTB48Y6vDLbL-2IF01jtIE-4M3DuI2RixZ0cNZBHeOM7Z-jp41qPbx4fC_Rx-Xiw3yVrDfXb-ezdaIFL8tEM13XmhNGWc6KvFE1pJoIaHTaZAWrqkpFglRVk7EcSEpz2nCRMao501mWppfo9TF37-y3AXyQnfEa2lb1EAeRtEi54IKk4j_Qw3pzIvKIvnpEh6qDWu6d6ZQb5a-9R2B6BLSz3jtoTggl8nBYeTisPB02CtkfgjZBHTYVnDLt37XyqN2bFsZ_NJGzq5vZ725ydI0P8HByldvJOGLO5afba_mZi_Td-2IuSfoTzMXJWw |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_3c04956 crossref_primary_10_1149_2_0111709jes crossref_primary_10_1109_JSEN_2023_3266098 crossref_primary_10_1021_acs_iecr_3c01527 crossref_primary_10_1016_j_seppur_2024_126520 crossref_primary_10_1016_j_jpowsour_2017_08_102 crossref_primary_10_1016_j_matchemphys_2025_130448 crossref_primary_10_1016_j_cclet_2019_02_021 crossref_primary_10_1021_acssuschemeng_7b00655 crossref_primary_10_1016_j_electacta_2018_11_129 crossref_primary_10_1039_C8NR03443E crossref_primary_10_1021_acsanm_2c02446 crossref_primary_10_1360_SSC_2022_0170 crossref_primary_10_1016_j_jpowsour_2019_227561 crossref_primary_10_1021_acsami_7b01712 crossref_primary_10_1016_j_ijhydene_2022_02_082 crossref_primary_10_1016_j_jcis_2018_11_031 crossref_primary_10_1016_j_mtsust_2023_100627 crossref_primary_10_3390_catal7120364 crossref_primary_10_1039_C7TA07387A crossref_primary_10_1016_j_jallcom_2022_166680 crossref_primary_10_1002_advs_201700515 crossref_primary_10_1021_acsami_7b10668 crossref_primary_10_1021_acssuschemeng_7b01419 crossref_primary_10_1088_1361_6528_abeb9d crossref_primary_10_1002_ange_202004737 crossref_primary_10_1002_smtd_201800214 crossref_primary_10_1016_j_ccr_2022_214949 crossref_primary_10_1016_j_cej_2020_125154 crossref_primary_10_1021_acsomega_2c05155 crossref_primary_10_1002_smll_202100135 crossref_primary_10_1039_C8MH01375F crossref_primary_10_1002_smtd_201800204 crossref_primary_10_1016_j_ccr_2018_07_020 crossref_primary_10_1002_smll_201800639 crossref_primary_10_1002_ange_202002665 crossref_primary_10_1002_aenm_201802386 crossref_primary_10_1016_j_jcat_2021_07_019 crossref_primary_10_1016_j_jcis_2024_07_005 crossref_primary_10_1021_acsami_7b19498 crossref_primary_10_1016_S1872_2067_18_63017_7 crossref_primary_10_1021_acsnano_8b01502 crossref_primary_10_1016_j_electacta_2019_134679 crossref_primary_10_1021_acsenergylett_6b00686 crossref_primary_10_1039_D4DT02945C crossref_primary_10_1002_cssc_201801585 crossref_primary_10_1021_acsami_8b13290 crossref_primary_10_1039_D1TA02468J crossref_primary_10_1002_adma_201700778 crossref_primary_10_1002_adma_201701354 crossref_primary_10_1002_smll_202310348 crossref_primary_10_1039_C9CS00871C crossref_primary_10_1016_j_jssc_2019_04_014 crossref_primary_10_1021_acsami_7b11101 crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1016_j_cis_2024_103279 crossref_primary_10_1109_MNANO_2017_2710380 crossref_primary_10_1016_j_mattod_2018_10_038 crossref_primary_10_1002_cssc_201801473 crossref_primary_10_1016_j_talanta_2020_121088 crossref_primary_10_1002_smll_201906086 crossref_primary_10_1038_s41598_017_06194_z crossref_primary_10_1002_adma_201703663 crossref_primary_10_1002_admi_201601227 crossref_primary_10_1016_j_cej_2023_144805 crossref_primary_10_1002_celc_201700627 crossref_primary_10_1016_j_enchem_2020_100043 crossref_primary_10_1016_j_jpowsour_2017_03_142 crossref_primary_10_1016_S1872_2067_20_63658_0 crossref_primary_10_1007_s42114_024_00996_2 crossref_primary_10_1016_j_jallcom_2019_152192 crossref_primary_10_1016_j_jallcom_2023_170941 crossref_primary_10_1002_smll_201704169 crossref_primary_10_1016_j_jcis_2017_09_012 crossref_primary_10_1002_adfm_201704537 crossref_primary_10_1021_acsami_0c04842 crossref_primary_10_1016_j_nanoen_2018_03_059 crossref_primary_10_1039_C8TA06069J crossref_primary_10_1002_aenm_201602733 crossref_primary_10_1021_acsami_9b19268 crossref_primary_10_1016_j_snb_2016_12_085 crossref_primary_10_1016_j_jallcom_2022_164063 crossref_primary_10_1039_D1TA04831G crossref_primary_10_1016_j_solener_2021_12_006 crossref_primary_10_1002_anie_201811126 crossref_primary_10_1002_aenm_201700518 crossref_primary_10_1016_j_jpowsour_2017_03_011 crossref_primary_10_1039_D1QI00394A crossref_primary_10_1021_acsami_8b17308 crossref_primary_10_1007_s41918_021_00094_7 crossref_primary_10_1002_cctc_201701566 crossref_primary_10_1007_s12274_019_2349_0 crossref_primary_10_1039_D1CS00857A crossref_primary_10_1016_j_carbon_2020_03_017 crossref_primary_10_1016_j_mattod_2018_10_016 crossref_primary_10_1002_adfm_201909265 crossref_primary_10_1002_smll_201702074 crossref_primary_10_1016_j_apsusc_2016_09_045 crossref_primary_10_1039_C8TA11704G crossref_primary_10_1002_ange_201811126 crossref_primary_10_1021_jacs_8b08744 crossref_primary_10_1016_j_ijhydene_2019_01_231 crossref_primary_10_1021_acsanm_0c03171 crossref_primary_10_1016_j_nanoen_2024_109897 crossref_primary_10_1039_C6RA17670D crossref_primary_10_1002_slct_201701020 crossref_primary_10_1016_j_ijhydene_2017_04_050 crossref_primary_10_1039_D3DT01477K crossref_primary_10_1016_j_ensm_2017_12_027 crossref_primary_10_1039_C7NR07235J crossref_primary_10_1016_j_nanoen_2020_104909 crossref_primary_10_1002_bio_4267 crossref_primary_10_1016_j_cej_2021_133560 crossref_primary_10_1016_j_jpowsour_2019_05_084 crossref_primary_10_1016_j_jechem_2020_01_034 crossref_primary_10_1016_j_cclet_2022_04_060 crossref_primary_10_1039_C8TA01321G crossref_primary_10_1039_D0NJ06174C crossref_primary_10_1002_anie_202010618 crossref_primary_10_1016_j_cej_2023_146988 crossref_primary_10_1002_adfm_201707573 crossref_primary_10_1016_j_jmat_2020_10_008 crossref_primary_10_1021_accountsmr_4c00330 crossref_primary_10_1016_j_apcatb_2019_118559 crossref_primary_10_1021_acs_inorgchem_1c00946 crossref_primary_10_1016_j_cej_2017_10_043 crossref_primary_10_1021_acs_iecr_0c00663 crossref_primary_10_1016_j_jechem_2020_05_048 crossref_primary_10_1016_j_mattod_2017_06_002 crossref_primary_10_1016_j_jpowsour_2019_227166 crossref_primary_10_1016_j_compositesb_2021_109532 crossref_primary_10_1007_s40820_019_0238_4 crossref_primary_10_1016_j_jallcom_2019_04_325 crossref_primary_10_1039_D3CY01013A crossref_primary_10_1002_adfm_202210298 crossref_primary_10_1016_j_chempr_2016_12_002 crossref_primary_10_1016_j_ccr_2020_213266 crossref_primary_10_1021_acsenergylett_7b00835 crossref_primary_10_1002_adma_202206842 crossref_primary_10_1007_s41918_018_0024_x crossref_primary_10_1016_j_jcis_2024_07_198 crossref_primary_10_1126_sciadv_aap8817 crossref_primary_10_1002_smll_201803500 crossref_primary_10_1007_s11696_020_01112_6 crossref_primary_10_1016_j_cej_2020_126638 crossref_primary_10_1002_adma_201706758 crossref_primary_10_1039_C9NR01804B crossref_primary_10_1016_j_apcatb_2019_118537 crossref_primary_10_1039_C7TA06419E crossref_primary_10_1016_j_apmt_2020_100692 crossref_primary_10_1016_j_jpowsour_2020_228470 crossref_primary_10_1021_acsami_7b08647 crossref_primary_10_1016_j_cclet_2021_03_050 crossref_primary_10_1002_adma_201804903 crossref_primary_10_1016_j_cej_2020_127635 crossref_primary_10_1021_acs_inorgchem_9b00733 crossref_primary_10_1039_C8TA00493E crossref_primary_10_1016_j_nanoen_2017_08_044 crossref_primary_10_1016_j_ensm_2018_05_024 crossref_primary_10_1016_j_jcis_2018_05_063 crossref_primary_10_1002_asia_201800245 crossref_primary_10_1016_j_jallcom_2018_11_368 crossref_primary_10_1039_C8TA00494C crossref_primary_10_1016_j_renene_2017_12_084 crossref_primary_10_2139_ssrn_4159278 crossref_primary_10_1021_jacs_1c09021 crossref_primary_10_3390_nano10101947 crossref_primary_10_1021_acsami_9b07436 crossref_primary_10_1016_j_electacta_2018_12_080 crossref_primary_10_1016_j_seppur_2023_124155 crossref_primary_10_1002_adma_202007442 crossref_primary_10_1021_acssuschemeng_7b02076 crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1039_C9SE01216H crossref_primary_10_1016_j_carbon_2018_10_040 crossref_primary_10_1039_D1TA09861F crossref_primary_10_1016_j_jelechem_2017_12_055 crossref_primary_10_1016_j_enchem_2019_100001 crossref_primary_10_1016_j_carbon_2019_12_058 crossref_primary_10_1039_C9NR00977A crossref_primary_10_1016_j_jcis_2022_01_042 crossref_primary_10_1016_j_jelechem_2018_07_024 crossref_primary_10_1016_j_jpowsour_2019_04_103 crossref_primary_10_1016_j_cclet_2019_08_008 crossref_primary_10_1039_C9NR02914A crossref_primary_10_1016_j_jiec_2024_01_044 crossref_primary_10_1002_adma_201904689 crossref_primary_10_1002_eom2_12041 crossref_primary_10_2139_ssrn_4089462 crossref_primary_10_1016_j_ccr_2022_214741 crossref_primary_10_1016_j_aca_2018_10_063 crossref_primary_10_1016_j_ijhydene_2018_12_103 crossref_primary_10_1016_j_jechem_2021_11_035 crossref_primary_10_1016_j_nantod_2023_101972 crossref_primary_10_1039_C9NH00485H crossref_primary_10_1021_acssuschemeng_8b05352 crossref_primary_10_1002_admt_202200238 crossref_primary_10_1002_aenm_201801839 crossref_primary_10_1002_smtd_202000637 crossref_primary_10_1016_j_jcat_2020_08_016 crossref_primary_10_1007_s11664_019_07187_6 crossref_primary_10_1016_j_jcis_2019_01_002 crossref_primary_10_1016_j_colsurfa_2024_135794 crossref_primary_10_1002_smll_202004369 crossref_primary_10_1039_C7MH00244K crossref_primary_10_1002_adfm_201701971 crossref_primary_10_1002_cctc_202000067 crossref_primary_10_1016_j_electacta_2024_145256 crossref_primary_10_1002_smtd_201700187 crossref_primary_10_1002_aenm_202301505 crossref_primary_10_1002_adma_201706330 crossref_primary_10_1016_j_jcis_2019_10_069 crossref_primary_10_1016_j_nanoen_2016_11_033 crossref_primary_10_1002_advs_201800949 crossref_primary_10_1002_adfm_201802575 crossref_primary_10_1039_C7NR07274K crossref_primary_10_1016_j_apcatb_2020_118720 crossref_primary_10_1021_acsami_8b10645 crossref_primary_10_1016_j_cej_2017_08_072 crossref_primary_10_1021_jacs_8b09092 crossref_primary_10_1016_j_carbon_2016_12_027 crossref_primary_10_1002_smll_202311060 crossref_primary_10_1007_s12274_022_4786_4 crossref_primary_10_1016_j_jpowsour_2019_02_022 crossref_primary_10_1002_adma_202101038 crossref_primary_10_1016_j_micromeso_2019_109930 crossref_primary_10_7498_aps_69_20191761 crossref_primary_10_1039_C7TA05334G crossref_primary_10_1002_smtd_202100102 crossref_primary_10_1002_cctc_201701926 crossref_primary_10_1021_jacs_1c06349 crossref_primary_10_1007_s41918_023_00181_x crossref_primary_10_1021_acssuschemeng_7b03034 crossref_primary_10_1002_aenm_201602002 crossref_primary_10_1016_j_ijhydene_2022_05_142 crossref_primary_10_1039_C8TA10918D crossref_primary_10_1002_celc_201701335 crossref_primary_10_1016_j_jpowsour_2020_228629 crossref_primary_10_1016_j_pnsc_2024_12_003 crossref_primary_10_1039_D1NR00160D crossref_primary_10_1021_acsami_8b06292 crossref_primary_10_1002_asia_201900727 crossref_primary_10_1002_ange_201911943 crossref_primary_10_1142_S1793292019501017 crossref_primary_10_1002_cjoc_202000073 crossref_primary_10_1007_s11244_018_0935_0 crossref_primary_10_1016_j_ccr_2018_02_008 crossref_primary_10_1039_D3CE01266B crossref_primary_10_1002_smll_201700238 crossref_primary_10_1039_C7TA09976B crossref_primary_10_1007_s12274_016_1400_7 crossref_primary_10_1038_s41929_019_0237_3 crossref_primary_10_1016_j_rser_2022_112585 crossref_primary_10_1016_j_cej_2021_130241 crossref_primary_10_1039_C8NR03527J crossref_primary_10_1016_j_cej_2020_127917 crossref_primary_10_1039_C8NR01457D crossref_primary_10_1039_C8NR09071H crossref_primary_10_1039_D1NJ00861G crossref_primary_10_1021_acscatal_3c05344 crossref_primary_10_1038_natrevmats_2017_75 crossref_primary_10_1002_adom_202200174 crossref_primary_10_1016_j_carbon_2018_02_051 crossref_primary_10_1016_j_energy_2024_130360 crossref_primary_10_1039_C7TA11122C crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1016_j_jechem_2019_10_005 crossref_primary_10_1016_j_jcat_2019_06_024 crossref_primary_10_1021_acs_chemmater_9b01093 crossref_primary_10_1016_j_apsusc_2020_147357 crossref_primary_10_1016_j_cej_2024_156755 crossref_primary_10_1016_j_inoche_2019_01_034 crossref_primary_10_1002_chem_201701389 crossref_primary_10_1007_s40820_017_0144_6 crossref_primary_10_1002_ange_202010618 crossref_primary_10_1063_1674_0068_cjcp2104074 crossref_primary_10_1016_j_ceramint_2021_01_145 crossref_primary_10_1039_C9CC00123A crossref_primary_10_1016_j_cclet_2021_09_014 crossref_primary_10_1039_C7QM00007C crossref_primary_10_1016_j_chempr_2019_03_002 crossref_primary_10_1021_acsami_8b14840 crossref_primary_10_1002_cssc_201801805 crossref_primary_10_1016_j_apcatb_2019_118207 crossref_primary_10_1002_cey2_573 crossref_primary_10_1021_acs_jpcc_3c05422 crossref_primary_10_1016_j_ccr_2017_02_010 crossref_primary_10_1039_C7TA10022A crossref_primary_10_1002_idm2_12108 crossref_primary_10_1007_s11581_020_03776_2 crossref_primary_10_1039_D0NR00511H crossref_primary_10_1002_adma_201604437 crossref_primary_10_1016_j_jechem_2020_05_032 crossref_primary_10_1021_acs_chemrev_9b00223 crossref_primary_10_1002_adma_201704091 crossref_primary_10_3390_catal13050890 crossref_primary_10_1002_smll_201700468 crossref_primary_10_1002_cssc_202400448 crossref_primary_10_1016_j_apcatb_2019_118570 crossref_primary_10_1016_j_jpowsour_2017_01_081 crossref_primary_10_1002_adma_201705189 crossref_primary_10_1016_j_ccr_2020_213214 crossref_primary_10_1002_er_6834 crossref_primary_10_1016_j_cej_2024_157706 crossref_primary_10_1002_aenm_201700193 crossref_primary_10_1039_C9EE04040D crossref_primary_10_1021_acsaem_8b00550 crossref_primary_10_1016_j_matt_2021_07_019 crossref_primary_10_1021_acsaem_2c02350 crossref_primary_10_1039_C6TA10291C crossref_primary_10_1007_s10853_018_3180_9 crossref_primary_10_1039_D3NA00213F crossref_primary_10_1016_j_jpowsour_2017_07_019 crossref_primary_10_1021_acsami_8b16920 crossref_primary_10_1002_anie_202004737 crossref_primary_10_1088_1361_6528_ac0e6a crossref_primary_10_1016_j_nanoen_2020_104597 crossref_primary_10_1002_cssc_202100182 crossref_primary_10_1002_ppsc_201700296 crossref_primary_10_1038_s41598_019_46541_w crossref_primary_10_1002_anie_202002665 crossref_primary_10_1039_C7CC07249J crossref_primary_10_1016_j_carbon_2022_08_078 crossref_primary_10_1002_anie_201911943 crossref_primary_10_1021_acs_chemrev_7b00335 crossref_primary_10_1039_C6QI00403B crossref_primary_10_1002_adfm_202421670 crossref_primary_10_1039_C9QM00612E crossref_primary_10_1021_acsami_0c03953 crossref_primary_10_1039_C7TA03070C crossref_primary_10_1021_acssuschemeng_9b00105 crossref_primary_10_1039_D3CS01122D crossref_primary_10_1016_j_jcis_2020_02_005 crossref_primary_10_1021_acs_jpcc_0c05949 crossref_primary_10_1002_adma_201806312 crossref_primary_10_1016_j_ijhydene_2019_04_197 crossref_primary_10_1039_C9CS00906J crossref_primary_10_1016_j_pecs_2022_101044 crossref_primary_10_1016_j_apcatb_2019_04_096 crossref_primary_10_1016_j_ijhydene_2021_09_066 crossref_primary_10_1039_C9TA00607A crossref_primary_10_1016_j_snb_2019_01_105 crossref_primary_10_1016_j_apsusc_2018_05_210 crossref_primary_10_1088_1757_899X_892_1_012003 crossref_primary_10_1002_asia_201800747 crossref_primary_10_1039_C8TA02839G crossref_primary_10_1016_j_apcatb_2017_06_051 crossref_primary_10_1039_C8TA07994C crossref_primary_10_1016_j_scitotenv_2021_150096 crossref_primary_10_1007_s40820_019_0264_2 crossref_primary_10_1039_C9TA00054B crossref_primary_10_1016_j_cej_2022_137314 crossref_primary_10_1039_C7MH00358G crossref_primary_10_1016_j_ccr_2019_02_021 crossref_primary_10_1039_C7SE00249A crossref_primary_10_1016_j_apsusc_2021_151286 crossref_primary_10_1021_acsami_1c01424 crossref_primary_10_1039_C7NR02165H crossref_primary_10_1039_D0QI00717J crossref_primary_10_1039_C6TA08016B crossref_primary_10_1002_adfm_201700451 crossref_primary_10_1007_s11581_023_05248_9 crossref_primary_10_3390_cryst11040340 crossref_primary_10_1021_acsaem_8b00990 crossref_primary_10_1002_adma_202002563 crossref_primary_10_1016_j_jcis_2019_10_099 crossref_primary_10_1039_C8CY01371C crossref_primary_10_1021_acs_cgd_0c00598 crossref_primary_10_1039_D0NR01239D crossref_primary_10_1002_cctc_201900834 crossref_primary_10_1039_C7NR08943K crossref_primary_10_1016_j_cej_2024_157335 crossref_primary_10_1016_j_flatc_2021_100332 crossref_primary_10_1016_S1872_2067_23_64392_X crossref_primary_10_1021_acsenergylett_9b02625 crossref_primary_10_1039_C7TA02096A crossref_primary_10_1016_j_carbon_2019_01_027 crossref_primary_10_1021_acsanm_0c02698 crossref_primary_10_1016_j_apcata_2017_03_027 crossref_primary_10_1016_j_electacta_2020_136918 crossref_primary_10_1039_C9CC00196D crossref_primary_10_6023_A21030086 crossref_primary_10_1039_D1TA02691G crossref_primary_10_1016_j_biortech_2019_121444 crossref_primary_10_1016_j_ccr_2017_09_018 crossref_primary_10_1016_j_materresbull_2023_112501 crossref_primary_10_1039_C9QI01367A crossref_primary_10_1002_asia_201900026 crossref_primary_10_1016_j_electacta_2021_139441 crossref_primary_10_1002_adfm_201605332 crossref_primary_10_1021_acsami_8b01462 crossref_primary_10_1039_C7TA04074A crossref_primary_10_1021_acsaem_2c02133 crossref_primary_10_1002_chem_201902389 crossref_primary_10_1002_celc_202100687 crossref_primary_10_1016_j_cej_2017_06_146 crossref_primary_10_1016_j_cej_2017_12_014 crossref_primary_10_1002_smll_202200037 crossref_primary_10_1002_adma_201703711 crossref_primary_10_1016_j_apsusc_2020_147659 crossref_primary_10_1016_j_jpowsour_2019_227659 crossref_primary_10_1002_smll_201701143 crossref_primary_10_1016_j_jcis_2019_09_102 crossref_primary_10_1002_aenm_201801307 crossref_primary_10_1016_j_nanoen_2018_12_085 crossref_primary_10_1016_j_seppur_2023_123998 crossref_primary_10_1002_adma_201907399 crossref_primary_10_1016_j_apcatb_2018_09_063 crossref_primary_10_1002_adfm_202301013 crossref_primary_10_1039_C7TA06916B crossref_primary_10_1016_j_ensm_2022_07_027 crossref_primary_10_1002_admt_202101107 crossref_primary_10_1016_j_jcis_2019_02_064 crossref_primary_10_1002_adma_201700104 crossref_primary_10_1002_cctc_202101033 crossref_primary_10_1016_j_apsusc_2020_148621 crossref_primary_10_1016_j_apcatb_2021_120752 crossref_primary_10_1021_acsami_6b15788 crossref_primary_10_1016_j_jcis_2023_09_094 crossref_primary_10_1002_cctc_202000410 |
Cites_doi | 10.1021/cm7024763 10.1021/nn505582e 10.1021/ar100112y 10.1126/science.1230444 10.1002/anie.200705998 10.1126/science.1200832 10.1016/j.jpowsour.2010.06.001 10.1002/adma.201500727 10.1002/aenm.201400337 10.1002/ange.201408990 10.1126/science.1168049 10.1002/anie.201007036 10.1002/anie.201503159 10.1002/ange.200705998 10.1002/ange.201104004 10.1021/ja5003907 10.1002/anie.201500569 10.1039/C4EE02281E 10.1002/aenm.201301415 10.1002/anie.201408990 10.1002/ange.201206720 10.1002/anie.201410258 10.1021/ic50011a004 10.1021/jp054487f 10.1038/nmat3087 10.1021/acscatal.5b00154 10.1002/adma.201502315 10.1021/ja403330m 10.1039/C4TA06667G 10.1021/ja402727d 10.1021/ja5084128 10.1002/anie.201104004 10.1021/cm103644b 10.1002/ange.201500569 10.1073/pnas.1507159112 10.1016/j.micromeso.2012.06.044 10.1002/anie.200602099 10.1038/nmat2808 10.1002/anie.201206720 10.1039/C5EE00762C 10.1021/ja208940u 10.1038/ncomms3719 10.1002/ange.201503612 10.1002/ange.201503159 10.1021/ja7106146 10.1039/C3CS60472A 10.1021/ja5129132 10.1021/ja203184k 10.1002/ange.200602099 10.1126/sciadv.1400129 10.1038/ncomms2944 10.1021/ja511539a 10.1002/adma.201304238 10.1038/ncomms5973 10.1039/C3EE42799D 10.1126/sciadv.1500564 10.1002/anie.201503612 10.1002/chem.201204549 10.1002/ange.201007036 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION NPM 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.201600979 |
DatabaseName | Istex CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 6398 |
ExternalDocumentID | 27166878 10_1002_adma_201600979 ADMA201600979 ark_67375_WNG_X563JS8C_0 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: AIST – fundername: JSPS – fundername: National Natural Science Foundation of China funderid: 51322205; 21371014 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADMLS ADNMO AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c6599-c2cddc502127287fade3c06efc3f482bbba2cd0bbf427e03171f56421c52c4433 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:29:27 EDT 2025 Thu Jul 10 19:15:34 EDT 2025 Thu Apr 03 07:06:33 EDT 2025 Tue Jul 01 00:44:26 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Jan 22 16:36:07 EST 2025 Wed Oct 30 09:47:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | porous carbon oxygen reduction cobalt sulfide metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6599-c2cddc502127287fade3c06efc3f482bbba2cd0bbf427e03171f56421c52c4433 |
Notes | National Natural Science Foundation of China - No. 51322205; No. 21371014 istex:A00157D1129F8B4E74B37DACBD2E916A546C41BC ark:/67375/WNG-X563JS8C-0 ArticleID:ADMA201600979 JSPS AIST ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27166878 |
PQID | 1809607067 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1835656036 proquest_miscellaneous_1809607067 pubmed_primary_27166878 crossref_primary_10_1002_adma_201600979 crossref_citationtrail_10_1002_adma_201600979 wiley_primary_10_1002_adma_201600979_ADMA201600979 istex_primary_ark_67375_WNG_X563JS8C_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, Z. Tang, ACS Nano 2014, 8, 12660. N. Mahmood, C. Zhang, J. Jiang, F. Liu, Y. Hou, Chem. Eur. J. 2013, 19, 5183. Q. Li, R. Cao, J. Cho, G. Wu, Adv. Energy Mater. 2014, 4, 1301415. G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, J. Am. Chem. Soc. 2013, 135, 7438. Angew. Chem. 2008, 120, 4212. J. Shui, M. Wang, F. Du, L. Dai, Sci. Adv. 2015, 1, e1400129. J. Zhang, Z. Xia, L. Dai, Sci. Adv. 2015, 1, e1500564. P. Serra-Crespo, E. V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Chem. Mater. 2011, 23, 2565. Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu, P. Feng, Adv. Mater. 2015, 27, 3431. X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 9654 C.-D. Wu, W. Lin, Angew. Chem. Int. Ed. 2007, 46, 1075 W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436. Angew. Chem. 2015, 127, 10045. R. A. Sidik, A. B. Anderson, J. Phys. Chem. B 2006, 110, 936. Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. Jiang, Adv. Mater. 2015, 27, 5010. W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, J. Am. Chem. Soc. 2014, 136, 14385. D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123. Y. Feng, T. He, N. Alonso-Vante, Chem. Mater. 2008, 20, 26. A. Aijaz, N. Fujiwara, Q. Xu, J. Am. Chem. Soc. 2014, 136, 6790. W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568. J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, G. Qian, Nat. Commun. 2013, 4, 2719. J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2015, 54, 10102 H.-X. Zhong, J. Wang, Y.-w. Zhang, W.-l. Xu, W. Xing, D. Xu, Y.-F. Zhang, X.-b. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235 K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760. Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2015, 54, 1888 H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969 B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390. Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337. Angew. Chem. 2012, 124, 11664. M.-R. Gao, Q. Gao, J. Jiang, C.-H. Cui, W.-T. Yao, S.-H. Yu, Angew. Chem. Int. Ed. 2011, 50, 4905 Angew. Chem. 2011, 123, 11161. Angew. Chem. 2007, 119, 1093. Y.-C. Wang, Y.-J. Lai, L. Song, Z.-Y. Zhou, J.-G. Liu, Q. Wang, X.-D. Yang, C. Chen, W. Shi, Y.-P. Zheng, M. Rauf, S.-G. Sun, Angew. Chem. Int. Ed. 2015, 54, 9907. W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 8, 1837. Y. K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 4144 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780. J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 2015, 137, 1572. Q.-L. Zhu, J. Li, Q. Xu, J. Am. Chem. Soc. 2013, 135, 10210. P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, Energy Environ. Sci. 2014, 7, 442. M. Hartmann, M. Fischer, Micropor. Mesopor. Mater. 2012, 164, 38. J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.-J. Liu, Proc. Natl. Acad. Sci. USA 2015, 112, 10629. J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496 P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam, ACS Catal. 2015, 5, 3625. D. Song, Q. Wang, Y. Wang, Y. Wang, Y. Han, L. Li, G. Liu, L. Jiao, H. Yuan, J. Power Sources 2010, 195, 7462. H. T. Chung, J. H. Won, P. Zelenay, Nat. Commun. 2013, 4, 1922. M. Hu, J. Reboul, S. Furukawa, N. L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, J. Am. Chem. Soc. 2012, 134, 2864. H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444. Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468. H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 2014, 5, 4973. Angew. Chem. 2015, 127, 9790. Angew. Chem. 2014, 126, 14459. Angew. Chem. 2011, 123, 5007. D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu, D.-J. Liu, Adv. Mater. 2014, 26, 1093. Angew. Chem. 2015, 127, 10240. H. Sato, R. Matsuda, K. Sugimoto, M. Takata, S. Kitagawa, Nat. Mater. 2010, 9, 661. F. A. Cotton, O. D. Faut, J. T. Mague, Inorg. Chem. 1964, 3, 17. H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854. G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443. D. C. Higgins, F. M. Hassan, M. H. Seo, J. Y. Choi, M. A. Hoque, D. U. Lee, Z. Chen, J. Mater. Chem. A 2015, 3, 6340. 2014 2014; 53 126 2015; 1 2012; 164 2013; 4 2015; 5 2015; 3 2015; 54 1964; 3 2014; 26 2006; 110 2011; 10 2013; 341 2008 2008; 47 120 2015; 8 2011; 332 2014; 136 2011; 133 2014; 43 2013; 19 2014; 5 2014; 4 2015; 27 2012; 134 2015; 137 2012 2012; 51 124 2015; 112 2007 2007; 46 119 2015 2015; 54 127 2011; 44 2013; 135 2011 2011; 50 123 2011; 23 2010; 195 2008; 20 2014; 8 2014; 7 2009; 323 2008; 130 2010; 9 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_21_2 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_27_2 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_5_2 e_1_2_4_9_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_12_2 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_14_2 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_2 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_45_2 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_32_2 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – reference: R. A. Sidik, A. B. Anderson, J. Phys. Chem. B 2006, 110, 936. – reference: M. Hu, J. Reboul, S. Furukawa, N. L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, J. Am. Chem. Soc. 2012, 134, 2864. – reference: H. T. Chung, J. H. Won, P. Zelenay, Nat. Commun. 2013, 4, 1922. – reference: M.-R. Gao, Q. Gao, J. Jiang, C.-H. Cui, W.-T. Yao, S.-H. Yu, Angew. Chem. Int. Ed. 2011, 50, 4905; – reference: Angew. Chem. 2015, 127, 9790. – reference: Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337. – reference: G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443. – reference: H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854. – reference: C.-D. Wu, W. Lin, Angew. Chem. Int. Ed. 2007, 46, 1075; – reference: Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. Jiang, Adv. Mater. 2015, 27, 5010. – reference: J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 2015, 137, 1572. – reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444. – reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780. – reference: N. Mahmood, C. Zhang, J. Jiang, F. Liu, Y. Hou, Chem. Eur. J. 2013, 19, 5183. – reference: D. Song, Q. Wang, Y. Wang, Y. Wang, Y. Han, L. Li, G. Liu, L. Jiao, H. Yuan, J. Power Sources 2010, 195, 7462. – reference: K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760. – reference: W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, J. Am. Chem. Soc. 2014, 136, 14385. – reference: Angew. Chem. 2014, 126, 14459. – reference: Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu, P. Feng, Adv. Mater. 2015, 27, 3431. – reference: G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, J. Am. Chem. Soc. 2013, 135, 7438. – reference: Y.-C. Wang, Y.-J. Lai, L. Song, Z.-Y. Zhou, J.-G. Liu, Q. Wang, X.-D. Yang, C. Chen, W. Shi, Y.-P. Zheng, M. Rauf, S.-G. Sun, Angew. Chem. Int. Ed. 2015, 54, 9907. – reference: W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568. – reference: F. A. Cotton, O. D. Faut, J. T. Mague, Inorg. Chem. 1964, 3, 17. – reference: P. Serra-Crespo, E. V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Chem. Mater. 2011, 23, 2565. – reference: J. Zhang, Z. Xia, L. Dai, Sci. Adv. 2015, 1, e1500564. – reference: Angew. Chem. 2008, 120, 4212. – reference: Angew. Chem. 2015, 127, 10045. – reference: Y. Feng, T. He, N. Alonso-Vante, Chem. Mater. 2008, 20, 26. – reference: H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 2014, 5, 4973. – reference: S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, Z. Tang, ACS Nano 2014, 8, 12660. – reference: D. C. Higgins, F. M. Hassan, M. H. Seo, J. Y. Choi, M. A. Hoque, D. U. Lee, Z. Chen, J. Mater. Chem. A 2015, 3, 6340. – reference: D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu, D.-J. Liu, Adv. Mater. 2014, 26, 1093. – reference: J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496; – reference: Angew. Chem. 2011, 123, 11161. – reference: M. Hartmann, M. Fischer, Micropor. Mesopor. Mater. 2012, 164, 38. – reference: Angew. Chem. 2007, 119, 1093. – reference: P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam, ACS Catal. 2015, 5, 3625. – reference: Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468. – reference: Angew. Chem. 2011, 123, 5007. – reference: J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, G. Qian, Nat. Commun. 2013, 4, 2719. – reference: H. Sato, R. Matsuda, K. Sugimoto, M. Takata, S. Kitagawa, Nat. Mater. 2010, 9, 661. – reference: J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2015, 54, 10102; – reference: W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436. – reference: Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2015, 54, 1888; – reference: D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123. – reference: A. Aijaz, N. Fujiwara, Q. Xu, J. Am. Chem. Soc. 2014, 136, 6790. – reference: X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 9654; – reference: J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.-J. Liu, Proc. Natl. Acad. Sci. USA 2015, 112, 10629. – reference: H.-X. Zhong, J. Wang, Y.-w. Zhang, W.-l. Xu, W. Xing, D. Xu, Y.-F. Zhang, X.-b. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235; – reference: Q. Li, R. Cao, J. Cho, G. Wu, Adv. Energy Mater. 2014, 4, 1301415. – reference: Angew. Chem. 2012, 124, 11664. – reference: P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, Energy Environ. Sci. 2014, 7, 442. – reference: Angew. Chem. 2015, 127, 10240. – reference: H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969; – reference: J. Shui, M. Wang, F. Du, L. Dai, Sci. Adv. 2015, 1, e1400129. – reference: Y. K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 4144; – reference: Q.-L. Zhu, J. Li, Q. Xu, J. Am. Chem. Soc. 2013, 135, 10210. – reference: W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 8, 1837. – reference: B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390. – volume: 112 start-page: 10629 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 164 start-page: 38 year: 2012 publication-title: Micropor. Mesopor. Mater. – volume: 110 start-page: 936 year: 2006 publication-title: J. Phys. Chem. B – volume: 1 start-page: e1400129 year: 2015 publication-title: Sci. Adv. – volume: 20 start-page: 26 year: 2008 publication-title: Chem. Mater. – volume: 54 127 start-page: 9654 9790 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 123 year: 2011 publication-title: Acc. Chem. Res. – volume: 27 start-page: 5010 year: 2015 publication-title: Adv. Mater. – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 332 start-page: 443 year: 2011 publication-title: Science – volume: 8 start-page: 1837 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 start-page: 442 year: 2014 publication-title: Energy Environ. Sci. – volume: 195 start-page: 7462 year: 2010 publication-title: J. Power Sources – volume: 1 start-page: e1500564 year: 2015 publication-title: Sci. Adv. – volume: 9 start-page: 661 year: 2010 publication-title: Nat. Mater. – volume: 19 start-page: 5183 year: 2013 publication-title: Chem. Eur. J. – volume: 4 start-page: 1922 year: 2013 publication-title: Nat. Commun. – volume: 46 119 start-page: 1075 1093 year: 2007 2007 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 17 year: 1964 publication-title: Inorg. Chem. – volume: 23 start-page: 2565 year: 2011 publication-title: Chem. Mater. – volume: 4 start-page: 1400337 year: 2014 publication-title: Adv. Energy Mater. – volume: 135 start-page: 7438 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 6790 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4973 year: 2014 publication-title: Nat. Commun. – volume: 130 start-page: 5390 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 11496 11664 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 123 start-page: 10969 11161 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 12660 year: 2014 publication-title: ACS Nano – volume: 4 start-page: 1301415 year: 2014 publication-title: Adv. Energy Mater. – volume: 4 start-page: 2719 year: 2013 publication-title: Nat. Commun. – volume: 133 start-page: 11854 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 14385 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 1572 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 10210 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 2864 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 341 start-page: 1230444 year: 2013 publication-title: Science – volume: 27 start-page: 3431 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 6340 year: 2015 publication-title: J. Mater. Chem. A – volume: 53 126 start-page: 14235 14459 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 120 start-page: 4144 4212 year: 2008 2008 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 1093 year: 2014 publication-title: Adv. Mater. – volume: 50 123 start-page: 4905 5007 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 8 start-page: 568 year: 2015 publication-title: Energy Environ. Sci. – volume: 54 127 start-page: 10102 10240 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 1436 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 1888 10045 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 3625 year: 2015 publication-title: ACS Catal. – volume: 43 start-page: 5468 year: 2014 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 9907 year: 2015 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_4_20_1 doi: 10.1021/cm7024763 – ident: e_1_2_4_9_1 doi: 10.1021/nn505582e – ident: e_1_2_4_29_1 doi: 10.1021/ar100112y – ident: e_1_2_4_30_1 doi: 10.1126/science.1230444 – ident: e_1_2_4_32_1 doi: 10.1002/anie.200705998 – ident: e_1_2_4_16_1 doi: 10.1126/science.1200832 – ident: e_1_2_4_51_1 doi: 10.1016/j.jpowsour.2010.06.001 – ident: e_1_2_4_18_1 doi: 10.1002/adma.201500727 – ident: e_1_2_4_8_1 doi: 10.1002/aenm.201400337 – ident: e_1_2_4_45_2 doi: 10.1002/ange.201408990 – ident: e_1_2_4_7_1 doi: 10.1126/science.1168049 – ident: e_1_2_4_22_1 doi: 10.1002/anie.201007036 – ident: e_1_2_4_15_1 doi: 10.1002/anie.201503159 – ident: e_1_2_4_32_2 doi: 10.1002/ange.200705998 – ident: e_1_2_4_21_2 doi: 10.1002/ange.201104004 – ident: e_1_2_4_41_1 doi: 10.1021/ja5003907 – ident: e_1_2_4_2_1 doi: 10.1002/anie.201500569 – ident: e_1_2_4_46_1 doi: 10.1039/C4EE02281E – ident: e_1_2_4_1_1 doi: 10.1002/aenm.201301415 – ident: e_1_2_4_45_1 doi: 10.1002/anie.201408990 – ident: e_1_2_4_12_2 doi: 10.1002/ange.201206720 – ident: e_1_2_4_14_1 doi: 10.1002/anie.201410258 – ident: e_1_2_4_48_1 doi: 10.1021/ic50011a004 – ident: e_1_2_4_26_1 doi: 10.1021/jp054487f – ident: e_1_2_4_4_1 doi: 10.1038/nmat3087 – ident: e_1_2_4_24_1 doi: 10.1021/acscatal.5b00154 – ident: e_1_2_4_19_1 doi: 10.1002/adma.201502315 – ident: e_1_2_4_34_1 doi: 10.1021/ja403330m – ident: e_1_2_4_25_1 doi: 10.1039/C4TA06667G – ident: e_1_2_4_31_1 doi: 10.1021/ja402727d – ident: e_1_2_4_44_1 doi: 10.1021/ja5084128 – ident: e_1_2_4_21_1 doi: 10.1002/anie.201104004 – ident: e_1_2_4_47_1 doi: 10.1021/cm103644b – ident: e_1_2_4_2_2 doi: 10.1002/ange.201500569 – ident: e_1_2_4_11_1 doi: 10.1073/pnas.1507159112 – ident: e_1_2_4_50_1 doi: 10.1016/j.micromeso.2012.06.044 – ident: e_1_2_4_27_1 doi: 10.1002/anie.200602099 – ident: e_1_2_4_28_1 doi: 10.1038/nmat2808 – ident: e_1_2_4_12_1 doi: 10.1002/anie.201206720 – ident: e_1_2_4_40_1 doi: 10.1039/C5EE00762C – ident: e_1_2_4_38_1 doi: 10.1021/ja208940u – ident: e_1_2_4_33_1 doi: 10.1038/ncomms3719 – ident: e_1_2_4_5_2 doi: 10.1002/ange.201503612 – ident: e_1_2_4_14_2 doi: 10.1002/ange.201503159 – ident: e_1_2_4_36_1 doi: 10.1021/ja7106146 – ident: e_1_2_4_49_1 doi: 10.1038/nmat3087 – ident: e_1_2_4_35_1 doi: 10.1039/C3CS60472A – ident: e_1_2_4_6_1 doi: 10.1021/ja5129132 – ident: e_1_2_4_37_1 doi: 10.1021/ja203184k – ident: e_1_2_4_27_2 doi: 10.1002/ange.200602099 – ident: e_1_2_4_10_1 doi: 10.1126/sciadv.1400129 – ident: e_1_2_4_17_1 doi: 10.1038/ncomms2944 – ident: e_1_2_4_39_1 doi: 10.1021/ja511539a – ident: e_1_2_4_42_1 doi: 10.1002/adma.201304238 – ident: e_1_2_4_13_1 doi: 10.1038/ncomms5973 – ident: e_1_2_4_43_1 doi: 10.1039/C3EE42799D – ident: e_1_2_4_3_1 doi: 10.1126/sciadv.1500564 – ident: e_1_2_4_5_1 doi: 10.1002/anie.201503612 – ident: e_1_2_4_23_1 doi: 10.1002/chem.201204549 – ident: e_1_2_4_22_2 doi: 10.1002/ange.201007036 |
SSID | ssj0009606 |
Score | 2.6421597 |
Snippet | Honeycomb‐like porous carbon nanostructures are rationally constructed from a metal–organic framework composite. The unique architecture with uniformly... Honeycomb-like porous carbon nanostructures are rationally constructed from a metal-organic framework composite. The unique architecture with uniformly... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6391 |
SubjectTerms | Accessibility Carbon Catalysis Catalysts cobalt sulfide metal-organic frameworks Nanostructure Oxygen oxygen reduction porous carbon Reduction (electrolytic) Rendering |
Title | Metal-Organic Framework-Derived Honeycomb-Like Open Porous Nanostructures as Precious-Metal-Free Catalysts for Highly Efficient Oxygen Electroreduction |
URI | https://api.istex.fr/ark:/67375/WNG-X563JS8C-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201600979 https://www.ncbi.nlm.nih.gov/pubmed/27166878 https://www.proquest.com/docview/1809607067 https://www.proquest.com/docview/1835656036 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQuIELxj_hT0ZCcJWtc2wnuay6lmqiYwImemfZji2hTu3UtGjlikfgFXi1PcnOsZtsRfxIcJc4x4ntnGN_JznnMyEvK5PnItc-laXjKTfSpKV0ImW-8rIUXkuNjuLoUA6P-cFYjK9k8Ud-iPaDG1pGmK_RwLWpdy9JQ3UVeIP2JKYiYAYfBmwhKnp_yR-F8DyQ7WUCmsCLhrWxw3Y3q2-sStdxgM9-BTk3EWxYggbbRDeNj5Enk53lwuzYrz_xOv5P726TW2t8SrtRoe6Qa256l9y8wlp4j_wYOUDs59--xzxOSwdNgBeU7YPQF1fR4WzqVvBQA2VvP08cxcgVejSbz5Y1hSl9Folrl-DtU13TIyTZgEsg3dx9MHeO9vDr0qpe1BTANcWglJMV7QfaC1gt6buzFRgA7ce9fOZIQ4uKdp8cD_ofe8N0vdNDaqUoy9QyW1VWBLp5cOG8rlxmO9J5m3leMGOMBomOMZ6z3ME8lO95gSm6VjDLeZY9IFtT6NcjQkUpqlx4KBWae-5L60sPXmRgvgf_KCFp86aVXdOg424cJyoSODOFQ6_aoU_I61b-NBKA_FbyVVCcVkzPJxg2lwv16fCNGguZHXwoeqqTkBeNZikwZvxDo6cOxlghmZqESVjmf5LJEIQD8kjIw6iW7RMZeL-yyIuEsKBcf2mx6u6Puu3Z43-p9ITcwOMYEvmUbIHuuGcA0xbmeTDFC-JVOwU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIAtaA_AgfIqhKeREJzSbhPbSY6rfbCU3aWCVvRm2Y4toa120T5QlxM_gb_Qv9Zf0hl7k7KIhwTHOJPEcWbsGWf8mZAXpc4ynikXi8KymGmh40JYHieudKLgTgmFgeJgKHpHbP-YV9mEuBYm8CHqCTe0DN9fo4HjhPTuJTVUlR4ctCdwLUJxlWzitt6Iz2-_vyRIoYPucXsph0qwvOI2NpLd9evXxqVNbOLTXzmd6z6sH4S6W0RX1Q-5J6OdxVzvmK8_kR3_6_1ukZsrF5U2g07dJlfs-A658QO48C45G1hw2s-_fQ9LOQ3tVjleUNYGoS-2pL3J2C7hqRrK-p9GlmLyCj2YTCeLGYVefRLYtQsI-Kma0QPkbMApkK7u3p1aS1s4wbSczWcU_GuKeSknS9rx5AsYMOm70yXYAO2E7XymSKJFXbtHjrqdw1YvXm32EBvBiyI2iSlLwz1xHqI4p0qbmoawzqSO5YnWWoFEQ2vHksxCV5TtOY6rdA1PDGNpuk02xvBeDwjlBS8z7qCUK-aYK4wrHASSHn4PIVJE4upTS7MioeOGHCcyMJwTiU0v66aPyKta_nNggPxW8qXXnFpMTUeYOZdx-XH4Wh5zke5_yFuyEZHnlWpJsGf8SaPGFtpYIk9NQD8ssj_JpOiHg_MRkftBL-snJhAAizzLI5J47fpLjWWzPWjWRw__5aJn5FrvcNCX_TfDt4_IdSwPGZKPyQbokX0CXttcP_V2eQFmMT8h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFIAt2CQED-POwtVICJ6yZYntJI9V21DGWipgom-W7dgS6tROvaCVJ34Cf4G_xi_hnLjJVsRFgsc4J4njnGOf4xx_JuRZqdOUp8qFIrcsZFroMBeWh7Ernci5U0JhoNgfiN4xOxzx0YVV_J4P0Uy4oWVU_TUa-Gnp9s-hoaqsuEEHApci5JfJNhNRjps3dN6eA6TQP69oewmHOrCsxjZG8f7m9RvD0ja28NmvfM5NF7Yag4rrRNW196kn473lQu-Zzz-BHf_n9W6QnbWDSlteo26SS3Zyi1y7gC28Tb71Lbjs37989Qs5DS3qDC8o64DQJ1vS3nRiV_BQDWVHH8eWYuoKHU5n0-WcQp8-9eTaJYT7VM3pECkbcAqk67sXM2tpG6eXVvPFnIJ3TTEr5WRFuxX3AoZL-uZsBRZAu34znxlyaFHT7pDjovu-3QvXWz2ERvA8D01sytLwijcPMZxTpU1MJKwziWNZrLVWIBFp7VicWuiI0gPHcY2u4bFhLEnukq0JvNcuoTznZcodlHLFHHO5cbmDMLJC30OAFJCw_tLSrDnouB3HifQE51hi08um6QPyopE_9QSQ30o-rxSnEVOzMebNpVx-GLyUIy6Sw3dZW0YBeVprlgRrxl80amKhjSXS1AT0wiL9k0yCXji4HgG559WyeWIM4a_I0iwgcaVcf6mxbHX6rebo_r9c9IRcGXYKefRq8PoBuYrFPj3yIdkCNbKPwGVb6MeVVf4AgdU90A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Framework-Derived+Honeycomb-Like+Open+Porous+Nanostructures+as+Precious-Metal-Free+Catalysts+for+Highly+Efficient+Oxygen+Electroreduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Qi-Long&rft.au=Xia%2C+Wei&rft.au=Akita%2C+Tomoki&rft.au=Zou%2C+Ruqiang&rft.date=2016-08-01&rft.eissn=1521-4095&rft.volume=28&rft.issue=30&rft.spage=6391&rft_id=info:doi/10.1002%2Fadma.201600979&rft_id=info%3Apmid%2F27166878&rft.externalDocID=27166878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |