Landscape of nuclear transport receptor cargo specificity

Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 13; no. 12; pp. 962 - n/a
Main Authors Mackmull, Marie‐Therese, Klaus, Bernd, Heinze, Ivonne, Chokkalingam, Manopriya, Beyer, Andreas, Russell, Robert B, Ori, Alessandro, Beck, Martin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2017
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ , we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Synopsis This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites. NTRs transport functionally related cargos. Multiple members of protein complexes are identified suggesting that they are often transported as fully assembled entities. The direct identification of biotinylated peptides enables mapping of potential interaction sites of NTRs. A statistical framework is introduced that allows quantifying interaction specificity. Graphical Abstract This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites.
AbstractList Abstract Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.
Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo-NTR relationships , we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.
Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Synopsis This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites. NTRs transport functionally related cargos. Multiple members of protein complexes are identified suggesting that they are often transported as fully assembled entities. The direct identification of biotinylated peptides enables mapping of potential interaction sites of NTRs. A statistical framework is introduced that allows quantifying interaction specificity. This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites.
Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo-NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo-NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.
Nuclear transport receptors ( NTR s) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes ( NPC s). About 30 different NTR s constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTR s, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo– NTR relationships in situ , we used proximity ligation coupled to mass spectrometry (Bio ID ). We systematically fused the engineered biotin ligase BirA* to 16 NTR s. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the Bio ID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD 007976.
Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ, we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976.
Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations. To systematically map cargo–NTR relationships in situ , we used proximity ligation coupled to mass spectrometry (BioID). We systematically fused the engineered biotin ligase BirA* to 16 NTRs. We estimate that a considerable fraction of the human proteome is subject to active nuclear transport. We quantified the specificity and redundancy in NTR interactions and identified transport pathways for cargos. We extended the BioID method by the direct identification of biotinylation sites. This approach enabled us to identify interaction interfaces and to discriminate direct versus piggyback transport mechanisms. Data are available via ProteomeXchange with identifier PXD007976. Synopsis This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites. NTRs transport functionally related cargos. Multiple members of protein complexes are identified suggesting that they are often transported as fully assembled entities. The direct identification of biotinylated peptides enables mapping of potential interaction sites of NTRs. A statistical framework is introduced that allows quantifying interaction specificity. Graphical Abstract This study provides a comprehensive overview of the nuclear transport receptor (NTR) interactome and quantifies the specificity and redundancy of interactions. The BioID method is extended to directly identify biotinylation sites.
Author Ori, Alessandro
Klaus, Bernd
Chokkalingam, Manopriya
Heinze, Ivonne
Mackmull, Marie‐Therese
Beyer, Andreas
Russell, Robert B
Beck, Martin
AuthorAffiliation 5 Center for Molecular Medicine Cologne University of Cologne Cologne Germany
1 Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
7 Cell Biology and Biophysics Unit European Molecular Biology Laboratory Heidelberg Germany
2 Centre for Statistical Data Analysis European Molecular Biology Laboratory Heidelberg Germany
4 Cellular Networks and Systems Biology CECAD University of Cologne Cologne Germany
6 Heidelberg University Biochemistry Centre & Bioquant Heidelberg Germany
3 Leibniz Institute on Aging Fritz Lipmann Institute (FLI) Jena Germany
AuthorAffiliation_xml – name: 2 Centre for Statistical Data Analysis European Molecular Biology Laboratory Heidelberg Germany
– name: 3 Leibniz Institute on Aging Fritz Lipmann Institute (FLI) Jena Germany
– name: 4 Cellular Networks and Systems Biology CECAD University of Cologne Cologne Germany
– name: 1 Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
– name: 7 Cell Biology and Biophysics Unit European Molecular Biology Laboratory Heidelberg Germany
– name: 6 Heidelberg University Biochemistry Centre & Bioquant Heidelberg Germany
– name: 5 Center for Molecular Medicine Cologne University of Cologne Cologne Germany
Author_xml – sequence: 1
  givenname: Marie‐Therese
  orcidid: 0000-0003-2928-1144
  surname: Mackmull
  fullname: Mackmull, Marie‐Therese
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory
– sequence: 2
  givenname: Bernd
  surname: Klaus
  fullname: Klaus, Bernd
  organization: Centre for Statistical Data Analysis, European Molecular Biology Laboratory
– sequence: 3
  givenname: Ivonne
  surname: Heinze
  fullname: Heinze, Ivonne
  organization: Leibniz Institute on Aging, Fritz Lipmann Institute (FLI)
– sequence: 4
  givenname: Manopriya
  surname: Chokkalingam
  fullname: Chokkalingam, Manopriya
  organization: Cellular Networks and Systems Biology, CECAD, University of Cologne
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0002-3891-2123
  surname: Beyer
  fullname: Beyer, Andreas
  organization: Cellular Networks and Systems Biology, CECAD, University of Cologne, Center for Molecular Medicine Cologne, University of Cologne
– sequence: 6
  givenname: Robert B
  surname: Russell
  fullname: Russell, Robert B
  organization: Heidelberg University Biochemistry Centre & Bioquant
– sequence: 7
  givenname: Alessandro
  orcidid: 0000-0002-3046-0871
  surname: Ori
  fullname: Ori, Alessandro
  email: alessandro.ori@leibniz-fli.de
  organization: Leibniz Institute on Aging, Fritz Lipmann Institute (FLI)
– sequence: 8
  givenname: Martin
  orcidid: 0000-0002-7397-1321
  surname: Beck
  fullname: Beck, Martin
  email: martin.beck@embl.de
  organization: Structural and Computational Biology Unit, European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29254951$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhi1URC-wZItGYsMmg6-JzQKpVFwqDWIBrK1jxxk8ytjBTkDzNjwLT4bbdKppBaxs2d__-z_H5xQdhRgcQk8JXhJBBX25zWZJMWmaGssH6IQ0nFecKnp0sD9GpzlvMGaSSPoIHZcjwZUgJ-jVCkKbLQxuEbtFmGzvIC3GBCEPMY2L5KwbxpgWFtI6_v6VB2d9560fd4_Rww767J7crGfo67u3Xy4-VKtP7y8vzleVrYWSVWeIbQkGYmsFQDAFqAUQ07rGYWKoYFgSRyhRrWmNUI0kjFuwTDGrairZGbqcfdsIGz0kv4W00xG8vj6Iaa0hjb4k1wyUJViyzhjHGW2gMx21NTWYWd7WvHi9nr2GyWxda10opfZ3TO_eBP9Nr-MPLRqOS8eKwYsbgxS_Ty6PeuuzdX0PwcUpa1LyN7SWghb0-T10E6cUSquuKMWbWsqmUM8OE91G2X9RAdgM2BRzTq7Tpfkw-ngV0PeaYH09CLoMgt4PQlFV91R743_xfOZ_-t7t_g_rj5_f3MqWsywXRVi7dFDjX9_5A1NS0_c
CitedBy_id crossref_primary_10_1038_s41419_020_03101_9
crossref_primary_10_3390_cells12242798
crossref_primary_10_1016_j_str_2023_05_010
crossref_primary_10_1083_jcb_201812091
crossref_primary_10_1038_s41375_020_0958_y
crossref_primary_10_7554_eLife_93256_3
crossref_primary_10_1126_science_abm9506
crossref_primary_10_1038_s41598_020_58397_6
crossref_primary_10_3390_ijms19051445
crossref_primary_10_1038_s41375_022_01513_4
crossref_primary_10_3389_fmolb_2021_638149
crossref_primary_10_1111_febs_15205
crossref_primary_10_1186_s12860_022_00409_6
crossref_primary_10_1128_mbio_01940_24
crossref_primary_10_1016_j_cbpa_2018_10_027
crossref_primary_10_1126_science_aaz5875
crossref_primary_10_1074_mcp_RA118_000623
crossref_primary_10_1016_j_bbamcr_2020_118907
crossref_primary_10_3390_v12080834
crossref_primary_10_1021_acs_jproteome_0c00117
crossref_primary_10_1016_j_jmb_2023_168382
crossref_primary_10_1038_s41594_023_01026_3
crossref_primary_10_1016_j_mcpro_2022_100418
crossref_primary_10_1016_j_ceb_2018_02_010
crossref_primary_10_1016_j_pbi_2020_10_006
crossref_primary_10_1038_s41467_024_45908_6
crossref_primary_10_1016_j_ceb_2024_102426
crossref_primary_10_1111_gtc_12896
crossref_primary_10_1038_s41556_021_00823_6
crossref_primary_10_3390_ijms22179217
crossref_primary_10_1038_s41467_021_26408_3
crossref_primary_10_1016_j_cbpa_2018_10_017
crossref_primary_10_1083_jcb_201812093
crossref_primary_10_1021_acs_jproteome_1c00551
crossref_primary_10_1128_jvi_01522_22
crossref_primary_10_1074_mcp_R120_001941
crossref_primary_10_1093_hmg_ddy303
crossref_primary_10_3389_fimmu_2021_771065
crossref_primary_10_1186_s13024_023_00698_1
crossref_primary_10_1002_1873_3468_70020
crossref_primary_10_1371_journal_pone_0215740
crossref_primary_10_1016_j_yjsbx_2023_100094
crossref_primary_10_1083_jcb_202211032
crossref_primary_10_1038_s41592_020_01010_5
crossref_primary_10_1021_acs_jproteome_4c00308
crossref_primary_10_1080_15548627_2019_1695399
crossref_primary_10_1371_journal_pbio_3003024
crossref_primary_10_1038_s41467_022_28846_z
crossref_primary_10_1051_medsci_2019035
crossref_primary_10_1146_annurev_biophys_052118_115308
crossref_primary_10_7554_eLife_93256
crossref_primary_10_1016_j_celrep_2023_113099
crossref_primary_10_1002_ctm2_70203
crossref_primary_10_3390_cells11121904
crossref_primary_10_1126_sciadv_abq5206
crossref_primary_10_1002_1873_3468_14729
crossref_primary_10_1134_S0006297922140140
crossref_primary_10_1093_nar_gkac1055
crossref_primary_10_1083_jcb_201903017
crossref_primary_10_1038_s41467_023_39150_9
crossref_primary_10_1038_s41580_021_00446_7
crossref_primary_10_14712_fb2023069040133
crossref_primary_10_1016_j_tips_2024_11_002
crossref_primary_10_1016_j_ceb_2018_11_004
crossref_primary_10_1242_jcs_258095
crossref_primary_10_1080_14789450_2019_1638769
crossref_primary_10_1016_j_mcpro_2024_100758
crossref_primary_10_3389_fcell_2022_931237
crossref_primary_10_1073_pnas_1918944117
crossref_primary_10_1093_nar_gkac342
crossref_primary_10_1016_j_ajhg_2021_06_019
crossref_primary_10_1242_jcs_260724
crossref_primary_10_1186_s12964_019_0456_x
crossref_primary_10_3390_biology9080188
crossref_primary_10_1038_s41598_021_94948_1
crossref_primary_10_1515_hsz_2023_0155
crossref_primary_10_3390_ijms22084165
Cites_doi 10.1006/meth.2001.1262
10.1038/nrm.2016.147
10.1016/j.cub.2015.08.047
10.3390/cells4030387
10.1111/tra.12174
10.1186/1471-2105-4-2
10.1242/jcs.01569
10.1111/j.1600-0854.2006.00399.x
10.1074/mcp.M114.042499
10.1074/mcp.M900031-MCP200
10.1186/gb-2006-7-10-r100
10.1016/S0021-9258(18)96722-0
10.1016/bs.ircmb.2015.07.010
10.1038/emboj.2013.29
10.1186/1471-2121-10-66
10.1038/emboj.2011.287
10.1093/emboj/20.14.3685
10.1371/journal.pone.0021800
10.1073/pnas.1505995112
10.1038/sj.embor.7400091
10.1093/nar/gks1262
10.7554/eLife.21184
10.1038/ncb1521
10.1128/MCB.22.1.245-256.2002
10.1038/ncb1097
10.3389/fnmol.2015.00048
10.1371/journal.pone.0000784
10.1242/jcs.181263
10.1186/1471-2105-7-85
10.1093/database/baw105
10.1371/journal.pcbi.1000641
10.1073/pnas.0900604106
10.1038/nmeth1019
10.1214/11-STS356
10.1093/emboj/cdf569
10.1038/nprot.2007.324
10.1016/0092-8674(95)90331-3
10.1074/mcp.M114.045658
10.1074/mcp.M112.019414
10.1016/j.virol.2007.11.033
10.1016/j.febslet.2014.04.023
10.1016/j.tcb.2004.07.016
10.1016/S0960-9822(95)00079-0
10.1083/jcb.201112098
10.1016/0092-8674(84)90457-4
10.1016/B978-0-12-417160-2.00016-3
10.1021/pr101065j
10.1186/1471-2105-10-48
10.7554/eLife.11466
10.1093/nar/gku351
10.1016/S0021-9258(17)37374-X
10.1083/jcb.145.2.255
10.1074/mcp.M111.014050
10.1016/j.jneumeth.2010.08.031
10.1074/jbc.M113.489286
10.1038/sj.emboj.7600587
10.1371/journal.pbio.0030405
10.1038/nbt.1511
10.1083/jcb.200810106
10.1093/emboj/16.21.6535
10.1016/j.semcdb.2009.05.003
10.1111/j.1582-4934.2008.00437.x
10.1083/jcb.107.3.841
10.1091/mbc.E09-05-0374
10.1016/S0092-8674(00)80372-4
10.18632/oncotarget.8256
10.1093/bioinformatics/btr645
10.1128/JVI.74.24.11811-11824.2000
10.1186/1471-2121-11-63
10.1016/j.molcel.2014.06.003
10.1016/j.bbamcr.2010.10.014
10.1016/j.cell.2006.05.049
10.1074/mcp.M112.024877
ContentType Journal Article
Copyright European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license 2017
2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license
2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license.
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license 2017
– notice: 2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license
– notice: 2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license.
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.15252/msb.20177608
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Collection
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Marie‐Therese Mackmull et al
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_3a9c1083fbbe4327afbf2c62b03c4d64
PMC5740495
29254951
10_15252_msb_20177608
MSB177608
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 309271‐NPCAtlas
  funderid: 10.13039/100010663
– fundername: Federal Government of Germany and the State of Thuringia
– fundername: EMBL
– fundername: Bundesministerium für Bildung und Forschung (BMBF)
  grantid: SyBACol‐0315893; PhosphoNetPPM‐031A259
  funderid: 10.13039/501100002347
– fundername: Bundesministerium für Bildung und Forschung (BMBF)
  funderid: SyBACol‐0315893; PhosphoNetPPM‐031A259
– fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  funderid: 309271‐NPCAtlas
– fundername: European Research Council
  grantid: 309271
– fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 309271‐NPCAtlas
– fundername: Bundesministerium für Bildung und Forschung (BMBF)
  grantid: SyBACol‐0315893; PhosphoNetPPM‐031A259
GroupedDBID ---
-Q-
0R~
123
1OC
24P
29M
2WC
39C
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAJSJ
AAMMB
ABDBF
ABUWG
ACCMX
ACGFO
ACPRK
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IHR
INH
ITC
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
NAO
O5R
O5S
O9-
OK1
OVT
P2P
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
3V.
4.4
88A
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
COF
EBLON
GODZA
H13
IGS
M0L
AASML
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c6598-fb1cd10a1c69aa102aa65a1bde7e01b253081e1219dbdb5978134cac393c96283
IEDL.DBID M48
ISSN 1744-4292
IngestDate Wed Aug 27 01:30:09 EDT 2025
Thu Aug 21 14:10:46 EDT 2025
Thu Jul 10 17:09:42 EDT 2025
Wed Aug 13 07:06:05 EDT 2025
Mon Jul 21 06:05:30 EDT 2025
Thu Apr 24 22:53:49 EDT 2025
Tue Jul 01 04:10:34 EDT 2025
Wed Jan 22 16:32:35 EST 2025
Tue Aug 12 01:10:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords protein transport
nuclear pore complex
interaction network
proteomics
proximity ligation
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2017 European Molecular Biology Laboratory. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6598-fb1cd10a1c69aa102aa65a1bde7e01b253081e1219dbdb5978134cac393c96283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3891-2123
0000-0002-3046-0871
0000-0003-2928-1144
0000-0002-7397-1321
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/msb.20177608
PMID 29254951
PQID 1979476887
PQPubID 29031
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_3a9c1083fbbe4327afbf2c62b03c4d64
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5740495
proquest_miscellaneous_1978726852
proquest_journals_1979476887
pubmed_primary_29254951
crossref_citationtrail_10_15252_msb_20177608
crossref_primary_10_15252_msb_20177608
wiley_primary_10_15252_msb_20177608_MSB177608
springer_journals_10_15252_msb_20177608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
– name: Hoboken
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2017
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2010; 11
2017; 6
2013a; 12
2004; 6
2004; 5
2011; 10
2012; 11
1988; 107
2005; 24
1997; 90
2010; 21
1966; 241
2009; 10
2013b; 288
1994; 269
2013; 12
2008; 26
2014; 15
2007; 9
2003; 4
1997; 16
2007; 4
2012; 28
2007; 2
2011; 26
2010; 193
2014; 122
2006; 126
2014; 55
2010; 6
2015; 14
2015; 4
2009; 20
2012
2016; 129
2015; 320
2013; 41
2006; 7
2011; 30
2008; 12
2005
1999; 145
2015; 8
2011; 6
2001; 25
1995; 5
2001; 20
2014; 42
2012; 196
2016; 7
2015; 25
1995; 81
2013; 32
1984; 39
2004; 14
2015; 112
2000; 74
2002; 21
2002; 22
2011; 1813
2009; 8
2016
2017; 18
2009; 185
2005; 3
2004; 117
2008; 373
2014; 588
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
Waite M (e_1_2_8_70_1) 1966; 241
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
R Core Team (e_1_2_8_59_1) 2012
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
Smyth GK (e_1_2_8_62_1) 2005
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 122
  start-page: 353
  year: 2014
  end-page: 378
  article-title: Novel approaches for the identification of nuclear transport receptor substrates
  publication-title: Methods Cell Biol
– volume: 7
  start-page: 465
  year: 2006
  end-page: 473
  article-title: Coordinated nuclear import of RNA polymerase III subunits
  publication-title: Traffic
– volume: 10
  start-page: 48
  year: 2009
  article-title: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists
  publication-title: BMC Bioinformatics
– year: 2005
– volume: 588
  start-page: 1857
  year: 2014
  end-page: 1868
  article-title: Transportin‐1 and Transportin‐2: protein nuclear import and beyond
  publication-title: FEBS Lett
– volume: 241
  start-page: 1909
  year: 1966
  end-page: 1914
  article-title: Studies on the mechanism of action of acetyl coenzyme A carboxylase. 3. Enzyme‐bound 1′‐N‐carboxybiotin as the carboxylation intermediate
  publication-title: J Biol Chem
– volume: 4
  start-page: 387
  year: 2015
  end-page: 405
  article-title: Nuclear import of yeast proteasomes
  publication-title: Cells
– volume: 288
  start-page: 24540
  year: 2013b
  end-page: 24549
  article-title: Identification of cargo proteins specific for importin‐β with importin‐α applying a stable isotope labeling by amino acids in cell culture (SILAC)‐based transport system
  publication-title: J Biol Chem
– volume: 1813
  start-page: 1593
  year: 2011
  end-page: 1606
  article-title: Nuclear import by karyopherin‐βs: recognition and inhibition
  publication-title: Biochim Biophys Acta
– volume: 28
  start-page: 288
  year: 2012
  end-page: 289
  article-title: MSnbase‐an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation
  publication-title: Bioinformatics
– volume: 10
  start-page: 1794
  year: 2011
  end-page: 1805
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J Proteome Res
– volume: 26
  start-page: 584
  year: 2011
  end-page: 597
  article-title: Multiple testing for exploratory research
  publication-title: Stat Sci
– volume: 4
  start-page: 2
  year: 2003
  article-title: An automated method for finding molecular complexes in large protein interaction networks
  publication-title: BMC Bioinformatics
– volume: 2
  start-page: e784
  year: 2007
  article-title: Interphase nucleo‐cytoplasmic shuttling and localization of SIRT2 during mitosis
  publication-title: PLoS One
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 4
  start-page: 207
  year: 2007
  end-page: 214
  article-title: Target‐decoy search strategy for increased confidence in large‐scale protein identifications by mass spectrometry
  publication-title: Nat Methods
– volume: 196
  start-page: 801
  year: 2012
  end-page: 810
  article-title: A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells
  publication-title: J Cell Biol
– volume: 10
  start-page: 66
  year: 2009
  article-title: Dynamic localisation of Ran GTPase during the cell cycle
  publication-title: BMC Cell Biol
– volume: 269
  start-page: 6320
  year: 1994
  end-page: 6324
  article-title: Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression
  publication-title: J Biol Chem
– volume: 14
  start-page: 1781
  year: 2015
  end-page: 1795
  article-title: BioID‐based identification of Skp Cullin F‐box (SCF)β‐TrCP1/2 E3 ligase substrates
  publication-title: Mol Cell Proteomics
– volume: 22
  start-page: 245
  year: 2002
  end-page: 256
  article-title: Formation of Tap/NXT1 heterodimers activates Tap‐dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes
  publication-title: Mol Cell Biol
– volume: 9
  start-page: 72
  year: 2007
  end-page: 79
  article-title: Triggering neural differentiation of ES cells by subtype switching of importin‐alpha
  publication-title: Nat Cell Biol
– volume: 12
  start-page: 145
  year: 2013a
  end-page: 157
  article-title: Identification of cargo proteins specific for the nucleocytoplasmic transport carrier transportin by combination of an transport system and stable isotope labeling by amino acids in cell culture (SILAC)‐based quantitative proteomics
  publication-title: Mol Cell Proteomics
– volume: 8
  start-page: 48
  year: 2015
  article-title: Cell biological mechanisms of activity‐dependent synapse to nucleus translocation of CRTC1 in neurons
  publication-title: Front Mol Neurosci
– volume: 4
  start-page: e11466
  year: 2015
  article-title: A deep proteomics perspective on CRM1‐mediated nuclear export and nucleocytoplasmic partitioning
  publication-title: Elife
– volume: 5
  start-page: 304
  year: 2004
  end-page: 310
  article-title: Molecular insights into the interaction of PYM with the Mago‐Y14 core of the exon junction complex
  publication-title: EMBO Rep
– volume: 14
  start-page: 1350
  year: 2015
  end-page: 1360
  article-title: Histone deacetylase inhibitors (HDACi) cause the selective depletion of bromodomain containing proteins (BCPs)
  publication-title: Mol Cell Proteomics
– volume: 8
  start-page: 2256
  year: 2009
  end-page: 2265
  article-title: Identification of heparin‐binding sites in proteins by selective labeling
  publication-title: Mol Cell Proteomics
– volume: 11
  start-page: 63
  year: 2010
  article-title: Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors
  publication-title: BMC Cell Biol
– volume: 41
  start-page: D1063
  year: 2013
  end-page: D1069
  article-title: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 22883
  year: 2016
  end-page: 22892
  article-title: Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC)
  publication-title: Oncotarget
– volume: 185
  start-page: 27
  year: 2009
  end-page: 34
  article-title: Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors
  publication-title: J Cell Biol
– volume: 20
  start-page: 3685
  year: 2001
  end-page: 3694
  article-title: Importin 13: a novel mediator of nuclear import and export
  publication-title: EMBO J
– volume: 373
  start-page: 171
  year: 2008
  end-page: 180
  article-title: Inhibitory function of adapter‐related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome
  publication-title: Virology
– volume: 90
  start-page: 1061
  year: 1997
  end-page: 1071
  article-title: Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor
  publication-title: Cell
– volume: 11
  start-page: M111.014050
  year: 2012
  article-title: Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins
  publication-title: Mol Cell Proteomics
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method
  publication-title: Methods
– volume: 20
  start-page: 590
  year: 2009
  end-page: 599
  article-title: The role of the nuclear transport system in cell differentiation
  publication-title: Semin Cell Dev Biol
– volume: 15
  start-page: 727
  year: 2014
  end-page: 748
  article-title: Biological significance of the importin‐β family‐dependent nucleocytoplasmic transport pathways
  publication-title: Traffic
– volume: 126
  start-page: 543
  year: 2006
  end-page: 558
  article-title: Rules for nuclear localization sequence recognition by karyopherin beta 2
  publication-title: Cell
– volume: 12
  start-page: 664
  year: 2013
  end-page: 678
  article-title: Identification of CRM1‐dependent nuclear export cargos using quantitative mass spectrometry
  publication-title: Mol Cell Proteomics
– volume: 6
  start-page: e1000641
  year: 2010
  article-title: Associating genes and protein complexes with disease via network propagation
  publication-title: PLoS Comput Biol
– volume: 7
  start-page: 85
  year: 2006
  article-title: Statistical analysis of real‐time PCR data
  publication-title: BMC Bioinformatics
– volume: 25
  start-page: 2663
  year: 2015
  end-page: 2671
  article-title: The nuclear proteome of a vertebrate
  publication-title: Curr Biol
– volume: 16
  start-page: 6535
  year: 1997
  end-page: 6547
  article-title: The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus
  publication-title: EMBO J
– volume: 32
  start-page: 899
  year: 2013
  end-page: 913
  article-title: Structural basis for the nuclear export activity of Importin13
  publication-title: EMBO J
– volume: 112
  start-page: E3679
  year: 2015
  end-page: E3688
  article-title: Small GTP‐binding protein Ran is regulated by posttranslational lysine acetylation
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 383
  year: 1995
  end-page: 392
  article-title: Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope
  publication-title: Curr Biol
– volume: 106
  start-page: 10171
  year: 2009
  end-page: 10176
  article-title: Systematic identification of cell cycle‐dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs
  publication-title: Proc Natl Acad Sci USA
– volume: 2
  start-page: 2366
  year: 2007
  end-page: 2382
  article-title: Integration of biological networks and gene expression data using Cytoscape
  publication-title: Nat Protoc
– volume: 55
  start-page: 332
  year: 2014
  end-page: 341
  article-title: Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging
  publication-title: Mol Cell
– year: 2016
– volume: 42
  start-page: e95
  year: 2014
  article-title: detection of differentially bound regions for ChIP‐seq data using peaks and windows: controlling error rates correctly
  publication-title: Nucleic Acids Res
– volume: 3
  start-page: e405
  year: 2005
  article-title: Systematic discovery of new recognition peptides mediating protein interaction networks
  publication-title: PLoS Biol
– volume: 193
  start-page: 380
  year: 2010
  end-page: 384
  article-title: A novel algorithm for optimal image thresholding of biological data
  publication-title: J Neurosci Methods
– year: 2012
– volume: 107
  start-page: 841
  year: 1988
  end-page: 849
  article-title: The nucleoplasmin nuclear location sequence is larger and more complex than that of SV‐40 large T antigen
  publication-title: J Cell Biol
– volume: 21
  start-page: 630
  year: 2010
  end-page: 638
  article-title: Two isoforms of Npap60 (Nup50) differentially regulate nuclear protein import
  publication-title: Mol Biol Cell
– volume: 117
  start-page: 6511
  year: 2004
  end-page: 6522
  article-title: Importin beta is transported to spindle poles during mitosis and regulates Ran‐dependent spindle assembly factors in mammalian cells
  publication-title: J Cell Sci
– volume: 18
  start-page: 73
  year: 2017
  end-page: 89
  article-title: The nuclear pore complex: understanding its function through structural insight
  publication-title: Nat Rev Mol Cell Biol
– volume: 6
  start-page: e21800
  year: 2011
  article-title: REVIGO summarizes and visualizes long lists of gene ontology terms
  publication-title: PLoS One
– volume: 12
  start-page: 1863
  year: 2008
  end-page: 1871
  article-title: Importins and exportins in cellular differentiation
  publication-title: J Cell Mol Med
– volume: 145
  start-page: 255
  year: 1999
  end-page: 264
  article-title: CRM1‐mediated recycling of snurportin 1 to the cytoplasm
  publication-title: J Cell Biol
– volume: 24
  start-page: 942
  year: 2005
  end-page: 951
  article-title: Importin alpha transports CaMKIV to the nucleus without utilizing importin beta
  publication-title: EMBO J
– volume: 21
  start-page: 5833
  year: 2002
  end-page: 5842
  article-title: Importin alpha can migrate into the nucleus in an importin beta‐ and Ran‐independent manner
  publication-title: EMBO J
– volume: 7
  start-page: R100
  year: 2006
  article-title: Cell Profiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol
– volume: 74
  start-page: 11811
  year: 2000
  end-page: 11824
  article-title: A human nuclear shuttling protein that interacts with human immunodeficiency virus type 1 matrix is packaged into virions
  publication-title: J Virol
– volume: 6
  start-page: 197
  year: 2004
  end-page: 206
  article-title: Minimal nuclear pore complexes define FG repeat domains essential for transport
  publication-title: Nat Cell Biol
– volume: 320
  start-page: 171
  year: 2015
  end-page: 233
  article-title: Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease
  publication-title: Int Rev Cell Mol Biol
– volume: 14
  start-page: 505
  year: 2004
  end-page: 514
  article-title: Importin alpha: a multipurpose nuclear‐transport receptor
  publication-title: Trends Cell Biol
– volume: 30
  start-page: 3457
  year: 2011
  end-page: 3474
  article-title: Ran‐dependent nuclear export mediators: a structural perspective
  publication-title: EMBO J
– volume: 39
  start-page: 499
  year: 1984
  end-page: 509
  article-title: A short amino acid sequence able to specify nuclear location
  publication-title: Cell
– volume: 6
  start-page: e21184
  year: 2017
  article-title: Extensive cargo identification reveals distinct biological roles of the 12 importin pathways
  publication-title: Elife
– volume: 81
  start-page: 215
  year: 1995
  end-page: 222
  article-title: The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex
  publication-title: Cell
– volume: 129
  start-page: 1115
  year: 2016
  end-page: 1127
  article-title: Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding
  publication-title: J Cell Sci
– ident: e_1_2_8_46_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_8_4_1
  doi: 10.1038/nrm.2016.147
– ident: e_1_2_8_73_1
  doi: 10.1016/j.cub.2015.08.047
– ident: e_1_2_8_7_1
  doi: 10.3390/cells4030387
– ident: e_1_2_8_37_1
  doi: 10.1111/tra.12174
– ident: e_1_2_8_3_1
  doi: 10.1186/1471-2105-4-2
– ident: e_1_2_8_11_1
  doi: 10.1242/jcs.01569
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1600-0854.2006.00399.x
– ident: e_1_2_8_48_1
  doi: 10.1074/mcp.M114.042499
– ident: e_1_2_8_56_1
  doi: 10.1074/mcp.M900031-MCP200
– ident: e_1_2_8_8_1
  doi: 10.1186/gb-2006-7-10-r100
– volume: 241
  start-page: 1909
  year: 1966
  ident: e_1_2_8_70_1
  article-title: Studies on the mechanism of action of acetyl coenzyme A carboxylase. 3. Enzyme‐bound 1′‐N‐carboxybiotin as the carboxylation intermediate
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)96722-0
– ident: e_1_2_8_16_1
  doi: 10.1016/bs.ircmb.2015.07.010
– ident: e_1_2_8_26_1
  doi: 10.1038/emboj.2013.29
– ident: e_1_2_8_31_1
  doi: 10.1186/1471-2121-10-66
– ident: e_1_2_8_28_1
  doi: 10.1038/emboj.2011.287
– ident: e_1_2_8_49_1
  doi: 10.1093/emboj/20.14.3685
– ident: e_1_2_8_64_1
  doi: 10.1371/journal.pone.0021800
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.1505995112
– ident: e_1_2_8_5_1
  doi: 10.1038/sj.embor.7400091
– ident: e_1_2_8_68_1
  doi: 10.1093/nar/gks1262
– ident: e_1_2_8_39_1
  doi: 10.7554/eLife.21184
– ident: e_1_2_8_74_1
  doi: 10.1038/ncb1521
– ident: e_1_2_8_71_1
  doi: 10.1128/MCB.22.1.245-256.2002
– ident: e_1_2_8_63_1
  doi: 10.1038/ncb1097
– ident: e_1_2_8_9_1
  doi: 10.3389/fnmol.2015.00048
– ident: e_1_2_8_53_1
  doi: 10.1371/journal.pone.0000784
– ident: e_1_2_8_69_1
  doi: 10.1242/jcs.181263
– ident: e_1_2_8_76_1
  doi: 10.1186/1471-2105-7-85
– ident: e_1_2_8_2_1
  doi: 10.1093/database/baw105
– ident: e_1_2_8_67_1
  doi: 10.1371/journal.pcbi.1000641
– ident: e_1_2_8_42_1
  doi: 10.1073/pnas.0900604106
– ident: e_1_2_8_19_1
  doi: 10.1038/nmeth1019
– ident: e_1_2_8_22_1
  doi: 10.1214/11-STS356
– ident: e_1_2_8_50_1
  doi: 10.1093/emboj/cdf569
– ident: e_1_2_8_12_1
  doi: 10.1038/nprot.2007.324
– ident: e_1_2_8_60_1
  doi: 10.1016/0092-8674(95)90331-3
– ident: e_1_2_8_15_1
  doi: 10.1074/mcp.M114.045658
– ident: e_1_2_8_35_1
  doi: 10.1074/mcp.M112.019414
– ident: e_1_2_8_41_1
  doi: 10.1016/j.virol.2007.11.033
– ident: e_1_2_8_66_1
  doi: 10.1016/j.febslet.2014.04.023
– ident: e_1_2_8_23_1
  doi: 10.1016/j.tcb.2004.07.016
– ident: e_1_2_8_25_1
  doi: 10.1016/S0960-9822(95)00079-0
– ident: e_1_2_8_61_1
  doi: 10.1083/jcb.201112098
– ident: e_1_2_8_33_1
  doi: 10.1016/0092-8674(84)90457-4
– ident: e_1_2_8_38_1
  doi: 10.1016/B978-0-12-417160-2.00016-3
– ident: e_1_2_8_14_1
  doi: 10.1021/pr101065j
– volume-title: Limma: linear models for microarray data
  year: 2005
  ident: e_1_2_8_62_1
– ident: e_1_2_8_18_1
  doi: 10.1186/1471-2105-10-48
– ident: e_1_2_8_40_1
  doi: 10.7554/eLife.11466
– ident: e_1_2_8_47_1
  doi: 10.1093/nar/gku351
– ident: e_1_2_8_52_1
  doi: 10.1016/S0021-9258(17)37374-X
– ident: e_1_2_8_58_1
  doi: 10.1083/jcb.145.2.255
– ident: e_1_2_8_21_1
  doi: 10.1074/mcp.M111.014050
– ident: e_1_2_8_57_1
  doi: 10.1016/j.jneumeth.2010.08.031
– ident: e_1_2_8_36_1
  doi: 10.1074/jbc.M113.489286
– ident: e_1_2_8_43_1
  doi: 10.1038/sj.emboj.7600587
– ident: e_1_2_8_51_1
  doi: 10.1371/journal.pbio.0030405
– ident: e_1_2_8_13_1
  doi: 10.1038/nbt.1511
– ident: e_1_2_8_24_1
  doi: 10.1083/jcb.200810106
– ident: e_1_2_8_32_1
  doi: 10.1093/emboj/16.21.6535
– ident: e_1_2_8_75_1
  doi: 10.1016/j.semcdb.2009.05.003
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1582-4934.2008.00437.x
– ident: e_1_2_8_17_1
  doi: 10.1083/jcb.107.3.841
– ident: e_1_2_8_54_1
  doi: 10.1091/mbc.E09-05-0374
– ident: e_1_2_8_44_1
  doi: 10.1016/S0092-8674(00)80372-4
– ident: e_1_2_8_72_1
  doi: 10.18632/oncotarget.8256
– ident: e_1_2_8_20_1
  doi: 10.1093/bioinformatics/btr645
– ident: e_1_2_8_27_1
  doi: 10.1128/JVI.74.24.11811-11824.2000
– ident: e_1_2_8_34_1
  doi: 10.1186/1471-2121-11-63
– ident: e_1_2_8_30_1
  doi: 10.1016/j.molcel.2014.06.003
– ident: e_1_2_8_10_1
  doi: 10.1016/j.bbamcr.2010.10.014
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cell.2006.05.049
– volume-title: R: a language and environment for statistical computing
  year: 2012
  ident: e_1_2_8_59_1
– ident: e_1_2_8_65_1
  doi: 10.1074/mcp.M112.024877
SSID ssj0038182
Score 2.4955113
Snippet Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes...
Nuclear transport receptors ( NTR s) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes...
Abstract Nuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 962
SubjectTerms Active Transport, Cell Nucleus
Biotin
Biotinylation
Cargo
Cell Nucleus - metabolism
EMBO17
EMBO26
EMBO31
Gene Ontology
Humans
interaction network
Interfaces
Localization
Mass spectrometry
Mass spectroscopy
Mutation - genetics
Nuclear Localization Signals
nuclear pore complex
Nuclear transport
Peptide mapping
Peptides
Peptides - metabolism
Protein Binding
Protein Subunits - metabolism
Protein transport
Proteome - metabolism
Proteomes
proteomics
proximity ligation
Receptors
Receptors, Cytoplasmic and Nuclear - metabolism
Redundancy
Reproducibility of Results
RNA, Small Interfering - metabolism
Statistics as Topic
Subcellular Fractions - metabolism
Transport
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSpW4IP4JlCpICC5Ejf9jbm1FVSHKBSr1ZtmOA0iQrbbbA2_TZ-mTMRMn0a4ocOEWxaPEGo8939jjbwBeytZ6gTChsrIOlbTMVzb6rjIqJMub5ENH-x0nH_XxqXx_ps7WSn1RTlimB86K2xPeRoY4oQshScGN70LHo-ahFlG2emACRZ83BVN5DSY3xEdGTcUV3_txESiNyxhNdSTXPNBA1H8Tuvw9SXI-Kd3EsYMjOroLd0YEWe7nnt-DW6m_D9u5puTPB_D2A13epbSmctGVPdEV-2W5mjjMS1zh0jkG2mX0yy-L6yu6aknpQojGH8Lp0bvPh8fVWCChilrZpuoCiy2rPYvaeo9QwXutPAttMqlmgSuBDj8xXJTa0AZF9FZCRh-FFdFqBBaPYKtf9OkJlNx3om2FbbwwEkFFMLQ_Kk3CfzTR1gW8mZTm4sgeTkUsvjuKIkjHDnXsJh0X8GoWP8-0GX8SPKARmIWI7Xp4gTbgRhtw_7KBAnam8XPjFLxwzOJSg8FUYwp4MTfj5KETEd-nxeUg0xiuG8ULeJyHe-4JtxQ7K1aA2TCEja5utvTfvg4E3cpIDLxUAa8nk1nr1s1aqAaL-ruu3Mmng_z09H9o7Rncpi_n3Jwd2FotL9NzRFirsDtMpl8lKCLo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXVN6hBQUJwQWr8Ts-VS2iqhDlApX2ZvmVggTJsrs98O_x5EVXlN6ixFGc8cz4G3v8DcBrEY3jGSYQIypPhKGOmOAaoqVPhtXJ-QbXO84-q9Nz8XEhF-OC23pMq5x8Yu-oYxdwjfyAmqw5GRvX-nD5i2DVKNxdHUto3IY7SF2GWq0Xc8CFkxEbeTUlk-zg59pjMpfWCqtJXpmHerr-6zDmv6mS837pNprtp6OTXbg_4sjyaBj4B3ArtQ_h7lBZ8vcjMJ_wCC8mN5VdU7ZIWuxW5WZiMi-zn0vLHG6Xwa0uuhLPW2LOUIbkj-H85MPX96dkrJJAgpKmJo2nIdLK0aCMcxkvOKekoz4mnSrqmeR51k80e6boo5fIccVFcIEbHozK6OIJ7LRdm55ByVzDY-SmdlyLjCy8xkVSoVP-Rh1MVcC7SWY2jBTiWMnih8VQAkVss4jtJOIC3szNlwN3xv8aHuMAzI2Q8rq_0a0u7GhBljsTaAaMjfdJcKZd4xsWFPMVDyIqUcD-NHx2tMO1_as1BbyaH2cLwm0R16busm9Ta6ZqyQp4Ooz23BNmMICWtAC9pQdbXd1-0n7_1rN0Sy1y9CULeDtpzJVuXS8F0ivUzbKyZ1-Oh6vnN__wHtzDd4bUm33Y2awu04sMoDb-ZW8lfwBtRhij
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtUwEB2hIiQ2iDeBgoKEYENE_I7Z0SuqClE2UKm7aOw4UAlyq9vbBX_Dt_BlzOSlRi2InRU7iTXjGZ-xx8cAL3TjURFMKLwuQ6G9wMJHbAtnQvKyShhaXu84_GQPjvSHY3M8JtHwWZiL-_dGGvnmx1ngBCznLB_pvW6EcnxDw8quJofLc44c6TMvvbKYbnpW_qug5OWMyHlbdAla-1ln_zbcGuFi_m7Q7x24lrq7cGO4QPLnPXj7kU_qcg5Tvm7zjrmJcZNvJ8LynNxZOqWoOo-4-br-_YvPVXJuEEHv-3C0__7L6qAYb0MoojW-KtogYiNKFNF6RMIFiNagCE1yqRRBGkWzexLkgZrQBMNcVkpHjMqr6C2hiAew06279Ahyia1qGuUrVE4TggiOF0O1S_SPKvoyg9eT0Oo4UoXzjRXfaw4ZWMY1ybieZJzBy7n56cCR8beGe6yBuRFTW_cPSOP1aCm1Qh8FAcM2hKSVdNiGVkYrQ6mibqzOYHfSXz3a21ktPPkVipwql8HzuZoshbc_sEvr875N5aStjMzg4aDuuSfSc6BsRAZuMRAWXV3WdCffejZu4zRFWSaDV9OQudCtq6VQ9CPq37KqDz_vDaXH__3lJ3CTi0O2zS7sbDfn6Slhpm141lvMH-cHEQg
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF6kIvgi3o1WiSD6YjB7z_atFUsRK4IW-rbMbjatoEk55_TBf-Nv6S_rTG40WAXfQjLnZJmd2f1mM_MNY69U7UAiTCicKkOhHIfCRWgKq0NyokoQGjrvOPxsDo7Ux2N9PPY5pVqYgR9iPnAjz-jXa3JwCOupYw-xhv5cB0rNstZQse9NKq-lnD6hvkxLMe1GYqiIVAX1ZRpJNukP3l39-WJT6rn7rwOcf-ZNzh9Pl9C235v277I7I6jMdwcruMdupPY-uzW0mfz1gO18onpeynTKuyZvicEYVvlmojXPcdFLZxh75xFWJ93Fb6q-pAwiBOgP2dH-h2_vD4qxZ0IRjXZV0QQea14Cj8YBIHoAMBp4qJNNJQ9CS8QAieM6VYc6aGK8kipClE5GZxBrPGJbbdemJywX0Mi6lq4CifqTPFg6MlU24Tuq6MqMvZ2U5uNIKE59LX54CixIxx517CcdZ-z1LH42MGn8TXCPZmAWIgLs_ka3OvGjP3kJLnKEj00ISUlhoQmNiEaEUkZVG5Wx7Wn-_OiVa88drj4YX1U2Yy_nx-hP9JEE2tSd9zKVFabSImOPh-meR4IWhOG05hmzC0NYDHX5pP1-2nN2a6swFtMZezOZzJVhXa-Foreof-vKH37dG66e_qf8M3abbg6ZOdtsa7M6T88RX23Ci96HLgGNCh2Z
  priority: 102
  providerName: Wiley-Blackwell
Title Landscape of nuclear transport receptor cargo specificity
URI https://link.springer.com/article/10.15252/msb.20177608
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20177608
https://www.ncbi.nlm.nih.gov/pubmed/29254951
https://www.proquest.com/docview/1979476887
https://www.proquest.com/docview/1978726852
https://pubmed.ncbi.nlm.nih.gov/PMC5740495
https://doaj.org/article/3a9c1083fbbe4327afbf2c62b03c4d64
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66i-CLeN_qOlQQfbHa3BtBxBl2WcRZFnVg3kqSpquwtmt3Ftx_42_xl3lObzrsKL6UtEnbcHKSfCc5-Q4hT0RhLAeYkBiRukQYahPjbZlo6YJhWbCuxPWO-aE6WIh3S7n8TSnUC_Bso2mH8aQWzcmL798u3kCHf91H72Evv545dNLSWuGx322YlDQGM5iLcUMB5yXWU2xeemVtSmqZ-zfBzctek-PW6TqwbWem_ZvkRg8p47edDtwiV0J1m1zrgkxe3CGv3uNpXvRziusyrpC_2DbxaiA1j2HIC6dgecfeNsf1zx949hL9hwCe3yWL_b1Ps4Okj5iQeCVNlpSO-oKmlnplrAXsYK2Slroi6JBSxyQHBBAojFKFK5xEvisuvPXccG8UII17ZKuqq7BDYmZLXhTcZJZrASjDaVwwFTrAPzJv0og8H4SW-55OHKNanORoVqCMc5BxPsg4Ik_H4qcdj8bfCk6xBcZCSH_dPqib47zvTTm3xlMAj6VzQXCmbelK5hVzKfeiUCIiu0P75YNK5dTA2APWVaYj8njMht6EWyS2CvV5WybTTGWSReR-19xjTZhBY1rSiOg1RVir6npO9eVzy9gttQBLTEbk2aAyf1RrsxSSVqP-Lat8_nHapR7895cfkuuY7DxydsnWqjkPjwBXrdyEXGXiCK56qSdke7p3ePQB7mZqNmlXKiZtj_oFcDUkvw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDxuBA18SOODwhRoNrS3V5opb2ltuOUSiVZdrdC_VP8RmbyoitKb71FsZM438x4ZuzxDMArUWjD0UyItIhtJHRiIu1MGSlpvWaZN7ak9Y7JXjo6EF-ncroGv_uzMBRW2c-JzURd1I7WyDcTjZyDtnGmPsx-RlQ1inZX-xIaLVvs-rNf6LIt3u98Rvq-Zmz7y_6nUdRVFYhcKnUWlTZxRRKbxKXaGNSvxqTSJLbwyseJZZKjlvQJSnJhCyspJxQXzjiuudMpamN87zW4joo3JmdPTQcHj5Qf6_J4SibZ5o-FpeAxpVKqXnlO7zXlAS6yaf8NzRz2Z1et50b9bd-B253dGn5sGe0urPnqHtxoK1me3Qc9piPDFEwV1mVYUZJkMw-Xfeb0EOdVP0P3PnRmflSHdL6TYpTQBXgAB1eC30NYr-rKP4aQmZIXBdeZ4UogoFbRoqxQHr-ROR0H8K7HLHddynKqnHGSk-tCEOcIcd5DHMCbofuszdXxv45bRIChE6XYbm7U86O8k9icG-0SNFBLa73gTJnSlsylzMbciSIVAWz05Ms7uV_kf7k0gJdDM0osbcOYytenTZ9MsTSTLIBHLbWHkTBNDrtMAlArfLAy1NWW6vh7kxVcKoHengzgbc8x54Z1MQpRw1CXY5VPvm21V08u_-EXcHO0Pxnn45293adwi55vw342YH05P_XP0Hhb2ueNxIRweNUi-gfF_lTm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VW4G4oPJs2gJBQnAhavyKYzhtgVVZ2gqpVOrNsh2nINFktd0e-m_6W_hlePISUQvilCh2Emvssb-xZ74BeMULZViACYniqU24IiZRzpSJFNYrmntjS9zvODzK9k_4_FScrsH7Pham8XbvjyTbmAZkaapWu4ui7PP10N3zC4tuWVJmGOi7nodLPoH16XR-PO8nYlyLaEereeOl0TLUsPXfBjFvekoOx6VjMNusRrMNuN_ByHja9vsDWPPVQ7jTJpa8egTvDjCCF32b4rqMK-QsNst41ROZx2Ga84tgbcfOLM_qX9cYb4k-QwGSP4aT2advH_aTLktC4jKh8qS0xBUkNcRlypiAF4zJhCG28NKnxFLBwqrvSZiZCltYgRxXjDvjmGJOZQFdPIFJVVd-E2JqSlYUTOWGSR6QhZW4ScqlD__InUojeNsLTbuOQhwzWfzUaEqgjHWQse5lHMHrofqi5c74W8U97IGhElJeNw_q5ZnuNEgzoxwJgLG01nNGpSltSV1GbcocLzIewU7ff7rTwwtNVJhvgkWVywheDsVBg_BYxFS-vmzq5JJmuaARPG27e2gJVWhACxKBHA2EUVPHJdWP7w1Lt5A8WF8igjf9kPmjWbdLIWlG1L9lpQ-P99q7rf_-8gu4-_XjTB98PvqyDffwaeuQswOT1fLSPwuwamWfd-rzG-ShHaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+of+nuclear+transport+receptor+cargo%C2%A0specificity&rft.jtitle=Molecular+systems+biology&rft.au=Mackmull%2C+Marie%E2%80%90Therese&rft.au=Klaus%2C+Bernd&rft.au=Heinze%2C+Ivonne&rft.au=Chokkalingam%2C+Manopriya&rft.date=2017-12-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1744-4292&rft.volume=13&rft.issue=12&rft_id=info:doi/10.15252%2Fmsb.20177608&rft.externalDocID=10_15252_msb_20177608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon