Landscape of nuclear transport receptor cargo specificity
Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo...
Saved in:
Published in | Molecular systems biology Vol. 13; no. 12; pp. 962 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2017
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships
in situ
, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.
Synopsis
This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites.
NTRs transport functionally related cargos.
Multiple members of protein complexes are identified suggesting that they are often transported as fully assembled entities.
The direct identification of biotinylated peptides enables mapping of potential interaction sites of NTRs.
A statistical framework is introduced that allows quantifying interaction specificity.
Graphical Abstract
This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites. |
---|---|
AbstractList | Abstract Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo-NTR relationships , we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Synopsis This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites. NTRs transport functionally related cargos. Multiple members of protein complexes are identified suggesting that they are often transported as fully assembled entities. The direct identification of biotinylated peptides enables mapping of potential interaction sites of NTRs. A statistical framework is introduced that allows quantifying interaction specificity. This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites. Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo-NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo-NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Nuclear transport receptors ( NTR s) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes ( NPC s). About 30 different NTR s constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTR s, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo– NTR relationships in situ , we used proximity ligation coupled to mass spectrometry (Bio ID ). We systematically fused the engineered biotin ligase BirA* to 16 NTR s. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the Bio ID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD 007976. Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ , we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Synopsis This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites. NTRs transport functionally related cargos. Multiple members of protein complexes are identified suggesting that they are often transported as fully assembled entities. The direct identification of biotinylated peptides enables mapping of potential interaction sites of NTRs. A statistical framework is introduced that allows quantifying interaction specificity. Graphical Abstract This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites. |
Author | Ori, Alessandro Klaus, Bernd Chokkalingam, Manopriya Heinze, Ivonne Mackmull, Marie‐Therese Beyer, Andreas Russell, Robert B Beck, Martin |
AuthorAffiliation | 5 Center for Molecular Medicine Cologne University of Cologne Cologne Germany 1 Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany 7 Cell Biology and Biophysics Unit European Molecular Biology Laboratory Heidelberg Germany 2 Centre for Statistical Data Analysis European Molecular Biology Laboratory Heidelberg Germany 4 Cellular Networks and Systems Biology CECAD University of Cologne Cologne Germany 6 Heidelberg University Biochemistry Centre & Bioquant Heidelberg Germany 3 Leibniz Institute on Aging Fritz Lipmann Institute (FLI) Jena Germany |
AuthorAffiliation_xml | – name: 2 Centre for Statistical Data Analysis European Molecular Biology Laboratory Heidelberg Germany – name: 3 Leibniz Institute on Aging Fritz Lipmann Institute (FLI) Jena Germany – name: 4 Cellular Networks and Systems Biology CECAD University of Cologne Cologne Germany – name: 1 Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany – name: 7 Cell Biology and Biophysics Unit European Molecular Biology Laboratory Heidelberg Germany – name: 6 Heidelberg University Biochemistry Centre & Bioquant Heidelberg Germany – name: 5 Center for Molecular Medicine Cologne University of Cologne Cologne Germany |
Author_xml | – sequence: 1 givenname: Marie‐Therese orcidid: 0000-0003-2928-1144 surname: Mackmull fullname: Mackmull, Marie‐Therese organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory – sequence: 2 givenname: Bernd surname: Klaus fullname: Klaus, Bernd organization: Centre for Statistical Data Analysis, European Molecular Biology Laboratory – sequence: 3 givenname: Ivonne surname: Heinze fullname: Heinze, Ivonne organization: Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) – sequence: 4 givenname: Manopriya surname: Chokkalingam fullname: Chokkalingam, Manopriya organization: Cellular Networks and Systems Biology, CECAD, University of Cologne – sequence: 5 givenname: Andreas orcidid: 0000-0002-3891-2123 surname: Beyer fullname: Beyer, Andreas organization: Cellular Networks and Systems Biology, CECAD, University of Cologne, Center for Molecular Medicine Cologne, University of Cologne – sequence: 6 givenname: Robert B surname: Russell fullname: Russell, Robert B organization: Heidelberg University Biochemistry Centre & Bioquant – sequence: 7 givenname: Alessandro orcidid: 0000-0002-3046-0871 surname: Ori fullname: Ori, Alessandro email: alessandro.ori@leibniz-fli.de organization: Leibniz Institute on Aging, Fritz Lipmann Institute (FLI) – sequence: 8 givenname: Martin orcidid: 0000-0002-7397-1321 surname: Beck fullname: Beck, Martin email: martin.beck@embl.de organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29254951$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhi1URC-wZItGYsMmg6-JzQKpVFwqDWIBrK1jxxk8ytjBTkDzNjwLT4bbdKppBaxs2d__-z_H5xQdhRgcQk8JXhJBBX25zWZJMWmaGssH6IQ0nFecKnp0sD9GpzlvMGaSSPoIHZcjwZUgJ-jVCkKbLQxuEbtFmGzvIC3GBCEPMY2L5KwbxpgWFtI6_v6VB2d9560fd4_Rww767J7crGfo67u3Xy4-VKtP7y8vzleVrYWSVWeIbQkGYmsFQDAFqAUQ07rGYWKoYFgSRyhRrWmNUI0kjFuwTDGrairZGbqcfdsIGz0kv4W00xG8vj6Iaa0hjb4k1wyUJViyzhjHGW2gMx21NTWYWd7WvHi9nr2GyWxda10opfZ3TO_eBP9Nr-MPLRqOS8eKwYsbgxS_Ty6PeuuzdX0PwcUpa1LyN7SWghb0-T10E6cUSquuKMWbWsqmUM8OE91G2X9RAdgM2BRzTq7Tpfkw-ngV0PeaYH09CLoMgt4PQlFV91R743_xfOZ_-t7t_g_rj5_f3MqWsywXRVi7dFDjX9_5A1NS0_c |
CitedBy_id | crossref_primary_10_1038_s41419_020_03101_9 crossref_primary_10_3390_cells12242798 crossref_primary_10_1016_j_str_2023_05_010 crossref_primary_10_1083_jcb_201812091 crossref_primary_10_1038_s41375_020_0958_y crossref_primary_10_7554_eLife_93256_3 crossref_primary_10_1126_science_abm9506 crossref_primary_10_1038_s41598_020_58397_6 crossref_primary_10_3390_ijms19051445 crossref_primary_10_1038_s41375_022_01513_4 crossref_primary_10_3389_fmolb_2021_638149 crossref_primary_10_1111_febs_15205 crossref_primary_10_1186_s12860_022_00409_6 crossref_primary_10_1128_mbio_01940_24 crossref_primary_10_1016_j_cbpa_2018_10_027 crossref_primary_10_1126_science_aaz5875 crossref_primary_10_1074_mcp_RA118_000623 crossref_primary_10_1016_j_bbamcr_2020_118907 crossref_primary_10_3390_v12080834 crossref_primary_10_1021_acs_jproteome_0c00117 crossref_primary_10_1016_j_jmb_2023_168382 crossref_primary_10_1038_s41594_023_01026_3 crossref_primary_10_1016_j_mcpro_2022_100418 crossref_primary_10_1016_j_ceb_2018_02_010 crossref_primary_10_1016_j_pbi_2020_10_006 crossref_primary_10_1038_s41467_024_45908_6 crossref_primary_10_1016_j_ceb_2024_102426 crossref_primary_10_1111_gtc_12896 crossref_primary_10_1038_s41556_021_00823_6 crossref_primary_10_3390_ijms22179217 crossref_primary_10_1038_s41467_021_26408_3 crossref_primary_10_1016_j_cbpa_2018_10_017 crossref_primary_10_1083_jcb_201812093 crossref_primary_10_1021_acs_jproteome_1c00551 crossref_primary_10_1128_jvi_01522_22 crossref_primary_10_1074_mcp_R120_001941 crossref_primary_10_1093_hmg_ddy303 crossref_primary_10_3389_fimmu_2021_771065 crossref_primary_10_1186_s13024_023_00698_1 crossref_primary_10_1002_1873_3468_70020 crossref_primary_10_1371_journal_pone_0215740 crossref_primary_10_1016_j_yjsbx_2023_100094 crossref_primary_10_1083_jcb_202211032 crossref_primary_10_1038_s41592_020_01010_5 crossref_primary_10_1021_acs_jproteome_4c00308 crossref_primary_10_1080_15548627_2019_1695399 crossref_primary_10_1371_journal_pbio_3003024 crossref_primary_10_1038_s41467_022_28846_z crossref_primary_10_1051_medsci_2019035 crossref_primary_10_1146_annurev_biophys_052118_115308 crossref_primary_10_7554_eLife_93256 crossref_primary_10_1016_j_celrep_2023_113099 crossref_primary_10_1002_ctm2_70203 crossref_primary_10_3390_cells11121904 crossref_primary_10_1126_sciadv_abq5206 crossref_primary_10_1002_1873_3468_14729 crossref_primary_10_1134_S0006297922140140 crossref_primary_10_1093_nar_gkac1055 crossref_primary_10_1083_jcb_201903017 crossref_primary_10_1038_s41467_023_39150_9 crossref_primary_10_1038_s41580_021_00446_7 crossref_primary_10_14712_fb2023069040133 crossref_primary_10_1016_j_tips_2024_11_002 crossref_primary_10_1016_j_ceb_2018_11_004 crossref_primary_10_1242_jcs_258095 crossref_primary_10_1080_14789450_2019_1638769 crossref_primary_10_1016_j_mcpro_2024_100758 crossref_primary_10_3389_fcell_2022_931237 crossref_primary_10_1073_pnas_1918944117 crossref_primary_10_1093_nar_gkac342 crossref_primary_10_1016_j_ajhg_2021_06_019 crossref_primary_10_1242_jcs_260724 crossref_primary_10_1186_s12964_019_0456_x crossref_primary_10_3390_biology9080188 crossref_primary_10_1038_s41598_021_94948_1 crossref_primary_10_1515_hsz_2023_0155 crossref_primary_10_3390_ijms22084165 |
Cites_doi | 10.1006/meth.2001.1262 10.1038/nrm.2016.147 10.1016/j.cub.2015.08.047 10.3390/cells4030387 10.1111/tra.12174 10.1186/1471-2105-4-2 10.1242/jcs.01569 10.1111/j.1600-0854.2006.00399.x 10.1074/mcp.M114.042499 10.1074/mcp.M900031-MCP200 10.1186/gb-2006-7-10-r100 10.1016/S0021-9258(18)96722-0 10.1016/bs.ircmb.2015.07.010 10.1038/emboj.2013.29 10.1186/1471-2121-10-66 10.1038/emboj.2011.287 10.1093/emboj/20.14.3685 10.1371/journal.pone.0021800 10.1073/pnas.1505995112 10.1038/sj.embor.7400091 10.1093/nar/gks1262 10.7554/eLife.21184 10.1038/ncb1521 10.1128/MCB.22.1.245-256.2002 10.1038/ncb1097 10.3389/fnmol.2015.00048 10.1371/journal.pone.0000784 10.1242/jcs.181263 10.1186/1471-2105-7-85 10.1093/database/baw105 10.1371/journal.pcbi.1000641 10.1073/pnas.0900604106 10.1038/nmeth1019 10.1214/11-STS356 10.1093/emboj/cdf569 10.1038/nprot.2007.324 10.1016/0092-8674(95)90331-3 10.1074/mcp.M114.045658 10.1074/mcp.M112.019414 10.1016/j.virol.2007.11.033 10.1016/j.febslet.2014.04.023 10.1016/j.tcb.2004.07.016 10.1016/S0960-9822(95)00079-0 10.1083/jcb.201112098 10.1016/0092-8674(84)90457-4 10.1016/B978-0-12-417160-2.00016-3 10.1021/pr101065j 10.1186/1471-2105-10-48 10.7554/eLife.11466 10.1093/nar/gku351 10.1016/S0021-9258(17)37374-X 10.1083/jcb.145.2.255 10.1074/mcp.M111.014050 10.1016/j.jneumeth.2010.08.031 10.1074/jbc.M113.489286 10.1038/sj.emboj.7600587 10.1371/journal.pbio.0030405 10.1038/nbt.1511 10.1083/jcb.200810106 10.1093/emboj/16.21.6535 10.1016/j.semcdb.2009.05.003 10.1111/j.1582-4934.2008.00437.x 10.1083/jcb.107.3.841 10.1091/mbc.E09-05-0374 10.1016/S0092-8674(00)80372-4 10.18632/oncotarget.8256 10.1093/bioinformatics/btr645 10.1128/JVI.74.24.11811-11824.2000 10.1186/1471-2121-11-63 10.1016/j.molcel.2014.06.003 10.1016/j.bbamcr.2010.10.014 10.1016/j.cell.2006.05.049 10.1074/mcp.M112.024877 |
ContentType | Journal Article |
Copyright | European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license 2017 2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license 2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license. 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license 2017 – notice: 2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license – notice: 2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license. – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.15252/msb.20177608 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Collection Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Marie‐Therese Mackmull et al |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_3a9c1083fbbe4327afbf2c62b03c4d64 PMC5740495 29254951 10_15252_msb_20177608 MSB177608 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: 309271‐NPCAtlas funderid: 10.13039/100010663 – fundername: Federal Government of Germany and the State of Thuringia – fundername: EMBL – fundername: Bundesministerium für Bildung und Forschung (BMBF) grantid: SyBACol‐0315893; PhosphoNetPPM‐031A259 funderid: 10.13039/501100002347 – fundername: Bundesministerium für Bildung und Forschung (BMBF) funderid: SyBACol‐0315893; PhosphoNetPPM‐031A259 – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) funderid: 309271‐NPCAtlas – fundername: European Research Council grantid: 309271 – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: 309271‐NPCAtlas – fundername: Bundesministerium für Bildung und Forschung (BMBF) grantid: SyBACol‐0315893; PhosphoNetPPM‐031A259 |
GroupedDBID | --- -Q- 0R~ 123 1OC 24P 29M 2WC 39C 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAJSJ AAMMB ABDBF ABUWG ACCMX ACGFO ACPRK ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AFRAH AGXDD AHMBA AIAGR AIDQK AIDYY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HK~ HMCUK HYE HZ~ IAO IHR INH ITC KQ8 LK8 M1P M2O M48 M7P ML0 M~E NAO O5R O5S O9- OK1 OVT P2P PADUT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M 3V. 4.4 88A AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE COF EBLON GODZA H13 IGS M0L AASML AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c6598-fb1cd10a1c69aa102aa65a1bde7e01b253081e1219dbdb5978134cac393c96283 |
IEDL.DBID | M48 |
ISSN | 1744-4292 |
IngestDate | Wed Aug 27 01:30:09 EDT 2025 Thu Aug 21 14:10:46 EDT 2025 Thu Jul 10 17:09:42 EDT 2025 Wed Aug 13 07:06:05 EDT 2025 Mon Jul 21 06:05:30 EDT 2025 Thu Apr 24 22:53:49 EDT 2025 Tue Jul 01 04:10:34 EDT 2025 Wed Jan 22 16:32:35 EST 2025 Tue Aug 12 01:10:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | protein transport nuclear pore complex interaction network proteomics proximity ligation |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6598-fb1cd10a1c69aa102aa65a1bde7e01b253081e1219dbdb5978134cac393c96283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3891-2123 0000-0002-3046-0871 0000-0003-2928-1144 0000-0002-7397-1321 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/msb.20177608 |
PMID | 29254951 |
PQID | 1979476887 |
PQPubID | 29031 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3a9c1083fbbe4327afbf2c62b03c4d64 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5740495 proquest_miscellaneous_1978726852 proquest_journals_1979476887 pubmed_primary_29254951 crossref_citationtrail_10_15252_msb_20177608 crossref_primary_10_15252_msb_20177608 wiley_primary_10_15252_msb_20177608_MSB177608 springer_journals_10_15252_msb_20177608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Germany – name: Hoboken |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | 2010; 11 2017; 6 2013a; 12 2004; 6 2004; 5 2011; 10 2012; 11 1988; 107 2005; 24 1997; 90 2010; 21 1966; 241 2009; 10 2013b; 288 1994; 269 2013; 12 2008; 26 2014; 15 2007; 9 2003; 4 1997; 16 2007; 4 2012; 28 2007; 2 2011; 26 2010; 193 2014; 122 2006; 126 2014; 55 2010; 6 2015; 14 2015; 4 2009; 20 2012 2016; 129 2015; 320 2013; 41 2006; 7 2011; 30 2008; 12 2005 1999; 145 2015; 8 2011; 6 2001; 25 1995; 5 2001; 20 2014; 42 2012; 196 2016; 7 2015; 25 1995; 81 2013; 32 1984; 39 2004; 14 2015; 112 2000; 74 2002; 21 2002; 22 2011; 1813 2009; 8 2016 2017; 18 2009; 185 2005; 3 2004; 117 2008; 373 2014; 588 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Waite M (e_1_2_8_70_1) 1966; 241 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 R Core Team (e_1_2_8_59_1) 2012 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 Smyth GK (e_1_2_8_62_1) 2005 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 122 start-page: 353 year: 2014 end-page: 378 article-title: Novel approaches for the identification of nuclear transport receptor substrates publication-title: Methods Cell Biol – volume: 7 start-page: 465 year: 2006 end-page: 473 article-title: Coordinated nuclear import of RNA polymerase III subunits publication-title: Traffic – volume: 10 start-page: 48 year: 2009 article-title: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists publication-title: BMC Bioinformatics – year: 2005 – volume: 588 start-page: 1857 year: 2014 end-page: 1868 article-title: Transportin‐1 and Transportin‐2: protein nuclear import and beyond publication-title: FEBS Lett – volume: 241 start-page: 1909 year: 1966 end-page: 1914 article-title: Studies on the mechanism of action of acetyl coenzyme A carboxylase. 3. Enzyme‐bound 1′‐N‐carboxybiotin as the carboxylation intermediate publication-title: J Biol Chem – volume: 4 start-page: 387 year: 2015 end-page: 405 article-title: Nuclear import of yeast proteasomes publication-title: Cells – volume: 288 start-page: 24540 year: 2013b end-page: 24549 article-title: Identification of cargo proteins specific for importin‐β with importin‐α applying a stable isotope labeling by amino acids in cell culture (SILAC)‐based transport system publication-title: J Biol Chem – volume: 1813 start-page: 1593 year: 2011 end-page: 1606 article-title: Nuclear import by karyopherin‐βs: recognition and inhibition publication-title: Biochim Biophys Acta – volume: 28 start-page: 288 year: 2012 end-page: 289 article-title: MSnbase‐an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation publication-title: Bioinformatics – volume: 10 start-page: 1794 year: 2011 end-page: 1805 article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment publication-title: J Proteome Res – volume: 26 start-page: 584 year: 2011 end-page: 597 article-title: Multiple testing for exploratory research publication-title: Stat Sci – volume: 4 start-page: 2 year: 2003 article-title: An automated method for finding molecular complexes in large protein interaction networks publication-title: BMC Bioinformatics – volume: 2 start-page: e784 year: 2007 article-title: Interphase nucleo‐cytoplasmic shuttling and localization of SIRT2 during mitosis publication-title: PLoS One – volume: 26 start-page: 1367 year: 2008 end-page: 1372 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification publication-title: Nat Biotechnol – volume: 4 start-page: 207 year: 2007 end-page: 214 article-title: Target‐decoy search strategy for increased confidence in large‐scale protein identifications by mass spectrometry publication-title: Nat Methods – volume: 196 start-page: 801 year: 2012 end-page: 810 article-title: A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells publication-title: J Cell Biol – volume: 10 start-page: 66 year: 2009 article-title: Dynamic localisation of Ran GTPase during the cell cycle publication-title: BMC Cell Biol – volume: 269 start-page: 6320 year: 1994 end-page: 6324 article-title: Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression publication-title: J Biol Chem – volume: 14 start-page: 1781 year: 2015 end-page: 1795 article-title: BioID‐based identification of Skp Cullin F‐box (SCF)β‐TrCP1/2 E3 ligase substrates publication-title: Mol Cell Proteomics – volume: 22 start-page: 245 year: 2002 end-page: 256 article-title: Formation of Tap/NXT1 heterodimers activates Tap‐dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes publication-title: Mol Cell Biol – volume: 9 start-page: 72 year: 2007 end-page: 79 article-title: Triggering neural differentiation of ES cells by subtype switching of importin‐alpha publication-title: Nat Cell Biol – volume: 12 start-page: 145 year: 2013a end-page: 157 article-title: Identification of cargo proteins specific for the nucleocytoplasmic transport carrier transportin by combination of an transport system and stable isotope labeling by amino acids in cell culture (SILAC)‐based quantitative proteomics publication-title: Mol Cell Proteomics – volume: 8 start-page: 48 year: 2015 article-title: Cell biological mechanisms of activity‐dependent synapse to nucleus translocation of CRTC1 in neurons publication-title: Front Mol Neurosci – volume: 4 start-page: e11466 year: 2015 article-title: A deep proteomics perspective on CRM1‐mediated nuclear export and nucleocytoplasmic partitioning publication-title: Elife – volume: 5 start-page: 304 year: 2004 end-page: 310 article-title: Molecular insights into the interaction of PYM with the Mago‐Y14 core of the exon junction complex publication-title: EMBO Rep – volume: 14 start-page: 1350 year: 2015 end-page: 1360 article-title: Histone deacetylase inhibitors (HDACi) cause the selective depletion of bromodomain containing proteins (BCPs) publication-title: Mol Cell Proteomics – volume: 8 start-page: 2256 year: 2009 end-page: 2265 article-title: Identification of heparin‐binding sites in proteins by selective labeling publication-title: Mol Cell Proteomics – volume: 11 start-page: 63 year: 2010 article-title: Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors publication-title: BMC Cell Biol – volume: 41 start-page: D1063 year: 2013 end-page: D1069 article-title: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013 publication-title: Nucleic Acids Res – volume: 7 start-page: 22883 year: 2016 end-page: 22892 article-title: Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC) publication-title: Oncotarget – volume: 185 start-page: 27 year: 2009 end-page: 34 article-title: Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors publication-title: J Cell Biol – volume: 20 start-page: 3685 year: 2001 end-page: 3694 article-title: Importin 13: a novel mediator of nuclear import and export publication-title: EMBO J – volume: 373 start-page: 171 year: 2008 end-page: 180 article-title: Inhibitory function of adapter‐related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome publication-title: Virology – volume: 90 start-page: 1061 year: 1997 end-page: 1071 article-title: Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor publication-title: Cell – volume: 11 start-page: M111.014050 year: 2012 article-title: Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins publication-title: Mol Cell Proteomics – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method publication-title: Methods – volume: 20 start-page: 590 year: 2009 end-page: 599 article-title: The role of the nuclear transport system in cell differentiation publication-title: Semin Cell Dev Biol – volume: 15 start-page: 727 year: 2014 end-page: 748 article-title: Biological significance of the importin‐β family‐dependent nucleocytoplasmic transport pathways publication-title: Traffic – volume: 126 start-page: 543 year: 2006 end-page: 558 article-title: Rules for nuclear localization sequence recognition by karyopherin beta 2 publication-title: Cell – volume: 12 start-page: 664 year: 2013 end-page: 678 article-title: Identification of CRM1‐dependent nuclear export cargos using quantitative mass spectrometry publication-title: Mol Cell Proteomics – volume: 6 start-page: e1000641 year: 2010 article-title: Associating genes and protein complexes with disease via network propagation publication-title: PLoS Comput Biol – volume: 7 start-page: 85 year: 2006 article-title: Statistical analysis of real‐time PCR data publication-title: BMC Bioinformatics – volume: 25 start-page: 2663 year: 2015 end-page: 2671 article-title: The nuclear proteome of a vertebrate publication-title: Curr Biol – volume: 16 start-page: 6535 year: 1997 end-page: 6547 article-title: The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus publication-title: EMBO J – volume: 32 start-page: 899 year: 2013 end-page: 913 article-title: Structural basis for the nuclear export activity of Importin13 publication-title: EMBO J – volume: 112 start-page: E3679 year: 2015 end-page: E3688 article-title: Small GTP‐binding protein Ran is regulated by posttranslational lysine acetylation publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 383 year: 1995 end-page: 392 article-title: Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope publication-title: Curr Biol – volume: 106 start-page: 10171 year: 2009 end-page: 10176 article-title: Systematic identification of cell cycle‐dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs publication-title: Proc Natl Acad Sci USA – volume: 2 start-page: 2366 year: 2007 end-page: 2382 article-title: Integration of biological networks and gene expression data using Cytoscape publication-title: Nat Protoc – volume: 55 start-page: 332 year: 2014 end-page: 341 article-title: Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging publication-title: Mol Cell – year: 2016 – volume: 42 start-page: e95 year: 2014 article-title: detection of differentially bound regions for ChIP‐seq data using peaks and windows: controlling error rates correctly publication-title: Nucleic Acids Res – volume: 3 start-page: e405 year: 2005 article-title: Systematic discovery of new recognition peptides mediating protein interaction networks publication-title: PLoS Biol – volume: 193 start-page: 380 year: 2010 end-page: 384 article-title: A novel algorithm for optimal image thresholding of biological data publication-title: J Neurosci Methods – year: 2012 – volume: 107 start-page: 841 year: 1988 end-page: 849 article-title: The nucleoplasmin nuclear location sequence is larger and more complex than that of SV‐40 large T antigen publication-title: J Cell Biol – volume: 21 start-page: 630 year: 2010 end-page: 638 article-title: Two isoforms of Npap60 (Nup50) differentially regulate nuclear protein import publication-title: Mol Biol Cell – volume: 117 start-page: 6511 year: 2004 end-page: 6522 article-title: Importin beta is transported to spindle poles during mitosis and regulates Ran‐dependent spindle assembly factors in mammalian cells publication-title: J Cell Sci – volume: 18 start-page: 73 year: 2017 end-page: 89 article-title: The nuclear pore complex: understanding its function through structural insight publication-title: Nat Rev Mol Cell Biol – volume: 6 start-page: e21800 year: 2011 article-title: REVIGO summarizes and visualizes long lists of gene ontology terms publication-title: PLoS One – volume: 12 start-page: 1863 year: 2008 end-page: 1871 article-title: Importins and exportins in cellular differentiation publication-title: J Cell Mol Med – volume: 145 start-page: 255 year: 1999 end-page: 264 article-title: CRM1‐mediated recycling of snurportin 1 to the cytoplasm publication-title: J Cell Biol – volume: 24 start-page: 942 year: 2005 end-page: 951 article-title: Importin alpha transports CaMKIV to the nucleus without utilizing importin beta publication-title: EMBO J – volume: 21 start-page: 5833 year: 2002 end-page: 5842 article-title: Importin alpha can migrate into the nucleus in an importin beta‐ and Ran‐independent manner publication-title: EMBO J – volume: 7 start-page: R100 year: 2006 article-title: Cell Profiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol – volume: 74 start-page: 11811 year: 2000 end-page: 11824 article-title: A human nuclear shuttling protein that interacts with human immunodeficiency virus type 1 matrix is packaged into virions publication-title: J Virol – volume: 6 start-page: 197 year: 2004 end-page: 206 article-title: Minimal nuclear pore complexes define FG repeat domains essential for transport publication-title: Nat Cell Biol – volume: 320 start-page: 171 year: 2015 end-page: 233 article-title: Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease publication-title: Int Rev Cell Mol Biol – volume: 14 start-page: 505 year: 2004 end-page: 514 article-title: Importin alpha: a multipurpose nuclear‐transport receptor publication-title: Trends Cell Biol – volume: 30 start-page: 3457 year: 2011 end-page: 3474 article-title: Ran‐dependent nuclear export mediators: a structural perspective publication-title: EMBO J – volume: 39 start-page: 499 year: 1984 end-page: 509 article-title: A short amino acid sequence able to specify nuclear location publication-title: Cell – volume: 6 start-page: e21184 year: 2017 article-title: Extensive cargo identification reveals distinct biological roles of the 12 importin pathways publication-title: Elife – volume: 81 start-page: 215 year: 1995 end-page: 222 article-title: The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex publication-title: Cell – volume: 129 start-page: 1115 year: 2016 end-page: 1127 article-title: Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding publication-title: J Cell Sci – ident: e_1_2_8_46_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_8_4_1 doi: 10.1038/nrm.2016.147 – ident: e_1_2_8_73_1 doi: 10.1016/j.cub.2015.08.047 – ident: e_1_2_8_7_1 doi: 10.3390/cells4030387 – ident: e_1_2_8_37_1 doi: 10.1111/tra.12174 – ident: e_1_2_8_3_1 doi: 10.1186/1471-2105-4-2 – ident: e_1_2_8_11_1 doi: 10.1242/jcs.01569 – ident: e_1_2_8_29_1 doi: 10.1111/j.1600-0854.2006.00399.x – ident: e_1_2_8_48_1 doi: 10.1074/mcp.M114.042499 – ident: e_1_2_8_56_1 doi: 10.1074/mcp.M900031-MCP200 – ident: e_1_2_8_8_1 doi: 10.1186/gb-2006-7-10-r100 – volume: 241 start-page: 1909 year: 1966 ident: e_1_2_8_70_1 article-title: Studies on the mechanism of action of acetyl coenzyme A carboxylase. 3. Enzyme‐bound 1′‐N‐carboxybiotin as the carboxylation intermediate publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)96722-0 – ident: e_1_2_8_16_1 doi: 10.1016/bs.ircmb.2015.07.010 – ident: e_1_2_8_26_1 doi: 10.1038/emboj.2013.29 – ident: e_1_2_8_31_1 doi: 10.1186/1471-2121-10-66 – ident: e_1_2_8_28_1 doi: 10.1038/emboj.2011.287 – ident: e_1_2_8_49_1 doi: 10.1093/emboj/20.14.3685 – ident: e_1_2_8_64_1 doi: 10.1371/journal.pone.0021800 – ident: e_1_2_8_6_1 doi: 10.1073/pnas.1505995112 – ident: e_1_2_8_5_1 doi: 10.1038/sj.embor.7400091 – ident: e_1_2_8_68_1 doi: 10.1093/nar/gks1262 – ident: e_1_2_8_39_1 doi: 10.7554/eLife.21184 – ident: e_1_2_8_74_1 doi: 10.1038/ncb1521 – ident: e_1_2_8_71_1 doi: 10.1128/MCB.22.1.245-256.2002 – ident: e_1_2_8_63_1 doi: 10.1038/ncb1097 – ident: e_1_2_8_9_1 doi: 10.3389/fnmol.2015.00048 – ident: e_1_2_8_53_1 doi: 10.1371/journal.pone.0000784 – ident: e_1_2_8_69_1 doi: 10.1242/jcs.181263 – ident: e_1_2_8_76_1 doi: 10.1186/1471-2105-7-85 – ident: e_1_2_8_2_1 doi: 10.1093/database/baw105 – ident: e_1_2_8_67_1 doi: 10.1371/journal.pcbi.1000641 – ident: e_1_2_8_42_1 doi: 10.1073/pnas.0900604106 – ident: e_1_2_8_19_1 doi: 10.1038/nmeth1019 – ident: e_1_2_8_22_1 doi: 10.1214/11-STS356 – ident: e_1_2_8_50_1 doi: 10.1093/emboj/cdf569 – ident: e_1_2_8_12_1 doi: 10.1038/nprot.2007.324 – ident: e_1_2_8_60_1 doi: 10.1016/0092-8674(95)90331-3 – ident: e_1_2_8_15_1 doi: 10.1074/mcp.M114.045658 – ident: e_1_2_8_35_1 doi: 10.1074/mcp.M112.019414 – ident: e_1_2_8_41_1 doi: 10.1016/j.virol.2007.11.033 – ident: e_1_2_8_66_1 doi: 10.1016/j.febslet.2014.04.023 – ident: e_1_2_8_23_1 doi: 10.1016/j.tcb.2004.07.016 – ident: e_1_2_8_25_1 doi: 10.1016/S0960-9822(95)00079-0 – ident: e_1_2_8_61_1 doi: 10.1083/jcb.201112098 – ident: e_1_2_8_33_1 doi: 10.1016/0092-8674(84)90457-4 – ident: e_1_2_8_38_1 doi: 10.1016/B978-0-12-417160-2.00016-3 – ident: e_1_2_8_14_1 doi: 10.1021/pr101065j – volume-title: Limma: linear models for microarray data year: 2005 ident: e_1_2_8_62_1 – ident: e_1_2_8_18_1 doi: 10.1186/1471-2105-10-48 – ident: e_1_2_8_40_1 doi: 10.7554/eLife.11466 – ident: e_1_2_8_47_1 doi: 10.1093/nar/gku351 – ident: e_1_2_8_52_1 doi: 10.1016/S0021-9258(17)37374-X – ident: e_1_2_8_58_1 doi: 10.1083/jcb.145.2.255 – ident: e_1_2_8_21_1 doi: 10.1074/mcp.M111.014050 – ident: e_1_2_8_57_1 doi: 10.1016/j.jneumeth.2010.08.031 – ident: e_1_2_8_36_1 doi: 10.1074/jbc.M113.489286 – ident: e_1_2_8_43_1 doi: 10.1038/sj.emboj.7600587 – ident: e_1_2_8_51_1 doi: 10.1371/journal.pbio.0030405 – ident: e_1_2_8_13_1 doi: 10.1038/nbt.1511 – ident: e_1_2_8_24_1 doi: 10.1083/jcb.200810106 – ident: e_1_2_8_32_1 doi: 10.1093/emboj/16.21.6535 – ident: e_1_2_8_75_1 doi: 10.1016/j.semcdb.2009.05.003 – ident: e_1_2_8_55_1 doi: 10.1111/j.1582-4934.2008.00437.x – ident: e_1_2_8_17_1 doi: 10.1083/jcb.107.3.841 – ident: e_1_2_8_54_1 doi: 10.1091/mbc.E09-05-0374 – ident: e_1_2_8_44_1 doi: 10.1016/S0092-8674(00)80372-4 – ident: e_1_2_8_72_1 doi: 10.18632/oncotarget.8256 – ident: e_1_2_8_20_1 doi: 10.1093/bioinformatics/btr645 – ident: e_1_2_8_27_1 doi: 10.1128/JVI.74.24.11811-11824.2000 – ident: e_1_2_8_34_1 doi: 10.1186/1471-2121-11-63 – ident: e_1_2_8_30_1 doi: 10.1016/j.molcel.2014.06.003 – ident: e_1_2_8_10_1 doi: 10.1016/j.bbamcr.2010.10.014 – ident: e_1_2_8_45_1 doi: 10.1016/j.cell.2006.05.049 – volume-title: R: a language and environment for statistical computing year: 2012 ident: e_1_2_8_59_1 – ident: e_1_2_8_65_1 doi: 10.1074/mcp.M112.024877 |
SSID | ssj0038182 |
Score | 2.4955113 |
Snippet | Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes... Nuclear transport receptors ( NTR s) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes... Abstract Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 962 |
SubjectTerms | Active Transport, Cell Nucleus Biotin Biotinylation Cargo Cell Nucleus - metabolism EMBO17 EMBO26 EMBO31 Gene Ontology Humans interaction network Interfaces Localization Mass spectrometry Mass spectroscopy Mutation - genetics Nuclear Localization Signals nuclear pore complex Nuclear transport Peptide mapping Peptides Peptides - metabolism Protein Binding Protein Subunits - metabolism Protein transport Proteome - metabolism Proteomes proteomics proximity ligation Receptors Receptors, Cytoplasmic and Nuclear - metabolism Redundancy Reproducibility of Results RNA, Small Interfering - metabolism Statistics as Topic Subcellular Fractions - metabolism Transport |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSpW4IP4JlCpICC5Ejf9jbm1FVSHKBSr1ZtmOA0iQrbbbA2_TZ-mTMRMn0a4ocOEWxaPEGo8939jjbwBeytZ6gTChsrIOlbTMVzb6rjIqJMub5ENH-x0nH_XxqXx_ps7WSn1RTlimB86K2xPeRoY4oQshScGN70LHo-ahFlG2emACRZ83BVN5DSY3xEdGTcUV3_txESiNyxhNdSTXPNBA1H8Tuvw9SXI-Kd3EsYMjOroLd0YEWe7nnt-DW6m_D9u5puTPB_D2A13epbSmctGVPdEV-2W5mjjMS1zh0jkG2mX0yy-L6yu6aknpQojGH8Lp0bvPh8fVWCChilrZpuoCiy2rPYvaeo9QwXutPAttMqlmgSuBDj8xXJTa0AZF9FZCRh-FFdFqBBaPYKtf9OkJlNx3om2FbbwwEkFFMLQ_Kk3CfzTR1gW8mZTm4sgeTkUsvjuKIkjHDnXsJh0X8GoWP8-0GX8SPKARmIWI7Xp4gTbgRhtw_7KBAnam8XPjFLxwzOJSg8FUYwp4MTfj5KETEd-nxeUg0xiuG8ULeJyHe-4JtxQ7K1aA2TCEja5utvTfvg4E3cpIDLxUAa8nk1nr1s1aqAaL-ruu3Mmng_z09H9o7Rncpi_n3Jwd2FotL9NzRFirsDtMpl8lKCLo priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXVN6hBQUJwQWr8Ts-VS2iqhDlApX2ZvmVggTJsrs98O_x5EVXlN6ixFGc8cz4G3v8DcBrEY3jGSYQIypPhKGOmOAaoqVPhtXJ-QbXO84-q9Nz8XEhF-OC23pMq5x8Yu-oYxdwjfyAmqw5GRvX-nD5i2DVKNxdHUto3IY7SF2GWq0Xc8CFkxEbeTUlk-zg59pjMpfWCqtJXpmHerr-6zDmv6mS837pNprtp6OTXbg_4sjyaBj4B3ArtQ_h7lBZ8vcjMJ_wCC8mN5VdU7ZIWuxW5WZiMi-zn0vLHG6Xwa0uuhLPW2LOUIbkj-H85MPX96dkrJJAgpKmJo2nIdLK0aCMcxkvOKekoz4mnSrqmeR51k80e6boo5fIccVFcIEbHozK6OIJ7LRdm55ByVzDY-SmdlyLjCy8xkVSoVP-Rh1MVcC7SWY2jBTiWMnih8VQAkVss4jtJOIC3szNlwN3xv8aHuMAzI2Q8rq_0a0u7GhBljsTaAaMjfdJcKZd4xsWFPMVDyIqUcD-NHx2tMO1_as1BbyaH2cLwm0R16busm9Ta6ZqyQp4Ooz23BNmMICWtAC9pQdbXd1-0n7_1rN0Sy1y9CULeDtpzJVuXS8F0ivUzbKyZ1-Oh6vnN__wHtzDd4bUm33Y2awu04sMoDb-ZW8lfwBtRhij priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtUwEB2hIiQ2iDeBgoKEYENE_I7Z0SuqClE2UKm7aOw4UAlyq9vbBX_Dt_BlzOSlRi2InRU7iTXjGZ-xx8cAL3TjURFMKLwuQ6G9wMJHbAtnQvKyShhaXu84_GQPjvSHY3M8JtHwWZiL-_dGGvnmx1ngBCznLB_pvW6EcnxDw8quJofLc44c6TMvvbKYbnpW_qug5OWMyHlbdAla-1ln_zbcGuFi_m7Q7x24lrq7cGO4QPLnPXj7kU_qcg5Tvm7zjrmJcZNvJ8LynNxZOqWoOo-4-br-_YvPVXJuEEHv-3C0__7L6qAYb0MoojW-KtogYiNKFNF6RMIFiNagCE1yqRRBGkWzexLkgZrQBMNcVkpHjMqr6C2hiAew06279Ahyia1qGuUrVE4TggiOF0O1S_SPKvoyg9eT0Oo4UoXzjRXfaw4ZWMY1ybieZJzBy7n56cCR8beGe6yBuRFTW_cPSOP1aCm1Qh8FAcM2hKSVdNiGVkYrQ6mibqzOYHfSXz3a21ktPPkVipwql8HzuZoshbc_sEvr875N5aStjMzg4aDuuSfSc6BsRAZuMRAWXV3WdCffejZu4zRFWSaDV9OQudCtq6VQ9CPq37KqDz_vDaXH__3lJ3CTi0O2zS7sbDfn6Slhpm141lvMH-cHEQg priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF6kIvgi3o1WiSD6YjB7z_atFUsRK4IW-rbMbjatoEk55_TBf-Nv6S_rTG40WAXfQjLnZJmd2f1mM_MNY69U7UAiTCicKkOhHIfCRWgKq0NyokoQGjrvOPxsDo7Ux2N9PPY5pVqYgR9iPnAjz-jXa3JwCOupYw-xhv5cB0rNstZQse9NKq-lnD6hvkxLMe1GYqiIVAX1ZRpJNukP3l39-WJT6rn7rwOcf-ZNzh9Pl9C235v277I7I6jMdwcruMdupPY-uzW0mfz1gO18onpeynTKuyZvicEYVvlmojXPcdFLZxh75xFWJ93Fb6q-pAwiBOgP2dH-h2_vD4qxZ0IRjXZV0QQea14Cj8YBIHoAMBp4qJNNJQ9CS8QAieM6VYc6aGK8kipClE5GZxBrPGJbbdemJywX0Mi6lq4CifqTPFg6MlU24Tuq6MqMvZ2U5uNIKE59LX54CixIxx517CcdZ-z1LH42MGn8TXCPZmAWIgLs_ka3OvGjP3kJLnKEj00ISUlhoQmNiEaEUkZVG5Wx7Wn-_OiVa88drj4YX1U2Yy_nx-hP9JEE2tSd9zKVFabSImOPh-meR4IWhOG05hmzC0NYDHX5pP1-2nN2a6swFtMZezOZzJVhXa-Foreof-vKH37dG66e_qf8M3abbg6ZOdtsa7M6T88RX23Ci96HLgGNCh2Z priority: 102 providerName: Wiley-Blackwell |
Title | Landscape of nuclear transport receptor cargo specificity |
URI | https://link.springer.com/article/10.15252/msb.20177608 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20177608 https://www.ncbi.nlm.nih.gov/pubmed/29254951 https://www.proquest.com/docview/1979476887 https://www.proquest.com/docview/1978726852 https://pubmed.ncbi.nlm.nih.gov/PMC5740495 https://doaj.org/article/3a9c1083fbbe4327afbf2c62b03c4d64 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66i-CLeN_qOlQQfbHa3BtBxBl2WcRZFnVg3kqSpquwtmt3Ftx_42_xl3lObzrsKL6UtEnbcHKSfCc5-Q4hT0RhLAeYkBiRukQYahPjbZlo6YJhWbCuxPWO-aE6WIh3S7n8TSnUC_Bso2mH8aQWzcmL798u3kCHf91H72Evv545dNLSWuGx322YlDQGM5iLcUMB5yXWU2xeemVtSmqZ-zfBzctek-PW6TqwbWem_ZvkRg8p47edDtwiV0J1m1zrgkxe3CGv3uNpXvRziusyrpC_2DbxaiA1j2HIC6dgecfeNsf1zx949hL9hwCe3yWL_b1Ps4Okj5iQeCVNlpSO-oKmlnplrAXsYK2Slroi6JBSxyQHBBAojFKFK5xEvisuvPXccG8UII17ZKuqq7BDYmZLXhTcZJZrASjDaVwwFTrAPzJv0og8H4SW-55OHKNanORoVqCMc5BxPsg4Ik_H4qcdj8bfCk6xBcZCSH_dPqib47zvTTm3xlMAj6VzQXCmbelK5hVzKfeiUCIiu0P75YNK5dTA2APWVaYj8njMht6EWyS2CvV5WybTTGWSReR-19xjTZhBY1rSiOg1RVir6npO9eVzy9gttQBLTEbk2aAyf1RrsxSSVqP-Lat8_nHapR7895cfkuuY7DxydsnWqjkPjwBXrdyEXGXiCK56qSdke7p3ePQB7mZqNmlXKiZtj_oFcDUkvw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDxuBA18SOODwhRoNrS3V5opb2ltuOUSiVZdrdC_VP8RmbyoitKb71FsZM438x4ZuzxDMArUWjD0UyItIhtJHRiIu1MGSlpvWaZN7ak9Y7JXjo6EF-ncroGv_uzMBRW2c-JzURd1I7WyDcTjZyDtnGmPsx-RlQ1inZX-xIaLVvs-rNf6LIt3u98Rvq-Zmz7y_6nUdRVFYhcKnUWlTZxRRKbxKXaGNSvxqTSJLbwyseJZZKjlvQJSnJhCyspJxQXzjiuudMpamN87zW4joo3JmdPTQcHj5Qf6_J4SibZ5o-FpeAxpVKqXnlO7zXlAS6yaf8NzRz2Z1et50b9bd-B253dGn5sGe0urPnqHtxoK1me3Qc9piPDFEwV1mVYUZJkMw-Xfeb0EOdVP0P3PnRmflSHdL6TYpTQBXgAB1eC30NYr-rKP4aQmZIXBdeZ4UogoFbRoqxQHr-ROR0H8K7HLHddynKqnHGSk-tCEOcIcd5DHMCbofuszdXxv45bRIChE6XYbm7U86O8k9icG-0SNFBLa73gTJnSlsylzMbciSIVAWz05Ms7uV_kf7k0gJdDM0osbcOYytenTZ9MsTSTLIBHLbWHkTBNDrtMAlArfLAy1NWW6vh7kxVcKoHengzgbc8x54Z1MQpRw1CXY5VPvm21V08u_-EXcHO0Pxnn45293adwi55vw342YH05P_XP0Hhb2ueNxIRweNUi-gfF_lTm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VW4G4oPJs2gJBQnAhavyKYzhtgVVZ2gqpVOrNsh2nINFktd0e-m_6W_hlePISUQvilCh2Emvssb-xZ74BeMULZViACYniqU24IiZRzpSJFNYrmntjS9zvODzK9k_4_FScrsH7Pham8XbvjyTbmAZkaapWu4ui7PP10N3zC4tuWVJmGOi7nodLPoH16XR-PO8nYlyLaEereeOl0TLUsPXfBjFvekoOx6VjMNusRrMNuN_ByHja9vsDWPPVQ7jTJpa8egTvDjCCF32b4rqMK-QsNst41ROZx2Ga84tgbcfOLM_qX9cYb4k-QwGSP4aT2advH_aTLktC4jKh8qS0xBUkNcRlypiAF4zJhCG28NKnxFLBwqrvSZiZCltYgRxXjDvjmGJOZQFdPIFJVVd-E2JqSlYUTOWGSR6QhZW4ScqlD__InUojeNsLTbuOQhwzWfzUaEqgjHWQse5lHMHrofqi5c74W8U97IGhElJeNw_q5ZnuNEgzoxwJgLG01nNGpSltSV1GbcocLzIewU7ff7rTwwtNVJhvgkWVywheDsVBg_BYxFS-vmzq5JJmuaARPG27e2gJVWhACxKBHA2EUVPHJdWP7w1Lt5A8WF8igjf9kPmjWbdLIWlG1L9lpQ-P99q7rf_-8gu4-_XjTB98PvqyDffwaeuQswOT1fLSPwuwamWfd-rzG-ShHaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+of+nuclear+transport+receptor+cargo%C2%A0specificity&rft.jtitle=Molecular+systems+biology&rft.au=Mackmull%2C+Marie%E2%80%90Therese&rft.au=Klaus%2C+Bernd&rft.au=Heinze%2C+Ivonne&rft.au=Chokkalingam%2C+Manopriya&rft.date=2017-12-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1744-4292&rft.volume=13&rft.issue=12&rft_id=info:doi/10.15252%2Fmsb.20177608&rft.externalDocID=10_15252_msb_20177608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |