Metal-Organic Framework-Derived Honeycomb-Like Open Porous Nanostructures as Precious-Metal-Free Catalysts for Highly Efficient Oxygen Electroreduction

Honeycomb‐like porous carbon nanostructures are rationally constructed from a metal–organic framework composite. The unique architecture with uniformly distributed high‐density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 28; no. 30; pp. 6391 - 6398
Main Authors Zhu, Qi-Long, Xia, Wei, Akita, Tomoki, Zou, Ruqiang, Xu, Qiang
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Honeycomb‐like porous carbon nanostructures are rationally constructed from a metal–organic framework composite. The unique architecture with uniformly distributed high‐density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction.
AbstractList Honeycomb-like porous carbon nanostructures are rationally constructed from a metal-organic framework composite. The unique architecture with uniformly distributed high-density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction.Honeycomb-like porous carbon nanostructures are rationally constructed from a metal-organic framework composite. The unique architecture with uniformly distributed high-density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction.
Honeycomb‐like porous carbon nanostructures are rationally constructed from a metal–organic framework composite. The unique architecture with uniformly distributed high‐density active sites significantly enhances the electrocatalytic performance by increasing the accessible active sites and enhancing mass transport of the gas and electrolyte, rendering the resulting catalyst adequate in reaching the desired catalytic performance afforded by Pt for the oxygen reduction reaction.
Author Xia, Wei
Akita, Tomoki
Xu, Qiang
Zhu, Qi-Long
Zou, Ruqiang
Author_xml – sequence: 1
  givenname: Qi-Long
  surname: Zhu
  fullname: Zhu, Qi-Long
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Ikeda, Japan
– sequence: 2
  givenname: Wei
  surname: Xia
  fullname: Xia, Wei
  organization: Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Material Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China
– sequence: 3
  givenname: Tomoki
  surname: Akita
  fullname: Akita, Tomoki
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Ikeda, Japan
– sequence: 4
  givenname: Ruqiang
  surname: Zou
  fullname: Zou, Ruqiang
  email: rzou@pku.edu.cn
  organization: Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Material Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China
– sequence: 5
  givenname: Qiang
  surname: Xu
  fullname: Xu, Qiang
  email: rzou@pku.edu.cn
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Ikeda, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27166878$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv0zAUxy00xLrBlSPykUuK7cROcqy6dgV16yRAcLMc56WYJnGxHbZ8Er4urjoqhITg5Cf59_s_vfcu0Flve0DoJSVTSgh7o-pOTRmhgpAyL5-gCeWMJhkp-RmakDLlSSmy4hxdeP-VREYQ8Qyds5wKUeTFBP24gaDaZOO2qjcaL53q4N66XXIFznyHGq9iv1HbrkrWZgd4s4ce31lnB49vVW99cIMOgwOPlcd3DrSJX8kxdekA8FzFcvTB48Y6vDLbL-2IF01jtIE-4M3DuI2RixZ0cNZBHeOM7Z-jp41qPbx4fC_Rx-Xiw3yVrDfXb-ezdaIFL8tEM13XmhNGWc6KvFE1pJoIaHTaZAWrqkpFglRVk7EcSEpz2nCRMao501mWppfo9TF37-y3AXyQnfEa2lb1EAeRtEi54IKk4j_Qw3pzIvKIvnpEh6qDWu6d6ZQb5a-9R2B6BLSz3jtoTggl8nBYeTisPB02CtkfgjZBHTYVnDLt37XyqN2bFsZ_NJGzq5vZ725ydI0P8HByldvJOGLO5afba_mZi_Td-2IuSfoTzMXJWw
CitedBy_id crossref_primary_10_1021_acs_energyfuels_3c04956
crossref_primary_10_1149_2_0111709jes
crossref_primary_10_1109_JSEN_2023_3266098
crossref_primary_10_1021_acs_iecr_3c01527
crossref_primary_10_1016_j_seppur_2024_126520
crossref_primary_10_1016_j_jpowsour_2017_08_102
crossref_primary_10_1016_j_matchemphys_2025_130448
crossref_primary_10_1016_j_cclet_2019_02_021
crossref_primary_10_1021_acssuschemeng_7b00655
crossref_primary_10_1016_j_electacta_2018_11_129
crossref_primary_10_1039_C8NR03443E
crossref_primary_10_1021_acsanm_2c02446
crossref_primary_10_1360_SSC_2022_0170
crossref_primary_10_1016_j_jpowsour_2019_227561
crossref_primary_10_1021_acsami_7b01712
crossref_primary_10_1016_j_ijhydene_2022_02_082
crossref_primary_10_1016_j_jcis_2018_11_031
crossref_primary_10_1016_j_mtsust_2023_100627
crossref_primary_10_3390_catal7120364
crossref_primary_10_1039_C7TA07387A
crossref_primary_10_1016_j_jallcom_2022_166680
crossref_primary_10_1002_advs_201700515
crossref_primary_10_1021_acsami_7b10668
crossref_primary_10_1021_acssuschemeng_7b01419
crossref_primary_10_1088_1361_6528_abeb9d
crossref_primary_10_1002_ange_202004737
crossref_primary_10_1002_smtd_201800214
crossref_primary_10_1016_j_ccr_2022_214949
crossref_primary_10_1016_j_cej_2020_125154
crossref_primary_10_1021_acsomega_2c05155
crossref_primary_10_1002_smll_202100135
crossref_primary_10_1039_C8MH01375F
crossref_primary_10_1002_smtd_201800204
crossref_primary_10_1016_j_ccr_2018_07_020
crossref_primary_10_1002_smll_201800639
crossref_primary_10_1002_ange_202002665
crossref_primary_10_1002_aenm_201802386
crossref_primary_10_1016_j_jcat_2021_07_019
crossref_primary_10_1016_j_jcis_2024_07_005
crossref_primary_10_1021_acsami_7b19498
crossref_primary_10_1016_S1872_2067_18_63017_7
crossref_primary_10_1021_acsnano_8b01502
crossref_primary_10_1016_j_electacta_2019_134679
crossref_primary_10_1021_acsenergylett_6b00686
crossref_primary_10_1039_D4DT02945C
crossref_primary_10_1002_cssc_201801585
crossref_primary_10_1021_acsami_8b13290
crossref_primary_10_1039_D1TA02468J
crossref_primary_10_1002_adma_201700778
crossref_primary_10_1002_adma_201701354
crossref_primary_10_1002_smll_202310348
crossref_primary_10_1039_C9CS00871C
crossref_primary_10_1016_j_jssc_2019_04_014
crossref_primary_10_1021_acsami_7b11101
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1016_j_cis_2024_103279
crossref_primary_10_1109_MNANO_2017_2710380
crossref_primary_10_1016_j_mattod_2018_10_038
crossref_primary_10_1002_cssc_201801473
crossref_primary_10_1016_j_talanta_2020_121088
crossref_primary_10_1002_smll_201906086
crossref_primary_10_1038_s41598_017_06194_z
crossref_primary_10_1002_adma_201703663
crossref_primary_10_1002_admi_201601227
crossref_primary_10_1016_j_cej_2023_144805
crossref_primary_10_1002_celc_201700627
crossref_primary_10_1016_j_enchem_2020_100043
crossref_primary_10_1016_j_jpowsour_2017_03_142
crossref_primary_10_1016_S1872_2067_20_63658_0
crossref_primary_10_1007_s42114_024_00996_2
crossref_primary_10_1016_j_jallcom_2019_152192
crossref_primary_10_1016_j_jallcom_2023_170941
crossref_primary_10_1002_smll_201704169
crossref_primary_10_1016_j_jcis_2017_09_012
crossref_primary_10_1002_adfm_201704537
crossref_primary_10_1021_acsami_0c04842
crossref_primary_10_1016_j_nanoen_2018_03_059
crossref_primary_10_1039_C8TA06069J
crossref_primary_10_1002_aenm_201602733
crossref_primary_10_1021_acsami_9b19268
crossref_primary_10_1016_j_snb_2016_12_085
crossref_primary_10_1016_j_jallcom_2022_164063
crossref_primary_10_1039_D1TA04831G
crossref_primary_10_1016_j_solener_2021_12_006
crossref_primary_10_1002_anie_201811126
crossref_primary_10_1002_aenm_201700518
crossref_primary_10_1016_j_jpowsour_2017_03_011
crossref_primary_10_1039_D1QI00394A
crossref_primary_10_1021_acsami_8b17308
crossref_primary_10_1007_s41918_021_00094_7
crossref_primary_10_1002_cctc_201701566
crossref_primary_10_1007_s12274_019_2349_0
crossref_primary_10_1039_D1CS00857A
crossref_primary_10_1016_j_carbon_2020_03_017
crossref_primary_10_1016_j_mattod_2018_10_016
crossref_primary_10_1002_adfm_201909265
crossref_primary_10_1002_smll_201702074
crossref_primary_10_1016_j_apsusc_2016_09_045
crossref_primary_10_1039_C8TA11704G
crossref_primary_10_1002_ange_201811126
crossref_primary_10_1021_jacs_8b08744
crossref_primary_10_1016_j_ijhydene_2019_01_231
crossref_primary_10_1021_acsanm_0c03171
crossref_primary_10_1016_j_nanoen_2024_109897
crossref_primary_10_1039_C6RA17670D
crossref_primary_10_1002_slct_201701020
crossref_primary_10_1016_j_ijhydene_2017_04_050
crossref_primary_10_1039_D3DT01477K
crossref_primary_10_1016_j_ensm_2017_12_027
crossref_primary_10_1039_C7NR07235J
crossref_primary_10_1016_j_nanoen_2020_104909
crossref_primary_10_1002_bio_4267
crossref_primary_10_1016_j_cej_2021_133560
crossref_primary_10_1016_j_jpowsour_2019_05_084
crossref_primary_10_1016_j_jechem_2020_01_034
crossref_primary_10_1016_j_cclet_2022_04_060
crossref_primary_10_1039_C8TA01321G
crossref_primary_10_1039_D0NJ06174C
crossref_primary_10_1002_anie_202010618
crossref_primary_10_1016_j_cej_2023_146988
crossref_primary_10_1002_adfm_201707573
crossref_primary_10_1016_j_jmat_2020_10_008
crossref_primary_10_1021_accountsmr_4c00330
crossref_primary_10_1016_j_apcatb_2019_118559
crossref_primary_10_1021_acs_inorgchem_1c00946
crossref_primary_10_1016_j_cej_2017_10_043
crossref_primary_10_1021_acs_iecr_0c00663
crossref_primary_10_1016_j_jechem_2020_05_048
crossref_primary_10_1016_j_mattod_2017_06_002
crossref_primary_10_1016_j_jpowsour_2019_227166
crossref_primary_10_1016_j_compositesb_2021_109532
crossref_primary_10_1007_s40820_019_0238_4
crossref_primary_10_1016_j_jallcom_2019_04_325
crossref_primary_10_1039_D3CY01013A
crossref_primary_10_1002_adfm_202210298
crossref_primary_10_1016_j_chempr_2016_12_002
crossref_primary_10_1016_j_ccr_2020_213266
crossref_primary_10_1021_acsenergylett_7b00835
crossref_primary_10_1002_adma_202206842
crossref_primary_10_1007_s41918_018_0024_x
crossref_primary_10_1016_j_jcis_2024_07_198
crossref_primary_10_1126_sciadv_aap8817
crossref_primary_10_1002_smll_201803500
crossref_primary_10_1007_s11696_020_01112_6
crossref_primary_10_1016_j_cej_2020_126638
crossref_primary_10_1002_adma_201706758
crossref_primary_10_1039_C9NR01804B
crossref_primary_10_1016_j_apcatb_2019_118537
crossref_primary_10_1039_C7TA06419E
crossref_primary_10_1016_j_apmt_2020_100692
crossref_primary_10_1016_j_jpowsour_2020_228470
crossref_primary_10_1021_acsami_7b08647
crossref_primary_10_1016_j_cclet_2021_03_050
crossref_primary_10_1002_adma_201804903
crossref_primary_10_1016_j_cej_2020_127635
crossref_primary_10_1021_acs_inorgchem_9b00733
crossref_primary_10_1039_C8TA00493E
crossref_primary_10_1016_j_nanoen_2017_08_044
crossref_primary_10_1016_j_ensm_2018_05_024
crossref_primary_10_1016_j_jcis_2018_05_063
crossref_primary_10_1002_asia_201800245
crossref_primary_10_1016_j_jallcom_2018_11_368
crossref_primary_10_1039_C8TA00494C
crossref_primary_10_1016_j_renene_2017_12_084
crossref_primary_10_2139_ssrn_4159278
crossref_primary_10_1021_jacs_1c09021
crossref_primary_10_3390_nano10101947
crossref_primary_10_1021_acsami_9b07436
crossref_primary_10_1016_j_electacta_2018_12_080
crossref_primary_10_1016_j_seppur_2023_124155
crossref_primary_10_1002_adma_202007442
crossref_primary_10_1021_acssuschemeng_7b02076
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1039_C9SE01216H
crossref_primary_10_1016_j_carbon_2018_10_040
crossref_primary_10_1039_D1TA09861F
crossref_primary_10_1016_j_jelechem_2017_12_055
crossref_primary_10_1016_j_enchem_2019_100001
crossref_primary_10_1016_j_carbon_2019_12_058
crossref_primary_10_1039_C9NR00977A
crossref_primary_10_1016_j_jcis_2022_01_042
crossref_primary_10_1016_j_jelechem_2018_07_024
crossref_primary_10_1016_j_jpowsour_2019_04_103
crossref_primary_10_1016_j_cclet_2019_08_008
crossref_primary_10_1039_C9NR02914A
crossref_primary_10_1016_j_jiec_2024_01_044
crossref_primary_10_1002_adma_201904689
crossref_primary_10_1002_eom2_12041
crossref_primary_10_2139_ssrn_4089462
crossref_primary_10_1016_j_ccr_2022_214741
crossref_primary_10_1016_j_aca_2018_10_063
crossref_primary_10_1016_j_ijhydene_2018_12_103
crossref_primary_10_1016_j_jechem_2021_11_035
crossref_primary_10_1016_j_nantod_2023_101972
crossref_primary_10_1039_C9NH00485H
crossref_primary_10_1021_acssuschemeng_8b05352
crossref_primary_10_1002_admt_202200238
crossref_primary_10_1002_aenm_201801839
crossref_primary_10_1002_smtd_202000637
crossref_primary_10_1016_j_jcat_2020_08_016
crossref_primary_10_1007_s11664_019_07187_6
crossref_primary_10_1016_j_jcis_2019_01_002
crossref_primary_10_1016_j_colsurfa_2024_135794
crossref_primary_10_1002_smll_202004369
crossref_primary_10_1039_C7MH00244K
crossref_primary_10_1002_adfm_201701971
crossref_primary_10_1002_cctc_202000067
crossref_primary_10_1016_j_electacta_2024_145256
crossref_primary_10_1002_smtd_201700187
crossref_primary_10_1002_aenm_202301505
crossref_primary_10_1002_adma_201706330
crossref_primary_10_1016_j_jcis_2019_10_069
crossref_primary_10_1016_j_nanoen_2016_11_033
crossref_primary_10_1002_advs_201800949
crossref_primary_10_1002_adfm_201802575
crossref_primary_10_1039_C7NR07274K
crossref_primary_10_1016_j_apcatb_2020_118720
crossref_primary_10_1021_acsami_8b10645
crossref_primary_10_1016_j_cej_2017_08_072
crossref_primary_10_1021_jacs_8b09092
crossref_primary_10_1016_j_carbon_2016_12_027
crossref_primary_10_1002_smll_202311060
crossref_primary_10_1007_s12274_022_4786_4
crossref_primary_10_1016_j_jpowsour_2019_02_022
crossref_primary_10_1002_adma_202101038
crossref_primary_10_1016_j_micromeso_2019_109930
crossref_primary_10_7498_aps_69_20191761
crossref_primary_10_1039_C7TA05334G
crossref_primary_10_1002_smtd_202100102
crossref_primary_10_1002_cctc_201701926
crossref_primary_10_1021_jacs_1c06349
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_1021_acssuschemeng_7b03034
crossref_primary_10_1002_aenm_201602002
crossref_primary_10_1016_j_ijhydene_2022_05_142
crossref_primary_10_1039_C8TA10918D
crossref_primary_10_1002_celc_201701335
crossref_primary_10_1016_j_jpowsour_2020_228629
crossref_primary_10_1016_j_pnsc_2024_12_003
crossref_primary_10_1039_D1NR00160D
crossref_primary_10_1021_acsami_8b06292
crossref_primary_10_1002_asia_201900727
crossref_primary_10_1002_ange_201911943
crossref_primary_10_1142_S1793292019501017
crossref_primary_10_1002_cjoc_202000073
crossref_primary_10_1007_s11244_018_0935_0
crossref_primary_10_1016_j_ccr_2018_02_008
crossref_primary_10_1039_D3CE01266B
crossref_primary_10_1002_smll_201700238
crossref_primary_10_1039_C7TA09976B
crossref_primary_10_1007_s12274_016_1400_7
crossref_primary_10_1038_s41929_019_0237_3
crossref_primary_10_1016_j_rser_2022_112585
crossref_primary_10_1016_j_cej_2021_130241
crossref_primary_10_1039_C8NR03527J
crossref_primary_10_1016_j_cej_2020_127917
crossref_primary_10_1039_C8NR01457D
crossref_primary_10_1039_C8NR09071H
crossref_primary_10_1039_D1NJ00861G
crossref_primary_10_1021_acscatal_3c05344
crossref_primary_10_1038_natrevmats_2017_75
crossref_primary_10_1002_adom_202200174
crossref_primary_10_1016_j_carbon_2018_02_051
crossref_primary_10_1016_j_energy_2024_130360
crossref_primary_10_1039_C7TA11122C
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1016_j_jechem_2019_10_005
crossref_primary_10_1016_j_jcat_2019_06_024
crossref_primary_10_1021_acs_chemmater_9b01093
crossref_primary_10_1016_j_apsusc_2020_147357
crossref_primary_10_1016_j_cej_2024_156755
crossref_primary_10_1016_j_inoche_2019_01_034
crossref_primary_10_1002_chem_201701389
crossref_primary_10_1007_s40820_017_0144_6
crossref_primary_10_1002_ange_202010618
crossref_primary_10_1063_1674_0068_cjcp2104074
crossref_primary_10_1016_j_ceramint_2021_01_145
crossref_primary_10_1039_C9CC00123A
crossref_primary_10_1016_j_cclet_2021_09_014
crossref_primary_10_1039_C7QM00007C
crossref_primary_10_1016_j_chempr_2019_03_002
crossref_primary_10_1021_acsami_8b14840
crossref_primary_10_1002_cssc_201801805
crossref_primary_10_1016_j_apcatb_2019_118207
crossref_primary_10_1002_cey2_573
crossref_primary_10_1021_acs_jpcc_3c05422
crossref_primary_10_1016_j_ccr_2017_02_010
crossref_primary_10_1039_C7TA10022A
crossref_primary_10_1002_idm2_12108
crossref_primary_10_1007_s11581_020_03776_2
crossref_primary_10_1039_D0NR00511H
crossref_primary_10_1002_adma_201604437
crossref_primary_10_1016_j_jechem_2020_05_032
crossref_primary_10_1021_acs_chemrev_9b00223
crossref_primary_10_1002_adma_201704091
crossref_primary_10_3390_catal13050890
crossref_primary_10_1002_smll_201700468
crossref_primary_10_1002_cssc_202400448
crossref_primary_10_1016_j_apcatb_2019_118570
crossref_primary_10_1016_j_jpowsour_2017_01_081
crossref_primary_10_1002_adma_201705189
crossref_primary_10_1016_j_ccr_2020_213214
crossref_primary_10_1002_er_6834
crossref_primary_10_1016_j_cej_2024_157706
crossref_primary_10_1002_aenm_201700193
crossref_primary_10_1039_C9EE04040D
crossref_primary_10_1021_acsaem_8b00550
crossref_primary_10_1016_j_matt_2021_07_019
crossref_primary_10_1021_acsaem_2c02350
crossref_primary_10_1039_C6TA10291C
crossref_primary_10_1007_s10853_018_3180_9
crossref_primary_10_1039_D3NA00213F
crossref_primary_10_1016_j_jpowsour_2017_07_019
crossref_primary_10_1021_acsami_8b16920
crossref_primary_10_1002_anie_202004737
crossref_primary_10_1088_1361_6528_ac0e6a
crossref_primary_10_1016_j_nanoen_2020_104597
crossref_primary_10_1002_cssc_202100182
crossref_primary_10_1002_ppsc_201700296
crossref_primary_10_1038_s41598_019_46541_w
crossref_primary_10_1002_anie_202002665
crossref_primary_10_1039_C7CC07249J
crossref_primary_10_1016_j_carbon_2022_08_078
crossref_primary_10_1002_anie_201911943
crossref_primary_10_1021_acs_chemrev_7b00335
crossref_primary_10_1039_C6QI00403B
crossref_primary_10_1002_adfm_202421670
crossref_primary_10_1039_C9QM00612E
crossref_primary_10_1021_acsami_0c03953
crossref_primary_10_1039_C7TA03070C
crossref_primary_10_1021_acssuschemeng_9b00105
crossref_primary_10_1039_D3CS01122D
crossref_primary_10_1016_j_jcis_2020_02_005
crossref_primary_10_1021_acs_jpcc_0c05949
crossref_primary_10_1002_adma_201806312
crossref_primary_10_1016_j_ijhydene_2019_04_197
crossref_primary_10_1039_C9CS00906J
crossref_primary_10_1016_j_pecs_2022_101044
crossref_primary_10_1016_j_apcatb_2019_04_096
crossref_primary_10_1016_j_ijhydene_2021_09_066
crossref_primary_10_1039_C9TA00607A
crossref_primary_10_1016_j_snb_2019_01_105
crossref_primary_10_1016_j_apsusc_2018_05_210
crossref_primary_10_1088_1757_899X_892_1_012003
crossref_primary_10_1002_asia_201800747
crossref_primary_10_1039_C8TA02839G
crossref_primary_10_1016_j_apcatb_2017_06_051
crossref_primary_10_1039_C8TA07994C
crossref_primary_10_1016_j_scitotenv_2021_150096
crossref_primary_10_1007_s40820_019_0264_2
crossref_primary_10_1039_C9TA00054B
crossref_primary_10_1016_j_cej_2022_137314
crossref_primary_10_1039_C7MH00358G
crossref_primary_10_1016_j_ccr_2019_02_021
crossref_primary_10_1039_C7SE00249A
crossref_primary_10_1016_j_apsusc_2021_151286
crossref_primary_10_1021_acsami_1c01424
crossref_primary_10_1039_C7NR02165H
crossref_primary_10_1039_D0QI00717J
crossref_primary_10_1039_C6TA08016B
crossref_primary_10_1002_adfm_201700451
crossref_primary_10_1007_s11581_023_05248_9
crossref_primary_10_3390_cryst11040340
crossref_primary_10_1021_acsaem_8b00990
crossref_primary_10_1002_adma_202002563
crossref_primary_10_1016_j_jcis_2019_10_099
crossref_primary_10_1039_C8CY01371C
crossref_primary_10_1021_acs_cgd_0c00598
crossref_primary_10_1039_D0NR01239D
crossref_primary_10_1002_cctc_201900834
crossref_primary_10_1039_C7NR08943K
crossref_primary_10_1016_j_cej_2024_157335
crossref_primary_10_1016_j_flatc_2021_100332
crossref_primary_10_1016_S1872_2067_23_64392_X
crossref_primary_10_1021_acsenergylett_9b02625
crossref_primary_10_1039_C7TA02096A
crossref_primary_10_1016_j_carbon_2019_01_027
crossref_primary_10_1021_acsanm_0c02698
crossref_primary_10_1016_j_apcata_2017_03_027
crossref_primary_10_1016_j_electacta_2020_136918
crossref_primary_10_1039_C9CC00196D
crossref_primary_10_6023_A21030086
crossref_primary_10_1039_D1TA02691G
crossref_primary_10_1016_j_biortech_2019_121444
crossref_primary_10_1016_j_ccr_2017_09_018
crossref_primary_10_1016_j_materresbull_2023_112501
crossref_primary_10_1039_C9QI01367A
crossref_primary_10_1002_asia_201900026
crossref_primary_10_1016_j_electacta_2021_139441
crossref_primary_10_1002_adfm_201605332
crossref_primary_10_1021_acsami_8b01462
crossref_primary_10_1039_C7TA04074A
crossref_primary_10_1021_acsaem_2c02133
crossref_primary_10_1002_chem_201902389
crossref_primary_10_1002_celc_202100687
crossref_primary_10_1016_j_cej_2017_06_146
crossref_primary_10_1016_j_cej_2017_12_014
crossref_primary_10_1002_smll_202200037
crossref_primary_10_1002_adma_201703711
crossref_primary_10_1016_j_apsusc_2020_147659
crossref_primary_10_1016_j_jpowsour_2019_227659
crossref_primary_10_1002_smll_201701143
crossref_primary_10_1016_j_jcis_2019_09_102
crossref_primary_10_1002_aenm_201801307
crossref_primary_10_1016_j_nanoen_2018_12_085
crossref_primary_10_1016_j_seppur_2023_123998
crossref_primary_10_1002_adma_201907399
crossref_primary_10_1016_j_apcatb_2018_09_063
crossref_primary_10_1002_adfm_202301013
crossref_primary_10_1039_C7TA06916B
crossref_primary_10_1016_j_ensm_2022_07_027
crossref_primary_10_1002_admt_202101107
crossref_primary_10_1016_j_jcis_2019_02_064
crossref_primary_10_1002_adma_201700104
crossref_primary_10_1002_cctc_202101033
crossref_primary_10_1016_j_apsusc_2020_148621
crossref_primary_10_1016_j_apcatb_2021_120752
crossref_primary_10_1021_acsami_6b15788
crossref_primary_10_1016_j_jcis_2023_09_094
crossref_primary_10_1002_cctc_202000410
Cites_doi 10.1021/cm7024763
10.1021/nn505582e
10.1021/ar100112y
10.1126/science.1230444
10.1002/anie.200705998
10.1126/science.1200832
10.1016/j.jpowsour.2010.06.001
10.1002/adma.201500727
10.1002/aenm.201400337
10.1002/ange.201408990
10.1126/science.1168049
10.1002/anie.201007036
10.1002/anie.201503159
10.1002/ange.200705998
10.1002/ange.201104004
10.1021/ja5003907
10.1002/anie.201500569
10.1039/C4EE02281E
10.1002/aenm.201301415
10.1002/anie.201408990
10.1002/ange.201206720
10.1002/anie.201410258
10.1021/ic50011a004
10.1021/jp054487f
10.1038/nmat3087
10.1021/acscatal.5b00154
10.1002/adma.201502315
10.1021/ja403330m
10.1039/C4TA06667G
10.1021/ja402727d
10.1021/ja5084128
10.1002/anie.201104004
10.1021/cm103644b
10.1002/ange.201500569
10.1073/pnas.1507159112
10.1016/j.micromeso.2012.06.044
10.1002/anie.200602099
10.1038/nmat2808
10.1002/anie.201206720
10.1039/C5EE00762C
10.1021/ja208940u
10.1038/ncomms3719
10.1002/ange.201503612
10.1002/ange.201503159
10.1021/ja7106146
10.1039/C3CS60472A
10.1021/ja5129132
10.1021/ja203184k
10.1002/ange.200602099
10.1126/sciadv.1400129
10.1038/ncomms2944
10.1021/ja511539a
10.1002/adma.201304238
10.1038/ncomms5973
10.1039/C3EE42799D
10.1126/sciadv.1500564
10.1002/anie.201503612
10.1002/chem.201204549
10.1002/ange.201007036
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
NPM
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201600979
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 6398
ExternalDocumentID 27166878
10_1002_adma_201600979
ADMA201600979
ark_67375_WNG_X563JS8C_0
Genre article
Journal Article
GrantInformation_xml – fundername: AIST
– fundername: JSPS
– fundername: National Natural Science Foundation of China
  funderid: 51322205; 21371014
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADMLS
ADNMO
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c6599-c2cddc502127287fade3c06efc3f482bbba2cd0bbf427e03171f56421c52c4433
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:29:27 EDT 2025
Thu Jul 10 19:15:34 EDT 2025
Thu Apr 03 07:06:33 EDT 2025
Tue Jul 01 00:44:26 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Jan 22 16:36:07 EST 2025
Wed Oct 30 09:47:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords porous carbon
oxygen reduction
cobalt sulfide
metal-organic frameworks
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6599-c2cddc502127287fade3c06efc3f482bbba2cd0bbf427e03171f56421c52c4433
Notes National Natural Science Foundation of China - No. 51322205; No. 21371014
istex:A00157D1129F8B4E74B37DACBD2E916A546C41BC
ark:/67375/WNG-X563JS8C-0
ArticleID:ADMA201600979
JSPS
AIST
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27166878
PQID 1809607067
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1835656036
proquest_miscellaneous_1809607067
pubmed_primary_27166878
crossref_primary_10_1002_adma_201600979
crossref_citationtrail_10_1002_adma_201600979
wiley_primary_10_1002_adma_201600979_ADMA201600979
istex_primary_ark_67375_WNG_X563JS8C_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, Z. Tang, ACS Nano 2014, 8, 12660.
N. Mahmood, C. Zhang, J. Jiang, F. Liu, Y. Hou, Chem. Eur. J. 2013, 19, 5183.
Q. Li, R. Cao, J. Cho, G. Wu, Adv. Energy Mater. 2014, 4, 1301415.
G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, J. Am. Chem. Soc. 2013, 135, 7438.
Angew. Chem. 2008, 120, 4212.
J. Shui, M. Wang, F. Du, L. Dai, Sci. Adv. 2015, 1, e1400129.
J. Zhang, Z. Xia, L. Dai, Sci. Adv. 2015, 1, e1500564.
P. Serra-Crespo, E. V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Chem. Mater. 2011, 23, 2565.
Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu, P. Feng, Adv. Mater. 2015, 27, 3431.
X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 9654
C.-D. Wu, W. Lin, Angew. Chem. Int. Ed. 2007, 46, 1075
W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436.
Angew. Chem. 2015, 127, 10045.
R. A. Sidik, A. B. Anderson, J. Phys. Chem. B 2006, 110, 936.
Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. Jiang, Adv. Mater. 2015, 27, 5010.
W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, J. Am. Chem. Soc. 2014, 136, 14385.
D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123.
Y. Feng, T. He, N. Alonso-Vante, Chem. Mater. 2008, 20, 26.
A. Aijaz, N. Fujiwara, Q. Xu, J. Am. Chem. Soc. 2014, 136, 6790.
W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568.
J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, G. Qian, Nat. Commun. 2013, 4, 2719.
J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2015, 54, 10102
H.-X. Zhong, J. Wang, Y.-w. Zhang, W.-l. Xu, W. Xing, D. Xu, Y.-F. Zhang, X.-b. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2015, 54, 1888
H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969
B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390.
Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337.
Angew. Chem. 2012, 124, 11664.
M.-R. Gao, Q. Gao, J. Jiang, C.-H. Cui, W.-T. Yao, S.-H. Yu, Angew. Chem. Int. Ed. 2011, 50, 4905
Angew. Chem. 2011, 123, 11161.
Angew. Chem. 2007, 119, 1093.
Y.-C. Wang, Y.-J. Lai, L. Song, Z.-Y. Zhou, J.-G. Liu, Q. Wang, X.-D. Yang, C. Chen, W. Shi, Y.-P. Zheng, M. Rauf, S.-G. Sun, Angew. Chem. Int. Ed. 2015, 54, 9907.
W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 8, 1837.
Y. K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 4144
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780.
J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 2015, 137, 1572.
Q.-L. Zhu, J. Li, Q. Xu, J. Am. Chem. Soc. 2013, 135, 10210.
P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, Energy Environ. Sci. 2014, 7, 442.
M. Hartmann, M. Fischer, Micropor. Mesopor. Mater. 2012, 164, 38.
J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.-J. Liu, Proc. Natl. Acad. Sci. USA 2015, 112, 10629.
J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496
P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam, ACS Catal. 2015, 5, 3625.
D. Song, Q. Wang, Y. Wang, Y. Wang, Y. Han, L. Li, G. Liu, L. Jiao, H. Yuan, J. Power Sources 2010, 195, 7462.
H. T. Chung, J. H. Won, P. Zelenay, Nat. Commun. 2013, 4, 1922.
M. Hu, J. Reboul, S. Furukawa, N. L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, J. Am. Chem. Soc. 2012, 134, 2864.
H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468.
H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 2014, 5, 4973.
Angew. Chem. 2015, 127, 9790.
Angew. Chem. 2014, 126, 14459.
Angew. Chem. 2011, 123, 5007.
D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu, D.-J. Liu, Adv. Mater. 2014, 26, 1093.
Angew. Chem. 2015, 127, 10240.
H. Sato, R. Matsuda, K. Sugimoto, M. Takata, S. Kitagawa, Nat. Mater. 2010, 9, 661.
F. A. Cotton, O. D. Faut, J. T. Mague, Inorg. Chem. 1964, 3, 17.
H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854.
G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443.
D. C. Higgins, F. M. Hassan, M. H. Seo, J. Y. Choi, M. A. Hoque, D. U. Lee, Z. Chen, J. Mater. Chem. A 2015, 3, 6340.
2014 2014; 53 126
2015; 1
2012; 164
2013; 4
2015; 5
2015; 3
2015; 54
1964; 3
2014; 26
2006; 110
2011; 10
2013; 341
2008 2008; 47 120
2015; 8
2011; 332
2014; 136
2011; 133
2014; 43
2013; 19
2014; 5
2014; 4
2015; 27
2012; 134
2015; 137
2012 2012; 51 124
2015; 112
2007 2007; 46 119
2015 2015; 54 127
2011; 44
2013; 135
2011 2011; 50 123
2011; 23
2010; 195
2008; 20
2014; 8
2014; 7
2009; 323
2008; 130
2010; 9
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_21_2
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_27_2
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_5_2
e_1_2_4_9_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_12_2
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_14_2
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_2
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_45_2
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_32_2
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – reference: R. A. Sidik, A. B. Anderson, J. Phys. Chem. B 2006, 110, 936.
– reference: M. Hu, J. Reboul, S. Furukawa, N. L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, J. Am. Chem. Soc. 2012, 134, 2864.
– reference: H. T. Chung, J. H. Won, P. Zelenay, Nat. Commun. 2013, 4, 1922.
– reference: M.-R. Gao, Q. Gao, J. Jiang, C.-H. Cui, W.-T. Yao, S.-H. Yu, Angew. Chem. Int. Ed. 2011, 50, 4905;
– reference: Angew. Chem. 2015, 127, 9790.
– reference: Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337.
– reference: G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443.
– reference: H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854.
– reference: C.-D. Wu, W. Lin, Angew. Chem. Int. Ed. 2007, 46, 1075;
– reference: Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. Jiang, Adv. Mater. 2015, 27, 5010.
– reference: J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 2015, 137, 1572.
– reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
– reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780.
– reference: N. Mahmood, C. Zhang, J. Jiang, F. Liu, Y. Hou, Chem. Eur. J. 2013, 19, 5183.
– reference: D. Song, Q. Wang, Y. Wang, Y. Wang, Y. Han, L. Li, G. Liu, L. Jiao, H. Yuan, J. Power Sources 2010, 195, 7462.
– reference: K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
– reference: W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, J. Am. Chem. Soc. 2014, 136, 14385.
– reference: Angew. Chem. 2014, 126, 14459.
– reference: Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu, P. Feng, Adv. Mater. 2015, 27, 3431.
– reference: G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, J. Am. Chem. Soc. 2013, 135, 7438.
– reference: Y.-C. Wang, Y.-J. Lai, L. Song, Z.-Y. Zhou, J.-G. Liu, Q. Wang, X.-D. Yang, C. Chen, W. Shi, Y.-P. Zheng, M. Rauf, S.-G. Sun, Angew. Chem. Int. Ed. 2015, 54, 9907.
– reference: W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568.
– reference: F. A. Cotton, O. D. Faut, J. T. Mague, Inorg. Chem. 1964, 3, 17.
– reference: P. Serra-Crespo, E. V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Chem. Mater. 2011, 23, 2565.
– reference: J. Zhang, Z. Xia, L. Dai, Sci. Adv. 2015, 1, e1500564.
– reference: Angew. Chem. 2008, 120, 4212.
– reference: Angew. Chem. 2015, 127, 10045.
– reference: Y. Feng, T. He, N. Alonso-Vante, Chem. Mater. 2008, 20, 26.
– reference: H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 2014, 5, 4973.
– reference: S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, Z. Tang, ACS Nano 2014, 8, 12660.
– reference: D. C. Higgins, F. M. Hassan, M. H. Seo, J. Y. Choi, M. A. Hoque, D. U. Lee, Z. Chen, J. Mater. Chem. A 2015, 3, 6340.
– reference: D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu, D.-J. Liu, Adv. Mater. 2014, 26, 1093.
– reference: J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496;
– reference: Angew. Chem. 2011, 123, 11161.
– reference: M. Hartmann, M. Fischer, Micropor. Mesopor. Mater. 2012, 164, 38.
– reference: Angew. Chem. 2007, 119, 1093.
– reference: P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam, ACS Catal. 2015, 5, 3625.
– reference: Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468.
– reference: Angew. Chem. 2011, 123, 5007.
– reference: J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, G. Qian, Nat. Commun. 2013, 4, 2719.
– reference: H. Sato, R. Matsuda, K. Sugimoto, M. Takata, S. Kitagawa, Nat. Mater. 2010, 9, 661.
– reference: J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2015, 54, 10102;
– reference: W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436.
– reference: Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2015, 54, 1888;
– reference: D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123.
– reference: A. Aijaz, N. Fujiwara, Q. Xu, J. Am. Chem. Soc. 2014, 136, 6790.
– reference: X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu, J. Cho, Angew. Chem. Int. Ed. 2015, 54, 9654;
– reference: J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.-J. Liu, Proc. Natl. Acad. Sci. USA 2015, 112, 10629.
– reference: H.-X. Zhong, J. Wang, Y.-w. Zhang, W.-l. Xu, W. Xing, D. Xu, Y.-F. Zhang, X.-b. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235;
– reference: Q. Li, R. Cao, J. Cho, G. Wu, Adv. Energy Mater. 2014, 4, 1301415.
– reference: Angew. Chem. 2012, 124, 11664.
– reference: P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, Energy Environ. Sci. 2014, 7, 442.
– reference: Angew. Chem. 2015, 127, 10240.
– reference: H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969;
– reference: J. Shui, M. Wang, F. Du, L. Dai, Sci. Adv. 2015, 1, e1400129.
– reference: Y. K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 4144;
– reference: Q.-L. Zhu, J. Li, Q. Xu, J. Am. Chem. Soc. 2013, 135, 10210.
– reference: W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 8, 1837.
– reference: B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390.
– volume: 112
  start-page: 10629
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 164
  start-page: 38
  year: 2012
  publication-title: Micropor. Mesopor. Mater.
– volume: 110
  start-page: 936
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 1
  start-page: e1400129
  year: 2015
  publication-title: Sci. Adv.
– volume: 20
  start-page: 26
  year: 2008
  publication-title: Chem. Mater.
– volume: 54 127
  start-page: 9654 9790
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 123
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 27
  start-page: 5010
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 332
  start-page: 443
  year: 2011
  publication-title: Science
– volume: 8
  start-page: 1837
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 442
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 195
  start-page: 7462
  year: 2010
  publication-title: J. Power Sources
– volume: 1
  start-page: e1500564
  year: 2015
  publication-title: Sci. Adv.
– volume: 9
  start-page: 661
  year: 2010
  publication-title: Nat. Mater.
– volume: 19
  start-page: 5183
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 1922
  year: 2013
  publication-title: Nat. Commun.
– volume: 46 119
  start-page: 1075 1093
  year: 2007 2007
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 17
  year: 1964
  publication-title: Inorg. Chem.
– volume: 23
  start-page: 2565
  year: 2011
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1400337
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 7438
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 6790
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4973
  year: 2014
  publication-title: Nat. Commun.
– volume: 130
  start-page: 5390
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 11496 11664
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 10969 11161
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 12660
  year: 2014
  publication-title: ACS Nano
– volume: 4
  start-page: 1301415
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2719
  year: 2013
  publication-title: Nat. Commun.
– volume: 133
  start-page: 11854
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 14385
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 1572
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 10210
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 2864
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 341
  start-page: 1230444
  year: 2013
  publication-title: Science
– volume: 27
  start-page: 3431
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 6340
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 53 126
  start-page: 14235 14459
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47 120
  start-page: 4144 4212
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 1093
  year: 2014
  publication-title: Adv. Mater.
– volume: 50 123
  start-page: 4905 5007
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 8
  start-page: 568
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 54 127
  start-page: 10102 10240
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 1436
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 1888 10045
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 3625
  year: 2015
  publication-title: ACS Catal.
– volume: 43
  start-page: 5468
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 9907
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_4_20_1
  doi: 10.1021/cm7024763
– ident: e_1_2_4_9_1
  doi: 10.1021/nn505582e
– ident: e_1_2_4_29_1
  doi: 10.1021/ar100112y
– ident: e_1_2_4_30_1
  doi: 10.1126/science.1230444
– ident: e_1_2_4_32_1
  doi: 10.1002/anie.200705998
– ident: e_1_2_4_16_1
  doi: 10.1126/science.1200832
– ident: e_1_2_4_51_1
  doi: 10.1016/j.jpowsour.2010.06.001
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201500727
– ident: e_1_2_4_8_1
  doi: 10.1002/aenm.201400337
– ident: e_1_2_4_45_2
  doi: 10.1002/ange.201408990
– ident: e_1_2_4_7_1
  doi: 10.1126/science.1168049
– ident: e_1_2_4_22_1
  doi: 10.1002/anie.201007036
– ident: e_1_2_4_15_1
  doi: 10.1002/anie.201503159
– ident: e_1_2_4_32_2
  doi: 10.1002/ange.200705998
– ident: e_1_2_4_21_2
  doi: 10.1002/ange.201104004
– ident: e_1_2_4_41_1
  doi: 10.1021/ja5003907
– ident: e_1_2_4_2_1
  doi: 10.1002/anie.201500569
– ident: e_1_2_4_46_1
  doi: 10.1039/C4EE02281E
– ident: e_1_2_4_1_1
  doi: 10.1002/aenm.201301415
– ident: e_1_2_4_45_1
  doi: 10.1002/anie.201408990
– ident: e_1_2_4_12_2
  doi: 10.1002/ange.201206720
– ident: e_1_2_4_14_1
  doi: 10.1002/anie.201410258
– ident: e_1_2_4_48_1
  doi: 10.1021/ic50011a004
– ident: e_1_2_4_26_1
  doi: 10.1021/jp054487f
– ident: e_1_2_4_4_1
  doi: 10.1038/nmat3087
– ident: e_1_2_4_24_1
  doi: 10.1021/acscatal.5b00154
– ident: e_1_2_4_19_1
  doi: 10.1002/adma.201502315
– ident: e_1_2_4_34_1
  doi: 10.1021/ja403330m
– ident: e_1_2_4_25_1
  doi: 10.1039/C4TA06667G
– ident: e_1_2_4_31_1
  doi: 10.1021/ja402727d
– ident: e_1_2_4_44_1
  doi: 10.1021/ja5084128
– ident: e_1_2_4_21_1
  doi: 10.1002/anie.201104004
– ident: e_1_2_4_47_1
  doi: 10.1021/cm103644b
– ident: e_1_2_4_2_2
  doi: 10.1002/ange.201500569
– ident: e_1_2_4_11_1
  doi: 10.1073/pnas.1507159112
– ident: e_1_2_4_50_1
  doi: 10.1016/j.micromeso.2012.06.044
– ident: e_1_2_4_27_1
  doi: 10.1002/anie.200602099
– ident: e_1_2_4_28_1
  doi: 10.1038/nmat2808
– ident: e_1_2_4_12_1
  doi: 10.1002/anie.201206720
– ident: e_1_2_4_40_1
  doi: 10.1039/C5EE00762C
– ident: e_1_2_4_38_1
  doi: 10.1021/ja208940u
– ident: e_1_2_4_33_1
  doi: 10.1038/ncomms3719
– ident: e_1_2_4_5_2
  doi: 10.1002/ange.201503612
– ident: e_1_2_4_14_2
  doi: 10.1002/ange.201503159
– ident: e_1_2_4_36_1
  doi: 10.1021/ja7106146
– ident: e_1_2_4_49_1
  doi: 10.1038/nmat3087
– ident: e_1_2_4_35_1
  doi: 10.1039/C3CS60472A
– ident: e_1_2_4_6_1
  doi: 10.1021/ja5129132
– ident: e_1_2_4_37_1
  doi: 10.1021/ja203184k
– ident: e_1_2_4_27_2
  doi: 10.1002/ange.200602099
– ident: e_1_2_4_10_1
  doi: 10.1126/sciadv.1400129
– ident: e_1_2_4_17_1
  doi: 10.1038/ncomms2944
– ident: e_1_2_4_39_1
  doi: 10.1021/ja511539a
– ident: e_1_2_4_42_1
  doi: 10.1002/adma.201304238
– ident: e_1_2_4_13_1
  doi: 10.1038/ncomms5973
– ident: e_1_2_4_43_1
  doi: 10.1039/C3EE42799D
– ident: e_1_2_4_3_1
  doi: 10.1126/sciadv.1500564
– ident: e_1_2_4_5_1
  doi: 10.1002/anie.201503612
– ident: e_1_2_4_23_1
  doi: 10.1002/chem.201204549
– ident: e_1_2_4_22_2
  doi: 10.1002/ange.201007036
SSID ssj0009606
Score 2.6421597
Snippet Honeycomb‐like porous carbon nanostructures are rationally constructed from a metal–organic framework composite. The unique architecture with uniformly...
Honeycomb-like porous carbon nanostructures are rationally constructed from a metal-organic framework composite. The unique architecture with uniformly...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6391
SubjectTerms Accessibility
Carbon
Catalysis
Catalysts
cobalt sulfide
metal-organic frameworks
Nanostructure
Oxygen
oxygen reduction
porous carbon
Reduction (electrolytic)
Rendering
Title Metal-Organic Framework-Derived Honeycomb-Like Open Porous Nanostructures as Precious-Metal-Free Catalysts for Highly Efficient Oxygen Electroreduction
URI https://api.istex.fr/ark:/67375/WNG-X563JS8C-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201600979
https://www.ncbi.nlm.nih.gov/pubmed/27166878
https://www.proquest.com/docview/1809607067
https://www.proquest.com/docview/1835656036
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQuIELxj_hT0ZCcJWtc2wnuay6lmqiYwImemfZji2hTu3UtGjlikfgFXi1PcnOsZtsRfxIcJc4x4ntnGN_JznnMyEvK5PnItc-laXjKTfSpKV0ImW-8rIUXkuNjuLoUA6P-cFYjK9k8Ud-iPaDG1pGmK_RwLWpdy9JQ3UVeIP2JKYiYAYfBmwhKnp_yR-F8DyQ7WUCmsCLhrWxw3Y3q2-sStdxgM9-BTk3EWxYggbbRDeNj5Enk53lwuzYrz_xOv5P726TW2t8SrtRoe6Qa256l9y8wlp4j_wYOUDs59--xzxOSwdNgBeU7YPQF1fR4WzqVvBQA2VvP08cxcgVejSbz5Y1hSl9Folrl-DtU13TIyTZgEsg3dx9MHeO9vDr0qpe1BTANcWglJMV7QfaC1gt6buzFRgA7ce9fOZIQ4uKdp8cD_ofe8N0vdNDaqUoy9QyW1VWBLp5cOG8rlxmO9J5m3leMGOMBomOMZ6z3ME8lO95gSm6VjDLeZY9IFtT6NcjQkUpqlx4KBWae-5L60sPXmRgvgf_KCFp86aVXdOg424cJyoSODOFQ6_aoU_I61b-NBKA_FbyVVCcVkzPJxg2lwv16fCNGguZHXwoeqqTkBeNZikwZvxDo6cOxlghmZqESVjmf5LJEIQD8kjIw6iW7RMZeL-yyIuEsKBcf2mx6u6Puu3Z43-p9ITcwOMYEvmUbIHuuGcA0xbmeTDFC-JVOwU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIAtaA_AgfIqhKeREJzSbhPbSY6rfbCU3aWCVvRm2Y4toa120T5QlxM_gb_Qv9Zf0hl7k7KIhwTHOJPEcWbsGWf8mZAXpc4ynikXi8KymGmh40JYHieudKLgTgmFgeJgKHpHbP-YV9mEuBYm8CHqCTe0DN9fo4HjhPTuJTVUlR4ctCdwLUJxlWzitt6Iz2-_vyRIoYPucXsph0qwvOI2NpLd9evXxqVNbOLTXzmd6z6sH4S6W0RX1Q-5J6OdxVzvmK8_kR3_6_1ukZsrF5U2g07dJlfs-A658QO48C45G1hw2s-_fQ9LOQ3tVjleUNYGoS-2pL3J2C7hqRrK-p9GlmLyCj2YTCeLGYVefRLYtQsI-Kma0QPkbMApkK7u3p1aS1s4wbSczWcU_GuKeSknS9rx5AsYMOm70yXYAO2E7XymSKJFXbtHjrqdw1YvXm32EBvBiyI2iSlLwz1xHqI4p0qbmoawzqSO5YnWWoFEQ2vHksxCV5TtOY6rdA1PDGNpuk02xvBeDwjlBS8z7qCUK-aYK4wrHASSHn4PIVJE4upTS7MioeOGHCcyMJwTiU0v66aPyKta_nNggPxW8qXXnFpMTUeYOZdx-XH4Wh5zke5_yFuyEZHnlWpJsGf8SaPGFtpYIk9NQD8ssj_JpOiHg_MRkftBL-snJhAAizzLI5J47fpLjWWzPWjWRw__5aJn5FrvcNCX_TfDt4_IdSwPGZKPyQbokX0CXttcP_V2eQFmMT8h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFIAt2CQED-POwtVICJ6yZYntJI9V21DGWipgom-W7dgS6tROvaCVJ34Cf4G_xi_hnLjJVsRFgsc4J4njnGOf4xx_JuRZqdOUp8qFIrcsZFroMBeWh7Ernci5U0JhoNgfiN4xOxzx0YVV_J4P0Uy4oWVU_TUa-Gnp9s-hoaqsuEEHApci5JfJNhNRjps3dN6eA6TQP69oewmHOrCsxjZG8f7m9RvD0ja28NmvfM5NF7Yag4rrRNW196kn473lQu-Zzz-BHf_n9W6QnbWDSlteo26SS3Zyi1y7gC28Tb71Lbjs37989Qs5DS3qDC8o64DQJ1vS3nRiV_BQDWVHH8eWYuoKHU5n0-WcQp8-9eTaJYT7VM3pECkbcAqk67sXM2tpG6eXVvPFnIJ3TTEr5WRFuxX3AoZL-uZsBRZAu34znxlyaFHT7pDjovu-3QvXWz2ERvA8D01sytLwijcPMZxTpU1MJKwziWNZrLVWIBFp7VicWuiI0gPHcY2u4bFhLEnukq0JvNcuoTznZcodlHLFHHO5cbmDMLJC30OAFJCw_tLSrDnouB3HifQE51hi08um6QPyopE_9QSQ30o-rxSnEVOzMebNpVx-GLyUIy6Sw3dZW0YBeVprlgRrxl80amKhjSXS1AT0wiL9k0yCXji4HgG559WyeWIM4a_I0iwgcaVcf6mxbHX6rebo_r9c9IRcGXYKefRq8PoBuYrFPj3yIdkCNbKPwGVb6MeVVf4AgdU90A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Framework-Derived+Honeycomb-Like+Open+Porous+Nanostructures+as+Precious-Metal-Free+Catalysts+for+Highly+Efficient+Oxygen+Electroreduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Qi-Long&rft.au=Xia%2C+Wei&rft.au=Akita%2C+Tomoki&rft.au=Zou%2C+Ruqiang&rft.date=2016-08-01&rft.eissn=1521-4095&rft.volume=28&rft.issue=30&rft.spage=6391&rft_id=info:doi/10.1002%2Fadma.201600979&rft_id=info%3Apmid%2F27166878&rft.externalDocID=27166878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon